EP0227197A2 - Oxydation de charbon et de scories - Google Patents

Oxydation de charbon et de scories Download PDF

Info

Publication number
EP0227197A2
EP0227197A2 EP86202366A EP86202366A EP0227197A2 EP 0227197 A2 EP0227197 A2 EP 0227197A2 EP 86202366 A EP86202366 A EP 86202366A EP 86202366 A EP86202366 A EP 86202366A EP 0227197 A2 EP0227197 A2 EP 0227197A2
Authority
EP
European Patent Office
Prior art keywords
coal
char
fluidized bed
slag
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86202366A
Other languages
German (de)
English (en)
Other versions
EP0227197A3 (en
EP0227197B1 (fr
Inventor
Donald Ernest Hardesty
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of EP0227197A2 publication Critical patent/EP0227197A2/fr
Publication of EP0227197A3 publication Critical patent/EP0227197A3/en
Application granted granted Critical
Publication of EP0227197B1 publication Critical patent/EP0227197B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/485Entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/52Ash-removing devices
    • C10J3/526Ash-removing devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen

Definitions

  • the invention relates to a process for the gasification of coal to produce synthesis gas comprising the steps of feeding particulate coal to a gasification zone, and partially oxidizing coal with oxygen in said gasification zone, producing a gas stream comprising synthesis gas, and impurity materials which are collected in a water bath as char, fine slag, and coarse slag; removing a material comprising char from said water bath.
  • char and slag unreacted impurity matter
  • the char and fine slag contains, in addition to mineral matter or components, a residual carbon content that has significant energy value.
  • the char and fine slag may contain from about 5 per cent to about 90 per cent by weight carbon, based on the total weight of the char and fine slag.
  • coal is dried to remove the bulk of the moisture therein before gasification, the removal of this moisture involves a significant energy expenditure. If coal is combusted to provide the heat necessary for the drying, from about 2 per cent to about 12 per cent by weight of the total coal supplied to the process may be utilized, thus lowering the efficiency of the process.
  • the invention in a further embodiment, is directed to reducing this energy expenditure.
  • a process for gasification of coal characterized by utilization of heat values obtained from flyash, with concomitant reduction of material for disposal has already been proposed.
  • the present invention is complementary thereto, such that a common fluidized bed oxidation zone for heat energy recovery may be employed.
  • the invention provides a process for the partial oxidation or combustion of coal in which disposal problems for the char and fine slag are reduced, and energy costs for the process are reduced.
  • the invention further, combines a procedure for reducing char and fine slag disposal with a coal drying procedure, so that improvement in both techniques is achieved.
  • the process of the invention is characterized by the steps of fluidizing removed char in a fluidized bed in a fluidization zone, and oxidizing said char in said fluidized bed with oxygen at a temperature below the fusion temperature of the mineral components of the char and the bed, producing a substantially carbon-free residue and heated gases, and utilizing the heat in the heated gases.
  • the invention comprises a process, as described, in which the partial oxidation or gasification is carried out in a gasification zone, the outlet temperature of which is from 1100 °C to 1800 °C, more advantageously 1200 °C to 1600 °C, and char separated (advantageously, fine slag is also separated) is oxidized in a fluidized bed in a fluidization zone at a temperature of from 500 °C to 1150 °C, more advantageously 650 °C to about 1120 °C.
  • Pressures in the gasification zone may be varied widely, but will advantageously range from 10 to 100 atmospheres, more advantageously from 20 to 50 atmospheres, while pressures in the fluidization zone will range from atmospheric to 10 atmospheres or higher.
  • a rough separation of char and fine slag from coarse slag may be made in the gasification zone, or char and fine slag and all or a portion of the coarse slag may both be sent to the fluidization zone.
  • char refers to those materials, whether solid or molten, which remain in the gasifier upon production of synthesis gas, and have an average particle size (on solidification, if molten) of less than 250 microns in width.
  • “Fine slag” refers to those materials, whether solid or molten, which remain in the gasifier upon production of synthesis gas, and have an average particle size (on solidification, if molten) of greater than 250 microns, but less than 1 millimetre in size.
  • char and fine slag refers to those materials which remain in the gasifier upon production of synthesis gas, and which have an average particle size upon solidification of greater than 1 millimetre in width.
  • char and fine slag contain varying portions of residual carbon, e.g., form 5 per cent by weight to 90 per cent by weight of residual carbon, based on the total weight of the char or fine slag, while coarse slag, which is generally a vitreous type of material, contains less than 1 per cent by weight of residual carbon.
  • the heat liberated may be used to generate steam or, the heat may be used to dry feed coal to the process.
  • the invention relates to a process for the gasification of coal to produce synthesis gas in which parti­culate coal is dried in at least one drying zone, the coal is fed from at least one drying zone to a gasification zone, and partially oxidized or combusted, as hereinbefore described, to produce synthesis gas, char, fine slag, and coarse slag, which is treated as described, and the heat generated by oxidizing the char or char and fine slag is utilized in drying coal in at least one drying zone.
  • oxygen unless otherwise evident from the context where employed, is taken herein to include air, pure oxygen, air enriched with oxygen, and other oxygen-containing gases.
  • the invention is particularly applicable to high pressure coal gasification slagging processes in which the coal is partially oxidized or combusted to produce, in addition to the synthesis gas, flyash, a bottom "char" material, fine slag and a vitreous or coarse slag which are collected in water bath in or associated with the gasification zone.
  • the oxygen and coal flows are controlled so that little CO2 is produced in the gaseous product.
  • these procedures are carried out by feeding coal, advantageously dry coal, e.g., coal having a moisture content of below about ten per cent by weight, entrained in a gas, such as an inert gas, into a gasification zone, and combusting or oxidizing the coal with oxygen.
  • Flame temperatures may reach 3500 °C, with zone outlet temperatures advantageously from 1100 °C to 1800 °C.
  • Pressures in these processes will range from 10 atmospheres to 100 atmospheres, advantageously from 20 atmospheres to 50 atmospheres.
  • the synthesis gas and flyash are removed from the upper portion of the gasification zone, and the char, fine slag, and coarse slag are collected from the lower portion in a water bath.
  • coals are suitable for use in the invention.
  • anthracite, bituminous coal, lignite, and so-called brown coal may be used in the invention.
  • a real advantage of the invention is the ability to use lower grade coals, such as lignite.
  • the term "coal” is taken to include these inferior grade carbonaceous fuels, as well as the higher quality coals.
  • the coal will advantageously be fed to the gasification zone in a particle size suitable for boiler furnace operation, e.g., 80 to 90 microns in diameter, although those skilled in the art may select the appropriate particle size, as desired.
  • the invention is practised with "dry” coal, that is, coal having a moisture content of less than 10 per cent by weight, based on the weight of the moist coal.
  • Synthesis gas and entrained matter which is known as, or becomes what is known as, flyash, is removed from the gasification zone and treated as described therein. Heavier solid particulate matter and molten matter remaining in the gasification zone are allowed to fall into the lower part of the reactor, and thence for example into a water bath, and are collected in the lower portion of the gasification zone.
  • flyash a significant distinction between "flyash” and "char” is the density. Fine slag is somewhat denser, while coarse or vitreous slag has, as noted, little carbon content, and has a "glassy" appearance.
  • the char and fine slag may be separated roughly in the water bath by this density differential, although there will be some intermixture. That is, the coarse slag particles tend to fall to the bottom of the water bath, the fine slag above the coarse slag, and the char generally above the fine slag.
  • Means e.g., a sluice, may be provided for achieving the separation of the char, and fine slag, if desired, from the coarse slag.
  • all material may be removed, either intermittently or continuously, from the bottom or lower portion of the gasification zone water bath. It is thus not a requirement of the invention that the particles in question be separated in the gasification zone water bath; the portions may be separated by sizing equipment external to the bath.
  • bottoms material i.e., char, fine slag, and coarse slag
  • all of the bottoms material i.e., char, fine slag, and coarse slag, be sent to the fluidization zone. If desired, the bottoms material may be crushed to ensure the desired size for fluidization.
  • At least the char, and advanta­geously the fine slag are oxidized in a fluidization zone comprising at least one fluidized bed to remove the carbonaceous matter therein, producing a denser, more easily disposal of material.
  • the heat liberated during oxidation may be captured by generation of steam, or may be used either directly or indirectly to dry the coal to be fed to the gasifier.
  • the amount of heat generated from the bottoms material will be insufficient to dry the large volume of coal needed for the process.
  • the bottoms material may be combined, as mentioned, with flyash, in the manner provided in the above-mentioned application.
  • the type of fluidized bed or beds employed is a matter of choice. What is required, however, is that the bed or beds be operated at a temperature below the fusion temperature of the mineral matter in the bed, including that of a coal or fuel supple­ment.
  • the mineral content of flyash comprises silica, alumina, and other inorganic components in varying quantities, and the melting point of the mixture may be determined routinely. Since these temperatures are normally above 1482 °C (although some may be less), problems with clogging will normally not be encountered if the bed is operated below this temperature.
  • the fusion temperature or range of temperatures may be determined routinely for each flyash or fuel utilized, and the temperature in the fluidized bed may be controlled accordingly.
  • the temperatures are operated well below the fusion temperature, e.g., from 500 °C to 1150 °C, more advantageously from about 650 °C to about 1120 °C.
  • Pressures in the fluidization zone may be varied to the extent suitable for fluidized beds, but may be ranged from atmospheric to 10 atmospheres, for example from atmospheric pressure to 5 atmospheres.
  • the fluidized bed or beds may be jacketed, or may have coils to absorb the heat produced by the oxidation.
  • the bed may contain other particulate matter, including catalysts.
  • the combustion gases generated are removed from the fluidization zone, and transfer their heat, either directly or indirectly, as desired, advantageously to the coal feed.
  • the coal can be ground and dried in a combination procedure, and to allow conventional equipment to be used, a moderating gas, such as air, or nitrogen, at a temperature of, for example, 15 °C to 40 °C, is added to the combustion gases to lower the temperature to 200 °C to 500 °C.
  • a moderating gas such as air, or nitrogen
  • reference numeral (1) designates a supply line from, for example, a storage vessel, not shown, in which coal having an average particle size diameter of 1.3 cm is fed to a drying zone (2) which contains a combination pulverizer-dryer wherein the coal is crushed to an average particle size of from 80 to 90 microns and dried by the gas stream in a line (3) to a moisture content of 10 per cent by weight, based on the weight of the moisture and the coal.
  • the gas stream in the line (3) has a temperature of 250 °C, contacts the coal directly in the combination pulverizer-dryer, and exits the drying zone (2) via a line (4).
  • the exit gas may be treated for control of pollutants, or utilized (not shown).
  • dried particulate coal is removed from the drying zone (2) through a line (5) and forwarded to a gasifier (6).
  • Means may be provided (not illustrated), for raising the pressure of the coal and entraining gas up to the level employed in the gasification zone.
  • the coal is injected in an entraining gas, e.g. nitrogen, through nozzles and combusted in a reducing atmosphere or partially oxidized with pure oxygen at 25 atmospheres and at a flame temperature of 3400 °C to 3500 °C.
  • Synthesis gas and impurity particles are removed overhead from the gasification zone at a temperature of 1400 °C, and sent to a quenching and cooling zone (7).
  • Char and slag which are heavier impurity materials, fall downward into the gasifier, and are removed from the lower portion thereof.
  • the quench and cooling zone (7) can be connected directly to the outlet of the gasifier (6).
  • the synthesis gas can be first quenched and cooled with cold recycle gas.
  • the temperature of the synthesis gas can be lowered to 900 °C, and molten impurities in the gas are solidified to what is known as flyash.
  • the quenching and cooling sequence can be carried out in more than one stage, the final temperature before separation of the flyash being from 235 °C to 320 °C.
  • the stream is forwared via a line (8) to a cyclone (9) (or the cooling zone may discharge directly thereto).
  • the great bulk of the flyash is separated in the cyclone (9), and the flyash is removed from the cyclone (9) via a line (10).
  • the gas stream is removed from the cyclone (9) via a line (11) and sent for further processing, such as for H2S removal, and for product use.
  • a final solids cleanup stage (12) e.g., bag filters, is provided in the line (11). Solids are removed from a unit (12) via a line (13). Solids from the cyclone (9) and the solids removal stage (12) may be utilized for energy recovery according to the invention.
  • a sluice (22) is provided for removal of fine slag and char, and coarse slag may be removed from the bottom of the bath at a line (23).
  • the material separated in the sluice (22) is passed via a line (24) to a fluidization zone (14), wherein it is treated, as described hereinafter.
  • solids in the lines (10), (13) and (24) are injected into the fluidized bed (14), and are reacted with oxygen in excess from a line (15) at a temperature of 800 °C to 900 °C, which is well below the fusion temperature of the mineral components of the bed.
  • the oxygen may serve as the fluidizing gas, or a separate fluidizing gas may be provided.
  • the substantially carbon free residue may be removed via a line (16). Residence times of the solids will depend on the operating conditions, such as the temper­atures, pressures, and specific equipment, and may be adjusted suitably by those skilled in the art.
  • the combustion gas is removed from the bed (14) via the line (3), and is utilized as described previously.
  • the total carbon present in the bottoms solids is insufficient to provide the required heat for drying the coal to the process. Normally, even the addition of flyash is not sufficient for this large requirement, and the flyash may be diverted for other purposes.
  • additional carbon-containing materials such as coal fines, may be added to the fluidized bed (14) via a line (25).
  • the sample was heated in a quartz dish for at least one hour in air at 750 °C in a muffle furnace.
  • the sample weighed 69.11 grams and had a volume of about 82 ml.
  • the sample weighed 61.2 grams, had a volume of about 55 ml.
  • the loss on ignition was 11.4 per cent by weight, based on the weight of the original sample.
  • zone includes, where suitable, the use of segmented equipment operated in series, or the division of one unit into multiple units to improve efficiency or overcome size con­straints, etc.
  • a series of cyclones may be employed, and the quench and cooling operations are preferably carried out in multiple units, utilizing different techniques.
  • Parallel operation of units is, of course, well within the scope of the invention, and all equipment, such as pumps, valves, control units, etc. has not been illustrated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
EP19860202366 1985-12-27 1986-12-23 Oxydation de charbon et de scories Expired EP0227197B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US81373585A 1985-12-27 1985-12-27
US813735 1985-12-27

Publications (3)

Publication Number Publication Date
EP0227197A2 true EP0227197A2 (fr) 1987-07-01
EP0227197A3 EP0227197A3 (en) 1988-01-27
EP0227197B1 EP0227197B1 (fr) 1991-02-13

Family

ID=25213237

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19860202366 Expired EP0227197B1 (fr) 1985-12-27 1986-12-23 Oxydation de charbon et de scories

Country Status (2)

Country Link
EP (1) EP0227197B1 (fr)
DE (1) DE3677531D1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0976807A1 (fr) * 1998-07-29 2000-02-02 "Patelhold" Patentverwertungs-& Elektro-Holding AG Méthode et installation de production d'un gaz cpropre à partir d'un hydrocarbure
WO2013082097A1 (fr) * 2011-11-30 2013-06-06 Pratt & Whitney Rocketdyne, Inc. Cuve de réacteur à fond sec et procédé

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9074149B2 (en) 2009-01-21 2015-07-07 Lummus Technology Inc. Methods and systems for treating a gasification slag product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2633416A (en) * 1947-12-03 1953-03-31 Standard Oil Dev Co Gasification of carbonaceous solids
DE2729764A1 (de) * 1977-07-01 1979-01-04 Davy Bamag Gmbh Verfahren zur vergasung von kohlenstoffhaltigem material
DE2918859A1 (de) * 1979-05-10 1980-11-20 Still Carl Gmbh Co Kg Anlage zum entgasen und/oder vergasen von kohle
GB2058829A (en) * 1979-09-21 1981-04-15 Monsanto Co Gasification of carbon- containing materials
US4508542A (en) * 1981-02-02 1985-04-02 Joseph Langhoff Slag separator for a coal gasification installation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2633416A (en) * 1947-12-03 1953-03-31 Standard Oil Dev Co Gasification of carbonaceous solids
DE2729764A1 (de) * 1977-07-01 1979-01-04 Davy Bamag Gmbh Verfahren zur vergasung von kohlenstoffhaltigem material
DE2918859A1 (de) * 1979-05-10 1980-11-20 Still Carl Gmbh Co Kg Anlage zum entgasen und/oder vergasen von kohle
GB2058829A (en) * 1979-09-21 1981-04-15 Monsanto Co Gasification of carbon- containing materials
US4508542A (en) * 1981-02-02 1985-04-02 Joseph Langhoff Slag separator for a coal gasification installation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0976807A1 (fr) * 1998-07-29 2000-02-02 "Patelhold" Patentverwertungs-& Elektro-Holding AG Méthode et installation de production d'un gaz cpropre à partir d'un hydrocarbure
WO2000006672A1 (fr) * 1998-07-29 2000-02-10 Alstom Power N.V. Procede permettant de produire un gaz propre a partir d'hydrocarbures
WO2013082097A1 (fr) * 2011-11-30 2013-06-06 Pratt & Whitney Rocketdyne, Inc. Cuve de réacteur à fond sec et procédé
US8821600B2 (en) 2011-11-30 2014-09-02 Aerojet Rocketdyne Of De, Inc. Dry bottom reactor vessel and method

Also Published As

Publication number Publication date
EP0227197A3 (en) 1988-01-27
EP0227197B1 (fr) 1991-02-13
DE3677531D1 (de) 1991-03-21

Similar Documents

Publication Publication Date Title
EP0384454B1 (fr) Appareil pour gazéifier ou brûler des matériaux carbonés solides
US4929255A (en) Method for gasifying or combusting solid carbonaceous material
US4315758A (en) Process for the production of fuel gas from coal
US4145274A (en) Pyrolysis with staged recovery
US3890111A (en) Transfer line burner system using low oxygen content gas
US3957458A (en) Gasifying coal or coke and discharging slag frit
US3840353A (en) Process for gasifying granulated carbonaceous fuel
US4696678A (en) Method and equipment for gasification of coal
EP0227196B1 (fr) Oxydation de cendres volantes
US2879148A (en) Process for the production of carbon monoxide from a solid fuel
US9175226B2 (en) Process and plant for producing char and fuel gas
WO2007128370A1 (fr) PROcÉdÉ ET INSTALLATION de production De CHARBON ET De GAZ COMBUSTIBLE
EP0405632B1 (fr) Procédé de gazéification de charbon et réacteur
US3876392A (en) Transfer line burner using gas of low oxygen content
US2677603A (en) Process and apparatus for the gasification of fine-grained carbonaceous substances
US3988237A (en) Integrated coal hydrocarbonization and gasification of char
US3847566A (en) Fluidized bed gasification process with reduction of fines entrainment by utilizing a separate transfer line burner stage
US4391612A (en) Gasification of coal
US4118201A (en) Production of low sulfur fuels from coal
US6051048A (en) Production of fuel gas
CA1080972A (fr) Gazeification de solides charbonneux a teneur de cendres
CN1042347C (zh) 生产铁的方法
US3968052A (en) Synthesis gas manufacture
EP0227197B1 (fr) Oxydation de charbon et de scories
US3957457A (en) Gasifying coal or coke and discharging ash agglomerates

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19880511

17Q First examination report despatched

Effective date: 19890424

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3677531

Country of ref document: DE

Date of ref document: 19910321

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931101

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931231

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940107

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941223

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051223