EP0226798B1 - Procédé de fabrication de manifolds pour moulage par injection équipés de bouchons - Google Patents

Procédé de fabrication de manifolds pour moulage par injection équipés de bouchons Download PDF

Info

Publication number
EP0226798B1
EP0226798B1 EP86115692A EP86115692A EP0226798B1 EP 0226798 B1 EP0226798 B1 EP 0226798B1 EP 86115692 A EP86115692 A EP 86115692A EP 86115692 A EP86115692 A EP 86115692A EP 0226798 B1 EP0226798 B1 EP 0226798B1
Authority
EP
European Patent Office
Prior art keywords
duct
longitudinal duct
manifold
manifold body
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86115692A
Other languages
German (de)
English (en)
Other versions
EP0226798A1 (fr
Inventor
Arthur Harrison
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mold Masters 2007 Ltd
Original Assignee
Mold Masters 2007 Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mold Masters 2007 Ltd filed Critical Mold Masters 2007 Ltd
Priority to AT86115692T priority Critical patent/ATE53781T1/de
Publication of EP0226798A1 publication Critical patent/EP0226798A1/fr
Application granted granted Critical
Publication of EP0226798B1 publication Critical patent/EP0226798B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/007Making specific metal objects by operations not covered by a single other subclass or a group in this subclass injection moulding tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2725Manifolds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2725Manifolds
    • B29C2045/2733Inserts, plugs, bushings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49389Header or manifold making

Definitions

  • This invention relates generally to injection molding and more particularly to an improved method of manufacturing an injection molding manifold in which the hot runner passage branches from a single central inlet to a number of smaller diameter spaced outlet ducts.
  • these manifolds have an elongated rectangular body with the inlet centrally located on one surface and a pair of outlets located towards the outer ends of the opposite surface. They are made of drilling a duct longitudinally through the manifold body, blocking the ends of the longitudinal duct by welding plugs into them, and then drilling transverse ducts to connect the longitudinal duct to the inlet and outlets.
  • An example of a manifold made by this method is shown by applicants European Patent Application 0 083 760.
  • the manifold member, shown in this document, has an elongated body with a hot runner passage extending longitudinally through it.
  • outlets have a predetermined diameter to match the rest of the system, but it is desirable that the inlet duct and the longitudinal duct have a larger diameter to reduce pressure drop of the melt.
  • the well has a mouth in alignment with the longitudinal duct and the outlet ducts are drilled diagonally to connect with the smaller blind end of the wells to provide a smooth transition.
  • the invention provides a method of manufacturing an injection molding manifold having a body with first and second parallel opposing surfaces and first and second opposing ends, the manifold having a hot runner passage which extends from a central inlet on said one surface and branches out from an upstream portion at at least one junction to a plurality of spaced outlets on said second surface, the outlets being smaller in diameter than the inlet, comprising the steps of forming the manifold body of a suitable steel to predetermined dimensions; drilling a longitudinal duct longitudinally through the manifold body from the first end to the second end, the longitudinal duct having a predetermined diameter and extending parallel to the first and second surfaces; drilling a transverse inlet duct to form said upstream portion of the hot runner passage, the transverse duct extending from the inlet to centrally intersect the longitudinal duct to form the junction; drilling the longitudianl duct adjacent each end of the manifold body to form enlarged diameter end portions extending from a central portion of the longitudinal duct
  • Figure 1 shows one cavity of a multi-cavity valve gated hydraulically actuated injection molding system.
  • a nozzle 10 is seated in a well 12 in the cavity plate 14, and hydraulic actuating mechanism is seated in the back plate 18.
  • the actuating mechanism engages the driven end 20 of a valve pin 22 which extends through an opening 24 in the manifold 26 which is located in position between the cavity plate 14 and back plate 18 by locating ring 28.
  • the valve pin extends through a central bore 30 in the nozzle 10 and has a tip end 32 in alignment with the gate 34 in the cavity plate 14 leading to the cavity 36.
  • the nozzle 10 has an integral structure with a helical electric heating element 38 cast in copper 40 inside a steel body 42.
  • the copper is very thermally conductive and it is bonded to the heating element 38 and steel body 42 to rapidly disperse the heat from the heating element and provide a uniform temperature along the length of the central bore 30.
  • the helical heating element 38 has a flattened configuration and a varying pitch to assist in avoiding a build up to higher temperatures in the middle of the nozzle 10.
  • the stainless steel body 42 is more corrosion and abrasion resistant than the copper to withstand the corrosive effects of the melt and the surrounding gases from decomposing melt.
  • the system has a hot runner passage 44 which extends from a recessed inlet 46 and branches out in the manifold 26 to lead to the nozzles 10 where it runs through the central bore around the valve pin 22.
  • the nozzle 10 has a steel valve bushing 48 which is securely fastened to it by bolts 50.
  • the steel valve bushing 48 also has a central bore 52 which is in alignment with the central bore 30 of the nozzle 10.
  • the hot runner passage 44 extends through a diagonal melt duct 54 which joins the central bore 52 adjacent the nozzle 10.
  • the valve bushing 48 has a collar portion 56 which extends into an opening 58 in the manifold 26. Clearance is provided around the collar portion 56 so that it is not displaced as a result of thermal expansion of the manifold.
  • the bore 52 through the valve bushing 48 is interrupted by a circumferential opening 60 which is vented to atmosphere. This relieves pressure and allows corrosive gases to escape which are formed by the decomposition of melt which is trapped around the valve pin and subjected to shearing action by the reciprocal motion of the valve pin.
  • Each nozzle 10 is heated by the heating element 38 and the manifold 26 is heated by a heating element 62 which will be described in more detail below.
  • a heating element 62 which will be described in more detail below.
  • the melt in the hot runner passage 44 be maintained in a narrow operating temperature range until it reaches the gate 34, despite the cyclical interruptions in its flow.
  • the cavity plate 14 and the back plate 18 in which the hydraulical actuating mechanism 16 is seated are cooled by water flowing through cooling channels 64 in a conventional manner.
  • an insulative air space 66 is provided between the hot and cool components by the locating ring 28 and the insulation bushing 68 on which the nozzle 10 is seated in the well 12. As may be seen, metal to metal contact is minimized to reduce heat loss.
  • the steel valve bushing 48 has only a narrow locating flange 70 in contact with wall 72 of the well 12.
  • Melt temperature in the gate area is particularly critical and a hollow nozzle seal 74 formed of a titanium alloy is provided to bridge the air space around the gate 34 to prevent leakage of pressurized melt.
  • this seal also conducts a desired amount of heat from the nozzle 10 to the cavity plate directly around the gate 34 which maintains proper seating of the valve pin tip end 32 in the gate to provide superior gating performance and cosmetics.
  • the valve pin actuating mechanism 16 includes a hydraulically driven piston 76 which reciprocates in a cylinder 78.
  • the cylinder is seated in the back plate 18 and is secured in alignment with the valve pin 22 by bolts 80 extending through a collar portion 82.
  • the valve pin 22 extends through a hole 84 in the piston 76 and is secured to it by a threaded plug 86 which is screwed into the piston in a sealed position above the enlarged driven end 20 of the valve pin.
  • the cylinder has a removable cap 88 which is larger in diameter than the piston 76 so that the piston and valve pin 22 can be removed if necessary.
  • Pressurized hydraulic fluid is applied through ducts 90 to the cylinder 78 on opposite sides of the piston from a controlled source (not shown) to actuate the piston according to a predetermined cycle.
  • a V-shaped high temperature seal 92 extending around the neck 94 of the piston 76 and several O-rings 96 prevent leakage of the pressurized hydraulic fluid.
  • the elongated manifold 26 is generally rectangular in shape and is formed of a suitable tool steel. As seen in Figures 2 and 3, the manifold 26 is formed to have a pair of generally flat parallel surfaces 98,100 extending between the opposite ends 102,104. Of course, recesses 106,108 are provided in the surfaces 98,100 to receive the inlet collar 110 and locating ring 28. In this embodiment, transverse opening 58 are provided through the manifold 26 to receive the collar portion 56 of the bushing 48 and the neck 94 of the piston 76.
  • the hot runner passage 44 extends through the manifold 26 with an upstream portion 112 which extends from an inlet 114 on one surface 98 to a junction 116 where it branches to a pair or spaced outlets 118 on the other surface 100.
  • melt pressure drop As mentioned above, it is critical to the successful operation of the system with certain materials that melt flow through the hot runner passage be streamlined as much as possible and that pressure drop be minimized. Thus, it is very desirable to eliminate stagnant material and sharp and rough corners in the hot runner passage.
  • the problem of melt pressure drop as it flows through the manifold is further alleviated by enlarging the diameter of a portion of the hot runner passage through the manifold.
  • the diameter of the outlets 118 cannot be increased as well because it must match the diameter of the melt duct 54 through the valve bushing 48 and the central bore 30 through the nozzle 10. It will be appreciated that providing a smooth joint or transition between the larger and smaller diameter ducts is very difficult. While it can be done by manual finishing, this is much too laborious to be acceptable.
  • an elongated longitudinal duct 122 is gun drilled through it extending parallel to the surfaces 98,100 between the two ends 102, 104.
  • a transverse inlet duct 124 is then drilled from the inlet 114 to intersect the longitudinal duct 122 at junction 116.
  • the diameter of the longitudinal duct 122 and inlet duct 124 depend upon the volume of melt flow required for the particular application, but is larger than the diameter of the outlets 118 to reduce melt pressure drop.
  • the plugs 128 are made with a generally cylindrical outer surface 130 having two spaced grooves 132 extending circumferentially around it.
  • a concentric hole or well 134 is then machined in each plug to taper inwardly from a mouth 136 at one end 138 to a smaller blind end 140.
  • the mouth 136 of the well 134 is equal in diameter to the central portion 142 of the longitudinal duct 122.
  • a ring of copper wire is placed in each groove 132 and the plugs 128 are inserted into the enlarged end portion 126 of the longitudinal duct 122 until the end 138 of each plug abuts against the circumferential should 144 formed where the enlarged end portions 126 join the smaller diameter central portion 142 of the longitudinal duct. In this position, the mouth 136 is in alignment with the central portion 142 of the elongated duct 122.
  • An electrical heating element 62 is then located in a groove in one of the surfaces 98,100 and prepared for casting in copper as disclosed in the applicant's Canadian Patent No. 1,174,020 which issued September 11,1984.
  • the manifold 26 is then placed in a vacuum furnace 146 (shown in Figure 4) and heated for a sufficient period of time and at a temperature to melt the copper to fill the space around the heating element 62 and the rings of copper wire which then flows around the outer circumferential surfaces 130 of the plugs. Then, when the manifold is cooled, a thermally conductive bond is formed between the heating element and the manifold and the plugs 128 are securely brazed into position in the end portions 126 of the longitudinal duct 122 which seals it against leakage of the pressurized melt.
  • a pair of diagonal outlet ducts 148 are drilled through the manifold body 120 and plug 128 to intersect the smaller diameter blind end 140 of the plug at an oblique angle to connect each end of the longitudinal duct 122 to one of the outlets 118 on the surface 100 of the manifold body.
  • the diagonal outlet ducts 148 are smaller in diameter than the longitudinal duct 122 to match the melt duct 54 through the valve bushing 48 and the central bore 30 through the nozzle 10.
  • the joints 150 at the blind ends 140 of the plugs 128 between the larger diameter longitudinal duct and the smaller diameter diagonal outlet ducts 142 are then smoothly finished to remove burrs and to avoid any irregularities which would otherwise interrupt the streamlined flow of the melt.
  • a manifold 26 made by this method has the advantage that there is less pressure drop through it because the diameter of the hot runner passage is increased throughout most of its flow through the manifold, without introducing the problem of irregular melt flow where the diameter is reduced to match the rest of the system.
  • This method has the advantage that only one step is required to provide an isothermic heat source for the manifold and to avoid a labour intensive welding operation at a place that is difficult to weld.
  • the plugs 128 are larger in diameter than the central portion 142 of the elongated duct. As mentioned above, the end 138 of each plug abuts against circumferential shoulder 144 and drilling the outlet ducts 148 on the diagonal avoids the formation of thin knife edge portions which otherwise frequently break down and form an unacceptable irregularity right at the flow corner. While transverse valve pin openings 58 are also drilled through the manifold in this embodiment, this step is not necessary to form a similar manifold for sprue gating where no provision for the valve pin is required.
  • the system is assembled as described above and electrical power is applied to the terminals of the heating elements 38 and 62 to heat the nozzle and manifold to a predetermined operating temperature.
  • Pressurized melt is then introduced into the hot runner passage 44 from a molding machine according to a predetermined cycle in conjunction with the application of hydraulic pressure to the actuating mechanism.
  • melt flows through the manifold 26 where it branches out and flows through each of the nozzles 10 and fills the cavities 36.
  • high injection pressure is held momentarily to pack and then the valve pin is actuated to the closed position with the tip end 32 seated in the gap 34.
  • Melt pressure is then reduced and after a short cooling period the mold opens for ejection. The mold then closes, injection pressure reapplied and the sequence is repeated at a rate of several cycles per minute.
  • manifold body 120 may have a different configuration such as cross or H-shaped rather than elongated, in which case the upstream portion 112 of the hot runner passage 44 leading to the junction 116 will connect to another duct in the manifold rather than the inlet. While different manifold shapes will be required for different types of gating, the basic method of making them will remain the same. Reference is made to the attached claims for a definition of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Branch Pipes, Bends, And The Like (AREA)

Claims (5)

1. Un procédé de fabrication d'un manifold (26) pour moulage par injection présentant un corps (120) comportant des première et deuxième durfaces parallèles opposées (98, 100) et des première et deuxième extrémités opposées (102,104), le manifold présentant un passage d'écoulement chaud (44) qui s'étend depuis une entrée centrale (114) située sur ladite première surface (108) et se ramifie depuis une partie en amont à au moins une jonction (116) en plusieurs sorties espacées (118) situées sur ladite deuxième surface (100), les sorties ayant un diamètre plus petit que l'entrée, procédé comprenant les étapes suivantes:
a) formation du corps du manifold (120) en acier approprié selon des dimensions prédéterminées;
b) perçage d'un conduit longitudinal (122) dans le sens de la longueur dans le corps du manifold (26) depuis la première extrémité (102) à l'autre extrémité (104), le conduit longitudinal (122) présentant un diamètre prédéterminé et s'étendant parallèlement aux première et deuxième surfaces (98, 100);
c) perçage d'un conduit d'entrée transversal (124) pour former ladite partie en amont du passage d'écoulement chaud (44), le conduit transversal s'étendant depuis l'entrée (114) pour rencontrer centralement le conduit longitudinal (122) de façon à former la jonction (116);
d) perçage du conduit longitudinal (122) adjacent à chaque conduit (102, 104) du corps de manifold (120) pour former des parties d'extrémité (126) à diamètre agrandi s'étendant depuis une partie centrale du conduit longitudinal, chaque partie d'extrémité à diamètre agrandi (126) rejoignant la partie centrale du conduit longitudinal sur un épaulement circonférentiel (144);
e) formation de deux bouchons en acier cylindriques (128) à adapter dans les parties d'extrémité du conduit longitudinal (122), chaque bouchon présentant une surface externe cylindrique (130) comportant au moins une rainure circonférentielle (132) s'étendant tout autour, et un puits concentrique (134) s'étendant partiellement au travers de celui-ci, le puits s'effilant vers l'intérieur à partir d'une bouche (136) située à une extrémité jusqu'à une extrémité borgne plus petite (140), la bouche étant sensiblement de même diamètre que la partie centrale du conduit longitudinal (122);
f) de positionnement d'un matériau de brasure dans chacune des rainures circonférentielles, en introduisant un des bouchons (128) en acier dans chacune des parties d'extrémité du conduit longitudinal, ladite première extrémité butant contre un des épaulements circonférentiels (144) et la bouche (136) du puits en alignement avec la partie centrale du conduit longitudinal, et en chauffant le manifold dans un four sous vide pendant un temps suffisant et à une température de façon que le matériau de brasure fonde et s'écoule autour de la surface cylindrique externe (130) du bouchon (128) afin de fixer de façon sûre le bouchon dans la partie d'extrémité respective du conduit longitudinal et afin de créer une étanchéité contre la fuite de produit en fusion sous pression au niveau du bouchon;
g) de perçage de deux conduits de sortie en diagonale (148) qui sont de diamètre plus petit que la partie centrale du conduit longitudinal, chaque conduit en diagonale s'étendant à travers le corps du manifold et le bouchon (128) de façon à raccorder une des sorties de la deuxième surface (106) du corps du manifold à l'extrémité borgne (140) du puits (134) dans un des bouchons respectifs;
h) de finition et de polissage de la jointure de chacun des bouchons entre le conduit longitudinal et le conduit de sortie en diagonale respectifs.
2. Un procédé selon la revendication 1 selon lequel le corps du manifold (120) est de forme allongée et selon lequel le passage d'écoulement chaud (44) présente deux sorties espacées (118) sur la deuxième surface (100) du corps du manifold, et le conduit d'entrée transversal est percé de façon à s'étendre depuis l'entrée située sur la première surface (98) du corps du manifold pour rencontrer le conduit longitudinal (122) centralement entre les première (102) et deuxième (104) extrémités du corps du manifold.
3. Un procédé selon la revendication 1 selon lequel le corps du manifold présente une configuration en croix ou en H et selon lequel le conduit d'entrée transversal (124) s'étend pour raccorder le conduit longitudinal (122) à un autre conduit du passage d'écoulement chaud (44) s'étendant depuis l'entrée (114) située sur la première surface (98) du corps du manifold.
4. Un procédé selon les revendications 1, 2 ou 3, comprenant une étape supplémentaire de perçage d'une ouverture (58) de tige de soupape transversale dans le corps du manifold de façon adjacente à chacune des extrémités de celui-ci.
5. Un procédé selon les revendications 1, 2 ou 3, selon lequel un élément de chauffage électrique (62) est positionné dans une rainure d'une des première et deuxième surfaces du corps du manifold et selon lequel l'étape (f) comprend un moulage de cuivre autour de l'élément de chauffage pour former un lien monobloc avec le corps du manifold.
EP86115692A 1985-11-21 1986-11-12 Procédé de fabrication de manifolds pour moulage par injection équipés de bouchons Expired - Lifetime EP0226798B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86115692T ATE53781T1 (de) 1985-11-21 1986-11-12 Verfahren zur herstellung von spritzgussverzweigungsst¨cken mit stopfen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA000495832A CA1230473A (fr) 1985-11-21 1985-11-21 Fabrication d'un collecteur a bouchures pour le moulage par injection
CA495832 1985-11-21

Publications (2)

Publication Number Publication Date
EP0226798A1 EP0226798A1 (fr) 1987-07-01
EP0226798B1 true EP0226798B1 (fr) 1990-05-02

Family

ID=4131928

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86115692A Expired - Lifetime EP0226798B1 (fr) 1985-11-21 1986-11-12 Procédé de fabrication de manifolds pour moulage par injection équipés de bouchons

Country Status (7)

Country Link
US (1) US4609138A (fr)
EP (1) EP0226798B1 (fr)
JP (1) JPH0659540B2 (fr)
AT (1) ATE53781T1 (fr)
CA (1) CA1230473A (fr)
DE (1) DE3670784D1 (fr)
ES (1) ES2015865B3 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7445444B2 (en) 2006-01-26 2008-11-04 Mold-Masters (2007) Limited Insert for an injection molding apparatus

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895293A (en) * 1986-08-29 1990-01-23 Acushnet Company Fast thermal response mold
CA1252969A (fr) * 1986-10-15 1989-04-25 Henry J. Rozema Manchon de scellement et de calage pour le moulage par injection
CA1253310A (fr) * 1986-10-17 1989-05-02 Mold-Masters Limited Mecanisme actionneur hydraulique refroidi par fluide, pour machines a mouler par injection
US4698013A (en) * 1986-10-20 1987-10-06 Butcher Robert M Mechanism for valve gated injection molding with resilient retaining ring
CA1252970A (fr) * 1986-10-23 1989-04-25 Mold-Masters Limited Manchon double d'alimentation pour machine multicavite a mouler par injection
CA1252972A (fr) * 1986-10-30 1989-04-25 Harald H. Schmidt Systeme de moulage par injection mono-cavite a double alimentation
CA1265907A (fr) * 1987-02-17 1990-02-20 Jobst U. Gellert Methode et systeme de moulage par injection sur machine a collecteur garni d'injecteurs lateraux
US4933119A (en) * 1987-10-13 1990-06-12 Gentex Corporation Molding apparatus and method
US4946092A (en) * 1987-11-06 1990-08-07 Nagron Precision Tooling B.V. Method for arranging a through-channel in a solid body, and the body obtained with this method
NL8702667A (nl) * 1987-11-06 1989-06-01 Nagron Precision Tooling Werkwijze voor het in een massief lichaam aanbrengen van een doorgaand kanaal, alsmede met die werkwijze verkregen lichaam.
DE68921711T2 (de) * 1988-12-05 1995-07-13 Mold Masters Ltd Spritzgiessvorrichtung mit durch Fluidum gekühlten Einsätzen.
US4919606A (en) * 1988-12-21 1990-04-24 Gellert Jobst U Injection molding rack and pinion valve pin actuating mechanism
US5096411A (en) * 1990-05-17 1992-03-17 Gellert Jobst U Injection molding cast manifold
US5169655A (en) * 1990-06-04 1992-12-08 Von Holdt Sr John W Multiple cavity injection mold
US5227181A (en) * 1990-12-19 1993-07-13 Mold-Masters Limited Multi-cavity melt distribution manifold
US5142126A (en) * 1991-07-08 1992-08-25 Mold-Masters Limited Injection molding manifold with integral heated inlet portion
CA2047461A1 (fr) * 1991-07-19 1993-01-20 Jobst Ulrich Gellert Distributeur de moulage par injection avec insertions amovibles
US5352109A (en) * 1993-03-08 1994-10-04 Salvatore Benenati Injection molding apparatus
US5539857A (en) * 1994-01-24 1996-07-23 Caco Pacific Corporation Heater block for injection molding with removable heat conductive member in groove in heater block
CA2138353C (fr) * 1994-12-16 2005-02-22 Jobst Ulrich Gellert Procede de fabrication de collecteur de distribution par injection de moules ayant un passage fondu avec un coude
US5441197A (en) * 1995-01-17 1995-08-15 Gellert; Jobst U. Method of manufacturing injection molding manifold having a melt passage with an elbow
US5536164A (en) * 1995-05-05 1996-07-16 Electra Form, Inc. Flexible hot manifold assembly for injection molding machines
US5829133A (en) * 1996-11-18 1998-11-03 General Motors Corporation Method of making a heat exchanger manifold
DE19649621B4 (de) * 1996-11-29 2007-08-02 EWIKON Heißkanalsysteme GmbH & Co KG Verbindungsanordnung für Schmelzekanalabschnitte in Heißkanälen
EP0875355B1 (fr) * 1997-05-01 2003-06-04 Synventive Holding B.V. Obturateur pour bloquer le passage de coulée dans une machine à injecter
US6099292A (en) * 1997-10-22 2000-08-08 Caco Pacific Corporation Heater block with unitized removable heat conductive member
DE29816253U1 (de) * 1998-09-10 1998-12-17 Guenther Heiskanaltechnik Gmbh Heißkanalverschluß
DE10080726B4 (de) * 1999-02-10 2007-03-01 Ju-Oh Inc., Hiratsuka Form für eine Heißanguß-Spritzmaschine sowie Verfahren zum Herstellen derselben
US6675055B1 (en) * 2000-06-16 2004-01-06 Mold Masters Ltd. Method and apparatus for an automated injection molding configuring and manufacturing system
AU6416001A (en) * 2000-06-16 2001-12-24 Mold-Masters Limited Method for fast manufacturing and assembling of hot runner systems
US6752618B2 (en) * 2001-12-20 2004-06-22 Mold-Masters Limited Injection manifold having a valve pin guiding device
CA2371346A1 (fr) * 2002-02-11 2003-08-11 Gino Colonico Mecanisme de verrouillage de clavette de soupape
US7300275B2 (en) * 2005-10-26 2007-11-27 Panos Trakas Multi-point nozzle assembly
EP2290644A3 (fr) 2009-08-28 2011-03-30 Hitachi Consumer Electronics Co., Ltd. Disque optique, appareil de reproduction de disque optique, appareil à disque optique, procédé de reproduction et procédé d'enregistrement
US8404076B2 (en) * 2010-02-12 2013-03-26 Malema Engineering Corporation Methods of manufacturing and temperature calibrating a coriolis mass flow rate sensor
CN102770257B (zh) * 2010-03-25 2015-11-25 圣万提注塑工业有限公司 致动器安装系统
DE102019106975A1 (de) * 2019-03-19 2020-09-24 EWIKON Heißkanalsysteme GmbH Heiß- oder Kaltkanalvorrichtung für ein Spritzgießwerkzeug mit einem wechselbaren Umlenk- und Verteileinsatz

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3108326A (en) * 1960-08-05 1963-10-29 Battenfeld Fa Geb Closure for the die cylinder of die-casting machines for thermoplastic material
US3775836A (en) * 1971-01-22 1973-12-04 Gits Bros Mfg Co Shaft seal method of manufacturing
FR2129255A5 (fr) * 1971-03-19 1972-10-27 Commissariat Energie Atomique
CA1067660A (fr) * 1976-03-25 1979-12-11 Jobst U. Gellert Joint d'ajustage de moulage par injection
JPS604742Y2 (ja) * 1978-04-08 1985-02-12 固 青木 ノズル装置
FR2459720A1 (fr) * 1979-06-26 1981-01-16 Solyvent Ventec Ste Lyon Venti Ensemble de moule perfectionne pour le moulage des elastomeres
US4333629A (en) * 1980-03-11 1982-06-08 Pepsico, Inc. Floating manifold for multi-cavity injection mold
JPS56131819A (en) * 1980-03-14 1981-10-15 Kubota Ltd Manufacture of engine crankshaft
JPS6135369Y2 (fr) * 1980-05-07 1986-10-15
SE434482B (sv) * 1981-05-07 1984-07-30 Dante Luigi Alfonsi Varmkanalsystem vid en maskin for formsprutning av plast
CA1174020A (fr) * 1982-01-06 1984-09-11 Jobst U. Gellert Collecteur de moulage par injection, et methode de fabrication connexe
CA1190018A (fr) * 1982-07-12 1985-07-09 Jobst U. Gellert Manchon pour pointeau de moulage par injection, et sa fabrication
US4500030A (en) * 1982-09-13 1985-02-19 Apx Group, Inc. Flange weld technique
US4511528A (en) * 1983-04-13 1985-04-16 American Can Company Flow stream channel splitter devices for multi-coinjection nozzle injection molding machines
CA1238163A (fr) * 1985-04-09 1988-06-21 Jobst U. Gellert Fabrication d'un collecteur de moulage par injection a l'aide de plaques a evidements correspondants aux faces en opposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7445444B2 (en) 2006-01-26 2008-11-04 Mold-Masters (2007) Limited Insert for an injection molding apparatus

Also Published As

Publication number Publication date
ATE53781T1 (de) 1990-06-15
EP0226798A1 (fr) 1987-07-01
US4609138A (en) 1986-09-02
CA1230473A (fr) 1987-12-22
JPS62144851A (ja) 1987-06-29
ES2015865B3 (es) 1990-09-16
JPH0659540B2 (ja) 1994-08-10
DE3670784D1 (de) 1990-06-07

Similar Documents

Publication Publication Date Title
EP0226798B1 (fr) Procédé de fabrication de manifolds pour moulage par injection équipés de bouchons
US4663811A (en) Manufacturing method for selected gate configuration injection molding nozzles
US4450999A (en) Injection molding hot tip seal
US4793795A (en) Injection molding system having clamped rotatable nozzles and method
EP0099088B1 (fr) Douille pour l'aiguille d'obturateur pour moulage par injection et son procédé de fabrication
EP0264725B1 (fr) Douille d'alimentation double pour le moulage par injection à plusieurs cavités
EP0200048B1 (fr) Torpille formant soupape d'arrêt
US4468191A (en) Hydraulically actuated injection molding system with alternate hydraulic connections
US4530654A (en) Injection molding peripheral opening core ring gate
US4810184A (en) Injection molding system having manifold with side mounted nozzles
US4771164A (en) Injection molding nozzle and method
CA1252971A (fr) Mecanisme de moulage par injection a clapet d'obturation et bague souple de retenue
EP0270766B1 (fr) Mécanisme de commande hydraulique refroidi par un fluide pour le moulage par injection
EP0153554B1 (fr) Dispositif de buse à obturation pour moulage par injection
EP0264723A2 (fr) Douille d'étanchéité et de maintien pour le moulage par injection
EP0374549B1 (fr) Dispositif de moulage par injection avec des inserts refroidis par un fluide
US5441197A (en) Method of manufacturing injection molding manifold having a melt passage with an elbow
US4777348A (en) Injection molding probe with insulation and locating hoop portion
EP0546555B1 (fr) Procédé de fabrication d'une torpille de moulage par injection
US4854851A (en) Injection molding system with insertable insulating ring
EP0346900B1 (fr) Système de moulage par injection avec anneau d'isolation insérable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19871006

17Q First examination report despatched

Effective date: 19890111

ITF It: translation for a ep patent filed

Owner name: MARCHI & MITTLER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19900502

REF Corresponds to:

Ref document number: 53781

Country of ref document: AT

Date of ref document: 19900615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3670784

Country of ref document: DE

Date of ref document: 19900607

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19901130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86115692.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951116

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19951128

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960109

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961113

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19961130

BERE Be: lapsed

Owner name: MOLD-MASTERS LTD

Effective date: 19961130

EUG Se: european patent has lapsed

Ref document number: 86115692.5

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010503

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20051021

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20051025

Year of fee payment: 20

Ref country code: CH

Payment date: 20051025

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051026

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051027

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20051128

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051130

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20061111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20061112

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20061112