EP0223083A1 - Process for the production of a high-temperature protective coating - Google Patents

Process for the production of a high-temperature protective coating Download PDF

Info

Publication number
EP0223083A1
EP0223083A1 EP86114481A EP86114481A EP0223083A1 EP 0223083 A1 EP0223083 A1 EP 0223083A1 EP 86114481 A EP86114481 A EP 86114481A EP 86114481 A EP86114481 A EP 86114481A EP 0223083 A1 EP0223083 A1 EP 0223083A1
Authority
EP
European Patent Office
Prior art keywords
metal
component
base body
protective layer
temperature protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP86114481A
Other languages
German (de)
French (fr)
Inventor
Josef Dr. Rohr
Wing Fong Dr. Chu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASEA BROWN BOVERI AKTIENGESELLSCHAFT
Original Assignee
BBC Brown Boveri AG Switzerland
Asea Brown Boveri AG Germany
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland, Asea Brown Boveri AG Germany filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0223083A1 publication Critical patent/EP0223083A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides

Definitions

  • the invention relates to a high-temperature protective layer according to the preamble of claim 1 and to a method for its production.
  • Such high-temperature protective layers are used above all where the base material of components made of heat-resistant steels and / or alloys that are used at temperatures above 600 ° C has to be protected.
  • the high-temperature protective layer is intended to slow down the effects of high-temperature corrosion, especially of sulfur-oil ash, oxygen, alkaline earths and vanadium.
  • the high-temperature protective layers are applied directly to the basic material of the components.
  • High-temperature protective layers are of particular importance for components of gas turbines. They are mainly applied to rotor blades and guide vanes, as well as to heat accumulation segments in gas turbines.
  • An austenitic material based on nickel, cobalt or iron is preferably used for the production of the components.
  • the invention has for its object a method for producing a high-temperature protective layer and to show such a high-temperature protective layer itself, which is particularly resistant to corrosive components of hot gases and which also adheres particularly well and permanently to the surface of metallic components.
  • Mixed oxides with a perovskite structure such as those used to form the high-temperature protective layer according to the invention, occupy a position between the pure metals or alloys on the one hand and ceramic materials on the other.
  • the density of these mixed oxides is relatively high, similar to that of metals. Their hardness exceeds that of metals and can be compared to ceramic materials. The same applies to their mechanical strength.
  • the thermodynamic and chemical stability of these mixed oxides and their phase stability even exceeds that of other high-temperature materials over a wide temperature range.
  • the coefficient of expansion of mixed oxides is between that of metals and ceramics.
  • the high-temperature protective layer according to the invention also has the property that it is resistant to sulfur, halogens, vanadium and their compounds and to alkali salts and metal oxides. Furthermore, it has a very good adhesive strength on metallic components, which is also durable. It has the necessary mechanical strength and the necessary resistance to erosion. It is also characterized by sufficient gas tightness and very good thermal shock strength in the application temperature range
  • the only figure in the application shows the component 1 of a gas turbine in a vertical section, which constantly comes into contact with hot gases.
  • the component 1 has a base body 2, which in the exemplary embodiment shown here is made of an austenitic material based on nickel, iron or cobalt.
  • the base body 2 is penetrated by channels 3 through which a coolant can be passed.
  • the high-temperature protective layer 4 according to the invention is applied in a thickness of 100 ⁇ m to the surface of the base body 2. According to the invention, the high-temperature protective layer 4 can be applied directly to the surface of the cleaned base body 2.
  • the high-temperature protective layer is formed by a mixed oxide that has a perovskite structure with the general composition:
  • A stands for a metal from the third subgroup
  • B for a metal from the second main group
  • M for a metal from VI., VII. or VIII.
  • Subgroup of the Periodic Table of the Elements According to the chemical equation below, the oxides or carbonates of these metals are mixed, ground, pressed and sintered to produce a suitable powder.
  • the reaction product is then processed into an injectable powder.
  • SrC0 3 can also be used.
  • the product of the solid-state reaction is ground in a vibratory mill to a powder with a grain size of 0.1 to 60 ⁇ m.
  • the high-temperature protective layer 4 should have a thickness of approximately 100 ⁇ m.
  • the material forming the high-temperature protective layer 4 can also be applied to the upper as a suspension when using very fine sinter-active powder with a grain size between 0.1 and 10 ⁇ m surface of the base body 2 sprayed on or applied from the suspension by electrophoresis and then baked to 800 to 1200 ° C. by subsequent heating of the component.
  • a film former for example nitrocellulose amyl acetate, can be added to the suspension.
  • the starting materials of the mixed oxide used to produce the high-temperature protective layer are passed as gaseous reactive compounds together with an oxygen-containing carrier gas over the heated surface of the component to be coated.
  • these gaseous compounds are reacted by interaction with the material of the component.
  • the mixed oxide to be formed should again have at least one metal from the third subgroup, one metal from the second main group and one metal from the sixth, seventh or eighth subgroup of the periodic table of the chemical elements.
  • the mixed oxide should also have the general structural formula A 1-x B X MO 3 .
  • Halides, oxyhalides, hydrides, carbonyls or organometallic compounds are preferably used as gaseous compounds for forming the mixed oxide with a perovskite structure.
  • Lanthanum is preferably used as metal A, strontium as metal B and chromium as metal M to form the high-temperature protective layer.
  • Nitrogen or argon with 0 2 is used as the carrier gas containing oxygen.
  • Oxygen-containing reaction substances, such as 0 2 air or H 2 0, can additionally be mixed into the gaseous reactive compounds.
  • Another possibility of producing the high-temperature protective layer 4 according to the invention is that to produce component 1 to be coated from such an alloy, which already contains the metallic components A, B and M, which are required to form the mixed oxide, in corresponding molar ratios.
  • the base body 2 of the component 1 to be provided with the high-temperature protective layer 4 is made of an alloy which contains lanthanum, strontium and chromium in the required amount, then heat treatment of the base body 2 in an oxygen-containing atmosphere can result in these being metallic Components diffuse to the surface and react with the oxygen in such a way that a high-temperature protective layer 4 is formed from the desired mixed oxide, which has a perovskite structure.
  • the high-temperature protective layer 4 on the base body 2 can be brought about by evaporating or diffusing the necessary metallic components onto the surface of the base body 2 after its completion. Subsequent heat treatment in an oxygen-containing atmosphere can also produce the desired high-temperature protective layer consisting of the mixed oxide with a perovskite structure.
  • the component 1 to be coated already contains the metal component M in the form of a component of iron, cobalt, nickel, manganese or chromium in its base body 2.
  • components A and B which are additionally required for the formation of the mixed oxide, only have to be introduced into the base body and have to be reacted with the metal component M by diffusion or oxidation processes at elevated temperature.
  • Another method for coating the component can be used if the base body 2 of the component 1 already contains the metal component M as an alloy component in its surface.
  • the surface of the base body 2 is treated with a solution consisting of a salt or organometallic compound of the two metal components A and B.
  • a nitrate solution which contains the two metal components A and B.
  • the component 1 is heated to the decomposition temperature of the salt or organometallic compound or the nitrate compound. The whole thing happens under the influence of oxygen. Due to the effect of temperature, the metal component M contained in the surface of the component 1 reacts with the metal components A and B applied to the surface.
  • the desired mixed oxide with a perovskite structure is formed. The reactions taking place are shown in the following equation:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Catalysts (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Chemical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Die Erfindung bezieht sich auf eine Hochtemperatur-Schutzschicht (4) sowie auf ein Verfahren zur Herstellung derselben. Die erfindungsgemäße Hochtemperatur-Schutzschicht (4) wird durch ein Mischoxid gebildet, das eine Perowskitstruktur aufweist. Die Zusammensetzung des Mischoxids entspricht der allgemeinen Formel: A1-xBxMO3 Als Metallkomponente A wird ein Metall der dritten Nebengruppe, als Metallkomponente B ein Metall der zweiten Hauptgruppe und als Metallkomponente M ein Metall der sechsten, siebten oder achten Nebengruppe des Periodensystems der chemischen Elemente verwendet. Vorzugsweise weist das Mischoxid als metallische Bestandteile Lanthan, Strontium und Chrom auf.The invention relates to a high-temperature protective layer (4) and to a method for producing the same. The high-temperature protective layer (4) according to the invention is formed by a mixed oxide which has a perovskite structure. The composition of the mixed oxide corresponds to the general formula: A1-xBxMO3 A metal from the third sub-group is used as metal component A, a metal from the second main group as metal component B and a metal from the sixth, seventh or eighth sub-group of the periodic table of the chemical elements as metal component M. The mixed oxide preferably has lanthanum, strontium and chromium as metallic constituents.

Description

Die Erfindung bezieht sich auf eine Hochtemperatur-Schutzschicht gemäß dem Oberbegriff des Patentanspruches 1 sowie auf ein Verfahren zu deren Herstellung.The invention relates to a high-temperature protective layer according to the preamble of claim 1 and to a method for its production.

Solche Hochtemperatur-Schutzschichten kommen vor allem dort zur Anwendung, wo das Grundmaterial von Bauelementen aus warmfesten Stählen und/oder Legierungen, die bei Temperaturen über 600 °C verwendet werden, zu schützen ist. Durch die Hochtemperatur-Schutzschicht soll die Wirkung von Hochtemperaturkorrossionen vor allem von Schwefel-öl-Aschen, Sauerstoff, Erdalkalien und Vanadium verlangsamt werden. Die Hochtemperatur-Schutzschichten werden direkt auf das Grundmaterial der Bauelemente aufgetragen. Bei Bauelementen von Gasturbinen sind Hochtemperatur-Schutzschichten von besonderer Bedeutung. Sie werden vor allem auf Lauf- und Leitschaufeln, sowie auf Wärmestausegmente von Gasturbinen aufgetragen. Für die Fertigung der Bauelemente wird vorzugsweise ein austenitisches Material auf der Basis von Nickel, Kobalt oder Eisen verwendet.Such high-temperature protective layers are used above all where the base material of components made of heat-resistant steels and / or alloys that are used at temperatures above 600 ° C has to be protected. The high-temperature protective layer is intended to slow down the effects of high-temperature corrosion, especially of sulfur-oil ash, oxygen, alkaline earths and vanadium. The high-temperature protective layers are applied directly to the basic material of the components. High-temperature protective layers are of particular importance for components of gas turbines. They are mainly applied to rotor blades and guide vanes, as well as to heat accumulation segments in gas turbines. An austenitic material based on nickel, cobalt or iron is preferably used for the production of the components.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung einer Hochtemperatur-Schutzschicht sowie eine solche Hochtemperatur-Schutzschicht selbst aufzur `--` zeigen, die besonders gegenüber korrossiven Bestandteilen von heißen Gasen beständig ist, und die zu dem auf der Oberfläche von metallischen Bauelementen besonders gut und beständig haftet.The invention has for its object a method for producing a high-temperature protective layer and to show such a high-temperature protective layer itself, which is particularly resistant to corrosive components of hot gases and which also adheres particularly well and permanently to the surface of metallic components.

Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruches 1 gelöst.This object is achieved by the characterizing features of claim 1.

Weitere Lösungen das Verfahren betreffend, sind in den Patentansprüchen 3,6 und 8 offenbart.Further solutions relating to the method are disclosed in patent claims 3, 6 and 8.

Mischoxide mit Perowskitstruktur wie sie zur Ausbildung der erfindungsgemäßen Hochtemperatur-Schutzschicht verwendet werden, nehmen eine Stellung zwischen den reinen Metallen bzw. Legierungen einerseits und keramischen Werkstoffen andererseits ein. Die Dichte dieser Mischoxide ist relativ hoch, ähnlich wie bei Metallen. Ihre Härte übertrifft die der Metalle, und läßt sich mit keramischen Werkstoffen vergleichen. Das gleiche gilt für ihre mechanische Festigkeit. Die thermodynamische und chemische Stabilität dieser Mischoxide sowie ihre Phasenstabilität übertrifft in weiten Temperaturbereichen sogar die anderer Hochtemperatur-Werkstoffe. Der Ausdehnungskoeffizient der Mischoxide liegt zwischen dem der Metalle und Keramik. Die erfindungsgemäße Hochtemperatur-Schutzschicht weist ferner die Eigenschaft auf, daß sie gegenüber Schwefel, Halogenen, Vanadium sowie deren Verbindungen und gegenüber Alkalisalzen und Metalloxiden beständig ist. Ferner weist sie eine sehr gute Haftfestigkeit auf metallischen Bauelementen auf, die zu dem auch dauerhaft ist. Sie verfügt über die erforderliche mechanische Festigkeit sowie über die notwendige Errosionsfestigkeit. Ferner zeichnet sie sich durch ausreichende Gasdichtigkeit sowie eine sehr gute Thermoschockfestigkeit im Anwendungstemperaturbereieh ausMixed oxides with a perovskite structure, such as those used to form the high-temperature protective layer according to the invention, occupy a position between the pure metals or alloys on the one hand and ceramic materials on the other. The density of these mixed oxides is relatively high, similar to that of metals. Their hardness exceeds that of metals and can be compared to ceramic materials. The same applies to their mechanical strength. The thermodynamic and chemical stability of these mixed oxides and their phase stability even exceeds that of other high-temperature materials over a wide temperature range. The coefficient of expansion of mixed oxides is between that of metals and ceramics. The high-temperature protective layer according to the invention also has the property that it is resistant to sulfur, halogens, vanadium and their compounds and to alkali salts and metal oxides. Furthermore, it has a very good adhesive strength on metallic components, which is also durable. It has the necessary mechanical strength and the necessary resistance to erosion. It is also characterized by sufficient gas tightness and very good thermal shock strength in the application temperature range

Weitere erfindungswesentliche Merkmale sind in den Unteransprüchen gekennzeichnet.Further features essential to the invention are characterized in the subclaims.

Die Erfindung wird nachfolgend anhand einer Zeichnung näher erläutert.The invention is explained in more detail with reference to a drawing.

Die einzige Figur der Anmeldung zeigt das Bauelement 1 einer Gasturbine im Vertikalschnitt, das ständig mit heißen Gasen in Berührung kommt. Das Bauelement 1 weist einen Grundkörper 2 auf, der bei dem hier dargestellten Ausführungsbeispiel aus einem austenitischen Werkstoff auf der Basis von Nickel, Eisen oder Kobalt gefertigt ist. Der Grundkörper 2 ist von Kanälen 3 durchsetzt, durch welche ein Kühlmittel geleitet werden kann. Auf die Oberfläche des Grundkörpers 2 ist die erfindungsgemäße Hochtemperatur-Schutzschicht 4 in einer Dicke von 100 um aufgetragen. Erfindungsgemäß kann die Hochtemperatur-Schutzschicht 4 direkt auf die Oberfläche des gereinigten Grundkörpers 2 aufgetragen werden. Gebildet wird die Hochtemperatur-Schutzschicht durch ein Mischoxid, das eine Perowskitstrukur mit der allgemeinen Zusammensetzung aufweist:

Figure imgb0001
The only figure in the application shows the component 1 of a gas turbine in a vertical section, which constantly comes into contact with hot gases. The component 1 has a base body 2, which in the exemplary embodiment shown here is made of an austenitic material based on nickel, iron or cobalt. The base body 2 is penetrated by channels 3 through which a coolant can be passed. The high-temperature protective layer 4 according to the invention is applied in a thickness of 100 μm to the surface of the base body 2. According to the invention, the high-temperature protective layer 4 can be applied directly to the surface of the cleaned base body 2. The high-temperature protective layer is formed by a mixed oxide that has a perovskite structure with the general composition:
Figure imgb0001

In dieser Formel steht A für ein Metall aus der dritten Nebengruppe, B für ein Metall aus der zweiten Hauptgruppe und M für ein Metall aus der VI.,VII. oder VIII. Nebengruppe des Periodensystems der Elemente. Gemäß der nachfolgenden chemischen Gleichung werden zur Herstellung eines geeigneten Pulvers die Oxide bzw. Carbonate dieser Metalle gemischt, gemahlen, gepreßt und gesintert.

Figure imgb0002
In this formula, A stands for a metal from the third subgroup, B for a metal from the second main group and M for a metal from VI., VII. or VIII. Subgroup of the Periodic Table of the Elements. According to the chemical equation below, the oxides or carbonates of these metals are mixed, ground, pressed and sintered to produce a suitable powder.
Figure imgb0002

Das Reaktionsprodukt wird anschließend zu einem spritzfähigen Pulver verarbeitet.The reaction product is then processed into an injectable powder.

Bei dem hier dargestellen Ausführungsbeispiel wird das Pulver vor der Bildung der Hochtemperatur-Schutzschicht 4 aus Lanthan, Strontium und Chrom hergestellt. Der Stöchiometriefaktor x hat bei dem hier beschriebenen Ausführungsbeispiel den Wert 0,16. Die Oxide des Lanthans, des Strontiums und des Chroms werden in einer Kugel- bzw. Schwingmühle gemischt und gemahlen. Anschließend werden sie in einer Preßform unter einem Druck von 1 bis 2 x 108N/m2 verdichtet und dann mehrere Stunden bei 1500 °C unter der Einwirkung von Luft gesintert. Hierbei spielt sich folgende Reaktion ab:

  • (1/2)0,84La2O3+0,16SrO+1/2CrO3+0,0402
    Figure imgb0003
    Lao,84Srg,16Cr03
In the exemplary embodiment shown here, the powder is produced from lanthanum, strontium and chromium before the high-temperature protective layer 4 is formed. In the exemplary embodiment described here, the stoichiometric factor x has the value 0.16. The oxides of lanthanum, strontium and chromium are mixed and ground in a ball or vibrating mill. They are then compressed in a press mold under a pressure of 1 to 2 × 10 8 N / m 2 and then sintered for several hours at 1500 ° C. under the influence of air. The following reaction takes place here:
  • (1/2) 0.84La 2 O 3 + 0.16SrO + 1 / 2CrO 3 +0.040 2
    Figure imgb0003
    Lao, 84Srg, 16Cr03

Anstelle von Sr0 kann auch SrC03 verwendet werden. Das Produkt der Festkörperreaktion wird in einer Schwingmühle zu einem Pulver von einer Korngröße von 0,1 bis 60 um gemahlen.Instead of Sr0, SrC0 3 can also be used. The product of the solid-state reaction is ground in a vibratory mill to a powder with a grain size of 0.1 to 60 μm.

Mit Hilfe des bekannten Flammspritz- bzw. Plasmaspritzverfahrens wird Pulver mit einer Korngröße zwischen 10 und 60 um auf die Oberfläche des Grundkörpers 2 aufgetragen. Erfindungsgemäß soll die Hochtemperatur-Schutzschicht 4 eine Dicke von etwa 100µm aufweisen. Anstelle des Plasmaspritzverfahrens kann auch bei Verwendung von sehr feinem sinteraktivem Pulver mit einer Korngröße zwischen 0,1 und 10 um das die Hochtemperatur-Schutzschicht 4 bildende Material als Suspension auf die Oberfläche des Grundkörpers 2 aufgesprüht oder aus der Suspension durch Elektrophorese aufgebracht und durch anschließendes Erhitzen des Bauelementes 1 auf 800 bis 1200 °C eingebrannt werden. Der Suspension kann, falls es die Gegebenheiten erfordern, ein Filmbildner, z.B. Nitrozellulose-Amylacetat beigemischt werden.With the aid of the known flame spraying or plasma spraying method, powder with a grain size between 10 and 60 μm is applied to the surface of the base body 2. According to the invention, the high-temperature protective layer 4 should have a thickness of approximately 100 μm. Instead of the plasma spraying process, the material forming the high-temperature protective layer 4 can also be applied to the upper as a suspension when using very fine sinter-active powder with a grain size between 0.1 and 10 μm surface of the base body 2 sprayed on or applied from the suspension by electrophoresis and then baked to 800 to 1200 ° C. by subsequent heating of the component. If the circumstances require, a film former, for example nitrocellulose amyl acetate, can be added to the suspension.

Bei einer anderen Ausführungsform des erfindungsgemäßen Verfahrens werden die Ausgangsstoffe des zur Herstellung der Hochtemperatur-Schutzschicht verwendeten Mischoxids als gasförmige reaktive Verbindungen zusammen mit einem sauerstoffhaltigen Trägergas über die aufgeheizte Oberfläche des zu beschichteten Bauelements geleitet. Infolge der hohen Temperaturen werden diese gasförmigen Verbindungen durch Wechselwirkung mit dem Material des Bauelementsl zur Reaktion gebracht. Das zu bildende Mischoxid soll auch hierbei wiederum mindestens ein Metall der dritten Nebengruppe, ein Metall der zweiten Hauptgruppe sowie ein Metall der sechsten, siebten oder achten Nebengruppe des Periodensystems der chemischen Elemente aufweisen. Insbesondere soll das Mischoxid auch hierbei die allgemeine Strukturformel A1-xBXMO3 aufweisen. Als gasförmige Verbindungen zur Bildung des Mischoxids mit Perowskitstruktur werden vorzugsweise Halogenide, Oxyhalogenide, Hydride, Carbonyle oder metallorganische Verbindungen verwendet. Vorzugsweise wird als Metall A Lanthan, als Metall B Strontium und als Metall M Chrom zur Bildung der Hochtemperatur-Schutzschicht verwendet. Als sauerstoffhaltiges Trägergas wird Stickstoff oder Argon mit 02 verwendet. Den gasförmigen reaktiven Verbindungen können zusätzlich sauerstoffhaltige Reaktionsstoffe, wie 02 Luft oder H20 zugemischt werden.In another embodiment of the method according to the invention, the starting materials of the mixed oxide used to produce the high-temperature protective layer are passed as gaseous reactive compounds together with an oxygen-containing carrier gas over the heated surface of the component to be coated. As a result of the high temperatures, these gaseous compounds are reacted by interaction with the material of the component. The mixed oxide to be formed should again have at least one metal from the third subgroup, one metal from the second main group and one metal from the sixth, seventh or eighth subgroup of the periodic table of the chemical elements. In particular, the mixed oxide should also have the general structural formula A 1-x B X MO 3 . Halides, oxyhalides, hydrides, carbonyls or organometallic compounds are preferably used as gaseous compounds for forming the mixed oxide with a perovskite structure. Lanthanum is preferably used as metal A, strontium as metal B and chromium as metal M to form the high-temperature protective layer. Nitrogen or argon with 0 2 is used as the carrier gas containing oxygen. Oxygen-containing reaction substances, such as 0 2 air or H 2 0, can additionally be mixed into the gaseous reactive compounds.

Eine weitere Möglichkeit die erfindungsgemäße Hochtemperatur-Schutzschicht 4 herzustellen, besteht darin, das zu beschichtende Bauelement 1 aus einer solechen Legierung herzustellen, welche die metallischen Komponenten A, B und M, die zur Bildung des Mischoxids erforderlich sind, in entsprechenden Mol-Verhältnissen bereits enthält.Another possibility of producing the high-temperature protective layer 4 according to the invention is that to produce component 1 to be coated from such an alloy, which already contains the metallic components A, B and M, which are required to form the mixed oxide, in corresponding molar ratios.

Wird der Grundkörper 2 des mit der Hochtemperatur-Schutzschicht 4 zu versehenden Bauelementes 1 aus einer Legierung gefertigt, die Lanthan, Strontium und Chrom in der erforderlichen Menge enthält, so kann durch eine Wärmebehandlung des Grundkörpers 2 in einer sauerstoffhaltigen Atmosphäre erreicht werden, daß diese metallischen Komponenten an die Oberfläche diffundieren und mit dem Sauerstoff in der Weise reagieren, daß eine Hochtemperatur-Schutzschicht 4 aus dem gewünschten Mischoxid gebildet wird, das eine Perowskitstruktur aufweist.If the base body 2 of the component 1 to be provided with the high-temperature protective layer 4 is made of an alloy which contains lanthanum, strontium and chromium in the required amount, then heat treatment of the base body 2 in an oxygen-containing atmosphere can result in these being metallic Components diffuse to the surface and react with the oxygen in such a way that a high-temperature protective layer 4 is formed from the desired mixed oxide, which has a perovskite structure.

Eine andere Möglichkeit zur Herstellung der Hochtemperatur-Schutzschicht 4 auf dem Grundkörper 2 kann dadurch bewirkt werden, daß die erforderlichen metallischen Komponenten nach der Fertigstellung des Grundkörpers 2 auf dessen Oberfläche aufgedampft oder in diesen eindiffundiert werden. Durch eine anschließende Wärmebehandlung in einer sauerstoffhaltigen Atmosphäre kann ebenfalls die gewünscht Hochtemperatur-Schutzschicht bestehend aus dem Mischoxid mit Perowskitstruktur hergestellt werden.Another possibility for producing the high-temperature protective layer 4 on the base body 2 can be brought about by evaporating or diffusing the necessary metallic components onto the surface of the base body 2 after its completion. Subsequent heat treatment in an oxygen-containing atmosphere can also produce the desired high-temperature protective layer consisting of the mixed oxide with a perovskite structure.

In vielen Anwendungsfällen enthält das zu beschichtende Bauelement 1 bereits in seinem Grundkörper 2 die Metallkomponente M in Form eines Bestandteils an Eisen, Kobalt, Nickel, Mangan oder Chrom. Dies bedeutet, daß die Komponenten A und B, die zusätzlich zur Bildung des Mischoxids erforderlich sind, nur noch in den Grundkörper eingebracht und mit der Metallkomponente M durch Diffussions- oder Oxidationsprozesse bei erhöhter Temperatur zur Reaktion gebracht werden müssen.In many applications, the component 1 to be coated already contains the metal component M in the form of a component of iron, cobalt, nickel, manganese or chromium in its base body 2. This means that components A and B, which are additionally required for the formation of the mixed oxide, only have to be introduced into the base body and have to be reacted with the metal component M by diffusion or oxidation processes at elevated temperature.

Ein anderes Verfahren zur Beschichtung des Bauteils kann dann angewendet werden, wenn der Grundkörper 2 des Bauelements 1 in seiner Oberfläche bereits die Metallkomponente M als Legierungsbestandteil enthält. In diesem Fall wird die Oberfläche des Grundkörpers 2 mit einer Lösung bestehend aus einer salz- oder metallorganischen Verbindung der beiden Metallkomponenten A und B behandelt. Es besteht die Möglichkeit, anstelle der salz-oder metallorganischen Verbindung dieser beiden Metallkomponenten auch eine Nitratlösung zu verwenden, welche die beiden Metallkomponenten A und B enthält. Anschließend wird das Bauelement 1 auf die Zersetzungstemperatur der salz- oder metallorganischen Verbindung bzw. der Nitratverbindung erhitzt. Das Ganze geschieht unter der Einwirkung von Sauerstoff. Aufgrund der Temperatureinwirkung kommt es zu einer Reaktion der in der Oberfläche des Bauelements 1 enthaltenen Metallkomponente M mit den auf die Oberfläche aufgebrachten Metallkomponenten A und B. Hierbei wird das gewünschte Mischoxid mit Perowskitstruktur gebildet. Die dabei ablaufenden Reaktionen sind in den nachfolgenden Gleichung dargestellt:

Figure imgb0004
Another method for coating the component can be used if the base body 2 of the component 1 already contains the metal component M as an alloy component in its surface. In this case, the surface of the base body 2 is treated with a solution consisting of a salt or organometallic compound of the two metal components A and B. Instead of the salt or organometallic compound of these two metal components, it is also possible to use a nitrate solution which contains the two metal components A and B. Subsequently, the component 1 is heated to the decomposition temperature of the salt or organometallic compound or the nitrate compound. The whole thing happens under the influence of oxygen. Due to the effect of temperature, the metal component M contained in the surface of the component 1 reacts with the metal components A and B applied to the surface. The desired mixed oxide with a perovskite structure is formed. The reactions taking place are shown in the following equation:
Figure imgb0004

Es besteht ferner die Möglichkeit die beiden Komponenten A und B aus der Lösung ihrer salz- oder metallorganischen Verbindung katalytisch oder elektrolytisch auf der Oberfläche abzuscheiden und durch anschließende Wärmebehandlung unter der Einwirkung von Sauerstoff mit der Metallkomponente M, die bereits in der Oberfläche des Grundkörpers enthalten ist, zur Reaktion zu bringen. Bei dieser Reaktion bildet sich ebenfalls das gewünschte Metalloxid mit einer Perowskit-Strukiur als Szhutzschicht an der Oberfläche .It is also possible to deposit the two components A and B from the solution of their salt or organometallic compound catalytically or electrolytically on the surface and by subsequent heat treatment under the action of oxygen with the metal component M, which is already contained in the surface of the base body to react. This reaction also forms the desired one Metal oxide with a perovskite structure as a protective layer on the surface.

Claims (9)

1. Hochtemperatur-Schutzschicht für Bauelemente (1) insbesondere aus einem austenitischen Werkstoff, gekennzeichnet durch ein metallisches Mischoxid mit Perowskit-Struktur und der chemischen Formel:
Figure imgb0005
daß A ein Metall aus der III. Nebengruppe, B ein Metall aus der II. Hauptgruppe und M ein Metall aus der VI.,-VII. oder VIII. Nebengruppe des Periodensystems der chemischen Elemente ist, und der Stöchiometriefaktor x einen Wert zwischen 0 und 0,8 aufweist.
1. High-temperature protective layer for components (1), in particular made of an austenitic material, characterized by a metallic mixed oxide with a perovskite structure and the chemical formula:
Figure imgb0005
that A is a metal from III. Subgroup, B a metal from the II. Main group and M a metal from the VI., - VII. or VIII. subgroup of the periodic table of the chemical elements, and the stoichiometric factor x has a value between 0 and 0.8.
2. Hochtemperatur- Schutzschicht nach Anspruch 1, dadurch gekennzeichnet, daß das Mischoxid als Metall A Lanthan, als Metall B Strontium und als Metall M Chrom, Nickel, Eisen, Mangan oder Kobalt enthält, und daß der Stöchiometriefaktor x einen Wert zwischen 0 und 0,4 aufweist.2. High-temperature protective layer according to claim 1, characterized in that the mixed oxide as metal A contains lanthanum, as metal B strontium and as metal M chromium, nickel, iron, manganese or cobalt, and that the stoichiometric factor x has a value between 0 and 0 , 4 has. 3. Verfahren zur Herstellung einer Hochtemperatur-Schutzschicht, insbesondere nach Anspruch 1, dadurch gekennzeichnet, daß Metalle A,B und M unter Berücksichtigung des Stöchiometriefaktors x gemischt, gemahlen und bei einem vorgebbaren Druck verdichtet und bei einer vorgegebbaren Temperatur unter der Einwirkung eines Gases gesintert werden, und daß das dabei gebildete Reaktionsprodukt zu einem spritzfähigen Pulver gemahlen und auf den zu beschichtenden Grundkörper (2) eines Bauelement (1) aufgetragen wird.3. A method for producing a high-temperature protective layer, in particular according to claim 1, characterized in that metals A, B and M are mixed taking into account the stoichiometric factor x, ground and compressed at a predetermined pressure and sintered at a predetermined temperature under the action of a gas and that the reaction product thus formed is ground to an injectable powder and applied to the base body (2) of a component (1) to be coated. 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Metalloxide oder Metallcarbonate bei einem Druck von 1 bis 2 x 108N/m2 verdichtet und anschließend mehrere Stunden bei einer Temperatur von 1500 °C unter der Einwirkung von Luft gesintert und daraufhin zu einem Pulver mit einer Korngröße von 0,1 bis 60 um gemahlen werden.4. The method according to claim 3, characterized in that the metal oxides or metal carbonates at one Compressed pressure of 1 to 2 x 10 8 N / m 2 and then sintered for several hours at a temperature of 1500 ° C under the influence of air and then ground to a powder with a grain size of 0.1 to 60 microns. 5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß das Mischoxid mit einer Dicke von 100 µm auf den Grundkörper(2) des Bauelements (1) aufgetragen wird, daß Pulver mit einer Korngröße zwischen 10 und 60 µm durch Flammspritzen oder Plasmaspritzen und Pulver mit einer Korngröße von 0,1 bis 10 um als Suspension oder aus der Suspension durch Elektrophorese auf das Bauelement (1), insbesondere auf dessen Grundkörper(2), aufgetragen und durch anschließendes Erhitzen des Grundkörpers (2) in selbiges eingebrannt werden, und daß der Suspension vor dem Aufbringen auf den Grundkörper (2) ein Filmbildner oder ein Flußmittel zugemischt wird.5. The method according to claim 3 or 4, characterized in that the mixed oxide with a thickness of 100 microns on the base body (2) of the component (1) is applied, that powder with a grain size between 10 and 60 microns by flame spraying or plasma spraying and Powder with a grain size of 0.1 to 10 µm as a suspension or from the suspension is applied by electrophoresis to the component (1), in particular to its base body (2), and then baked into the base body (2) by heating it, and that a film former or a flux is added to the suspension before it is applied to the base body (2). 6. Verfahren zur Herstellung einer Hochtemperatur-Schutzschicht (4) insbesondere nach Anspruch 1, dadurch gekennzeichnet, daß Halogenide, Oxyhalogenide, Hydride, Carbonyle oder metallorganische Verbindungen der Elemente A, B und M zusammen mit einem sauerstoffhaltigen Trägergas über die auf eine Temperatur von 300 bis 1000 °C aufgeheizte Oberfläche des zu beschichtenden Bauelementes (1) geleitet oder mit dem Bauelement (1), insbesondere dessen Grundkörper (2), zur Reaktion gebracht und auf der Oberfläche desselben als Mischoxid mit Perowskitstruktur abgeschieden werden, und daß als Trägergas N2(+02) oder N2(+H20) verwendet wird.6. A process for producing a high-temperature protective layer (4) in particular according to claim 1, characterized in that halides, oxyhalides, hydrides, carbonyls or organometallic compounds of the elements A, B and M together with an oxygen-containing carrier gas to a temperature of 300 heated to 1000 ° C heated surface of the component to be coated (1) or reacted with the component (1), in particular its base body (2), and deposited on the surface thereof as a mixed oxide with a perovskite structure, and that as the carrier gas N 2 (+0 2 ) or N 2 (+ H 2 0) is used. 7. Verfahren zur Herstellung einer Hochtemperatur-Schutzschicht (4), insbesondere nach Anspruch 1, dadurch gekennzeichnet, daß die metalliscnen Komponenten A,B und M der für die Herstellung des Bauelementes (1) verwendeten Legierung in einem vorgebbaren Molverhältnis beigemischt oder durch Aufdampfen oder Einsintern unter Sauerstoffausschluß in das Bauelement (1), insbesondere in dessen Grundkörper (2), eingebracht werden, daß bei einer anschließenden Wärmebehandlung des Bauelementes i1) in einer sauerstoffhaltigen Atmosphäre die Komponenten A,B und M an die Oberfläche diffundieren und mit dem dort vorhandenen Sauerstoff der Gasphase zu dem gewünschten Mischoxid mit Perowskitstruktur reagieren.7. A method for producing a high-temperature protective layer (4), in particular according to claim 1, characterized characterized in that the metallic components A, B and M of the alloy used for the production of the component (1) are admixed in a predefinable molar ratio or introduced by vapor deposition or sintering in the component (1), in particular in its base body (2), with the exclusion of oxygen be that during a subsequent heat treatment of component i1) in an oxygen-containing atmosphere, components A, B and M diffuse to the surface and react with the oxygen present in the gas phase to form the desired mixed oxide with a perovskite structure. 8. Verfahren zur Herstellung einer Hochtemperatur-Schutzschicht (4), insbesondere nach Anspruch 1, dadurch gekennzeichnet, daß das zu beschichtende Bauelement (1), insbesondere dessen Grundkörper(2), aus einer solchen Legierung hergestellt wird, daß der fertiggestellte Grundkörper (2) in seiner Oberfläche die Metallkomponente M bereits enthält, und daß die Oberfläche des Grundkörpers (2) mit der Lösung einer salz- oder metallorganischen Verbindung der metallischen Komponenten A und B behandelt wird, oder eine solche Verbindung katalytisch oder elektrolytisch darauf abgeschieden und durch eine anschließende Wärmebehandlung unter Zutritt von Sauerstoff mit der im Grundkörper (2) enthaltenen Metallkomponente (M) unter Bildung des Metalloxids mit Perowskitstruktur zur Reaktion gebracht wird.8. A method for producing a high-temperature protective layer (4), in particular according to claim 1, characterized in that the component to be coated (1), in particular its base body (2), is made of an alloy such that the finished base body (2nd ) already contains the metal component M in its surface, and that the surface of the base body (2) is treated with the solution of a salt or organometallic compound of the metallic components A and B, or such a compound is catalytically or electrolytically deposited thereon and by a subsequent one Heat treatment in the presence of oxygen is reacted with the metal component (M) contained in the base body (2) to form the metal oxide with a perovskite structure. 9. Verfahren nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, daß die erfindungsgemäße Hochtemperatur-Schutzschicht durch ein Mischoxid mit Perowskitstruktur gebildet wird, das als Metallkomponente A Lanthan, als Metallkomponente B Strontium und als Metallkomponente M Chrom, Nickel, Eisen, Kobalt oder Mangan enthält.9. The method according to any one of claims 3 to 8, characterized in that the high-temperature protective layer according to the invention is formed by a mixed oxide with a perovskite structure, the metal component A lanthanum, as the metal component B strontium and as the metal component M chromium, nickel, iron, cobalt or Contains manganese.
EP86114481A 1985-11-02 1986-10-18 Process for the production of a high-temperature protective coating Ceased EP0223083A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3539029 1985-11-02
DE19853539029 DE3539029A1 (en) 1985-11-02 1985-11-02 HIGH TEMPERATURE PROTECTIVE LAYER AND METHOD FOR THEIR PRODUCTION

Publications (1)

Publication Number Publication Date
EP0223083A1 true EP0223083A1 (en) 1987-05-27

Family

ID=6285103

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86114481A Ceased EP0223083A1 (en) 1985-11-02 1986-10-18 Process for the production of a high-temperature protective coating

Country Status (4)

Country Link
US (1) US4971839A (en)
EP (1) EP0223083A1 (en)
JP (1) JPS62112788A (en)
DE (1) DE3539029A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0286135A2 (en) * 1987-04-10 1988-10-12 Sumitomo Electric Industries Limited Method for producing ceramic oxide superconductor
EP0497542A1 (en) * 1991-01-28 1992-08-05 Ngk Insulators, Ltd. Method for producing lanthanum chromite film and method for producing interconnector for solid electrolyte type fuel cells
WO1999023271A1 (en) * 1997-11-03 1999-05-14 Siemens Aktiengesellschaft Product, especially a gas turbine component, with a ceramic heat insulating layer
US6416882B1 (en) 1997-11-03 2002-07-09 Siemens Aktiengesellschaft Protective layer system for gas turbine engine component
EP1367148A1 (en) * 2002-05-13 2003-12-03 Siemens Westinghouse Power Corporation Abradable thermal barrier layer and process for producing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4242099A1 (en) * 1992-12-14 1994-06-16 Abb Patent Gmbh Appts., esp. gas turbine appts. - having coating on its operating parts in contact with fuel gas or waste gas to reduce pollutant emissions
DE59703975D1 (en) * 1996-12-10 2001-08-09 Siemens Ag PRODUCT WHICH IS EXPOSIBLE TO A HOT GAS, WITH A THERMAL INSULATION LAYER AND METHOD FOR THE PRODUCTION THEREOF
US6117560A (en) * 1996-12-12 2000-09-12 United Technologies Corporation Thermal barrier coating systems and materials
JP4218744B2 (en) * 1998-09-10 2009-02-04 日鉄ハード株式会社 Thermal spray material and member having coating formed by thermal spraying the same
DE10204812A1 (en) * 2002-02-06 2003-08-14 Man B & W Diesel As Kopenhagen engine
US7422671B2 (en) * 2004-08-09 2008-09-09 United Technologies Corporation Non-line-of-sight process for coating complexed shaped structures
JP2014156396A (en) * 2014-05-07 2014-08-28 Mitsubishi Heavy Ind Ltd Heat insulating coating material and gas turbine blade, combustor, gas turbine, and jet engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2758618A1 (en) * 1976-12-30 1978-07-06 Union Carbide Corp HIGH TEMPERATURE-RESISTANT, ABRASION-RESISTANT COATING COMPOSITION
EP0061322A2 (en) * 1981-03-23 1982-09-29 Hitachi, Ltd. Alloy coated metal structure having excellent resistance to high-temperature corrosion and thermal shock
EP0134821A1 (en) * 1983-07-22 1985-03-27 BBC Aktiengesellschaft Brown, Boveri & Cie. High-temperature protective coating

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1646988B2 (en) * 1965-03-19 1973-06-14 Siemens AG, 1000 Berlin u 8000 München PROCESS FOR MANUFACTURING POLYCRYSTALLINE DISC, ROD TUBE, OR FOIL-SHAPED CERAMIC COLD CONDUCTORS OR. DIELECTRIC AND HOT CONDUCTOR BODY
US3610888A (en) * 1970-01-30 1971-10-05 Westinghouse Electric Corp Oxide resistor heating element
CH594292A5 (en) * 1974-11-19 1978-01-13 Raffinage Cie Francaise
JPS51150692A (en) * 1975-06-20 1976-12-24 Arita Kosei High conductivity composed substance
US4483785A (en) * 1976-02-18 1984-11-20 University Of Utah Research Foundation Electrically conductive and corrosion resistant current collector and/or container
GB1577364A (en) * 1976-02-18 1980-10-22 Ford Motor Co Method for producing high strength polycrystalline titanium dioxide ceramic member
US4186072A (en) * 1976-06-28 1980-01-29 Blumenthal Robert N Hot gas measuring device
US4117208A (en) * 1977-09-15 1978-09-26 Ford Motor Company Electrical conversion device with ceramic electrode
JPS5571666A (en) * 1978-11-22 1980-05-29 Tokai Rika Co Ltd Preparing highly conductive sintered body
US4339511A (en) * 1979-11-30 1982-07-13 The United States Of America As Represented By The United States Department Of Energy Preparation of powders suitable for conversion to useful β-aluminas
JPS6054259B2 (en) * 1980-12-22 1985-11-29 株式会社村田製作所 Moisture sensitive ceramic
US4590090A (en) * 1982-07-28 1986-05-20 General Electric Company Method for making interdiffused, substantially spherical ceramic powders
EP0140638B1 (en) * 1983-10-17 1988-06-29 Tosoh Corporation High-strength zirconia type sintered body and process for preparation thereof
US4605631A (en) * 1984-03-19 1986-08-12 Norton Company Advanced preparation of ceramic powders
US4631238A (en) * 1985-01-18 1986-12-23 Westinghouse Electric Corp. Cobalt doped lanthanum chromite material suitable for high temperature use
US4562124A (en) * 1985-01-22 1985-12-31 Westinghouse Electric Corp. Air electrode material for high temperature electrochemical cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2758618A1 (en) * 1976-12-30 1978-07-06 Union Carbide Corp HIGH TEMPERATURE-RESISTANT, ABRASION-RESISTANT COATING COMPOSITION
EP0061322A2 (en) * 1981-03-23 1982-09-29 Hitachi, Ltd. Alloy coated metal structure having excellent resistance to high-temperature corrosion and thermal shock
EP0134821A1 (en) * 1983-07-22 1985-03-27 BBC Aktiengesellschaft Brown, Boveri & Cie. High-temperature protective coating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, unexamined applications, Field C, Vol. 8, Nr. 71, 3. April 1984 THE PATENT OFFICE JAPANESE GOVERNMENT Seite 66 C 217 * JP - A - 58-223 618 ( SUMITOMO ) * *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0286135A2 (en) * 1987-04-10 1988-10-12 Sumitomo Electric Industries Limited Method for producing ceramic oxide superconductor
EP0286135A3 (en) * 1987-04-10 1990-12-19 Sumitomo Electric Industries Limited Method for producing ceramic oxide superconductor
EP0497542A1 (en) * 1991-01-28 1992-08-05 Ngk Insulators, Ltd. Method for producing lanthanum chromite film and method for producing interconnector for solid electrolyte type fuel cells
US5397657A (en) * 1991-01-28 1995-03-14 Ngk Insulators, Ltd. Method for increasing the electrical conductivity of a thermal sprayed interconnector for a solid electrolyte fuel cell
US6835465B2 (en) 1996-12-10 2004-12-28 Siemens Westinghouse Power Corporation Thermal barrier layer and process for producing the same
WO1999023271A1 (en) * 1997-11-03 1999-05-14 Siemens Aktiengesellschaft Product, especially a gas turbine component, with a ceramic heat insulating layer
US6416882B1 (en) 1997-11-03 2002-07-09 Siemens Aktiengesellschaft Protective layer system for gas turbine engine component
US6440575B1 (en) 1997-11-03 2002-08-27 Siemens Aktiengesellschaft Ceramic thermal barrier layer for gas turbine engine component
US6602553B2 (en) 1997-11-03 2003-08-05 Siemens Aktiengesellshaft Process for producing a ceramic thermal barrier layer for gas turbine engine component
EP1367148A1 (en) * 2002-05-13 2003-12-03 Siemens Westinghouse Power Corporation Abradable thermal barrier layer and process for producing the same

Also Published As

Publication number Publication date
DE3539029A1 (en) 1987-05-07
JPS62112788A (en) 1987-05-23
US4971839A (en) 1990-11-20

Similar Documents

Publication Publication Date Title
EP0230554B1 (en) High-temperature protective layer and method of manufacturing the same
EP0944746B1 (en) Hot-gas exposable product fitted with a heat-insulating layer and a method for the production thereof
DE3243283C2 (en)
DE2927057C2 (en)
DE2604960C3 (en) Powder Composition and Process for Making Wear Resistant Coatings - US Pat
DE2327250A1 (en) PROCESS FOR MANUFACTURING A METALLURGIC SEALED COVER
EP0223083A1 (en) Process for the production of a high-temperature protective coating
DE2414992A1 (en) COATING SYSTEM FOR SUPER ALLOYS
CH620947A5 (en)
ATE178286T1 (en) METHOD FOR PRODUCING A MIXED METAL OXYDE POWDER AND THE MIXED METAL OXYDE POWDER PRODUCED BY THIS METHOD
DE3744145A1 (en) SUPER LADDER AND METHOD FOR THE PRODUCTION THEREOF
DE2626597A1 (en) NITROGEN OXIDE REDUCTION CATALYST AND PROCESS FOR ITS MANUFACTURING
DE2840681A1 (en) OXYDATION-RESISTANT, POROESES, NON-ABRASION-RESISTANT LOCKING PART FOR USE IN HIGH TEMPERATURES
DE2530446A1 (en) PROCESS FOR THE PRODUCTION OF POWDERED MIXED OXIDES
CH616960A5 (en) Components resistant to high-temperature corrosion.
DE1812455C3 (en) Process for producing an insulating protective layer consisting of a metal oxide on the surface of a semiconductor crystal
EP0368082B1 (en) Oxygenated molybdenum metal powder and process for its preparation
DE2549298C2 (en) Process for the production of a sintered silver-cadmium oxide alloy
DE3703206A1 (en) THERMAL INSULATING PARTITION AND METHOD FOR THE PRODUCTION THEREOF
DE3737361C2 (en)
DE2853931A1 (en) METHOD FOR PRODUCING METALLIC POWDER
DE2350694C3 (en) Process for coating a workpiece made of a superalloy to protect against corrosion and reaction mixture
DE2658690A1 (en) HIGH TEMPERATURES ABRASION-RESISTANT MATERIAL AND METHOD OF MANUFACTURING IT
DE102007060272A1 (en) Bipolar plate and method for producing a protective layer on a bipolar plate
DE102005023605A1 (en) Catalysts and processes for the oxidation of ammonia

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE LI NL

17P Request for examination filed

Effective date: 19870924

17Q First examination report despatched

Effective date: 19880812

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19911222

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROHR, JOSEF, DR.

Inventor name: CHU, WING FONG, DR.