EP0222433A1 - Process to obtain high-temperature reactions - Google Patents

Process to obtain high-temperature reactions Download PDF

Info

Publication number
EP0222433A1
EP0222433A1 EP86201796A EP86201796A EP0222433A1 EP 0222433 A1 EP0222433 A1 EP 0222433A1 EP 86201796 A EP86201796 A EP 86201796A EP 86201796 A EP86201796 A EP 86201796A EP 0222433 A1 EP0222433 A1 EP 0222433A1
Authority
EP
European Patent Office
Prior art keywords
gas
solids
temperature
fluidized bed
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86201796A
Other languages
German (de)
French (fr)
Other versions
EP0222433B1 (en
Inventor
Paul Broedermann
Harald Dr. Sauer
Werner Stockhausen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Priority to AT86201796T priority Critical patent/ATE40923T1/en
Publication of EP0222433A1 publication Critical patent/EP0222433A1/en
Application granted granted Critical
Publication of EP0222433B1 publication Critical patent/EP0222433B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/003Cyclones or chain of cyclones

Definitions

  • the invention relates to a method for carrying out high-temperature reactions between hot gas and previously heated solids, which lose their free-flowing properties in the high-temperature treatment, in a substantially vertical conveying path with subsequent cooling and separation from the gas.
  • the method according to DE-AS 23 50 768 provides, inter alia, for the material preheated in a first zone into a to heat the second zone to a final temperature by passing a flame, an air stream surrounding the flame being introduced into the second zone, which is intended to protect the wall of the flame space from formation of deposits.
  • This measure has the disadvantage, in particular, that the unavoidable mixture of the air flow introduced into the second zone and the gas / solid suspension initially heated to sufficiently high temperatures result in cooling before the high-temperature reaction is complete. This means that there is no guarantee that the residence time required for the reaction will actually be available at the high temperature.
  • the object of the invention is to provide a method for carrying out high-temperature reactions between hot gas and previously heated solids, which does not have the known, in particular the aforementioned disadvantages, allows a faultless procedure and moreover can be used universally and is easy to carry out.
  • the object is achieved by designing the method of the type mentioned at the outset in accordance with the invention in such a way that the heated solids are introduced from below and in the conveying direction through a burner flame located in the lower region of the conveying path 17, and are passed through a sufficiently long reaction zone and after completion the reaction with unchanged flow direction cools at least to the temperature at which flowability is achieved by separate addition of coolant downstream in the flow direction.
  • the gas / solid suspension goes through the critical reaction phase between heating to high temperature and cooling to a temperature which makes the gas / solid suspension easy to handle allowed, without redirection and thus without the possibility of forming an approach.
  • the subsequent separate addition of coolant allows the dwell time at the required high temperature, which meets the respective requirements, to be set precisely.
  • the average gas velocity to be set in the conveyor section is to be dimensioned such that high relative velocities occur between the solid and the wall.
  • the average gas velocity is usually in the range of 2 and 10 m / sec (indicated as empty tube velocity).
  • the entry of the preheated solid into the conveyor is expediently carried out in the form of a gas / solid suspension through the center of an annular burner which is operated, for example, with gas as the fuel.
  • This type of solids supply ensures practically instantaneous heating to the desired temperature. Depending on the feed material and the desired result, it is approximately in the range from 1,300 to 1,700 ° C, preferably between 1,400 and 1,500 ° C.
  • the length of the conveyor line is measured according to the required dwell time depending on the reaction type. As a rule, a few seconds are sufficient, so that the length of the conveyor line is max. 20 m, generally 5 to 15 m, should be.
  • the cooling required after the high-temperature reaction has ended can be carried out using gaseous, liquid or solid coolants. Your entry should be done in such a way that a rapid intermingling with the gas / solid suspension takes place and contact with the wall of the conveyor line is avoided. An entry in the tangential direction at high speed perpendicular to or at an angle up to 60 ° against or with the flow direction is particularly expedient.
  • the gas / solid separation takes place in a conventional manner, e.g. in a cyclone separator.
  • the solids to be subjected to the high-temperature reaction can be heated in any desired manner.
  • the heating which is generally also associated with a chemical reaction, takes place particularly advantageously in a so-called circulating fluidized bed.
  • the circulating fluidized bed is characterized in that - in contrast to the "classic" fluidized bed, in which a dense phase is separated from the gas space above it by a clear density jump - there are distribution states without a defined boundary layer. A leap in density between the dense phase and the dust space above it does not exist, but the solids concentration within the reactor decreases continuously from bottom to top.
  • Reh et al describes "fluidized bed processes for the chemical and metallurgical industry, energy conversion and environmental protection", Chem. Ing. Techn. 55 (1983), No. 2, pages 87-93 and DE -PS 17 67 628 or the US-PS 3 579 616 referenced.
  • the advantage of the circulating fluidized bed lies in the high throughput per reactor area and in the possibility of being able to set the residence time of the solid to be heated so high that the chemical reaction associated with the heating is practically complete. Only the actual high-temperature reaction then has to be carried out within the process according to the invention, i.e. there are practically no reactions that can also be carried out at a lower temperature level.
  • a preferred embodiment of the invention consists in integrating the high-temperature treatment according to the invention into the overall process with solid heating and final cooling in such a way that the individual gas streams can be used mutually.
  • oxygen-containing gas can be preheated in the cooler, which is then entered in the heating and / or high-temperature treatment stage.
  • the exhaust gas from the conveyor line can be entered in the heating zone.
  • An optimal management of the overall process consists in heating the feed material in a circulating fluidized bed, which in turn has preheaters operated with the exhaust gases, and the final cooling in a fluidized bed cooler with several cooling chambers flowing through one after the other.
  • the solid can be cooled directly and / or indirectly with oxygen-containing gases which are then fed to the conveying section as conveying gas and / or the circulating fluidized bed as fluidizing gas.
  • the fluidizing gases used in the fluidized bed cooler can finally serve as a cooling medium for the conveying section, and the exhaust gases of the conveying section of the circulating fluidized bed can serve as secondary gas.
  • the figure shows a flow diagram of a composite circuit of the aforementioned type.
  • the material to be treated is fed to a last Venturi exchanger 2 on the gas side via a metering device 1, heated by the sensible heat of the exhaust gas and separated from the gas in the cyclone separator 3.
  • a conveying device 4 then leads to a further preheating system, which consists of a Venturi exchanger 5 with an associated cyclone separator 6 and a Venturi exchanger 7 Cyclone separator 8 exists.
  • a bypass line 9 conveyed solid can be fed directly to the venturi exchanger 7 bypassing a preheating stage.
  • the solid is introduced into a circulation system consisting of a fluidized bed reactor 10, return cyclone 11 and return line 12.
  • the fluidized bed reactor 10 is supplied via line 13 with fuel, via line 14 with fluidizing gas and via line 15 with secondary gas.
  • the heated material passes via line 16 to the lower region of the conveyor section 17 and is introduced from below into the burner flame generated from fuel (line 18) and oxygen-containing gas (line 19).
  • line 18 fuel
  • line 19 oxygen-containing gas
  • the gas / solid suspension is discharged via line 21 and separated in the cyclone separator 22. The solid enters the fluidized bed cooler 23, the gas via line 15 as secondary gas into the fluidized bed reactor 10.
  • the fluidized bed cooler 23 is divided into a plurality of cooling chambers through which the solid flows successively and has a total of three cooling sections.
  • oxygen-containing gas is heated, which is then fed via line 19 to the conveyor section 17.
  • the heating of the oxygen bed to be fed to the fluidized bed reactor 10 via line 14 is carried out term gas.
  • the final cooling of the solid takes place by means of cooling water, which is supplied or discharged via lines 24 and 25.
  • the cooled product is discharged via device 26.
  • the fluidizing gas streams used in the fluidized bed cooler 23 are collected and fed via line 20 to the conveyor path 17 as a cooling medium.
  • Filter-moist aluminum hydroxide is to be converted into high-fired aluminum oxide.
  • Aluminum hydroxide with a moisture content of 12% by weight and a temperature of 60 ° C is fed in an amount of 8.69 t / h via the metering device 1 to the Venturi exchanger 2.
  • the gases from the cyclone separator 6 brought to 390 ° C. the aluminum hydroxide is heated to 160 ° C. and the gas is cooled to approximately the same temperature.
  • the preheated aluminum hydroxide in the Venturi exchanger 5 is brought into contact with the 510 ° C. hot exhaust gases of the cyclone separator 8 by means of the conveying device 4. This heats up the solid or cools the gas to approx. 390 ° C.
  • the solid enters the Venturi exchanger 7, which is charged with the exhaust gases of 1,150 ° C. from the circulating fluidized bed.
  • the intimate mixing results in a gas / solid suspension with a temperature of 510 ° C.
  • the solid gets into the circulating fluidized bed.
  • the fluidized bed reactor 10 of the circulating fluidized bed is via line 14 with 2,000 Nm 3 / h of fluidizing air of 580 ° C (originating from the second section of the fluidized bed cooler 23), via line 15 with 4,800 Nm 3 / h of secondary air of 1,020 ° C (from the cyclone separator 22 originating) and supplied via line 13 with 390 Nm 3 / h of natural gas. This results in a temperature of 1,150 ° C., which is practically constant over the entire circulation system formed from fluidized bed reactor 10, return cyclone 11 and return line 12.
  • a solid stream corresponding to the feed quantity is fed continuously via line 16 to the conveying path 17 and heated to 1,400 ° C. by the burner flame or the burner exhaust gases.
  • the burner is fed with 110 Nm 3 / h natural gas and 1,200 Nm 3 / h air at 650 ° C (originating from the first section of the fluidized bed cooler 23).
  • the high-temperature reaction is complete after approx. 4 sec.
  • the gas / solid suspension is cooled by introducing 3,500 Nm 3 / h of air at a temperature of 470 ° C. (originating from the fluidized bed cooler 23). As a result, the suspension cools down to a temperature of 1,020 ° C, at which sufficient flowability of the solid is ensured.
  • the gas / solid suspension is then separated in the cyclone separator 22, the gas (4,800 Nm 3 / h) to the fluidized bed reactor 10 as secondary gas, and the solid to the fluidized bed cooler 23.
  • the solid is cooled in several sections to a final temperature of 80 ° C.
  • a final temperature of 80 ° C For this purpose - seen in the direction of flow of the solid - in the first section 1,200 Nm 3 / h of air heated to 650 ° C, in the second section 2,000 Nm 3 / h of air heated to 580 ° C and in the third section 2 0 m 3 / h of water at 35 ° C is warmed to 65 ° C.
  • the gas streams are returned to the process.
  • the production is 5 t / h aluminum oxide with a BET surface area of 3 m 2 / g.

Abstract

1. Process for carrying out high-temperature reactions between hot gas and previously heated solids, which during the high-temperature treatment lose their ability to flow freely, in a substantially vertical conveyor passage with subsequent cooling and separation from gas, characterized in that the heated solids are supplied from below and in the direction of conveyance trough a burner flame located in the lower region of the conveyor passage (17), they are caused to pass through a sufficiently long reaction zone and after the reaction has been completed they are coded to at least the temperature at which the ability to flow freely is achieved with an unchanged direction of flow by the separate addition of cooling agent downstream in the direction of flow.

Description

Die Erfindung betrifft ein Verfahren zur Durchführung von Hochtemperaturreaktionen zwischen Heißgas und zuvor aufgeheizten Feststoffen, die bei der Hochtemperaturbehandlung ihre Rieselfähigkeit verlieren, in einer im wesentlichen senkrechten Förderstrecke mit anschließender Kühlung und Abscheidung vom Gas.The invention relates to a method for carrying out high-temperature reactions between hot gas and previously heated solids, which lose their free-flowing properties in the high-temperature treatment, in a substantially vertical conveying path with subsequent cooling and separation from the gas.

Bei Hochtemperaturreaktionen werden Feststoffe auf Temperaturen erhitzt, die oberhalb der Temperatur liegen, bei der diese Feststoffe ihre Rieseloder Fließfähigkeit verlieren. Die Einzelpartikeln neigen dazu, miteinander zu verkleben, aneinander zu haften und/oder an der Reaktorinnenwand bzw. in Rohrleitungen Ansätze zu bilden. Ursachen für den Verlust der Rieseloder Fließfähigkeit können die Reaktionsabläufe der Feststoffe mit der Gasphase oder mit andersartigen Bestandteilen sein. Die vorstehend angesprochenen Probleme können beim Brennen bzw. Sintern von z.B. Tonerde, Kalk, Dolomit, Magnesit und Zementrohmehl auftreten.In high-temperature reactions, solids are heated to temperatures above the temperature at which these solids lose their free-flowing or flowing properties. The individual particles tend to stick together, adhere to one another and / or form deposits on the inner wall of the reactor or in pipelines. The causes of the loss of flow or flowability can be the reaction processes of the solids with the gas phase or with other types of constituents. The problems mentioned above can occur when burning or sintering e.g. Alumina, lime, dolomite, magnesite and raw cement flour occur.

Es sind zahlreiche Verfahren und Vorrichtungen bekannt, mit denen das Ziel verfolgt wird, die prozeßtechnisch bedingten Schwierigkeiten zu lösen.Numerous methods and devices are known with the aim of solving the process-related difficulties.

So sieht z.B. das Verfahren gemäß DE-AS 23 50 768 u.a. vor, das in einer ersten Zone vorerhitzte Gut in eine zweite Zone durch Passieren einer Flamme auf Endtemperatur zu erhitzen, wobei in die zweite Zone ein die Flamme umgebender Luftstrom eingeführt wird, der die Wandung des Flammenraumes vor Ansatzbildung schützen soll. Diese Maßnahme hat insbesondere den Nachteil, daß durch die nicht zu verhindernde Mischung des in die zweite Zone eingeführten Luftstromes mit der zunächst auf ausreichend hohe Temperaturen erhitzte Gas/Feststoff-Suspension eine Abkühlung erfolgt, bevor die Hochtemperaturreaktion abgeschlossen ist. Das heißt es ist nicht gewährleistet, daß die für die Reaktion erforderliche Verweilzeit bei der hohen Temperatur tatsächlich zur Verfügung steht.For example, the method according to DE-AS 23 50 768 provides, inter alia, for the material preheated in a first zone into a to heat the second zone to a final temperature by passing a flame, an air stream surrounding the flame being introduced into the second zone, which is intended to protect the wall of the flame space from formation of deposits. This measure has the disadvantage, in particular, that the unavoidable mixture of the air flow introduced into the second zone and the gas / solid suspension initially heated to sufficiently high temperatures result in cooling before the high-temperature reaction is complete. This means that there is no guarantee that the residence time required for the reaction will actually be available at the high temperature.

Bei Verfahren und Vorrichtung zur Wärmebehandlung von feinkörnigem Gut gemäß DE-PS 28 46 584 mit Vorwärmzone, Kalzinierzone, als Suspensionsreaktionszone ausgebildete Sinterzone und Kühlzone wird zumindest ein Teil des weitgehend kalzinierten Gutes vor Eintritt in die Sinterzone einer gesonderten Wärmebehandlung zur Verflüchtigung der schmelzphasenbildenden Bestandteile unterworfen. Dieser Stand der Technik ist naturgemäß nur auf solche Fälle anwendbar, bei denen der Erhalt der Rieselfähigkeit durch Verflüchtigung schmelzphasenbildender Bestandteile erzielbar ist. In den anderen Fällen läßt sich hierdurch nicht vermeiden, daß bei der Sinterung in der Suspensionsreaktionszone infolge von Umlenkung der Gas/Feststoff-Suspension Ansatzbildungen entstehen können. Nachteilig ist zudem eine zusätzliche Reaktionszone.In the method and device for the heat treatment of fine-grained material according to DE-PS 28 46 584 with preheating zone, calcining zone, sintering zone designed as a suspension reaction zone and cooling zone, at least part of the largely calcined material is subjected to a separate heat treatment to evaporate the melt-phase-forming components before entering the sintering zone. This prior art is of course only applicable to those cases in which the free-flowing properties can be obtained by volatilizing components which form the melt phase. In other cases, this does not prevent the formation of deposits during sintering in the suspension reaction zone as a result of deflection of the gas / solid suspension. An additional reaction zone is also disadvantageous.

Aufgabe der Erfindung ist, ein Verfahren zur Durchführung von Hochtemperaturreaktionen zwischen Heißgas und zuvor aufgeheizten Feststoffen bereitzustellen, daß die bekannten, insbesondere vorgenannten Nachteile nicht aufweist, eine einwandfreie Verfahrensführung gestattet und zudem universell einsetzbar sowie einfach durchführbar ist.The object of the invention is to provide a method for carrying out high-temperature reactions between hot gas and previously heated solids, which does not have the known, in particular the aforementioned disadvantages, allows a faultless procedure and moreover can be used universally and is easy to carry out.

Die Aufgabe wird gelöst, indem das Verfahren der eingangs genannten Art entsprechend der Erfindung derart ausgestaltet wird, daß man die aufgeheizten Feststoffe von unten und in Förderrichtung durch eine im unteren Bereich der Förderstrecke 17 befindliche Brennerflamme einträgt, eine hinreichend lange Reaktionszone durchlaufen läßt und nach Abschluß der Reaktion bei unveränderter Strömungsrichtung durch in Strömungsrichtung nachgeschaltete separate Zugabe von Kühlmittel mindestens auf die Temperatur, bei der Rieselfähigkeit erlangt wird, kühlt.The object is achieved by designing the method of the type mentioned at the outset in accordance with the invention in such a way that the heated solids are introduced from below and in the conveying direction through a burner flame located in the lower region of the conveying path 17, and are passed through a sufficiently long reaction zone and after completion the reaction with unchanged flow direction cools at least to the temperature at which flowability is achieved by separate addition of coolant downstream in the flow direction.

Durch den Eintrag des Feststoffes von unten und in Förderrichtung sowie durch die nachgeschaltete separate Zugabe von Kühlmittel bei unveränderter Strömungsrichtung durchläuft die Gas/Feststoff-Suspension die kritische Reaktionsphase zwischen Aufheizen auf Hochtemperatur und Abkühlung auf eine Temperatur die eine problemlose Handhabung der Gas/Feststoff-Suspension erlaubt, ohne Umlenkung und damit ohne die Möglichkeit einer Ansatzbildung. Durch die nachgeschaltete separate Kühlmittelzugabe läßt sich die den jeweiligen Erfordernissen gerecht werdende Verweildauer bei der erforderlichen Hochtemperatur exakt einstellen.Through the entry of the solid from below and in the direction of conveyance as well as through the subsequent separate addition of coolant with the flow direction unchanged, the gas / solid suspension goes through the critical reaction phase between heating to high temperature and cooling to a temperature which makes the gas / solid suspension easy to handle allowed, without redirection and thus without the possibility of forming an approach. The subsequent separate addition of coolant allows the dwell time at the required high temperature, which meets the respective requirements, to be set precisely.

Die in der Förderstrecke einzustellende mittlere Gasgeschwindigkeit ist derart zu bemessen, daß hohe Relativgeschwindigkeiten zwischen Feststoff und Wand auftreten. Üblicherweise liegt die mittlere Gasgeschwindigkeit im Bereich von 2 und 10 m/sec (angegeben als Leerrohrgeschwindigkeit).The average gas velocity to be set in the conveyor section is to be dimensioned such that high relative velocities occur between the solid and the wall. The average gas velocity is usually in the range of 2 and 10 m / sec (indicated as empty tube velocity).

Der Eintritt des vorgewärmten Feststoffes in die Förderstrecke geschieht zweckmäßigerweise in Form einer Gas/ Feststoff-Suspension durch das Zentrum eines ringförmigen Brenners, der z.B. mit Gas als Brennstoff betrieben wird. Diese Art der Feststoffzuführung gewährleistet eine praktisch augenblickliche Aufheizung auf die erwünschte Temperatur. Sie liegt je nach Einsatzmaterial und angestrebtem Ergebnis etwa im Bereich von 1.300 bis 1.700°C, vorzugsweise zwischen 1.400 und 1.500°C.The entry of the preheated solid into the conveyor The route is expediently carried out in the form of a gas / solid suspension through the center of an annular burner which is operated, for example, with gas as the fuel. This type of solids supply ensures practically instantaneous heating to the desired temperature. Depending on the feed material and the desired result, it is approximately in the range from 1,300 to 1,700 ° C, preferably between 1,400 and 1,500 ° C.

Die Länge der Förderstrecke bemißt sich nach der erforderlichen vom Reaktionstyp abhängigen Verweildauer. In der Regel sind wenige Sekunden ausreichend, so daß die Länge der Förderstrecke max. 20 m, im allgemeinen 5 bis 15 m, betragen dürfte.The length of the conveyor line is measured according to the required dwell time depending on the reaction type. As a rule, a few seconds are sufficient, so that the length of the conveyor line is max. 20 m, generally 5 to 15 m, should be.

Die nach Beendigung der Hochtemperaturreaktion erforderliche Kühlung kann mit gasförmigen, flüssigen oder festen Kühlmitteln erfolgen. Ihr Eintrag sollte in der Weise geschehen, daß eine schnelle Verwirbelung mit der Gas/ Feststoff-Suspension erfolgt und ein In-Kontakt-Kommen mit der Wand der Förderstrecke vermieden wird. Besonders zweckmäßig ist ein Eintrag in tangentialer Richtung mit hoher Geschwindigkeit senkrecht zur oder unter einem Winkel bis zu 60° gegen die oder mit der Strömungsrichtung.The cooling required after the high-temperature reaction has ended can be carried out using gaseous, liquid or solid coolants. Your entry should be done in such a way that a rapid intermingling with the gas / solid suspension takes place and contact with the wall of the conveyor line is avoided. An entry in the tangential direction at high speed perpendicular to or at an angle up to 60 ° against or with the flow direction is particularly expedient.

Im Anschluß an die Kühlung unter die kritische Temperatur erfolgt die Gas/Feststoff-Trennung auf konventionelle Weise, z.B. in einem Zyklonabscheider.After cooling below the critical temperature, the gas / solid separation takes place in a conventional manner, e.g. in a cyclone separator.

Die Aufheizung der der Hochtemperaturreaktion zu unterwerfenden Feststoffe kann auf jede beliebige Weise erfolgen. Besonders vorteilhaft geschieht die Aufheizung, die im allgemeinen auch mit einer chemischen Reaktion verbunden ist, in einer sogenannten zirkulierenden Wirbelschicht. Die zirkulierende Wirbelschicht zeichnet sich dadurch aus, daß - im Unterschied zur "klassischen" Wirbelschicht, bei der eine dichte Phase durch einen deutlichen Dichtesprung von dem darüber befindlichen Gasraum getrennt ist - Verteilungszustände ohne definierte Grenzschicht vorliegen. Ein Dichtesprung zwischen dichter Phase und darüber befindlichem Staubraum ist nicht existent, jedoch nimmt innerhalb des Reaktors die Feststoffkonzentration von unten nach oben ständig ab. Wegen Einzelheiten zum Betrieb von zirkulierenden Wirbelschichten wird auf L. Reh et al "Wirbelschichtprozesse für die Chemieund Hüttenindustrie, die Energieumwandlung und den Umweltschutz", Chem. Ing. Techn. 55 (1983), Nr. 2, Seiten 87-93 sowie die DE-PS 17 67 628 bzw. die US-PS 3 579 616 verwiesen.The solids to be subjected to the high-temperature reaction can be heated in any desired manner. The heating, which is generally also associated with a chemical reaction, takes place particularly advantageously in a so-called circulating fluidized bed. The circulating fluidized bed is characterized in that - in contrast to the "classic" fluidized bed, in which a dense phase is separated from the gas space above it by a clear density jump - there are distribution states without a defined boundary layer. A leap in density between the dense phase and the dust space above it does not exist, but the solids concentration within the reactor decreases continuously from bottom to top. For details on the operation of circulating fluidized beds, L. Reh et al describes "fluidized bed processes for the chemical and metallurgical industry, energy conversion and environmental protection", Chem. Ing. Techn. 55 (1983), No. 2, pages 87-93 and DE -PS 17 67 628 or the US-PS 3 579 616 referenced.

Der Vorteil der zirkulierenden Wirbelschicht liegt in der hohen Durchsatzleistung pro Reaktorfläche sowie in der Möglichkeit, die Verweilzeit des aufzuheizenden Feststoffes so hoch einstellen zu können, daß die mit der Aufheizung verbundene chemische Reaktion praktisch abgeschlossen ist. Innerhalb des erfindungsgemäßen Verfahrens ist dann nur die eigentliche Hochtemperaturreaktion vorzunehmen, d.h. es finden praktisch keine Umsetzungen statt, die auch auf niedrigerem Temperaturniveau durchführbar sind.The advantage of the circulating fluidized bed lies in the high throughput per reactor area and in the possibility of being able to set the residence time of the solid to be heated so high that the chemical reaction associated with the heating is practically complete. Only the actual high-temperature reaction then has to be carried out within the process according to the invention, i.e. there are practically no reactions that can also be carried out at a lower temperature level.

Nach der Abscheidung der aus der Förderstrecke austretenden Feststoffe erfolgt üblicherweise eine weitergehende Kühlung. Hierzu können herkömmliche Kühler, insbesondere aber Wirbelschichtkühler dienen.After separation of the solids emerging from the conveyor line, further cooling is usually carried out. Conventional coolers, but in particular fluidized bed coolers, can serve this purpose.

Eine bevorzugte Ausgestaltung der Erfindung besteht darin, die erfindungsgemäße Hochtemperaturbehandlung derart in den Gesamtprozeß mit Feststoffaufheizung und abschließender Kühlung zu integrieren, daß die einzelnen Gasströme wechselseitig Verwendung finden können. Beispielsweise kann im Kühler sauerstoffhaltiges Gas vorgewärmt werden, das dann in die Stufe der Aufheizung und/oder der Hochtemperaturbehandlung eingetragen wird. Weiterhin kann das Abgas der Förderstrecke in die Zone der Aufheizung eingetragen werden.A preferred embodiment of the invention consists in integrating the high-temperature treatment according to the invention into the overall process with solid heating and final cooling in such a way that the individual gas streams can be used mutually. For example, oxygen-containing gas can be preheated in the cooler, which is then entered in the heating and / or high-temperature treatment stage. Furthermore, the exhaust gas from the conveyor line can be entered in the heating zone.

Eine optimale Führung des Gesamtverfahrens besteht darin, die Aufheizung des Aufgabegutes in einer zirkulierenden Wirbelschicht, die ihrerseits mit den Abgasen betriebene Vorwärmer aufweist, und die abschließende Kühlung in einem Wirbelschichtkühler mit mehreren nacheinander durchflossenenen Kühlkammern vorzunehmen. Die Kühlung des Feststoffes kann direkt und/oder indirekt mit sauerstoffhaltigen Gasen, die dann der Förderstrecke als Fördergas und/oder der zirkulierenden Wirbelschicht als Fluidisierungsgas zugeleitet werden, geschehen. Die im Wirbelschichtkühler verwendeten Fluidisierungsgase können schließlich der Förderstrecke als Kühlmedium, die Abgase der Förderstrecke der zirkulierenden Wirbelschicht als Sekundärgas dienen.An optimal management of the overall process consists in heating the feed material in a circulating fluidized bed, which in turn has preheaters operated with the exhaust gases, and the final cooling in a fluidized bed cooler with several cooling chambers flowing through one after the other. The solid can be cooled directly and / or indirectly with oxygen-containing gases which are then fed to the conveying section as conveying gas and / or the circulating fluidized bed as fluidizing gas. The fluidizing gases used in the fluidized bed cooler can finally serve as a cooling medium for the conveying section, and the exhaust gases of the conveying section of the circulating fluidized bed can serve as secondary gas.

Die Erfindung wird anhand der Figur und des Beispiels näher und beispielsweise erläutert.The invention is explained in more detail and, for example, using the figure and the example.

Die Figur stellt ein Fließschema einer Verbundschaltung der vorgenannten Art dar.The figure shows a flow diagram of a composite circuit of the aforementioned type.

Das zu behandelnde Material wird über eine Dosiervorrichtung 1 einem gasseitig letzten Venturiaustauscher 2 aufgegeben, durch die fühlbare Wärme des Abgases erwärmt und im Zyklonabscheider 3 vom Gas abgetrennt. Es gelangt dann über eine Fördereinrichtung 4 zu einem weiteren Vorwärmsystem, das aus Venturiaustauscher 5 mit zugehörigem Zyklonabscheider 6 und aus Venturiaustauscher 7 mit Zyklonabscheider 8 besteht. Mittels einer Bypass-Leitung 9 kann geförderter Feststoff unter Umgehung einer Vorwärmstufe direkt dem Venturiaustauscher 7 zugeführt werden.The material to be treated is fed to a last Venturi exchanger 2 on the gas side via a metering device 1, heated by the sensible heat of the exhaust gas and separated from the gas in the cyclone separator 3. A conveying device 4 then leads to a further preheating system, which consists of a Venturi exchanger 5 with an associated cyclone separator 6 and a Venturi exchanger 7 Cyclone separator 8 exists. By means of a bypass line 9, conveyed solid can be fed directly to the venturi exchanger 7 bypassing a preheating stage.

Vom Zyklonabscheider 8 wird der Feststoff in ein aus Wirbelschichtreaktor 10, Rückführzyklon 11 und Rückführleitung 12 bestehendes Zirkulationssystem eingetragen. Der Wirbelschichtreaktor 10 wird über Leitung 13 mit Brennstoff, über Leitung 14 mit Fluidisierungsgas und über Leitung 15 mit Sekundärgas versorgt.From the cyclone separator 8, the solid is introduced into a circulation system consisting of a fluidized bed reactor 10, return cyclone 11 and return line 12. The fluidized bed reactor 10 is supplied via line 13 with fuel, via line 14 with fluidizing gas and via line 15 with secondary gas.

Nach ausreichend langer Verweilzeit gelangt das aufgeheizte Material über Leitung 16 zum unteren Bereich der Förderstrecke 17 und wird von unten in die aus Brennstoff (Leitung 18) und sauerstoffhaltiges Gas (Leitung 19) erzeugte Brennerflamme eingetragen. Während der Aufwärtsbewegung der Gas/Feststoff-Suspension im unteren Teil der Förderstreke 17 erfolgt die Hochtemperaturreaktion, nach deren Abschluß eine Abkühlung durch über Leitung 20 zugeführte Gase erfolgt. Nach hinreichender Kühlung bei unveränderter Strömungsrichtung wird die Gas/Feststoff-Suspension über Leitung 21 ausgetragen und im Zyklonabscheider 22 getrennt. Der Feststoff gelangt in den Wirbelschichtkühler 23, das Gas über die Leitung 15 als Sekundärgas in den Wirbelschichtreaktor 10.After a sufficiently long dwell time, the heated material passes via line 16 to the lower region of the conveyor section 17 and is introduced from below into the burner flame generated from fuel (line 18) and oxygen-containing gas (line 19). During the upward movement of the gas / solids suspension in the lower part of the conveyor section 17, the high-temperature reaction takes place, after which it is cooled by gases supplied via line 20. After sufficient cooling with the flow direction unchanged, the gas / solid suspension is discharged via line 21 and separated in the cyclone separator 22. The solid enters the fluidized bed cooler 23, the gas via line 15 as secondary gas into the fluidized bed reactor 10.

Der Wirbelschichtkühler 23 ist in mehrere vom Feststoff nacheinander durchflossene Kühlkammern aufgeteilt und weist insgesamt drei Kühlabschnitte auf. Im - im Feststofffluss gesehen - ersten heißesten Abschnitt wird sauerstoffhaltiges Gas aufgeheizt, das dann über Leitung 19 der Förderstrecke 17 zugeführt wird. Im zweiten Abschnitt wird die Aufheizung des dem Wirbelschichtreaktor 10 über Leitung 14 zuzuführenden sauerstoffhaltigen Gases vorgenommen. Im dritten Kühlabschnitt erfolgt die Schlußkühlung des Feststoffes mittels Kühlwasser, das über Leitungen 24 und 25 zu- bzw. abgeführt wird. Das gekühlte Produkt wird über Vorrichtung 26 ausgetragen. Die im Wirbelschichtkühler 23 eingesetzten Fluidisierungsgasströme werden gesammelt und über Leitung 20 der Förderstrecke 17 als Kühlmedium zugeleitet.The fluidized bed cooler 23 is divided into a plurality of cooling chambers through which the solid flows successively and has a total of three cooling sections. In the first hottest section - seen in the solids flow - oxygen-containing gas is heated, which is then fed via line 19 to the conveyor section 17. In the second section, the heating of the oxygen bed to be fed to the fluidized bed reactor 10 via line 14 is carried out term gas. In the third cooling section, the final cooling of the solid takes place by means of cooling water, which is supplied or discharged via lines 24 and 25. The cooled product is discharged via device 26. The fluidizing gas streams used in the fluidized bed cooler 23 are collected and fed via line 20 to the conveyor path 17 as a cooling medium.

Beispiel:Example:

Es soll filterfeuchtes Aluminiumhydroxid in hochgebranntes Aluminiumoxid überführt werden.Filter-moist aluminum hydroxide is to be converted into high-fired aluminum oxide.

Aluminiumhydroxid mit einer Feuchte von 12 Gew.% und einer Temperatur von 60°C wird in einer Menge von 8,69 t/h über die Dosiervorrichtung 1 dem Venturiaustauscher 2 zugeführt. Durch Wärmeaustausch mit den vom Zyklonabscheider 6 herangeführten Gasen von 390°C erfolgt eine Erwärmung des Aluminiumhydroxids auf 160°C und eine Abkühlung des Gases auf etwa die gleiche Temperatur.Aluminum hydroxide with a moisture content of 12% by weight and a temperature of 60 ° C is fed in an amount of 8.69 t / h via the metering device 1 to the Venturi exchanger 2. By exchanging heat with the gases from the cyclone separator 6 brought to 390 ° C., the aluminum hydroxide is heated to 160 ° C. and the gas is cooled to approximately the same temperature.

Mittels der Fördervorrichtung 4 wird das vorgewärmte Aluminiumhydroxid im Venturiaustauscher 5 mit den 510°C heißen Abgasen des Zyklonabscheiders 8 in Kontakt gebracht. Hierbei erfolgt eine Aufheizung des Feststoffes bzw. eine Abkühlung des Gases auf ca. 390°C. Nach erfolgter Gas/Feststoff-Trennung im Zyklonabscheider 6 gelangt der Feststoff in den Venturiaustauscher 7, der mit den Abgasen von 1.150°C der zirkulierenden Wirbelschicht beaufschlagt wird. Infolge der innigen Vermischung entsteht eine Gas/Feststoff-Suspension mit einer Temperatur von 510°C. Nach erneuter Gas/Feststoff-Trennung im Zyklonabscheider 8 gelangt der Feststoff in die zirkulierende Wirbelschicht.The preheated aluminum hydroxide in the Venturi exchanger 5 is brought into contact with the 510 ° C. hot exhaust gases of the cyclone separator 8 by means of the conveying device 4. This heats up the solid or cools the gas to approx. 390 ° C. After gas / solid separation in the cyclone separator 6, the solid enters the Venturi exchanger 7, which is charged with the exhaust gases of 1,150 ° C. from the circulating fluidized bed. The intimate mixing results in a gas / solid suspension with a temperature of 510 ° C. After another gas / solid separation in the cyclone separator 8, the solid gets into the circulating fluidized bed.

Der Wirbelschichtreaktor 10 der zirkulierenden Wirbelschicht wird über Leitung 14 mit 2.000 Nm3/h Fluidisierungsluft von 580°C (aus dem zweiten Abschnitt des Wirbelschichtkühlers 23 stammend), über Leitung 15 mit 4.800 Nm3/h Sekundärluft von 1.020°C (aus dem Zyklonabscheider 22 stammend) und über Leitung 13 mit 390 Nm3/h Erdgas versorgt. Dadurch stellt sich eine Temperatur von 1.150°C ein, die über das gesamte aus Wirbelschichtreaktor 10, Rückführzyklon 11 und Rückführleitung 12 gebildete Zirkulationssystem praktisch konstant ist.The fluidized bed reactor 10 of the circulating fluidized bed is via line 14 with 2,000 Nm 3 / h of fluidizing air of 580 ° C (originating from the second section of the fluidized bed cooler 23), via line 15 with 4,800 Nm 3 / h of secondary air of 1,020 ° C (from the cyclone separator 22 originating) and supplied via line 13 with 390 Nm 3 / h of natural gas. This results in a temperature of 1,150 ° C., which is practically constant over the entire circulation system formed from fluidized bed reactor 10, return cyclone 11 and return line 12.

Nach einer mittleren Verweilzeit von etwa 20 min., während der das Aluminiumoxid vollständig kalziniert ist, wird kontinuierlich ein der Aufgabemenge entsprechender Feststoffstrom über Leitung 16 der Förderstrecke 17 zugeleitet und durch die Brennerflamme bzw. die Brennerabgase auf 1.400°C erhitzt. Der Brenner wird mit 110 Nm3/h Erdgas und 1.200 Nm3/h Luft von 650°C (aus dem ersten Abschnitt des Wirbelschichtkühlers 23 stammend) gespeist.After an average residence time of about 20 minutes, during which the aluminum oxide has been completely calcined, a solid stream corresponding to the feed quantity is fed continuously via line 16 to the conveying path 17 and heated to 1,400 ° C. by the burner flame or the burner exhaust gases. The burner is fed with 110 Nm 3 / h natural gas and 1,200 Nm 3 / h air at 650 ° C (originating from the first section of the fluidized bed cooler 23).

Nach ca. 4 sec ist die Hochtemperaturreaktion abgeschlossen. Durch Eintrag von 3.500 Nm3/h Luft einer Temperatur von 470°C (aus dem Wirbelschichtkühler 23 stammend) wird die Gas/Feststoff-Suspension gekühlt. Hierdurch tritt eine Abkühlung der Suspension auf eine Temperatur von 1.020°C ein, bei der ausreichende Rieselfähigkeit des Feststoffes gewährleistet ist. Die Gas/Feststoff-Suspension wird anschließend im Zyklonabscheider 22 getrennt, das Gas (4.800 Nm3/h) dem Wirbelschichtreaktor 10 als Sekundärgas, der Feststoff dem Wirbelschichtkühler 23 zugeleitet.The high-temperature reaction is complete after approx. 4 sec. The gas / solid suspension is cooled by introducing 3,500 Nm 3 / h of air at a temperature of 470 ° C. (originating from the fluidized bed cooler 23). As a result, the suspension cools down to a temperature of 1,020 ° C, at which sufficient flowability of the solid is ensured. The gas / solid suspension is then separated in the cyclone separator 22, the gas (4,800 Nm 3 / h) to the fluidized bed reactor 10 as secondary gas, and the solid to the fluidized bed cooler 23.

Im Wirbelschichtkühler 23 wird der Feststoff in mehreren Abschnitten auf Endtemperatur von 80°C gekühlt. Hierzu dienen im - in Fließrichtung des Feststoffes gesehen - ersten Abschnitt 1.200 Nm3/h Luft, die auf 650°C aufgeheizt wird, im zweiten Abschnitt 2.000 Nm3/h Luft, die auf 580°C aufgeheizt und im dritten Abschnitt 20 m3/h Wasser, das von 35°C auf 65°C aufgewärmt wird. Die Gasströme werden - wie vorstehend erwähnt - in den Prozeß zurückgeführt. Die Produktion beträgt 5 t/h Aluminiumoxid mit einer BET-Oberfläche von 3 m2/g.In the fluidized bed cooler 23, the solid is cooled in several sections to a final temperature of 80 ° C. For this purpose - seen in the direction of flow of the solid - in the first section 1,200 Nm 3 / h of air heated to 650 ° C, in the second section 2,000 Nm 3 / h of air heated to 580 ° C and in the third section 2 0 m 3 / h of water at 35 ° C is warmed to 65 ° C. As mentioned above, the gas streams are returned to the process. The production is 5 t / h aluminum oxide with a BET surface area of 3 m 2 / g.

Claims (6)

1. Verfahren zur Durchführung von Hochtemperaturreaktionen zwischen Heißgas und zuvor aufgeheizten Feststoffen, die bei der Hochtemperaturbehandlung ihre Rieselfähigkeit verlieren, in einer im wesentlichen senkrechten Förderstrecke mit anschließender Kühlung und Abscheidung vom Gas, dadurch gekennzeichnet, daß man die aufgeheizten Feststoffe von unten und in Förderrichtung durch eine im unteren Bereich der Förderstrecke (17) befindliche Brennerflamme einträgt, eine hinreichend lange Reaktionszone durchlaufen läßt und nach Abschluß der Reaktion bei unveränderter Strömungsrichtung durch in Strömungsrichtung nachgeschaltete separate Zugabe von Kühlmittel mindestens auf die Temperatur, bei der Rieselfähigkeit erlangt wird, kühlt.1. A process for carrying out high-temperature reactions between hot gas and previously heated solids, which lose their free-flowing properties in the high-temperature treatment, in a substantially vertical conveying path with subsequent cooling and separation from the gas, characterized in that the heated solids are passed from below and in the conveying direction enters a burner flame located in the lower region of the conveying section (17), passes through a sufficiently long reaction zone and, after completion of the reaction with unchanged flow direction, cools at least to the temperature at which flowability is obtained by adding coolant separately in the flow direction. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Feststoffe in einer durch sauerstoffhaltiges Fluidisierungsgas und sauerstoffhaltiges Sekundärgas betriebenen zirkulierenden Wirbelschicht (10,11,12) aufheizt.2. The method according to claim 1, characterized in that the solids are heated in a circulating fluidized bed (10, 11, 12) operated by oxygen-containing fluidizing gas and oxygen-containing secondary gas. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man die Feststoffe unter Verwendung der Abgase der Förderstrecke (17) aufheizt.3. The method according to claim 1 or 2, characterized in that the solids are heated using the exhaust gases of the conveyor section (17). 4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß man die vom Gas abgeschiedenen Feststoffe in einem Wirbelschichtkühler (23) kühlt.4. The method according to claim 1, 2 or 3, characterized in that the solids separated from the gas are cooled in a fluidized bed cooler (23). 5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man die Feststoffe durch Wärmeaustausch mit sauerstoffhaltigen Gasen kühlt, die nach ihrer Aufheizung in der Stufe der Feststoffaufheizung (10,11,12) und/oder der Hochtemperaturreaktion (17) eingesetzt werden.5. The method according to one or more of claims 1 to 4, characterized in that the solids are cooled by heat exchange with oxygen-containing gases, which after heating in the solid heating stage (10,11,12) and / or the high-temperature reaction (17th ) are used. 6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man zur Aufheizung des Feststoffes in der zirkulierenden Wirbelschicht (10,11,12) als Fluidisierungsgas (14) im Wirbelschichtkühler (23) indirekt aufgeheiztes sauerstoffhaltiges Gas und als sauerstoffhaltiges Sekundärgas (15) Abgas der Förderstrecke (17) einsetzt.6. The method according to one or more of claims 1 to 5, characterized in that for heating the solid in the circulating fluidized bed (10, 11, 12) as fluidizing gas (14) in the fluidized bed cooler (23) indirectly heated oxygen-containing gas and as oxygen-containing Secondary gas (15) uses exhaust gas from the conveyor line (17).
EP86201796A 1985-11-13 1986-10-16 Process to obtain high-temperature reactions Expired EP0222433B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86201796T ATE40923T1 (en) 1985-11-13 1986-10-16 PROCESSES FOR CARRYING OUT HIGH TEMPERATURE REACTIONS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853540206 DE3540206A1 (en) 1985-11-13 1985-11-13 METHOD FOR CARRYING OUT HIGH TEMPERATURE REACTIONS
DE3540206 1985-11-13

Publications (2)

Publication Number Publication Date
EP0222433A1 true EP0222433A1 (en) 1987-05-20
EP0222433B1 EP0222433B1 (en) 1989-02-22

Family

ID=6285845

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86201796A Expired EP0222433B1 (en) 1985-11-13 1986-10-16 Process to obtain high-temperature reactions

Country Status (12)

Country Link
EP (1) EP0222433B1 (en)
JP (1) JPS62114642A (en)
AT (1) ATE40923T1 (en)
AU (1) AU582025B2 (en)
BR (1) BR8605585A (en)
CA (1) CA1276433C (en)
CZ (1) CZ815386A3 (en)
DE (2) DE3540206A1 (en)
ES (1) ES2008033B3 (en)
GR (2) GR880300146T1 (en)
HU (1) HU206279B (en)
IN (1) IN164695B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3725512A1 (en) * 1987-07-29 1989-02-09 Kettenbauer Gmbh & Co Verfahre FLOATING GAS REACTOR
DE19750475C1 (en) * 1997-11-14 1999-04-08 Treibacher Schleifmittel Ag High temperature treatment of very small particles
CN112858384B (en) * 2021-01-08 2023-06-23 湖南中冶长天节能环保技术有限公司 High-temperature detection-cooling treatment method and system for activated carbon flue gas purification device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2247430A1 (en) * 1973-10-10 1975-05-09 Polysius Ag
FR2439964A1 (en) * 1978-10-26 1980-05-23 Kloeckner Humboldt Deutz Ag PROCESS AND DEVICE FOR THE HEAT TREATMENT OF A FINE GRAIN MATERIAL
EP0162748A1 (en) * 1984-04-20 1985-11-27 Framatome Process and apparatus for bringing solid particles into circulation within a fluidisation chamber

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2465694A1 (en) * 1979-09-24 1981-03-27 Lafarge Sa PROCESS FOR THE PRODUCTION OF PRODUCTS BASED ON CALCIUM SILICATES AND / OR ALUMINATES
ES509795A0 (en) * 1982-02-22 1983-12-16 Empresa Nac Hulleras Norte METHOD FOR THE MANUFACTURE OF CEMENT CLINKER.
FR2554107B1 (en) * 1983-10-28 1986-02-21 Fives Cail Babcock PROCESS AND APPARATUS FOR CALCINATION OF POWDERED MINERAL MATERIALS
JPS60156541A (en) * 1984-01-27 1985-08-16 Denki Kagaku Kogyo Kk Melting furnace for producing molten spherical body of inorganic material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2247430A1 (en) * 1973-10-10 1975-05-09 Polysius Ag
FR2439964A1 (en) * 1978-10-26 1980-05-23 Kloeckner Humboldt Deutz Ag PROCESS AND DEVICE FOR THE HEAT TREATMENT OF A FINE GRAIN MATERIAL
EP0162748A1 (en) * 1984-04-20 1985-11-27 Framatome Process and apparatus for bringing solid particles into circulation within a fluidisation chamber

Also Published As

Publication number Publication date
GR3000062T3 (en) 1990-10-31
AU6504086A (en) 1987-05-21
EP0222433B1 (en) 1989-02-22
CA1276433C (en) 1990-11-20
BR8605585A (en) 1987-08-18
DE3540206A1 (en) 1987-05-14
ATE40923T1 (en) 1989-03-15
GR880300146T1 (en) 1989-03-08
ES2008033B3 (en) 1989-07-16
IN164695B (en) 1989-05-13
AU582025B2 (en) 1989-03-09
CZ815386A3 (en) 1994-12-15
HU206279B (en) 1992-10-28
JPS62114642A (en) 1987-05-26
HUT45921A (en) 1988-09-28
DE3662164D1 (en) 1989-03-30

Similar Documents

Publication Publication Date Title
DE2524540C2 (en) Process for performing endothermic processes
EP0861208B1 (en) Process for producing aluminium oxide from aluminium hydroxide
DE69700170T3 (en) Process for the recovery of energy in oxygen-fired glass melting furnaces
DE2805906C2 (en) Process for the thermal cracking of aluminum chloride hydrate
EP0022591B1 (en) Process for preparing hydrogen fluoride
DE2636854C2 (en) Process for the thermal cracking of aluminum chloride hydrate
DE2524541C2 (en) Process for the thermal cracking of aluminum chloride hydrate
DE2541564C2 (en) Device for the heat treatment of fine-grained goods
DE3131023C2 (en) Method and device for burning lime
DE10260737A1 (en) Process and plant for the heat treatment of titanium-containing solids
DE2636855C2 (en) Process for the thermal cracking of aluminum chloride hydrate
DE3100767A1 (en) "METHOD AND PLANT FOR REDUCING AN IRON OXIDE MATERIAL IN A FLUIDIZED LAYER"
DE2815461A1 (en) METHOD AND DEVICE FOR THERMAL TREATMENT OF FINE-GRAIN MATERIAL WITH HOT GASES
DE2230933A1 (en) PROCESS AND INSTALLATION FOR THE CALCINATION OF PHOSPHATE ACIDS ORESES OR SIMILAR MINERALS
EP0222433B1 (en) Process to obtain high-temperature reactions
EP0090144B1 (en) Process and installation for the thermal treatment of fine-grained substances
DE2759249A1 (en) METHOD OF MANUFACTURING LOW SULFUR CEMENT CLINKER
DE2846584A1 (en) METHOD AND DEVICE FOR THE HEAT TREATMENT OF FINE GRAIN GOODS
DE10331364B3 (en) Process and plant for the production of metal oxide from metal hydroxide
DE3615622A1 (en) METHOD FOR CARRYING OUT ENDOTHERMAL PROCESSES
EP0042638A1 (en) Process for the heat-desulfuration of combustible or reduction gases
DE2947128A1 (en) METHOD FOR CONTINUOUSLY GENERATING A HIGH TEMPERATURE REDUCING GAS
EP0076894A1 (en) Process and apparatus for the thermal treatment of pulverized raw material
DE102021112487A1 (en) Device and method for heat recovery from exhaust gases
DE2708486A1 (en) METHOD AND DEVICE FOR PRODUCING LOW ALKALINE CEMENT CLINKERS FROM ALKALINE-CONTAINING RAW MATERIAL

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19870625

17Q First examination report despatched

Effective date: 19880727

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 40923

Country of ref document: AT

Date of ref document: 19890315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3662164

Country of ref document: DE

Date of ref document: 19890330

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3000062

ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19940331

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940414

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940920

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940921

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19941001

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19941118

Year of fee payment: 9

EAL Se: european patent in force in sweden

Ref document number: 86201796.9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950430

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3000062

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951016

Ref country code: AT

Effective date: 19951016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19951031

Ref country code: CH

Effective date: 19951031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 86201796.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990923

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000915

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20001020

Year of fee payment: 15

Ref country code: BE

Payment date: 20001020

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011031

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

BERE Be: lapsed

Owner name: METALLGESELLSCHAFT A.G.

Effective date: 20011031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011016

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20021113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050912

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051016