EP0221921B1 - Ironless solenoidal magnet - Google Patents

Ironless solenoidal magnet Download PDF

Info

Publication number
EP0221921B1
EP0221921B1 EP86902432A EP86902432A EP0221921B1 EP 0221921 B1 EP0221921 B1 EP 0221921B1 EP 86902432 A EP86902432 A EP 86902432A EP 86902432 A EP86902432 A EP 86902432A EP 0221921 B1 EP0221921 B1 EP 0221921B1
Authority
EP
European Patent Office
Prior art keywords
zones
disks
magnet
coil
junctions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86902432A
Other languages
German (de)
French (fr)
Other versions
EP0221921A1 (en
Inventor
Guy Aubert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric CGR SA
Original Assignee
General Electric CGR SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric CGR SA filed Critical General Electric CGR SA
Publication of EP0221921A1 publication Critical patent/EP0221921A1/en
Application granted granted Critical
Publication of EP0221921B1 publication Critical patent/EP0221921B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • H01F7/202Electromagnets for high magnetic field strength

Definitions

  • the invention due to the collaboration of the National Service of the Intensive Fields of the CNRS (Director M. AUBERT), relates to a solenoidal magnet, without iron, comprising one or more coils whose technological structure is similar to that of a Bitter coil classic; the invention more particularly relates to improvements making it possible to simplify the manufacture of the coil (s) and to improve the homogeneity of the magnetic field generated by such a type of magnet.
  • Bitter coils are well known for the production of strong magnetic fields.
  • the structure proposed by Bitter is a coil made up of metallic annular discs, split to form as many turns and connected to define a substantially helical winding with flat turns.
  • the stacking of the discs is maintained by a plurality of tie rods.
  • This structure is advantageous because it allows efficient cooling of the magnet by making holes in the discs (and in the insulators separating these discs), these holes being. arranged in the same configuration from one disc to another to materialize a set of channels parallel to the axis of the coil, in which circulates a cooling fluid, for example deionized water, kerosene or oil.
  • a cooling fluid for example deionized water, kerosene or oil.
  • Document FR-A-1 600 511 describes a tubular coil, in particular a power inductor, constituted by the assembly of a plurality of split flat turns, or each of said turns, molded with its junction elements to the adjacent turns, constitutes a individual module and, that the assembly of a plurality of said modules by their junction elements constitutes said coil.
  • the invention provides a magnet consisting of at least one coil derived from this concept and more particularly designed so that the magnetic field generated in a sphere of interest of prescribed radius, the center of which coincides with the center of symmetry of this magnet or very good homogeneity.
  • a preferred field of application of the invention is indeed that of nuclear magnetic resonance imaging (NMR) where it is necessary to have a relatively high magnetic field (0.15 to 1.5 teslas) with a very high homogeneity, of the order of 1 to 10 parts per million (ppm). With a sufficiently long coil, a certain homogeneity can be obtained around the center of symmetry of this coil.
  • NMR nuclear magnetic resonance imaging
  • connection of two adjacent turns is simply obtained by shaping each disc of insulation, interposed between the two conducting rings, so that it includes a cut in sector form and by clamping the stack of conductive discs and insulating discs between two end plates, by means of the tie rods mentioned above.
  • the electrical contact between two adjacent turns is thus established through the corresponding cutout under the effect of tightening, the construction of the magnet being greatly facilitated.
  • the fact of posing the problem of obtaining a very uniform field from coil (s) of this kind leads to recognize in this arrangement another cause of disturbance of the magnetic field. Indeed, the variation of current density at each turn in the contact sector is an intrinsic cause of non-uniformity.
  • the invention firstly proposes a new type of assembly of the discs making it possible to solve this problem.
  • the invention therefore essentially relates to a solenoid magnet of the type comprising at least one coil consisting of a stack, with interposition of insulator, of annular conducting discs, each disc comprising a cut-out ie transforming into a turn and said turns being connected end to end, in that said discs extend in respective parallel planes perpendicular to the longitudinal axis of said coil, in that said cutout of each disc and a slot, in that the arrangement and shape of these slots define several overlapping zones of turns between the successive disks, characterized in that these zones being divided into two groups, and in that the electrical contact between any two adjacent disks is achieved by their junction on a group of said overlapping zones while that the electrical contacts from disc to disc are made by junctions on one or the other group of said zones of cheva alternately.
  • the aforementioned slots are festoon slots (wavy or sawtooth or the like) and they are reversed from one disc to another with respect to a plane passing through the axis of the coil , to define said overlapping areas.
  • the structure defined above has little effect on the configuration of the current density at the rods between neighboring turns.
  • the increase in the thickness of the conductor at the junctions between turns is offset by the decrease in the surface of these same junctions.
  • the radial distribution of current naturally undergoes a disturbance at the level of each junction between two adjacent turns, but these disturbances are compensated for from one turn to another. All these particularities mean that a coil thus constructed presents few intrinsic causes of inhomogeneity of the generated axial magnetic field.
  • the axial component of the current due in previous systems, to the helical shape of the turns, does not exist because each turn extends in a plane.
  • the invention makes it possible to solve another problem, namely the need to take into consideration the way in which the current is applied to the magnet. Indeed, if the connection between the power source and the magnet is conventionally established by means of two conductors respectively connected to the axial ends of the magnet, magnetic field disturbances generated by these conductors can degrade the homogeneity of the field in the aforementioned sphere of interest.
  • the current is brought back by means of longitudinal conductors judiciously placed in the vicinity of the junctions between discs, the desired compensation is achieved on the one hand and the current is brought back towards the axial end of the magnet on which it has been injected, without creating a loop capable of disturbing the homogeneity of the magnetic field delivered.
  • This makes it possible to connect the current source to the same axial end of the magnet, by means of conductors with coaxial structure.
  • the invention also relates to a solenoid magnet according to the above definition, characterized in that the or each coil has at least one conduit parallel to said axis, defined by the superimposition of holes made in or in the vicinity of overlapping zones longitudinally superimposed, each conduit housing a current return conductor connected between the last turn of an axial end of the magnet and opening at its other axial end to be connected to a terminal of a DC power source. If the magnet has several spaced coils, the current return conductors can pass through the spaces between coils inside respective metal tubes, themselves connected to connect said coils in series. This type of coaxial connection structure does not create any field in these spaces.
  • annular discs 11 constituting a coil forming part of the magnet.
  • These are metallic annular discs (typically made of copper or aluminum) stacked with the interposition of insulating sheets 12 of the same shape and connected end to end to constitute said coil.
  • the sections of Figures 2 and 3 show five annular discs 11 a, 11b, 11c, 11d, 11e, mounted in this way.
  • several coils of this kind are used, axially aligned, placed side by side or spaced from one another, to produce a magnet delivering a highly homogeneous magnetic field in a given internal volume.
  • the discs have a structure in accordance with that proposed by Bitter, that is to say that they in particular have holes 13 according to the same configuration from one disc to another to overlap and define channels through which a coolant flows.
  • the discs also have holes 14 of larger diameter, overlapping in a similar manner to allow the passage of isolated tie rods 17.
  • the main function of the tie rods (which can also be outside the discs) is to hold the discs 11 and the insulating sheets 12 in a tight stack.
  • the discs are not deformed to become more or less helical portions, but on the contrary extend parallel to each other, in their respective planes, perpendicular to the longitudinal axis of the coil and each disc has a slot 15 which (in the examples described) is a festoon slot, extending from its outer edge to its inner edge. Furthermore, all the festoon slots are all grouped in the same longitudinal portion of the coil but inverted from one disc to another. Thus, in Figures 1 and 4, there is shown one of the slots 15, in solid line while the slot 15 j of the adjacent disc is sketched by a dashed line.
  • zones of overlapping of turns 16 are defined between two juxtaposed slots, the number of overlapping zones here depends on the number of undulations of the scalloped slot.
  • four overlapping zones are defined between any two adjacent discs whereas in the example of FIG. 4, there are only three.
  • the overlapping zones between turns constitute as many possible contact areas for connecting the turns end to end in order to define the coil.
  • the electrical contact between any two adjacent discs is made by their junction on a group (a part) of said overlapping zones while the electrical contacts from disc to disc are made by junctions on the either group of said overlapping zones, alternately.
  • the overlapping zones at the level of each disc are divided into two groups, zones 16 1 , 16 3 on the one hand and 16 2 , 16 4 on the other hand, which will always be used together to make the electrical contacts between two neighboring discs.
  • the areas of overlap are three in number 16a, 16b, 16c for each disk (zone 16 b being located between the zones 16a and 16e)
  • the electrical contacts between disks will be done alternately by their junction on a zone 16 b then by their junction on two zones 16a, 16 c and so on.
  • the junctions are established through windows 20 made in the insulating sheets 12.
  • the windows are arranged opposite the overlapping zones selected to establish contact between two discs considered.
  • the reliability of the contact is improved by a weld 21 with filler metal, said weld having substantially the same thickness as the insulating sheet.
  • a weld 21 with filler metal said weld having substantially the same thickness as the insulating sheet.
  • an indium solder Preferably use an indium solder. If the insulating sheet is of sufficiently low thickness, the addition of indium may be carried out beforehand by electrolytic deposition on the selected overlapping zones, the welding then consisting in locally reheating the turns during assembly.
  • the surfaces of the different overlapping zones of the same disc are not equal, they depend both on their even or odd number (thus in the example of FIG. 4, the zone 16b is necessarily larger) and on the value of the current density in the vicinity of said zones. This feature is especially important when the current feedback system which will be described below is implemented in order to compensate for local field disturbances due to the existence of longitudinal current components (see the arrows in Figures 2 and 3 symbolizing the current path) at the passages between adjacent discs.
  • holes 25 are made in the overlap zones (FIG. 1) or in the vicinity of these (FIG.
  • each hole being superimposed to define one or more parallel conduits housing each a current return conductor 26, connected between the last turn of an axial end of the magnet and opening out at the other axial end to which the DC power source is connected.
  • Each conductor 26 is of course isolated inside the conduit which encloses it. The fact of bringing the current to this axial end of the magnet facilitates the connection to the two poles of the supply, this connection being able to be carried out from conductors with coaxial structure not creating disturbance of magnetic field.
  • the current return conductors in the magnet itself can, if they are judiciously arranged, provide compensation for local disturbances created at the junctions between discs.
  • each current return conductor must be traversed by a current substantially equal to the current which crosses the overlapping zone or zones (or the fractions of zones) which it influences.
  • all the current return conductors are connected in parallel to the axial end of the magnet opposite to that where the power source is connected; they are therefore traversed by substantially equal fractions of the total current flowing in the magnet.
  • the area 16 b would have an area twice that of each of the areas 16a or 16 c .
  • the surface of the region 16 b is greater than that of each zone 16a or 16b, but it is less than twice the surface of the area 16a and the double the area of area 16 c .
  • the driver 26a thus ensures the current compensation for all the overlapping areas 16a and part of the overlapping areas 16 b while the conductor 26 b ensures the compensation current for the entire overlapping areas 16c and the other part of the areas superimposed 16 b .
  • the determination of the areas of the overlapping zones that is to say of the shape of the scalloped slots which delimit them, is within the reach of a person skilled in the art by applying the principles set out above, to the in light of the examples described.
  • FIG. 5 illustrates the connection structure between two coils of the magnet when the latter consists of a number of coils spaced axially from each other.
  • the four conductors 26 emerge from the last turn of the coil and each of them crosses the space between the two coils inside a metal tube 30 welded at each of its ends to the end turn of the corresponding coil. All of these tubes thus ensure the series connection of the coils. Substantially equal currents thus flow in opposite directions in the tubes 30 and the current return conductors 25 and these connection structures do not create a magnetic field in the spaces between the coils.

Abstract

Structure for connecting discs of a Bitter coil. According to the invention, the discs comprise each a slot-shaped cutting (15), which is waved for example so as to define from one disc to the other turn lapping zones (16) distributed into two groups and the electric connections are provided for by means of junctions between said overlapping zones of one group or the other, alternatingly from one disc to the other. Application to NMR imaging.

Description

L'invention, due à la collaboration du Service National des Champs Intenses du CNRS (Directeur M. AUBERT), concerne un aimant solénoïdal, sans fer, comportant une ou plusieurs bobines dont la structure technologique est voisine de celle d'une bobine de Bitter classique ; l'invention a plus particulièrement pour objet des perfectionnements permettant de simplifier la fabrication de la ou les bobines et d'améliorer l'homogénéité du champ magnétique engendré par un tel type d'aimant.The invention, due to the collaboration of the National Service of the Intensive Fields of the CNRS (Director M. AUBERT), relates to a solenoidal magnet, without iron, comprising one or more coils whose technological structure is similar to that of a Bitter coil classic; the invention more particularly relates to improvements making it possible to simplify the manufacture of the coil (s) and to improve the homogeneity of the magnetic field generated by such a type of magnet.

Les bobines de Bitter sont bien connues pour la production de champs magnétiques intenses. En théorie, la structure proposée par Bitter est une bobine constituée de disques annulaires métalliques, fendus pour former autant de spires et raccordés pour définir un enroulement sensiblement hélicoïdal à spires plates. L'empilement des disques est maintenu par une pluralité de tirants. Cette structure est avantageuse car elle permet un refroidissement efficace de l'aimant en pratiquant des trous dans les disques (et dans les isolants séparant ces disques), ces trous étant . disposés suivant une même configuration d'un disque à l'autre pour matérialiser un ensemble de canaux parallèles à l'axe de la bobine, dans lesquels circule un fluide de refroidissement, par exemple de l'eau désionisée, du kérozène ou de l'huile.Bitter coils are well known for the production of strong magnetic fields. In theory, the structure proposed by Bitter is a coil made up of metallic annular discs, split to form as many turns and connected to define a substantially helical winding with flat turns. The stacking of the discs is maintained by a plurality of tie rods. This structure is advantageous because it allows efficient cooling of the magnet by making holes in the discs (and in the insulators separating these discs), these holes being. arranged in the same configuration from one disc to another to materialize a set of channels parallel to the axis of the coil, in which circulates a cooling fluid, for example deionized water, kerosene or oil.

Le document FR-A-1 600 511 décrit une bobine tubulaire, notamment inductance de puissance, constituée par l'assemblage d'une pluralité de spires planes fendues, ou chacune desdites spires, moulée avec ses éléments de jonction aux spires adjacentes, constitue un module individuel et, que l'assemblage d'une pluralité desdits modules par leurs éléments de jonction constitue ladite bobine.Document FR-A-1 600 511 describes a tubular coil, in particular a power inductor, constituted by the assembly of a plurality of split flat turns, or each of said turns, molded with its junction elements to the adjacent turns, constitutes a individual module and, that the assembly of a plurality of said modules by their junction elements constitutes said coil.

L'invention propose un aimant constitué d'au moins une bobine dérivée de ce concept et plus particulièrement conçu pour que le champ magnétique engendré dans une sphère d'intérêt de rayon prescrit, dont le centre est confondu avec le centre de symétrie de cet aimant soit d'une très bonne homogénéité. Un domaine d'application privilégié de l'invention est en effet celui de l'imagerie par Résonance Magnétique Nucléaire (RMN) ou il est nécessaire de disposer d'un champ magnétique relativement élevé (0,15 à 1,5 teslas) avec une très grande homogénéité, de l'ordre de 1 à 10 parties par million (ppm). Avec une bobine suffisamment longue, on peut obtenir une certaine homogénéité autour du centre de symétrie de cette bobine. Cette homogénéité sera plus facilement atteinte et avec une structure plus compacte soit en faisant varier l'épaisseur des disques le long de l'axe de l'aimant soit en alignant plusieurs bobines de Bitter le long d'un axe commun, les longueurs des bobines et leurs espacements étant choisis pour réaliser l'homogénéité requise. Ces solutions font l'objet d'autres demandes de brevet déposées par la Demanderesse. Les perfectionnements selon l'invention s'appliquent aussi bien à un aimant à bobine unique qu'à un aimant à plusieurs bobines alignées, accolées ou espacées.The invention provides a magnet consisting of at least one coil derived from this concept and more particularly designed so that the magnetic field generated in a sphere of interest of prescribed radius, the center of which coincides with the center of symmetry of this magnet or very good homogeneity. A preferred field of application of the invention is indeed that of nuclear magnetic resonance imaging (NMR) where it is necessary to have a relatively high magnetic field (0.15 to 1.5 teslas) with a very high homogeneity, of the order of 1 to 10 parts per million (ppm). With a sufficiently long coil, a certain homogeneity can be obtained around the center of symmetry of this coil. This homogeneity will be more easily achieved and with a more compact structure either by varying the thickness of the discs along the axis of the magnet or by aligning several coils of Bitter along a common axis, the lengths of the coils. and their spacings being chosen to achieve the required homogeneity. These solutions are the subject of other patent applications filed by the Applicant. The improvements according to the invention apply both to a magnet with a single coil and to a magnet with several coils aligned, contiguous or spaced.

Il peut en effet subsister d'autres causes structurelles d'inhomogénéité du champ magnétique engendré ou des causes de perturbation de ce champ magnétique.There may indeed remain other structural causes of inhomogeneity of the generated magnetic field or causes of disturbance of this magnetic field.

Ainsi, selon un mode de réalisation actuellement très répandu de l'aimant de Bitter, le raccordement de deux spires adjacentes est simplement obtenu en conformant chaque disque d'isolant, intercalé entre les deux anneaux conducteurs, de façon qu'il comporte une découpe en forme de secteur et en serrant l'empilement de disques conducteurs et de disques isolants entre deux plateaux d'extrémité, au moyen des tirants mentionnés ci-dessus. Le contact électrique entre deux spires adjacentes est ainsi établi au travers de la découpe correspondante sous l'effet du serrage, la construction de l'aimant en étant grandement facilité. Cependant, le fait de se poser le problème d'obtenir un champ très uniforme à partir de bobine (s) de ce genre conduit à reconnaître dans cet agencement une autre cause de perturbation du champ magnétique. En effet, la variation de densité de courant à chaque tour dans le secteur de contact est une cause intrinsèque d'inhomogénéité.Thus, according to an currently widely used embodiment of the Bitter magnet, the connection of two adjacent turns is simply obtained by shaping each disc of insulation, interposed between the two conducting rings, so that it includes a cut in sector form and by clamping the stack of conductive discs and insulating discs between two end plates, by means of the tie rods mentioned above. The electrical contact between two adjacent turns is thus established through the corresponding cutout under the effect of tightening, the construction of the magnet being greatly facilitated. However, the fact of posing the problem of obtaining a very uniform field from coil (s) of this kind leads to recognize in this arrangement another cause of disturbance of the magnetic field. Indeed, the variation of current density at each turn in the contact sector is an intrinsic cause of non-uniformity.

L'invention propose en premier lieu un nouveau type d'assemblage des disques permettant de résoudre ce problème.The invention firstly proposes a new type of assembly of the discs making it possible to solve this problem.

Dans cet esprit, l'invention concerne donc essentiellement un aimant solénoïdal du type comprenant au moins une bobine constituée d'un empilement, avec interposition d'isolant, de disques annulaires conducteurs, chaque disque comportant une découpe ie transformant en spire et lesdites spires étant connectées bout à bout, en ce que lesdits disques s'étendent dans des plans parallèles respectifs perpendiculaires à l'axe longitudinal de ladite bobine, en ce que ladite découpe de chaque disque et une fente, en ce que la disposition et la forme de ces fentes définissent plusieurs zones de chevauchement de spires entre les disques successifs, caractérisé en ce que ces zones étant partagées en deux groupes, et en ce que le contact électrique entre deux disques adjacents quelconques est réalisé par leur jonction sur un groupe desdites zones de chevauchement tandis que les contacts électriques de disque en disque sont réalisés par des jonctions sur l'un ou l'autre groupe desdites zones de chevauchement, alternativement.In this spirit, the invention therefore essentially relates to a solenoid magnet of the type comprising at least one coil consisting of a stack, with interposition of insulator, of annular conducting discs, each disc comprising a cut-out ie transforming into a turn and said turns being connected end to end, in that said discs extend in respective parallel planes perpendicular to the longitudinal axis of said coil, in that said cutout of each disc and a slot, in that the arrangement and shape of these slots define several overlapping zones of turns between the successive disks, characterized in that these zones being divided into two groups, and in that the electrical contact between any two adjacent disks is achieved by their junction on a group of said overlapping zones while that the electrical contacts from disc to disc are made by junctions on one or the other group of said zones of cheva alternately.

Selon un mode de réalisation possible, les fentes précitées sont des fentes en festons (ondulées ou en dents de scie ou analogue) et elles sont inversées d'un disque à l'autre par rapport à un plan passant par l'axe de la bobine, pour définir lesdites zones de chevauchement.According to a possible embodiment, the aforementioned slots are festoon slots (wavy or sawtooth or the like) and they are reversed from one disc to another with respect to a plane passing through the axis of the coil , to define said overlapping areas.

La structure définie ci-dessus affecte peu la configuration de la densité de courant aux jonctions entre spires voisines. Notamment, l'augmentation de l'épaisseur de conducteur au niveau des jonctions entre spires est compensée par la diminution de la surface de ces mêmes jonctions. On peut donc considérer que la densité de courant ne varie pas sur un tour complet. D'autre part, la distribution radiale de courant subit naturellement une perturbation au niveau de chaque jonction entre deux spires adjacentes, mais ces perturbations se compensent d'une spire à l'autre. Toutes ces particularités font qu'une bobine ainsi construite présente peu de causes intrinsèques d'inhomogénéité du champ magnétique axial engendré. En outre, la composante axiale du courant, due dans les systèmes antérieurs, a la forme hélicoïdale des spires, n'existe pas du fait que chaque spire s'étend dans un plan. Il se crée au contraire une composante longitudinale de courant très « localisée », parallèlement à une génératrice de la bobine au voisinage des zones de jonction entre disques. Cette perturbation peut être facilement compensée localement au moyen de conducteurs longitudinaux parcourus par des courants circulant en sens contraire. Dans cet esprit, l'invention permet de résoudre un autre problème, à savoir la nécessité de prendre en considération la façon dont le courant est appliqué à l'aimant. En effet, si on établit classiquement la liaison entre la source d'alimentation et l'aimant au moyen de deux conducteurs respectivement connectés aux extrémités axiales de l'aimant, des perturbations de champ magnétique engendrées par ces conducteurs peuvent dégrader l'homogénéité du champ dans la sphère d'intérêt précitée. Si on ramène le courant au moyen de conducteurs longitudinaux judicieusement placés au voisinage des jonctions entre disques, on réalise d'une part la compensation souhaitée et d'autre part on ramène le courant vers l'extrémité axiale de l'aimant à laquelle il a été injecté, sans créer de boucle susceptible de perturber l'homogénéité du champ magnétique délivré. Ceci permet de raccorder la source de courant à une même extrémité axiale de l'aimant, au moyen de conducteurs à structure coaxiale.The structure defined above has little effect on the configuration of the current density at the rods between neighboring turns. In particular, the increase in the thickness of the conductor at the junctions between turns is offset by the decrease in the surface of these same junctions. We can therefore consider that the current density does not vary over a full revolution. On the other hand, the radial distribution of current naturally undergoes a disturbance at the level of each junction between two adjacent turns, but these disturbances are compensated for from one turn to another. All these particularities mean that a coil thus constructed presents few intrinsic causes of inhomogeneity of the generated axial magnetic field. In addition, the axial component of the current, due in previous systems, to the helical shape of the turns, does not exist because each turn extends in a plane. On the contrary, a very “localized” longitudinal current component is created, parallel to a generator of the coil in the vicinity of the junction zones between discs. This disturbance can be easily compensated locally by means of longitudinal conductors traversed by currents flowing in the opposite direction. In this spirit, the invention makes it possible to solve another problem, namely the need to take into consideration the way in which the current is applied to the magnet. Indeed, if the connection between the power source and the magnet is conventionally established by means of two conductors respectively connected to the axial ends of the magnet, magnetic field disturbances generated by these conductors can degrade the homogeneity of the field in the aforementioned sphere of interest. If the current is brought back by means of longitudinal conductors judiciously placed in the vicinity of the junctions between discs, the desired compensation is achieved on the one hand and the current is brought back towards the axial end of the magnet on which it has been injected, without creating a loop capable of disturbing the homogeneity of the magnetic field delivered. This makes it possible to connect the current source to the same axial end of the magnet, by means of conductors with coaxial structure.

Dans cet esprit, l'invention concerne aussi un aimant solénoïdal selon la définition qui précède, caractérisé en ce que la ou chaque bobine comporte au moins un conduit parallèle audit axe, défini par la superposition de trous pratiqués dans ou au voisinage de zones de chevauchement superposées longitudinalement, chaque conduit abritant un conducteur de retour de courant connecté entre la dernière spire d'une extrémité axiale de l'aimant et débouchant à son autre extrémité axiale pour être connecté à une borne d'une source d'alimentation en courant continu. Si l'aimant comporte plusieurs bobines espacées, les conducteurs de retour de courant peuvent traverser les espaces entre bobines à l'intérieur de tubes métalliques respectifs, eux-mêmes connectés pour relier lesdites bobines en série. Ce type de structure coaxiale de raccordement ne crée aucun champ dans ces espaces.In this spirit, the invention also relates to a solenoid magnet according to the above definition, characterized in that the or each coil has at least one conduit parallel to said axis, defined by the superimposition of holes made in or in the vicinity of overlapping zones longitudinally superimposed, each conduit housing a current return conductor connected between the last turn of an axial end of the magnet and opening at its other axial end to be connected to a terminal of a DC power source. If the magnet has several spaced coils, the current return conductors can pass through the spaces between coils inside respective metal tubes, themselves connected to connect said coils in series. This type of coaxial connection structure does not create any field in these spaces.

L'invention sera mieux comprise et d'autres avantages de celle-ci apparaîtront mieux à la lumière de la description qui va suivre de plusieurs modes de réalisation mettant en oeuvre son principe, donnée uniquement à titre d'exemple et faite en référence aux dessins annexés dans lesquels :

  • la figure 1 est une vue partielle montrant un disque d'une bobine constituant l'aimant, le disque étant pourvu d'une fente en festons selon la définition qui précède ;
  • la figure 2 est une coupe partielle II-II de la figure 1 ;
  • la figure 3 est une coupe partielle III-III de la figure 1 ;
  • la figure 4 est une vue analogue à la figure 1, illustrant une variante ;
  • la figure 5 est une vue partielle illustrant l'extrémité d'une bobine et son raccordement à une bobine voisine.
The invention will be better understood and other advantages of it will appear better in the light of the following description of several embodiments implementing its principle, given only by way of example and made with reference to the drawings annexed in which:
  • Figure 1 is a partial view showing a disc of a coil constituting the magnet, the disc being provided with a scalloped slot according to the preceding definition;
  • Figure 2 is a partial section II-II of Figure 1;
  • Figure 3 is a partial section III-III of Figure 1;
  • Figure 4 is a view similar to Figure 1, illustrating a variant;
  • Figure 5 is a partial view illustrating the end of a coil and its connection to a neighboring coil.

En se reportant aux dessins, on a représenté partiellement des disques annulaires 11 constituant une bobine entrant dans la constitution de l'aimant. Il s'agit de disques annulaires métalliques (typiquement en cuivre ou en aluminium) empilés avec interposition de feuilles isolantes 12 de même forme et raccordés bout à bout pour constituer ladite bobine. Les coupes des figures 2 et 3 montrent cinq disques annulaires 11 a, 11b, 11c, 11d, 11e, montés de cette façon. Comme mentionné ci-dessus, on utilise plusieurs bobines de ce genre, alignées axialement, accolées ou espacées les unes des autres, pour réaliser un aimant délivrant un champ magnétique à haute homogénéité dans un volume interne donné. Selon l'exemple décrit, les disques ont une structure conforme à celle proposée par Bitter, c'est-à-dire qu'ils comportent notamment des trous 13 selon une même configuration d'un disque à l'autre pour se superposer et définir des canaux traversés par un fluide de refroidissement. Even- tuellement, les disques comportent aussi des trous 14 de plus grand diamètre, se superposant de façon analogue pour permettre le passage de tirants 17 isolés. Les tirants (qui peuvent aussi être à l'extérieur des disques) ont pour principale fonction de maintenir les disques 11 et les feuilles isolantes 12 en un empilement serré.Referring to the drawings, there is partially shown annular discs 11 constituting a coil forming part of the magnet. These are metallic annular discs (typically made of copper or aluminum) stacked with the interposition of insulating sheets 12 of the same shape and connected end to end to constitute said coil. The sections of Figures 2 and 3 show five annular discs 11 a, 11b, 11c, 11d, 11e, mounted in this way. As mentioned above, several coils of this kind are used, axially aligned, placed side by side or spaced from one another, to produce a magnet delivering a highly homogeneous magnetic field in a given internal volume. According to the example described, the discs have a structure in accordance with that proposed by Bitter, that is to say that they in particular have holes 13 according to the same configuration from one disc to another to overlap and define channels through which a coolant flows. Optionally, the discs also have holes 14 of larger diameter, overlapping in a similar manner to allow the passage of isolated tie rods 17. The main function of the tie rods (which can also be outside the discs) is to hold the discs 11 and the insulating sheets 12 in a tight stack.

Selon l'invention, les disques ne sont pas déformés pour devenir des portions plus ou moins hélicoïdales, mais ils s'étendent au contraire parallèlement les uns aux autres, dans leurs plans respectifs, perpendiculairement à l'axe longitudinal de la bobine et chaque disque comporte une fente 15 qui (dans les exemples décrits) est une fente en festons, s'étendant de son bord externe à son bord interne. Par ailleurs, toutes les fentes en festons sont toutes regroupées dans une même portion longitudinale de la bobine mais inversées d'un disque à l'autre. Ainsi, sur les figures 1 et 4, on a représenté l'une des fentes 15, en trait plein tandis que la fente 15j du disque adjacent est esquissée par une ligne en trait interrompu. On voit que, de par la nature des fentes d'une part et leur inversion d'un disque à l'autre d'autre part, des zones de chevauchement de spires 16 sont définies entre deux fentes juxtaposées, le nombre de zones de chevauchement dépend ici du nombre d'ondulations de la fente en festons. Ainsi dans l'exemple de la figure 1, quatre zones de chevauchement sont définies entre deux disques adjacents quelconques alors que dans l'exemple de la figure 4, on n'en compte que trois. Il apparaît clairement que les zones de chevauchement entre spires constituent autant de zones de contact possibles pour raccorder les spires bout à bout en vue de définir la bobine. Selon une autre caractéristique importante de l'invention, le contact électrique entre deux disques adjacents quelconques est réalisé par leur jonction sur un groupe (une partie) desdites zones de chevauchement tandis que les contacts électriques de disque en disque sont réalisés par des jonctions sur l'un ou l'autre groupe desdites zones de chevauchement, alternativement.According to the invention, the discs are not deformed to become more or less helical portions, but on the contrary extend parallel to each other, in their respective planes, perpendicular to the longitudinal axis of the coil and each disc has a slot 15 which (in the examples described) is a festoon slot, extending from its outer edge to its inner edge. Furthermore, all the festoon slots are all grouped in the same longitudinal portion of the coil but inverted from one disc to another. Thus, in Figures 1 and 4, there is shown one of the slots 15, in solid line while the slot 15 j of the adjacent disc is sketched by a dashed line. It can be seen that, by the nature of the slots on the one hand and their inversion from one disc to the other on the other hand, zones of overlapping of turns 16 are defined between two juxtaposed slots, the number of overlapping zones here depends on the number of undulations of the scalloped slot. Thus in the example of FIG. 1, four overlapping zones are defined between any two adjacent discs whereas in the example of FIG. 4, there are only three. It is clear that the overlapping zones between turns constitute as many possible contact areas for connecting the turns end to end in order to define the coil. According to another important characteristic of the invention, the electrical contact between any two adjacent discs is made by their junction on a group (a part) of said overlapping zones while the electrical contacts from disc to disc are made by junctions on the either group of said overlapping zones, alternately.

A ce titre, dans l'exemple des figures 1 à 3 où les zones de chevauchement sont en nombre pair (quatre), lesdites zones sont alternativement utilisées (radialement) pour réaliser les contacts électriques précités. Autrement dit, les zones de chevauchement au niveau de chaque disque sont partagées en deux groupes, les zones 161, 163 d'une part et 162, 164 d'autre part, qui seront toujours utilisées ensemble pour réaliser les contacts électriques entre deux disques voisins. Dans l'exemple particulier de la figure 4 où les zones de chevauchement sont au nombre de trois 16a, 16b, 16c pour chaque disque (la zone 16b étant située entre les zones 16a et 16e), les contacts électriques entre disques se feront alternativement par leur jonction sur une zone 16b puis par leur jonction sur deux zones 16a, 16c et ainsi de suite.As such, in the example of FIGS. 1 to 3 where the overlapping zones are in even number (four), said zones are alternately used (radially) to make the above-mentioned electrical contacts. In other words, the overlapping zones at the level of each disc are divided into two groups, zones 16 1 , 16 3 on the one hand and 16 2 , 16 4 on the other hand, which will always be used together to make the electrical contacts between two neighboring discs. In the particular example of Figure 4 wherein the areas of overlap are three in number 16a, 16b, 16c for each disk (zone 16 b being located between the zones 16a and 16e), the electrical contacts between disks will be done alternately by their junction on a zone 16 b then by their junction on two zones 16a, 16 c and so on.

Comme le montrent les figures 2 et 3 concernant le mode de réalisation de la figure 1, les jonctions sont établies à travers des fenêtres 20 pratiquées dans les feuilles isolantes 12. Les fenêtres sont agencées en regard des zones de chevauchement sélectionnées pour établir le contact entre deux disques considérés. Avantageusement, la fiabilité du contact est améliorée par une soudure 21 avec métal d'apport, ladite soudure présentant sensiblement la même épaisseur que la feuille isolante. On utilisera de préférence une soudure à l'indium. Si la feuille isolante est d'épaisseur, suffisamment faible, l'apport d'indium pourra être effectué préalablement par dépôt électrolytique sur les zones de chevauchement sélectionnées, la soudure consistant alors à réchauffer localement les spires en cours d'assemblage.As shown in FIGS. 2 and 3 relating to the embodiment of FIG. 1, the junctions are established through windows 20 made in the insulating sheets 12. The windows are arranged opposite the overlapping zones selected to establish contact between two discs considered. Advantageously, the reliability of the contact is improved by a weld 21 with filler metal, said weld having substantially the same thickness as the insulating sheet. Preferably use an indium solder. If the insulating sheet is of sufficiently low thickness, the addition of indium may be carried out beforehand by electrolytic deposition on the selected overlapping zones, the welding then consisting in locally reheating the turns during assembly.

Les surfaces des différentes zones de chevauchement d'un même disque ne sont pas égales, elles dépendent à la fois de leur nombre pair ou impair (ainsi dans l'exemple de la figure 4, la zone 16b est nécessairement plus grande) et de la valeur de la densité de courant au voisinage desdites zones. Cette particularité est surtout importante lorsque le système de retour de courant qui va être décrit ci-dessous est mis en oeuvre en vue de compenser les perturbations locales de champ dues à l'existence de composantes longitudinales de courant (voir les flèches des figures 2 et 3 symbolisant le trajet du courant) aux passages entre disques adjacents. En effet, selon un autre aspect de l'invention, des trous 25 sont pratiqués dans les zones de chevauchement (figure 1) ou au voisinage de celles-ci (figure 4), ces trous étant superposés pour définir un ou plusieurs conduits parallèles abritant chacun un conducteur 26 de retour de courant, connecté entre la dernière spire d'une extrémité axiale de l'aimant et débouchant à l'autre extrémité axiale à laquelle se trouve connectée la source d'alimentation en courant continu. Chaque conducteur 26 est bien entendu isolé à l'intérieur du conduit qui le renferme. Le fait de ramener le courant à cette extrémité axiale de l'aimant facilite le raccordement aux deux pôles de l'alimentation, ce raccordement pouvant être effectué à partir de conducteurs à structure coaxiale ne créant pas de perturbation de champ magnétique. Par ailleurs, comme mentionné précédemment, les conducteurs de retour de courant dans l'aimant même peuvent, s'ils sont judicieusement disposés, assurer la compensation des perturbations locales créées aux jonctions entre disques. La compensation est assurée en prenant en compte les paramètres suivants : le nombre de zones de chevauchement dans chaque disque, leurs surfaces respectives, le nombre de conducteurs de retour de courant et leurs emplacements par rapport aux zones de chevauchement. Le principe général à respecter pour fixer ces différents paramètres est que chaque conducteur de retour de courant doit être parcouru par un courant sensiblement égal au courant qui traverse la ou les zones de chevauchement (ou les fractions de zones) qu'il influence. Or, pour des raisons de simplicité, tous les conducteurs de retour de courant sont connectés en parallèle à l'extrémité axiale de l'aimant opposée à celle ou se trouve raccordée la source d'alimentation ; ils sont donc parcourus par des fractions sensiblement égales du courant total circulant dans l'aimant. Il faut donc que les zones de chevauchement homologues (où les fractions de telles zones) « compensées par les conducteurs de retour de courant soient parcourues par des courants égaux. Or, on rappelle que dans une bobine à disques annulaires, la densité de courant dans la largeur de la partie annulaire n'est pas uniforme radialement, mais varie en 1/R, R étant la distance d'un point considéré à l'axe longitudinal de la bobine. Pour tenir compte de ce fait, on peut faire varier en conséquence les surfaces des zones de chevauchement. L'exemple de la figure 1 montre comment on a choisi les différents paramètres dans le cas d'un nombre pair de zones de chevauchement (quatre en l'occurrence). Du fait que les zones de chevauchement sont en nombre pair, les contacts électriques sont assurés par la moitié des zones à chaque passage d'un disque à l'autre. Il suffit donc de choisir la surface de ces zones en prenant essentiellement en considération la variation de la densité de courant en 1/R dans le disque annulaire pour que les courants qui traversent ces zones de contact soient sensiblement égaux. C'est pourquoi, sur la figure 1, les surfaces des zones 161, 162, 163, 164 décroissent de l'extérieur vers l'intérieur du disque annulaire. Dès lors que les surfaces sont correctement choisies, le courant se répartit également dans chaque paire de jonctions, de disque en disque et on peut obtenir la compensation à partir d'autant de conducteurs 26 qu'il y a de zones de chevauchement (quatre dans l'exemple), chaque conducteur passant sensiblement au centre de toutes les zones de chevauchement superposées longitudinalement. Dans l'exemple de la figure 4, correspondant à un nombre impair de zones de chevauchement, on doit tenir compte à la fois de la densité de courant en 1/R, et du nombre de zones de chevauchement mises en jeu alternativement pour assurer le passage d'un disque à l'autre, puisque les groupes de zones de chevauchement précitées comportent nécessairement des nombres différents de telles zones. Ainsi, dans le cas spécifique de la figure 4, si la densité de courant était constante radialement, la zone 16b aurait une surface double de celle de chacune des zones 16a ou 16c. Pour tenir compte de la densité de courant en 1/R, la surface de la zone 16b est plus grande que celle de chacune des zones 16a ou 16b, mais elle représente moins du double de la surface de la zone 16a et plus du double de la surface de la zone 16c. Dans ce cas, on peut prévoir deux conducteurs de retour de courant 26a, 26b, parcourus respectivement par sensiblement la moitié du courant de retour et disposés entre les zones de chevauchement. Le conducteur 26a assure ainsi la compensation de courant pour la totalité des zones superposées 16a et une partie des zones superposées 16b tandis que le conducteur 26b assure la compensation de courant pour la totalité des zones superposées 16c et l'autre partie des zones superposées 16b. La détermination des surfaces des zones de chevauchement, c'est-à-dire de la forme des fentes en festons qui les délimitent, est à la portée de l'homme du métier en mettant en application les principes énoncés ci-dessus, à la lumière des exemples décrits.The surfaces of the different overlapping zones of the same disc are not equal, they depend both on their even or odd number (thus in the example of FIG. 4, the zone 16b is necessarily larger) and on the value of the current density in the vicinity of said zones. This feature is especially important when the current feedback system which will be described below is implemented in order to compensate for local field disturbances due to the existence of longitudinal current components (see the arrows in Figures 2 and 3 symbolizing the current path) at the passages between adjacent discs. In fact, according to another aspect of the invention, holes 25 are made in the overlap zones (FIG. 1) or in the vicinity of these (FIG. 4), these holes being superimposed to define one or more parallel conduits housing each a current return conductor 26, connected between the last turn of an axial end of the magnet and opening out at the other axial end to which the DC power source is connected. Each conductor 26 is of course isolated inside the conduit which encloses it. The fact of bringing the current to this axial end of the magnet facilitates the connection to the two poles of the supply, this connection being able to be carried out from conductors with coaxial structure not creating disturbance of magnetic field. Furthermore, as mentioned above, the current return conductors in the magnet itself can, if they are judiciously arranged, provide compensation for local disturbances created at the junctions between discs. Compensation is ensured by taking into account the following parameters: the number of overlapping zones in each disc, their respective surfaces, the number of current return conductors and their locations with respect to the overlapping zones. The general principle to be observed for fixing these various parameters is that each current return conductor must be traversed by a current substantially equal to the current which crosses the overlapping zone or zones (or the fractions of zones) which it influences. However, for reasons of simplicity, all the current return conductors are connected in parallel to the axial end of the magnet opposite to that where the power source is connected; they are therefore traversed by substantially equal fractions of the total current flowing in the magnet. It is therefore necessary that the homologous overlapping zones (where the fractions of such zones) "compensated by the current return conductors are traversed by equal currents. However, it is recalled that in a coil with annular discs, the current density in the width of the annular part is not uniform radially, but varies in 1 / R, R being the distance from a point considered to the axis longitudinal of the coil. To take this fact into account, the surfaces of the overlapping zones can be varied accordingly. The example in FIG. 1 shows how the different parameters have been chosen in the case of an even number of overlapping zones (four in this case). Because the overlapping zones are even in number, the electrical contacts are ensured by half of the zones with each passage from one disc to the other. It is therefore sufficient to choose the surface of these zones, taking essentially into account the variation of the current density in 1 / R in the annular disc so that the currents flowing through these contact zones are substantially equal. This is why, in FIG. 1, the surfaces of the zones 16 1 , 16 2 , 16 3 , 16 4 decrease from the outside towards the inside of the annular disc. As soon as the surfaces are correctly chosen, the current is equally distributed in each pair of junctions, from disc to disc and compensation can be obtained from as many conductors 26 as there are areas of overlap (four in the example), each conductor passing substantially through the center of all the overlapping zones longitudinally superimposed. In the example of FIG. 4, corresponding to an odd number of overlapping zones, one must take into account both the current density in 1 / R, and the number of overlapping zones brought into play alternately to ensure the passage from one disc to another, since the groups of abovementioned overlapping zones necessarily include different numbers of such zones. Thus, in the specific case of FIG. 4, if the current density were constant radially, the area 16 b would have an area twice that of each of the areas 16a or 16 c . To reflect the current density 1 / R, the surface of the region 16 b is greater than that of each zone 16a or 16b, but it is less than twice the surface of the area 16a and the double the area of area 16 c . In this case, there may be provided two current return conductors 26a, 26 b, respectively traversed by substantially one half of the reverse current and provided between the areas of overlap. The driver 26a thus ensures the current compensation for all the overlapping areas 16a and part of the overlapping areas 16 b while the conductor 26 b ensures the compensation current for the entire overlapping areas 16c and the other part of the areas superimposed 16 b . The determination of the areas of the overlapping zones, that is to say of the shape of the scalloped slots which delimit them, is within the reach of a person skilled in the art by applying the principles set out above, to the in light of the examples described.

La figure 5 illustre la structure de raccordement entre deux bobines de l'aimant lorsque celui-ci est constitué d'un certain nombre de bobines espacées axialement les unes des autres. Les quatre conducteurs 26 émergent de la dernière spire de la bobine et chacun d'eux traverse l'espace entre les deux bobines à l'intérieur d'un tube métallique 30 soudé à chacune de ses extrémités à la spire terminale de la bobine correspondante. L'ensemble de ces tubes assure ainsi le branchement en série des bobines. Des courants sensiblement égaux circulent ainsi en sens contraires dans les tubes 30 et les conducteurs de retour de courant 25 et ces structures de raccordement ne créent pas de champ magnétique dans les espaces entre les bobines.FIG. 5 illustrates the connection structure between two coils of the magnet when the latter consists of a number of coils spaced axially from each other. The four conductors 26 emerge from the last turn of the coil and each of them crosses the space between the two coils inside a metal tube 30 welded at each of its ends to the end turn of the corresponding coil. All of these tubes thus ensure the series connection of the coils. Substantially equal currents thus flow in opposite directions in the tubes 30 and the current return conductors 25 and these connection structures do not create a magnetic field in the spaces between the coils.

Claims (6)

1. A solenoidal magnet of the type comprising at least one coil constituted by a stack, with the interposition of insulation, of annular conductor disks, each disk (11) comprising an interruption converting it into a turn, and the said turns being connected end to end, in that the said disks extend in respective planes which are perpendicular to the longitudinal axis of the said coil, in that the said interruption of each disk is a gap (15), in that the disposition and the form of these gaps define several zones of overlap of the turns (16) between the successive disks, characterized in that, these zones being divided up into two groups (161, 13-162 and 164) and in that the electrical contact between any two adjacent disks is in the form of their junction (21) on a group of the said overlap zones, while the electrical contacts between one disk and another are in the form of junctions with one or the other group of these said zones of overlap, altematively.
2. The solenoidal magnet as claimed in claim 1, characterized in that the said junctions (21) are produced through windows (20) made in insulators (21) placed between the said disks, the said windows being placed opposite selected overlap zones.
3. The solenoidal magnet as claimed in claim 1 or claims 2, characterized in that the junctions (21) of the said selected overlap zones between disks are soldered junctions.
4. The solenoidal magnet as claimed in claim 1 or claim 2, characterized in that the junctions (21) of the said selected zones of overlap between disks are soldered junctions made with the addition of indium.
5. The solenoidal magnet as claimed in any one of the preceding claims, characterized in that the or each coil comprises at least one conductor parallel to the said axis, defined by the superposition of the holes (25) made in or near the longitudinally superposed overlap zones, each duct enclosing a return current conductor (26) connected between the last turn of one axial end of the magnet and opening at its other axial end in order to be connected with a terminal of a source of supply DC.
6. The solenoidal magnet as claimed in any one of the preceding claims, characterized in that, in an inherently known manner, the coil or coils are Bitter coils comprising more especially channels for the circulation of cooling fluid, extending longitudinally and gripping tie rods of the stack of the said disks.
EP86902432A 1985-05-10 1986-04-22 Ironless solenoidal magnet Expired EP0221921B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8507152 1985-05-10
FR8507152A FR2581761B1 (en) 1985-05-10 1985-05-10 SOLENOIDAL MAGNET WITHOUT IRON

Publications (2)

Publication Number Publication Date
EP0221921A1 EP0221921A1 (en) 1987-05-20
EP0221921B1 true EP0221921B1 (en) 1989-11-02

Family

ID=9319176

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86902432A Expired EP0221921B1 (en) 1985-05-10 1986-04-22 Ironless solenoidal magnet

Country Status (5)

Country Link
US (1) US4745387A (en)
EP (1) EP0221921B1 (en)
DE (1) DE3666743D1 (en)
FR (1) FR2581761B1 (en)
WO (1) WO1986006870A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01226125A (en) * 1988-03-07 1989-09-08 Kanazawa Univ Stratified eddy current type coil for alternate current strong magnetic field
JPH0245902A (en) * 1988-08-08 1990-02-15 Kanazawa Univ Stratified eddy current type coil for strong ac magnetic field
CN114743754B (en) * 2022-04-08 2023-04-25 电子科技大学 Low-power-consumption compact normal-temperature bit type strong magnet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1494887A (en) * 1966-08-02 1967-09-15 Fives Lille Cail Electric coils and method of manufacturing such coils
FR1600511A (en) * 1968-12-02 1970-07-27
GB8334374D0 (en) * 1983-12-23 1984-02-01 Picker Int Ltd Coil arrangements
JPS60227403A (en) * 1984-04-26 1985-11-12 Yokogawa Hokushin Electric Corp Coil for generating magnetic field

Also Published As

Publication number Publication date
FR2581761A1 (en) 1986-11-14
EP0221921A1 (en) 1987-05-20
US4745387A (en) 1988-05-17
DE3666743D1 (en) 1989-12-07
FR2581761B1 (en) 1987-06-12
WO1986006870A1 (en) 1986-11-20

Similar Documents

Publication Publication Date Title
FR2786334A1 (en) ALTERNATIVE GENERATOR STATOR FOR USE IN A VEHICLE AND MANUFACTURING METHOD THEREOF
FR2857794A1 (en) DEVICE FOR COOLING AN ELECTRIC MACHINE, PARTICULARLY A SYNCHRONOUS ELECTRIC MACHINE WITH PERMANENT MAGNETS
EP0600759B1 (en) Linear electromagnetic induction machine with an optimised magnetic-flux distribution and application
EP4038728A1 (en) Electrical winding for a rotary electric machine
EP0221921B1 (en) Ironless solenoidal magnet
FR2570228A1 (en) Rotating electric motor with a permanent rotor magnet
EP0203952B1 (en) Ironless solenoidal magnet
EP3175534A2 (en) Improved stator, and electrical machine comprising such a stator
EP0215832B1 (en) Solenoidal magnet with high homogeneity magnetic field
FR2550026A1 (en) Stator for high-voltage electrical machine.
EP0099274B1 (en) Transformer, particularly a tension reducer for electric welding equipment
EP0221920B1 (en) Solenoidal magnet with high magnetic field homogeneity
WO1986005625A1 (en) Solenoidal magnet with annular discs of the bitter type
EP0215043B1 (en) Method for making a coil of a solenoidal magnet
FR3103625A1 (en) Winding, corresponding production method and aircraft comprising such a winding
FR3078206A1 (en) ELECTRIC MOTOR STATOR COMPRISING COMPACT WINDINGS AND METHOD OF MANUFACTURING SUCH A STATOR
EP2422580B1 (en) Heating device with a power inductor, power inductor and oven with such an equipment
EP3991274A1 (en) Electrical winding for a rotating electrical machine
WO2020260260A1 (en) Electrical winding for a rotary electric machine
FR2586135A1 (en) Juxtaposed and aligned electromagnets and method of producing such electromagnets
FR3098048A1 (en) Electric winding for a rotating electric machine
FR2963174A1 (en) Stator for electric motor, has annular body comprising teeth distributed regularly on interior surface and coils placed around each tooth, where thickness of each of coils is less than specific value of thickness of tooth
FR2531596A1 (en) MULTI-LAYER INDUCTION CYLINDRICAL COIL EQUIPPED WITH A COOLING SYSTEM
FR2843649A1 (en) Transformer coil for producing high flux densities, has end of conductor of primary winding connected to main body of coil, closing current path
BE672938A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19861227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB NL

17Q First examination report despatched

Effective date: 19890201

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC CGR SA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

REF Corresponds to:

Ref document number: 3666743

Country of ref document: DE

Date of ref document: 19891207

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900328

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900331

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900430

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920201