EP0219693A1 - Method for operating a fluid-atomising ultrasonic atomiser - Google Patents

Method for operating a fluid-atomising ultrasonic atomiser Download PDF

Info

Publication number
EP0219693A1
EP0219693A1 EP86112865A EP86112865A EP0219693A1 EP 0219693 A1 EP0219693 A1 EP 0219693A1 EP 86112865 A EP86112865 A EP 86112865A EP 86112865 A EP86112865 A EP 86112865A EP 0219693 A1 EP0219693 A1 EP 0219693A1
Authority
EP
European Patent Office
Prior art keywords
frequency
atomizer
current
ultrasonic
burst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86112865A
Other languages
German (de)
French (fr)
Other versions
EP0219693B1 (en
Inventor
Gerald Dipl.-Ing. Benndorf (Fh)
Klaus Van Der Linden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT86112865T priority Critical patent/ATE68111T1/en
Publication of EP0219693A1 publication Critical patent/EP0219693A1/en
Application granted granted Critical
Publication of EP0219693B1 publication Critical patent/EP0219693B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0623Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/14Arrangements for preventing or controlling structural damage to spraying apparatus or its outlets, e.g. for breaking at desired places; Arrangements for handling or replacing damaged parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0623Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
    • B05B17/063Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn having an internal channel for supplying the liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • B05B17/0669Excitation frequencies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0238Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave
    • B06B1/0246Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal
    • B06B1/0253Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal taken directly from the generator circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/50Application to a particular transducer type
    • B06B2201/55Piezoelectric transducer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/77Atomizers

Definitions

  • the invention relates to a method according to the preamble of claim 1.
  • a method for operating an ultrasonic oscillator for liquid atomization is known, the electrical power being supplied in a timed manner and the power supplied being sufficient on average for the amount of liquid set, while the respective peak power is so high that a short supply of liquid is too short can be shaken off (DE-OS 33 14 609).
  • the ultrasonic oscillator must be manually adjusted to its basic operating frequency, and the ultrasonic atomizers, which have manufacturing tolerances and which have different working frequencies, for example, cannot be exchanged without adjustment.
  • the object of the invention is to design an ultrasonic liquid atomizer which enables reliable atomization with continuously automatic frequency adjustment and automatic shaking off of a flooding atomizing plate. Furthermore, a low power consumption of the electronics, a low temperature load and a high atomization rate should be guaranteed. Automatic temperature monitoring should be integrated.
  • the method according to the invention When the method according to the invention is carried out, reliable atomization with low power consumption of the electronics and a lower temperature load on the ultrasonic atomizer are achieved.
  • the optimum working frequency of the ultrasonic atomizer is found quickly since only a predetermined frequency range in which the working frequency of the ultrasonic liquid atomizer lies has to be run through. Furthermore, the operational safety is increased, since a snapping on a different frequency, e.g. the compound resonance frequency of the ultrasonic atomizer, which would lead to the destruction of the ultrasonic atomizer, does not occur in the embodiment according to the invention.
  • the ultrasonic atomizer is excited with a burst whose pulse duration is t 1. It vibrates over time duration t2 free before the next burst follows (FIG 3).
  • the current through the output stage is detected proportionally to the current through the ultrasonic atomizer and converted into a voltage - see FIG t4 measured and this value stored in a measured value memory (FIG 1, FIG 3 and FIG 4).
  • this measured value is transferred from memory I to memory II (FIG. 4).
  • the current measured value then newly recorded by the measured value memory I is compared by a comparator with the previous current measured value stored in the measured value memory II (FIG. 4).
  • the frequency is increased by one step per burst. This can be the case when the circuit is started up when the optimum operating frequency is sought.
  • the frequency is reduced by one step per burst.
  • the working frequency of the electronics is forcibly reduced by one step after a certain period of time t7 (FIG. 4).
  • the invention is illustrated by the dependence of the current through the output stage (proportional to the current through the ultrasonic oscillator) after processing by the electronics as a function of the frequency.
  • 2 shows particularly clearly the effect according to the invention, according to which the working frequency of the ultrasonic atomizer can be found very quickly and it does not matter whether it is damped (flooded atomizing plate) or vibrates freely.
  • the search direction goes from low to high frequencies.
  • the transition of the atomizer from the strongly damped (flooded) to the weakly damped (atomizing) state - combined with an increase in the working frequency of the ultrasonic atomizer - also takes place very quickly.
  • Another advantage is that after finding the optimal atomizer operating frequency, the circuit oscillates closely around the optimal operating point. In areas "A" outside of the optimal operating points, a constant current measurement value is specified by appropriate circuit measures so that the circuit can snap into place at the operating frequency of the ultrasonic atomizer.
  • the method according to the invention is particularly suitable for operating a piezoelectric ultrasonic atomizer with a piezoceramic and an amplitude transformer with an atomizing plate (see FIG. 5).
  • a temperature-dependent resistor to the ceramic of the ultrasonic atomizer (FIG. 6). If, for example, an impermissibly high temperature would occur on the ultrasonic atomizer as a result of running dry, the electronics switch off the output stage until the ultrasonic atomizer has cooled down again to permissible temperatures.
  • Ultrasonic liquid atomizers working according to the method according to the invention are particularly suitable for atomizing fuel, such as diesel oil, gasoline, for burners, engines, generators and auxiliary heaters, for cosmetics, such as hairspray, deodorants and perfumes, for cleaning agents, medications for inhalation purposes, solvents and water, For example in humidifiers, small climate chambers, air conditioning systems and terrariums as well as for use in systems for coating, humidification and air conditioning.
  • the method according to the invention is used with particular advantage to operate a piezoelectric ultrasonic atomizer with a piezoceramic and an amplitude transformer with an atomizing plate and excitation electronics.
  • FIG. 1 the voltage drop caused by the current is plotted on the ordinate, while time is shown on the abscissa. No measurement takes place during the period t3. The measurement is made during the period t4. The duration of the burst signal is t1.
  • FIG. 4 shows a block diagram of an excitation electronics according to the invention.
  • the voltage supply 12 an on-off switch, 13 the burst and frequency generation, 14 the pre-stage, 15 the final stage, 16 the transmitter, 3 the ultrasonic liquid atomizer, 2 an temperature-dependent resistance, with 17 the power supply, with 18 and 19 the measured value coil I and II, with 20 the measured value comparator and with 22 the frequency control.
  • the ultrasonic liquid atomizer 3 is excited via a preliminary and final stage with a burst, the burst frequency of which can be regulated by the method according to the invention.
  • the regulation takes place via a current measurement at different times and a comparison of different currents.
  • a temperature-dependent resistor 2 is attached to the ultrasonic atomizer 3.
  • the electronics are switched off by the temperature-dependent resistor 2 at impermissible temperatures.
  • FIG. 5 shows the ultrasonic liquid atomizer with a piezoceramic 4, the coupled amplitude transformer 5 and the atomizing plate 6.
  • the tube 7 integrated in the atomizer cone serves to supply liquid. 8 is the excitation electronics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Special Spraying Apparatus (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

In an ultrasonic frequency generating assembly including a frequency generator coupled to a transducer through an output stage, a current measuring circuit is coupled to the output stage for sampling the current therethrough during each frequency burst upon the passage of a predetermined time interval following the onset of the respective frequency burst. The current value measured during a frequency burst is compared with a measured current value from an immediately preceding burst, the frequency output of the frequency generator being modified in accordance with the results of the comparison. The compared current values are stored in respective memories, the most recently measured current value being transferred from one memory to the other upon the termination of the comparison. A new current value is then loaded into the first memory.

Description

Die Erfindung betrifft ein Verfahren nach dem Oberbe­griff des Patentanspruches 1.The invention relates to a method according to the preamble of claim 1.

Es ist ein Verfahren zum Betrieb eines Ultraschall­schwingers zur Flüssigkeitszerstäubung bekannt, wobei die elektrische Leistung zeitlich getaktet zugeführt wird und die zugeführte Leistung im Mittel für die ein­gestellte Flüssigkeitsmenge ausreichend ist, während die jeweilige Spitzenleistung so hoch bemessen ist, daß eine kurzfristig an Flüssigkeit zuviel zugeführte Menge abgeschüttelt werden kann (DE-OS 33 14 609). Zum Be­trieb von Ultraschallflüssigkeitszerstäubern ist der Ultraschallschwinger manuell auf seine Grundbetriebs­frequenz abzustimmen und es lassen sich die mit Ferti­gungstoleranzen behafteten Ultraschallzerstäuber, die beispielsweise unterschiedliche Arbeitsfrequenzen auf­weisen, nicht ohne Abgleich austauschen.A method for operating an ultrasonic oscillator for liquid atomization is known, the electrical power being supplied in a timed manner and the power supplied being sufficient on average for the amount of liquid set, while the respective peak power is so high that a short supply of liquid is too short can be shaken off (DE-OS 33 14 609). To operate ultrasonic liquid atomizers, the ultrasonic oscillator must be manually adjusted to its basic operating frequency, and the ultrasonic atomizers, which have manufacturing tolerances and which have different working frequencies, for example, cannot be exchanged without adjustment.

Weitere Verfahren erlauben zwar einen Betrieb mit auto­matischem Frequenzabgleich jedoch ohne eine zeitlich getaktete elektrische Leistung und nur mit mangelhafter Betriebssicherheit hinsichtlich der Abschüttlung eines Flüssigkeitstropfens und/oder bestimmten Betriebspunktes. Ferner können bei den bekannten Ausführungen bei Änderungen der Umgebungstemperatur sowie der Schwingertemperatur durch Eigenerwärmung diese Schaltungen aufgrund ihrer geringen Nachstimmbandbreite keinen sicheren Zerstäuberbetrieb garantieren.Although other methods allow operation with automatic frequency adjustment, however, they do not have a timed electrical output and only with inadequate operational reliability with regard to the discharge of a liquid drop and / or a certain operating point. Furthermore, in the known designs, when the ambient temperature and the oscillator temperature change due to self-heating, these circuits cannot guarantee reliable atomizer operation due to their small tuning range.

Aufgabe der Erfindung ist es einen Ultraschallflüssig­keitszerstäuber zu konzipieren, der eine sichere Zer­stäubung mit kontinuierlich automatischer Frequenz­nachstimmung und automatischer Abschüttlung eines über­flutenden Zerstäubertellers ermöglicht. Ferner sollen eine geringe Leistungsaufnahme der Elektronik, eine niedrige Temperaturbelastung und eine hohe Zerstäubungs­rate gewährleistet werden. Eine automatische Temperatur­überwachung soll integriert sein.The object of the invention is to design an ultrasonic liquid atomizer which enables reliable atomization with continuously automatic frequency adjustment and automatic shaking off of a flooding atomizing plate. Furthermore, a low power consumption of the electronics, a low temperature load and a high atomization rate should be guaranteed. Automatic temperature monitoring should be integrated.

Diese Aufgabe wird mit einem Verfahren nach dem Oberbe­griff des Patentanspruches 1 erfindungsgemäß mit Hilfe der Merkmale des Kennzeichens des Patentanspruches 1 gelöst. Weitere Ausgestaltungen und Weiterbildungen ge­hen aus den Unteransprüchen hervor.This object is achieved with a method according to the preamble of claim 1 with the aid of the features of the characterizing part of claim 1. Further refinements and developments emerge from the subclaims.

Bei Durchführung des erfindungsgemäßen Verfahrens werden eine sichere Zerstäubung bei geringer Leistungsaufnahme der Elektronik und eine niedrigere Temperaturbelastung des Ultraschallzerstäubers erreicht. Es wird ein schnel­les Finden der optimalen Arbeitsfrequenz des Ultra­schallzerstäubers erreicht, da nur ein vorgegebener Fre­quenzbereich, in dem die Arbeitsfrequenz des Ultraschall­flüssigkeitszerstäubers liegt, durchlaufen werden muß. Ferner wird die Betriebssicherheit erhöht, da ein Einra­sten auf einer anderen Frequenz, z.B. der Verbundreso­nanzfrequenz des Ultraschallzerstäubers, was zur Zerstö­rung des Ultraschallzerstäubers führen würde, bei der erfindungsgemäßen Ausführung nicht eintritt.When the method according to the invention is carried out, reliable atomization with low power consumption of the electronics and a lower temperature load on the ultrasonic atomizer are achieved. The optimum working frequency of the ultrasonic atomizer is found quickly since only a predetermined frequency range in which the working frequency of the ultrasonic liquid atomizer lies has to be run through. Furthermore, the operational safety is increased, since a snapping on a different frequency, e.g. the compound resonance frequency of the ultrasonic atomizer, which would lead to the destruction of the ultrasonic atomizer, does not occur in the embodiment according to the invention.

Der Ultraschallzerstäuber wird mit einem Burst angeregt, dessen Impulsdauer t₁ beträgt. Er schwingt mit der Zeit­ dauer t₂ frei aus, bevor der nächste Burst folgt (FIG 3). Mit einer Strommeßschaltung wird der Strom durch die Endstufe proportional dem Strom durch den Ultraschall­zerstäuber erfaßt und in eine Spannung umgesetzt - siehe FIG 1. Um Fehlmessungen, beispielsweise durch Ein­schwingvorgänge zu vermeiden, wird ein Teil t₃ des stromportionalen Signals ausgeblendet und danach für kurze Zeit der Strom t₄ gemessen und dieser Wert in einem Meßwertspeicher abgelegt (FIG 1, FIG 3 und FIG 4).The ultrasonic atomizer is excited with a burst whose pulse duration is t 1. It vibrates over time duration t₂ free before the next burst follows (FIG 3). With a current measuring circuit, the current through the output stage is detected proportionally to the current through the ultrasonic atomizer and converted into a voltage - see FIG t₄ measured and this value stored in a measured value memory (FIG 1, FIG 3 and FIG 4).

In der Pause zwischen zwei Burstsignalen t₂ wird dieser Meßwert von Speicher I in Speicher II (FIG 4) übergeben. Bei dem auf diese Pause folgenden Burst t₁ wird der dann vom Meßwertspeicher I neu aufgenommene Strommeßwert durch einen Vergleicher mit dem im Meßwertspeicher II abgelegten, vorhergehenden Strommeßwert verglichen (FIG 4).In the pause between two burst signals t₂ this measured value is transferred from memory I to memory II (FIG. 4). In the burst t 1 following this pause, the current measured value then newly recorded by the measured value memory I is compared by a comparator with the previous current measured value stored in the measured value memory II (FIG. 4).

Ist die Differenz der im Meßwertspeicher II und Meßwert­speicher I stehenden Strommeßwerte kleiner als der ein­gestellte untere Schwellwert, so wird die Frequenz um jeweils einen Schritt pro Burst erhöht. Dies kann der Fall sein bei der Inbetriebnahme der Schaltung, wenn die optimale Betriebsfrequenz gesucht wird.If the difference between the current measured values in the measured value memory II and the measured value memory I is smaller than the set lower threshold value, the frequency is increased by one step per burst. This can be the case when the circuit is started up when the optimum operating frequency is sought.

Ist die Differenz der Strommeßwerte größer als der ein­gestellte obere Schwellwert, so wird die Frequenz um einen Schritt pro Burst erniedrigt.If the difference between the current measurement values is greater than the set upper threshold value, the frequency is reduced by one step per burst.

Liegt die Differenz der Strommeßwerte innerhalb des Schwellwertbereiches, so wird die Frequenzsuchrichtung beibehalten, die beim vorhergehenden Burst maßgebend war.If the difference between the current measured values lies within the threshold value range, the frequency search direction that was decisive for the previous burst is retained.

Um Arbeitsfrequenzänderungen des Ultraschallschwingers in Richtung tieferer Frequenz, hervorgerufen durch Ände­rungen der Umgebungstemperatur bzw. durch Eigenerwär­mung, schneller ausregeln zu können, wird nach einer bestimmten Zeitdauer t₇ die Arbeitsfrequenz der Elektro­nik zwangsweise um einen Schritt erniedrigt (FIG 4).In order to be able to compensate for changes in the working frequency of the ultrasonic vibrator in the direction of a lower frequency, caused by changes in the ambient temperature or by self-heating, the working frequency of the electronics is forcibly reduced by one step after a certain period of time t₇ (FIG. 4).

Die Erfindung ist durch die Abhängigkeit des Stromes durch die Endstufe (proportional dem Strom durch den Ultraschallschwinger) nach Aufbereitung durch die Elek­tronik in Abhängigkeit von der Frequenz veranschaulicht. FIG 2 zeigt besonders deutlich den erfindungsgemäßen Effekt, wonach die Arbeitsfrequenz des Ultraschallzer­stäubers sehr schnell gefunden werden kann und es keine Rolle spielt, ob dieser gedämpft (überfluteter Zerstäu­berteller) oder frei schwingt. Die Suchrichtung geht da­bei von tiefen zu hohen Frequenzen. Ferner geht der Über­gang des Zerstäubers vom stark gedämpften (überfluteten) in den schwach bedämpften (zerstäubenden) Zustand - ver­bunden mit einer Erhöhung der Arbeitsfrequenz des Ultra­schallzerstäubers - ebenfalls sehr schnell vonstatten. Ein weiterer Vorteil ist, daß nach dem Finden der opti­malen Zerstäuberarbeitsfrequenz die Schaltung eng um den optimalen Arbeitspunkt pendelt. In den Bereichen "A" außerhalb der optimalen Arbeitspunkte wird durch entsprechende Schaltungsmaßnahmen ein konstanter Strom­meßwert vorgegeben, damit die Schaltung schnell auf der Arbeitsfrequenz des Ultraschallzerstäubers ein­rasten kann.The invention is illustrated by the dependence of the current through the output stage (proportional to the current through the ultrasonic oscillator) after processing by the electronics as a function of the frequency. 2 shows particularly clearly the effect according to the invention, according to which the working frequency of the ultrasonic atomizer can be found very quickly and it does not matter whether it is damped (flooded atomizing plate) or vibrates freely. The search direction goes from low to high frequencies. Furthermore, the transition of the atomizer from the strongly damped (flooded) to the weakly damped (atomizing) state - combined with an increase in the working frequency of the ultrasonic atomizer - also takes place very quickly. Another advantage is that after finding the optimal atomizer operating frequency, the circuit oscillates closely around the optimal operating point. In areas "A" outside of the optimal operating points, a constant current measurement value is specified by appropriate circuit measures so that the circuit can snap into place at the operating frequency of the ultrasonic atomizer.

Das erfindungsgemäße Verfahren eignet sich besonders zum Betrieb eines piezoelektrischen Ultraschallzer­stäubers mit einer Piezokeramik und einem Amplituden­ transformator mit einem Zerstäuberteller (siehe FIG 5). Um eine Zerstörung des Ultraschallflüssigkeitszer­stäubers durch Übertemperatur zu vermeiden, beispiels­weise durch Trockenlaufen, ist es vorteilhaft auf die Ke­ramik des Ultraschallzerstäubers einen temperaturabhängi­gen Widerstand aufzubringen (FIG 6). Falls z.B. durch Trockenlaufen eine unzulässig hohe Temperatur am Ultra­schallzerstäuber entstehen würde, schaltet die Elektro­nik die Endstufe solange ab, bis der Ultraschallzer­stäuber wieder auf zulässige Temperaturen abgekühlt ist.The method according to the invention is particularly suitable for operating a piezoelectric ultrasonic atomizer with a piezoceramic and an amplitude transformer with an atomizing plate (see FIG. 5). In order to avoid destruction of the ultrasonic liquid atomizer by excess temperature, for example by running dry, it is advantageous to apply a temperature-dependent resistor to the ceramic of the ultrasonic atomizer (FIG. 6). If, for example, an impermissibly high temperature would occur on the ultrasonic atomizer as a result of running dry, the electronics switch off the output stage until the ultrasonic atomizer has cooled down again to permissible temperatures.

Nach dem erfindungsgemäßen Verfahren arbeitende Ultra­schallflüssigkeitszerstäuber sind besonders geeignet für die Zerstäubung von Kraftstoff, wie Dieselöl, Benzin, für Brenner, Motoren, Generatoren und Standheizungen, für Kosmetika, wie Haarspray, Deodorants und Parfüms, für Reinigungsmittel, Medikamente zu Inhalationszwecken, Lö­sungsmitteln und Wasser, beispielsweise in Luftbefeuch­ter, Kleinklimakammern, Klimaanlagen und Terrarien sowie für den Einsatz in Anlagen zur Beschichtung, Befeuchtung und Klimatisierung. Das erfindungsgemäße Verfahren wird mit besonderem Vorteil eingesetzt zum Betrieb eines piezoelektrischen Ultraschallzerstäubers mit einer Piezo­keramik und einem Amplitudentransformator mit einem Zerstäuberteller und Anregungselektronik.Ultrasonic liquid atomizers working according to the method according to the invention are particularly suitable for atomizing fuel, such as diesel oil, gasoline, for burners, engines, generators and auxiliary heaters, for cosmetics, such as hairspray, deodorants and perfumes, for cleaning agents, medications for inhalation purposes, solvents and water, For example in humidifiers, small climate chambers, air conditioning systems and terrariums as well as for use in systems for coating, humidification and air conditioning. The method according to the invention is used with particular advantage to operate a piezoelectric ultrasonic atomizer with a piezoceramic and an amplitude transformer with an atomizing plate and excitation electronics.

Zur näheren Erläuterung der Erfindung wird auf die Zeich­nung verwiesen. Es zeigen

  • FIG 1 ein Diagramm des Stromverlaufs nach der Aufbe­reitung durch die Elektronik.
  • FIG 2 ein Diagramm für die Abhängigkeit des Stromes durch die Endstufe.
  • FIG 3 die zeitliche Signalfolge in der Elektronik.
  • FIG 4 ein Blockschaltbild für die Elektronik.
  • FIG 5 einen Ultraschallflüssigkeitszerstäuber im Schnitt.
  • FIG 6 einen auf einen Ultraschallflüssigkeitszerstäuber im Schnitt mit aufgebrachtem temperaturabhängigen Wider­stand.
For a more detailed explanation of the invention, reference is made to the drawing. Show it
  • 1 shows a diagram of the current profile after processing by the electronics.
  • 2 shows a diagram for the dependence of the current through the output stage.
  • 3 shows the temporal signal sequence in the electronics.
  • 4 shows a block diagram for the electronics.
  • 5 shows an ultrasonic liquid atomizer in section.
  • 6 shows a section of an ultrasonic liquid atomizer with an applied temperature-dependent resistor.

In FIG 1 ist auf der Ordinate der durch den Strom ver­ursachte Spannungsabfall aufgetragen, während auf der Abszisse die Zeit dargestellt ist. Während der Zeit­dauer t₃ findet keine Messung statt. Gemessen wird während der Zeitdauer t₄ . Die Zeitdauer des Burstsignals ist t₁ .In FIG. 1, the voltage drop caused by the current is plotted on the ordinate, while time is shown on the abscissa. No measurement takes place during the period t₃. The measurement is made during the period t₄. The duration of the burst signal is t₁.

In FIG 2 ist auf der Ordinate der Spannungsabfall an einem Widerstand, verursacht durch den Strom durch die Endstufe dargestellt, während auf der Abszisse die Frequenz aufgetragen ist, wobei f₁ die Frequenz bzw. der Arbeitspunkt des mit Flüssigkeit überfluteten bzw. bedämpften Flüssigkeitszerstäubers ist, während f₂ der Arbeitspunkt bzw. die Frequenz des unbedämpf­ten Flüssigkeitszerstäubers ist. Der Bereich A stellt den nicht für die Zerstäubung nutzbaren Frequenzbereich dar.In Figure 2, the ordinate of the voltage drop across a resistor caused by the current through the output stage is shown, while the frequency is plotted on the abscissa, where f₁ is the frequency or the operating point of the liquid atomizer flooded or damped while f₂ is the operating point or the frequency of the undamped liquid atomizer. Area A represents the frequency range that cannot be used for atomization.

In FIG 3 ist die genaue Schaltungsbeschreibung aufge­tragen, wobei a die Zeitdauer t₁ für die Einschaltzeit und t₂ die Zeitdauer für die Ausschaltzeit des Burst­impulses darstellen. In b ist die Verzögerungszeitdauer t₃, während der nicht gemessen wird, eingezeichnet. c stellt die im Anschluß nach t₃ folgende Strommeßzeit t₄ dar. In d und e ist die Übernahme des Meßwertes des Stro­mes vom Meßwertspeicher I nach dem Meßwertspeicher II dargestellt. Die Zeit t₅ der Zählimpulse folgt im Anschluß an das Burstsignal. Nach Abschluß von t₅ erfolgt die Meßwertübernahme vom Meßwertspeicher I nach Meßwertspei­cher II innerhalb der Zeit t₆.In Figure 3, the exact circuit description is plotted, with a representing the time period t 1 for the switch-on time and t 2 the time period for the switch-off time of the burst pulse. In b, the delay period t₃, during which no measurement is made, is shown. c represents the following current measuring time t₄ after t₃. In d and e is the transfer of the measured value of the current from the measured value memory I to the measured value memory II shown. The time t₅ of the counting pulse follows the burst signal. After completion of t₅, the measured value is transferred from the measured value memory I to the measured value memory II within the time t₆.

In FIG 4 ist ein Blockschaltbild einer Anregungselek­tronik gemäß der Erfindung dargestellt. In diesem sind mit 1 die Spannungsversorgung, mit 12 ein Ein-Aus-­Schalter, mit 13 die Burst- und Frequenzerzeugung, mit 14 die Vorstufe, mit 15 die Endstufe, mit 16 der Über­trager, mit 3 der Ultraschall-Flüssigkeitszerstäuber, mit 2 ein temperaturabhängiger Widerstand, mit 17 die Stromversorgung, mit 18 und 19 die Meßwertspule I und II, mit 20 der Meßwertvergleicher und mit 22 die Frequenz­steuerung dargestellt. Es ist zu erkennen, daß der Ultraschallflüssigkeitszerstäuber 3 über eine Vor- und Endstufe mit einem Burst angeregt wird, dessen Burst­frequenz nach dem erfindungsgemäßen Verfahren regelbar ist. Die Regelung findet über eine Strommessung zu verschiedenen Zeitpunkten und einem Vergleich von verschiedenen Strömen statt.4 shows a block diagram of an excitation electronics according to the invention. In this there are 1 the voltage supply, 12 an on-off switch, 13 the burst and frequency generation, 14 the pre-stage, 15 the final stage, 16 the transmitter, 3 the ultrasonic liquid atomizer, 2 an temperature-dependent resistance, with 17 the power supply, with 18 and 19 the measured value coil I and II, with 20 the measured value comparator and with 22 the frequency control. It can be seen that the ultrasonic liquid atomizer 3 is excited via a preliminary and final stage with a burst, the burst frequency of which can be regulated by the method according to the invention. The regulation takes place via a current measurement at different times and a comparison of different currents.

Zum Schutz des Zerstäuberkegels für Übertemperaturen ist ein temperaturabhängiger Widerstand 2 auf dem Ultra­schallzerstäuber 3 angebracht. Durch den temperaturab­hängigen Widerstand 2 wird bei unzulässigen Temperaturen die Elektronik abgeschaltet.To protect the atomizer cone for excess temperatures, a temperature-dependent resistor 2 is attached to the ultrasonic atomizer 3. The electronics are switched off by the temperature-dependent resistor 2 at impermissible temperatures.

In FIG 5 ist der Ultraschallflüssigkeitszerstäuber mit einer Piezokeramik 4, dem angekoppelten Amplituden­transformator 5 und dem Zerstäuberteller 6 dargestellt. Das im Zerstäuberkegel integrierte Röhrchen 7 dient zur Flüssigkeitszufuhr. 8 ist die Anregungselektronik.5 shows the ultrasonic liquid atomizer with a piezoceramic 4, the coupled amplitude transformer 5 and the atomizing plate 6. The tube 7 integrated in the atomizer cone serves to supply liquid. 8 is the excitation electronics.

FIG 6 zeigt einen auf eine Piezokeramik 9 aufgebrach­ten temperaturabhängigen Widerstand 10. 11 ist die An­regungselektronik.6 shows a temperature-dependent resistor 10 applied to a piezoceramic 9. 11 is the excitation electronics.

Claims (11)

1. Verfahren zum Betrieb eines Ultraschallschwingers zur Flüssigkeitszerstäubung mit automatischem Frequenz­abgleich bei zeitlich getakteter elektrischer Leistung, dadurch gekennzeichnet, daß für den automatischen Frequenzabgleich eine Strommes­sung während der Zeitdauer des Burstimpulses t₁ nach einer Verzögerungszeit t₃ für eine Zeitspanne t₄ vor­genommen wird und die Summe aus der Verzögerungszeit t₃ und der Zeitspanne t₄ nicht größer als die Zeitdauer des Burstimpulses t₁ ist und daß der Bereich des auto­matischen Frequenzabgleichs so begrenzt ist, daß die Schaltung innerhalb des für die Zerstäubung nutzbaren Frequenzbandes einrastet.1. A method for operating an ultrasonic vibrator for liquid atomization with automatic frequency adjustment with timed electrical power, characterized in that for the automatic frequency adjustment, a current measurement is made during the period of the burst pulse t₁ after a delay time t₃ for a period of time t₄ and the sum of the delay time t₃ and the time period t₄ is not greater than the duration of the burst pulse t₁ and that the range of the automatic frequency adjustment is so limited that the circuit engages within the frequency band that can be used for atomization. 2. Verfahren nach Anspruch 1, dadurch ge­kennzeichnet, daß der automatische Frequenz­abgleich des Ultraschallzerstäubers von der tieferen zur höheren und/oder von der höheren zur tieferen Fre­quenz durchgeführt wird.2. The method according to claim 1, characterized in that the automatic frequency adjustment of the ultrasonic atomizer is carried out from the lower to the higher and / or from the higher to the lower frequency. 3. Verfahren nach Anspruch 1, dadurch ge­kennzeichnet, daß die Übernahme des Wertes während der Strommessung während einer Zeitspanne t₆ zwischen zwei aufeinanderfolgenden Burstsignalen er­folgt.3. The method according to claim 1, characterized in that the acceptance of the value during the current measurement takes place during a period t₆ between two successive burst signals. 4. Verfahren nach Anspruch 3, dadurch ge­kennzeichnet, daß zum Vergleich der bei­den Messungen der Stromwerte eine Schwellwertschaltung verwendet wird.4. The method according to claim 3, characterized in that a threshold circuit is used to compare the two measurements of the current values. 5. Verfahren nach Anspruch 4, dadurch ge­kennzeichnet, daß der Stromschwellwert der Schwellwertschaltung kleiner ist als die Stromdiffe­renz, die zwischen einem bedämpften und einem unbedämpft schwingenden Zerstäuber auftritt.5. The method according to claim 4, characterized in that the current threshold of the threshold circuit is smaller than the current difference that occurs between a damped and an undamped oscillating atomizer. 6. Verfahren nach Anspruch 4, dadurch ge­kennzeichnet, daß der Schwellwert für die Strommeßwerte kleiner ist als der Differenzwert der innerhalb der Frequenzbereichsgrenzen auftritt.6. The method according to claim 4, characterized in that the threshold value for the current measurement values is smaller than the difference value which occurs within the frequency range limits. 7. Verfahren nach Anspruch 4, dadurch ge­kennzeichnet, daß ein bestimmter Arbeits­frequenzbereich vorgegeben wird und keine meßbare Stromdifferenz außerhalb des Bereiches auftritt.7. The method according to claim 4, characterized in that a certain operating frequency range is specified and no measurable current difference occurs outside the range. 8. Verfahren nach Anspruch 1 und 2, dadurch ge­kennzeichnet, daß nach einer Zeit t₇ die Schaltung einen Schritt entgegen der Suchrichtung läuft, ohne die Suchrichtung zu beeinflussen.8. The method according to claim 1 and 2, characterized in that after a time t₇ the circuit runs one step against the search direction without influencing the search direction. 9. Verfahren nach Anspruch 1, dadurch ge­kennzeichnet, daß der Ultraschallzer­stäuber mit einem temperaturabhängigen Widerstand ver­sehen wird.9. The method according to claim 1, characterized in that the ultrasonic atomizer is provided with a temperature-dependent resistor. 10. Anwendung des Verfahrens nach den vorangegangenen Ansprüchen zum Betrieb eines piezoelektrischen Ultra­schallzerstäubers mit einer Piezokeramik (4) und einem Amplitudentransformator (5) mit einem Zerstäuberteller (6) und Anregungselektronik (8).10. Application of the method according to the preceding claims for operating a piezoelectric ultrasonic atomizer with a piezoceramic (4) and an amplitude transformer (5) with an atomizer plate (6) and excitation electronics (8). 11. Piezoelektrischer Ultraschall-Flüssigkeitszerstäuber nach Anspruch 10 mit einem temperaturabhängigen Wider­stand (10) auf der Piezokeramik (9) und einer Anregungs­elektronik (11).11. Piezoelectric ultrasonic liquid atomizer according to claim 10 with a temperature-dependent resistor (10) on the piezoceramic (9) and an excitation electronics (11).
EP86112865A 1985-09-30 1986-09-17 Method for operating a fluid-atomising ultrasonic atomiser Expired - Lifetime EP0219693B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86112865T ATE68111T1 (en) 1985-09-30 1986-09-17 METHOD OF OPERATING AN ULTRASONIC ATOMIZER FOR LIQUID ATOMIZATION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3534853 1985-09-30
DE19853534853 DE3534853A1 (en) 1985-09-30 1985-09-30 METHOD FOR OPERATING AN ULTRASONIC SPRAYER FOR LIQUID SPRAYING

Publications (2)

Publication Number Publication Date
EP0219693A1 true EP0219693A1 (en) 1987-04-29
EP0219693B1 EP0219693B1 (en) 1991-10-09

Family

ID=6282366

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86112865A Expired - Lifetime EP0219693B1 (en) 1985-09-30 1986-09-17 Method for operating a fluid-atomising ultrasonic atomiser

Country Status (4)

Country Link
US (1) US4689515A (en)
EP (1) EP0219693B1 (en)
AT (1) ATE68111T1 (en)
DE (2) DE3534853A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996000132A2 (en) * 1994-06-23 1996-01-04 J.E.M. Smoke Machine Co. Ltd. A method of creating an effect
EP1875969A1 (en) * 2006-07-07 2008-01-09 L'oreal Generator for exciting a piezoelectric transducer

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60222552A (en) * 1984-04-19 1985-11-07 Toa Nenryo Kogyo Kk Ultrasonic injection method and injection valve
JPS6338193A (en) * 1986-08-01 1988-02-18 Toa Nenryo Kogyo Kk Ultrasonic vibrator horn
US4799622A (en) * 1986-08-05 1989-01-24 Tao Nenryo Kogyo Kabushiki Kaisha Ultrasonic atomizing apparatus
KR900007413B1 (en) * 1986-08-26 1990-10-08 마쯔시다덴기산교 가부시기가이샤 Drive method for ultrasonic motor
CH672894A5 (en) * 1987-09-14 1990-01-15 Undatim Ultrasonics
US4966131A (en) * 1988-02-09 1990-10-30 Mettler Electronics Corp. Ultrasound power generating system with sampled-data frequency control
US5095890A (en) * 1988-02-09 1992-03-17 Mettler Electronics Corp. Method for sampled data frequency control of an ultrasound power generating system
US5113116A (en) * 1989-10-05 1992-05-12 Firma J. Eberspacher Circuit arrangement for accurately and effectively driving an ultrasonic transducer
JPH03161083A (en) * 1989-11-17 1991-07-11 Aisin Seiki Co Ltd Driving mechanism for piezoelectric vibrator and water drop removing device using same driving mechanism
GB9226474D0 (en) * 1992-12-18 1993-02-10 Ici Plc Production of particulate materials
US5387180A (en) * 1993-05-20 1995-02-07 Allergan, Inc. Ultrasonic frequency synthesizer for phaco surgery
DE4412900C2 (en) * 1994-04-14 2000-04-27 Eberspaecher J Gmbh & Co Method and device for determining the onset of a flood of an ultrasonic atomizer
US5560543A (en) * 1994-09-19 1996-10-01 Board Of Regents, The University Of Texas System Heat-resistant broad-bandwidth liquid droplet generators
US5568003A (en) * 1994-09-28 1996-10-22 Zygo Corporation Method and apparatus for producing repeatable motion from biased piezoelectric transducers
WO1996028205A1 (en) * 1995-03-14 1996-09-19 Siemens Aktiengesellschaft Ultrasonic atomizer device with removable precision dosing unit
CA2215331C (en) * 1995-03-14 2002-01-22 Siemens Aktiengesellschaft Ultrasonic atomizer device with removable precision dosating unit
ES2209857T3 (en) 1999-03-05 2004-07-01 S. C. JOHNSON & SON, INC. CONTROL SYSTEM FOR SPRAYING LIQUIDS WITH A PIEZOELECTRIC VIBRATOR.
DE19916161B4 (en) * 1999-04-11 2008-06-05 Dürr Dental GmbH & Co. KG Device for generating high-frequency mechanical oscillations for a dental handpiece
FR2802118A1 (en) * 1999-12-10 2001-06-15 Touzova Tamara METHOD AND VIBRATORY DEVICE FOR CONDITIONING, AIR CONDITIONING, COOLING AND DECONTAMINATION, DISINFECTION, STERILIZATION OF PHYSICAL MEDIA
US7077853B2 (en) * 2000-10-20 2006-07-18 Ethicon Endo-Surgery, Inc. Method for calculating transducer capacitance to determine transducer temperature
WO2003098971A1 (en) 2002-05-13 2003-11-27 S.C. Johnson & Son, Inc. Coordinated emission of fragrance, light, and sound
EP2384771B1 (en) 2003-02-07 2013-01-23 S.C.Johnson & Son, Inc. Diffuser with light emitting diode nightlight
US7645300B2 (en) 2004-02-02 2010-01-12 Visiogen, Inc. Injector for intraocular lens system
DE202005003298U1 (en) * 2005-03-02 2006-07-13 Argillon Gmbh ultrasonic nebulizer
US7281811B2 (en) 2005-03-31 2007-10-16 S. C. Johnson & Son, Inc. Multi-clarity lenses
US7643734B2 (en) 2005-03-31 2010-01-05 S.C. Johnson & Son, Inc. Bottle eject mechanism
US7589340B2 (en) 2005-03-31 2009-09-15 S.C. Johnson & Son, Inc. System for detecting a container or contents of the container
US9339836B2 (en) * 2005-05-23 2016-05-17 Biosonic Australia Pty Ltd Ultrasonic atomization apparatus
WO2009155245A1 (en) * 2008-06-17 2009-12-23 Davicon Corporation Liquid dispensing apparatus using a passive liquid metering method
IT1393824B1 (en) * 2009-04-20 2012-05-11 Zobele Holding Spa LIQUID ATOMIZER WITH PIEZOELECTRIC VIBRATION DEVICE WITH IMPROVED ELECTRONIC CONTROL CIRCUIT AND RELATED DRIVING METHOD.
ES2614917T3 (en) * 2009-07-17 2017-06-02 Nektar Therapeutics Systems and methods for propulsion in sealed nebulizers
JP5429993B2 (en) * 2010-03-04 2014-02-26 国立大学法人東京工業大学 Odor generator
WO2013072863A1 (en) * 2011-11-15 2013-05-23 Koninklijke Philips Electronics N.V. A nebulizer, a control unit for controlling the same and a method of operating a nebulizer
EP2796208A1 (en) * 2013-04-22 2014-10-29 Ipratech SA Method for controlling an acoustic cell
WO2015025290A1 (en) * 2013-08-23 2015-02-26 Koninklijke Philips N.V. Controlling a medication nebulizer through a smartphone
US12052925B2 (en) 2016-01-23 2024-07-30 Liat Keng KANG Method and device for driving a piezoelectric device
CN112583395B (en) * 2020-12-03 2023-03-28 成都动芯微电子有限公司 Ultrasonic atomization sheet frequency tracking system and method
CN115363282A (en) * 2021-05-21 2022-11-22 深圳市合元科技有限公司 Electronic atomization device and control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1240316B (en) * 1962-03-30 1967-05-11 Aeroprojects Inc Device for tracking the frequency of an ultrasonic generator in the event of temperature fluctuations
US3842340A (en) * 1969-02-20 1974-10-15 Philips Corp Generator for producing ultrasonic oscillations
FR2421513A1 (en) * 1978-03-31 1979-10-26 Gaboriaud Paul ULTRA-SONIC ATOMIZER WITH AUTOMATIC CONTROL
US4275363A (en) * 1979-07-06 1981-06-23 Taga Electric Co., Ltd. Method of and apparatus for driving an ultrasonic transducer including a phase locked loop and a sweep circuit
EP0123277A2 (en) * 1983-04-22 1984-10-31 Siemens Aktiengesellschaft Method of driving an ultrasonic oscillator for an atomizing fluid
US4578650A (en) * 1983-06-15 1986-03-25 Watson Industries, Inc. Resonance drive oscillator circuit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889166A (en) * 1974-01-15 1975-06-10 Quintron Inc Automatic frequency control for a sandwich transducer using voltage feedback
DE2721225C2 (en) * 1977-05-11 1981-10-29 Siemens AG, 1000 Berlin und 8000 München Circuit arrangement for frequency self-control of an ultrasonic transmitter transducer
SU760246A1 (en) * 1978-05-16 1980-08-30 Le Polt I Im M I Kalinina Method and device for phase control in piezosemiconductor transformer
DE3222425A1 (en) * 1982-06-15 1983-12-22 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Generator for driving a piezo resonator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1240316B (en) * 1962-03-30 1967-05-11 Aeroprojects Inc Device for tracking the frequency of an ultrasonic generator in the event of temperature fluctuations
US3842340A (en) * 1969-02-20 1974-10-15 Philips Corp Generator for producing ultrasonic oscillations
FR2421513A1 (en) * 1978-03-31 1979-10-26 Gaboriaud Paul ULTRA-SONIC ATOMIZER WITH AUTOMATIC CONTROL
US4275363A (en) * 1979-07-06 1981-06-23 Taga Electric Co., Ltd. Method of and apparatus for driving an ultrasonic transducer including a phase locked loop and a sweep circuit
EP0123277A2 (en) * 1983-04-22 1984-10-31 Siemens Aktiengesellschaft Method of driving an ultrasonic oscillator for an atomizing fluid
US4578650A (en) * 1983-06-15 1986-03-25 Watson Industries, Inc. Resonance drive oscillator circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996000132A2 (en) * 1994-06-23 1996-01-04 J.E.M. Smoke Machine Co. Ltd. A method of creating an effect
WO1996000132A3 (en) * 1994-06-23 1996-03-28 Jem Smoke Machine Co A method of creating an effect
EP1875969A1 (en) * 2006-07-07 2008-01-09 L'oreal Generator for exciting a piezoelectric transducer
FR2903331A1 (en) * 2006-07-07 2008-01-11 Oreal GENERATOR FOR EXCITING A PIEZOELECTRIC TRANSDUCER
US7960894B2 (en) 2006-07-07 2011-06-14 L'oreal S.A. Generator for exciting piezoelectric transducer

Also Published As

Publication number Publication date
US4689515A (en) 1987-08-25
DE3534853A1 (en) 1987-04-02
DE3681871D1 (en) 1991-11-14
ATE68111T1 (en) 1991-10-15
EP0219693B1 (en) 1991-10-09

Similar Documents

Publication Publication Date Title
EP0219693A1 (en) Method for operating a fluid-atomising ultrasonic atomiser
DE3686574T2 (en) DEVICE FOR SPRAYING FUEL THROUGH ULTRASONIC FOR INTERNAL COMBUSTION ENGINES.
DE4106564C2 (en) Device for the electrostatic atomization of liquids
EP0213283A1 (en) Coin testing apparatus
DE2144892B2 (en) DEVICE FOR GENERATING A DROP JET, IN PARTICULAR FOR INK DROP PENS
EP0219725A1 (en) Method of compensating interference voltages in the electrode circuit in magnetic-inductive flow measurement
DE19814594A1 (en) Charging and discharging piezoelectric element to desired voltage
DE19626101B4 (en) Circuit arrangement for starting and operating a high-pressure discharge lamp
DE3708210A1 (en) CIRCUIT ARRANGEMENT FOR EVALUATING THE SIGNALS OF AN INDUCTIVE MEASURING VALUE
DE2916540C2 (en) Electrical circuit arrangement for controlling a piezoelectric transducer
EP0340470A1 (en) Method and circuit for driving an ultrasonic transducer, and their use in atomizing a liquid
DE2604446A1 (en) DEVICE FOR CONTROLLING THE ELECTRONIC FUEL INJECTION FOR A COMBUSTION ENGINE
DE19646917A1 (en) Ignition monitor for IC engine
DE4036618C3 (en) Device for driving a piezoelectric vibrator
DE3431481A1 (en) Method for operating ultrasound power oscillators, especially in apparatuses for tartar removal
EP0303944A1 (en) Method and circuit for the excitation of an ultrasonic vibrator and their use in the atomisation of a liquid
WO1989002826A1 (en) Process and device for monitoring droplet ejection from ejection nozzles of ink-printing heads
DE3314609A1 (en) METHOD FOR OPERATING AN ULTRASONIC VIBRATOR FOR LIQUID SPRAYING
AT413867B (en) CAPACITIVE DISCHARGING IGNITION SYSTEM FOR A COMBUSTION ENGINE
DE3216186A1 (en) LASER ARRANGEMENT
DE4244761C2 (en) Level limit switch
DE2444511A1 (en) Flow velocity meter especially for induction gases - is for internal combustion engine and uses sensitive resistor element in bridge circuit
DE602004011669T2 (en) POWER SUPPLY
EP0652362A1 (en) Method and device for reducing the consumption of fossil free-flowing fuels
DE2738558A1 (en) CIRCUIT ARRANGEMENT FOR MEASURING CURRENTS AT HIGH POTENTIAL

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19870826

17Q First examination report despatched

Effective date: 19890714

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 68111

Country of ref document: AT

Date of ref document: 19911015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3681871

Country of ref document: DE

Date of ref document: 19911114

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930827

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930920

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930930

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19931215

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940930

Ref country code: CH

Effective date: 19940930

Ref country code: BE

Effective date: 19940930

EAL Se: european patent in force in sweden

Ref document number: 86112865.0

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19940930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960821

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960912

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960926

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961118

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980603

EUG Se: european patent has lapsed

Ref document number: 86112865.0

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050917