EP0218741A1 - Procédé pour la préparation d'un concentré crypton-xénon et un produit gazeux d'oxygène - Google Patents

Procédé pour la préparation d'un concentré crypton-xénon et un produit gazeux d'oxygène Download PDF

Info

Publication number
EP0218741A1
EP0218741A1 EP85113014A EP85113014A EP0218741A1 EP 0218741 A1 EP0218741 A1 EP 0218741A1 EP 85113014 A EP85113014 A EP 85113014A EP 85113014 A EP85113014 A EP 85113014A EP 0218741 A1 EP0218741 A1 EP 0218741A1
Authority
EP
European Patent Office
Prior art keywords
liquid
krypton
vapor
column
xenon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85113014A
Other languages
German (de)
English (en)
Other versions
EP0218741B1 (fr
Inventor
Harry Cheung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Carbide Corp
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8193826&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0218741(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US06/641,280 priority Critical patent/US4568528A/en
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Priority to AT85113014T priority patent/ATE48691T1/de
Priority to DE8585113014T priority patent/DE3574770D1/de
Priority to EP85113014A priority patent/EP0218741B1/fr
Publication of EP0218741A1 publication Critical patent/EP0218741A1/fr
Application granted granted Critical
Publication of EP0218741B1 publication Critical patent/EP0218741B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04745Krypton and/or Xenon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/34Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/94Details relating to the withdrawal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams

Definitions

  • This invention relates to the production of a krypton-xenon concentrate and is an improvement whereby the krypton-xenon concentrate is produced at high efficiency and a gaseous oxygen product substantially free of rare gases is also produced.
  • Krypton and xenon are undergoing increasing demand in a number of applications.
  • Krypton is being widely used in high quality lighting including long-life light bulbs and automotive lamps.
  • Xenon is being used for medical applications including special x-ray equipment. Both of these gases are commonly used in many laboratory and research applications.
  • krypton and xenon The principle source of krypton and xenon is the atmosphere. Atmospheric air contains about 1.1 ppm (parts per million) of krypton and about 0.08 ppm of xenon. Generally, krypton and xenon are recovered from the air in conjunction with a comprehensive air separation process which separates air into oxygen and nitrogen.
  • a process for the production of a krypton-xenon concentrate and the recovery of a gaseous product substantially free of rare gases comprising:
  • rare gas means krypton and xenon.
  • the terms “lean”, “leaner”, “rich” and “richer”, refer to the concentration of rare gases, unless specifically indicated otherwise.
  • heating zone means a heat exchange zone where entering liquid is indirectly heated and thereby partially vaporized to produce gas and remaining liquid. The remaining liquid is thereby enriched in the less volatile components present in the entering liquid.
  • directly heat exchange means the bringing of two fluid streams into heat exchange relation without any physical contact or intermixing of the fluids with each other.
  • the term "equilibrium stage” means a vapor-liquid contacting stage whereby the vapor and liquid leaving that stage are in mass transfer equilibrium.
  • an equilibrium stage would correspond to a theoretical tray or plate.
  • an equilibrium stage would correspond to that height of column packing equivalent to one theoretical plate.
  • An actual contacting stage i.e. trays, plates, or packing, would have a correspondence to an equilibrium stage dependent on its mass transfer efficiency.
  • the term "column” means a distillation or fractionation column, i.e., a contacting column or zone wherein liquid and vapor phases are countercurrently contacted to effect separation of a fluid mixture, as for example, by contacting of the vapor and liquid phases on a series of vertically spaced trays or plates mounted within the column or alternatively, on packing elements with which the column is filled.
  • a distillation or fractionation column i.e., a contacting column or zone wherein liquid and vapor phases are countercurrently contacted to effect separation of a fluid mixture, as for example, by contacting of the vapor and liquid phases on a series of vertically spaced trays or plates mounted within the column or alternatively, on packing elements with which the column is filled.
  • double column is used herein to mean a high pressure column having its upper end in heat exchange relation with the lower end of a low pressure column.
  • Figure 1 is a schematic flow diagram of one preferred embodiment of the process of this invention.
  • the schematic representation of Figure 1 is particularly preferred in that it illustrates a case where the feed to the krypton-xenon concentration process comes from a double-column air separation plant and the feed is taken from the air separation plant so as to have an increased krypton-xenon concentration over that which would conventionally be attained in oxygen.
  • cooled pressurized feed air 12 which has been cleaned of high boiling impurities such as carbon dioxide and water vapor, is introduced into higher pressure column 19, operating at a pressure in the range of from 75 to 300 pounds per square inches absolute (psia), preferably from 75 to 150 psia.
  • psia pounds per square inches absolute
  • Liquid 20 is expanded through valve 21 and introduced as feed 22 into lower pressure column 17 which is operating at a pressure in the range of from 15 to 100 psia, preferably from 15 to 30 psia.
  • Nitrogen-rich vapor 23 is passed 24 to condenser 18 wherein it is condensed by indirect heat exchange with reboiling liquid from the bottom of lower pressure column 17.
  • the resulting condensed nitrogen-rich stream 60 is divided into stream 26 which is expanded through valve 30 and passed as stream 31 into column 17 as liquid reflux, and into stream 27 which is passed into column 19 as liquid reflux.
  • Figure 1 also illustrates low pressure feed air stream 13 to column 17 which may be available from the warm end of the air separation process as obtained from development of plant refrigeration.
  • column 17 the various input streams are separated by cryogenic rectification to produce nitrogen stream 14 and oxygen product.
  • the nitrogen stream 14 may be recovered in whole or in part, or may be released to the atmosphere.
  • Figure 1 illustrates a particularly preferred embodiment wherein the krypton and xenon in the oxygen are further concentrated in a liquid oxygen portion enabling the recovery of a major portion of the oxygen as gaseous oxygen product, relatively free of rare gases, directly from column 17. This is accomplished by removing gaseous oxygen from column 17 as stream 37 above at least 1 and preferably at least 2 equilibrium stages or actual trays above the sump of column 17 wherein bottoms are reboiled against condensing nitrogen in condenser 18.
  • tray 32 is the bottom tray
  • tray 33 is the next higher tray
  • tray 34 is the third tray in this order.
  • oxygen product stream 37 is taken from between trays 33 and 34. In this way, because krypton and xenon both have lower vapor pressures than oxygen, the bulk of the krypton and xenon remains in liquid oxygen and is carried down into the sump, leaving stream 37 relatively free of rare gases.
  • the major portion of the krypton and xenon in the feed air is contained in the liquid in the sump of column 17.
  • This liquid is an ideal source of a feed to the krypton-xenon concentration process of this invention.
  • liquid stream 36 containing oxygen, krypton and xenon is provided to reboiling zone 44 to form reboiling liquid 61.
  • Reboiling zone 44 may be separate from or may be within stripping column 38.
  • the concentration of krypton and xenon in the feed liquid such as stream 36 may be any effective concentration, but, in general, the concentration of krypton will be at least 10 ppm and preferably at least 20 ppm, and the concentration of xenon will be at least 1 ppm, preferably at least 2 ppm, in the liquid feed stream.
  • the liquid 61 is partially vaporized to produce a vapor, which has a lower rare gas content than the remaining liquid.
  • the vapor 41 is passed to stripping column 38 for upflow through the column.
  • the remaining liquid with its relatively high krypton and xenon content is withdrawn as the liquid concentrate product 16 containing the rare gases.
  • the krypton concentration in concentrate 16 is at least 200 ppm and preferably is at least 400 ppm
  • the xenon concentration in concentrate 16 is at least 15 ppm and preferably is at least 30 ppm.
  • Figure 1 illustrates a particularly preferred embodiment wherein high pressure nitrogen-rich vapor from an associated double-column air separation plant is employed to carry out the partial vaporization in the reboiling zone.
  • a portion 25 of nitrogen-rich vapor 23 is passed to reboiler condenser 43 wherein it is condensed by indirect heat exchange with partially vaporizing reboiling liquid 61.
  • the resulting condensed nitrogen stream 28 is passed to column 19 as liquid reflux.
  • stream 28 may be combined with liquid nitrogen from main condenser 18 to form combined stream 29 for passage into column 19.
  • Stripping column 38 operates at a pressure within the range of from 15 to 100 psia, preferably from 15 to 30 psia, and serves to strip a significant portion, and preferably substantially all, of the krypton and xenon in vapor 41 into downflowing liquid.
  • the entering downflowing stripping liquid must have a krypton-xenon concentration less than that of vapor 41 and preferably the krypton-xenon concentration in this reflux liquid when it enters the column is less than about 3 ppm.
  • a convenient source for the reflux or stripping liquid is the double column air separation plant.
  • Figure 1 illustrates a particularly preferred embodiment wherein a liquid stream 35 is taken from above the point where gaseous oxygen product stream 37 is taken. In this way the liquid stream 35 has the low krypton-xenon concentration.
  • FIG. 1 illustrates a convenient arrangement wherein richer liquid 39 is combined with feed liquid 36 to form liquid 40 and this combined liquid is passed to reboiling zone 44 to form reboiling liquid 61.
  • FIG. 1 illustrates a convenient arrangement wherein lean vapor 42 is combined with gaseous oxygen product 37 from the air separation process and the resulting combined stream 15 is recovered as gaseous oxygen product.
  • the stripping column By passing the feed to the krypton-xenon concentration process directly to the reboiling zone rather than to the stripping column, and by carrying out the stripping process in the defined manner of this invention wherein only the vapor from the reboiling zone is passed through the stripping column, one is able to produce a krypton-xenon concentrate and a gaseous rare gas-free oxygen product employing a stripping column of considerably smaller size than is required for conventional krypton-xenon concentration processes.
  • the liquid feeds to the stripping column i.e. streams 35 and 36, will be about 20 percent of the oxygen product 15 from the plant. Accordingly, the stripping column then handles vapor flow 42 which is about one-fifth that of the conventional rare gas recovery process and thereby requires about one-fifth the cross-sectional flow area of the conventional flow area of a conventional oxygen gas stripping column.
  • the greater part of the oxygen from the air separation plant bypasses the krypton-xenon process entirely thus reducing markedly the throughput and thus the size requirements of the stripping column.
  • the liquid stream to the reboiling zone contains from about 5 to 40 percent of the oxygen from the air separation plant, and preferably about 20 percent.
  • Another advantage is that the majority of the oxygen gas 37 is maintained at the pressure level of low pressure column 17.
  • the portion of the oxygen product 42 that must be processed in the stripping column can be returned at equivalent pressure by operating the stripping column at a slightly higher pressure level to compensate for the column pressure drops.
  • the higher pressure level can be easily obtained by reducing the elevation of the stripping column and utilizing the hydrostatic liquid height for the two liquid feeds.
  • a further advantage of this process is that the liquid draw from the lower pressure column sump serves to avoid buildup of hydrocarbons in that column.
  • the process of this invention effectively produces a krypton-xenon concentrate and substantially rare gas-free gaseous oxygen while requiring only a small flowrate for the feed to the concentration process. This significantly reduces both the capital and operating costs of the concentration process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
EP85113014A 1984-08-16 1985-10-14 Procédé pour la préparation d'un concentré crypton-xénon et un produit gazeux d'oxygène Expired EP0218741B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US06/641,280 US4568528A (en) 1984-08-16 1984-08-16 Process to produce a krypton-xenon concentrate and a gaseous oxygen product
AT85113014T ATE48691T1 (de) 1985-10-14 1985-10-14 Verfahren zur gewinnung eines kryptonxenonkonzentrats und ein gasfoermiges sauerstoffprodukt.
DE8585113014T DE3574770D1 (de) 1985-10-14 1985-10-14 Verfahren zur gewinnung eines krypton-xenonkonzentrats und ein gasfoermiges sauerstoffprodukt.
EP85113014A EP0218741B1 (fr) 1985-10-14 1985-10-14 Procédé pour la préparation d'un concentré crypton-xénon et un produit gazeux d'oxygène

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP85113014A EP0218741B1 (fr) 1985-10-14 1985-10-14 Procédé pour la préparation d'un concentré crypton-xénon et un produit gazeux d'oxygène

Publications (2)

Publication Number Publication Date
EP0218741A1 true EP0218741A1 (fr) 1987-04-22
EP0218741B1 EP0218741B1 (fr) 1989-12-13

Family

ID=8193826

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85113014A Expired EP0218741B1 (fr) 1984-08-16 1985-10-14 Procédé pour la préparation d'un concentré crypton-xénon et un produit gazeux d'oxygène

Country Status (3)

Country Link
EP (1) EP0218741B1 (fr)
AT (1) ATE48691T1 (fr)
DE (1) DE3574770D1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2690711A1 (fr) * 1992-04-29 1993-11-05 Air Liquide Procédé de mise en Óoeuvre d'un groupe turbine à gaz et ensemble combiné de production d'énergie et d'au moins un gaz de l'air.
DE4332870C2 (de) * 1993-09-27 2003-02-20 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Krypton-/Xenon-Konzentrats durch Tieftemperaturzerlegung von Luft
CN102721262A (zh) * 2012-07-04 2012-10-10 开封空分集团有限公司 粗氪氙的提取装置及利用该装置提取粗氪氙的工艺
WO2010019308A3 (fr) * 2008-08-14 2013-11-21 Praxair Technology, Inc. Procédé de récupération de krypton et de xénon
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006036749B3 (de) * 2006-08-05 2007-09-06 Messer Group Gmbh Verfahren und Vorrichtung zur Gewinnung von Edelgasen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1189975A (en) * 1968-03-15 1970-04-29 Messer Griesheim Gmbh Process for Obtaining a Krypton-Xenon Mixture from Air
FR2113843A3 (fr) * 1970-11-10 1972-06-30 Messer Griesheim Gmbh
US4384876A (en) * 1980-08-29 1983-05-24 Nippon Sanso K.K. Process for producing krypton and Xenon
US4401448A (en) * 1982-05-24 1983-08-30 Union Carbide Corporation Air separation process for the production of krypton and xenon
US4421536A (en) * 1980-08-29 1983-12-20 Nippon Sanso K.K. Process for producing krypton and xenon

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1367625A (en) * 1970-11-27 1974-09-18 British Oxygen Co Ltd Air separation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1189975A (en) * 1968-03-15 1970-04-29 Messer Griesheim Gmbh Process for Obtaining a Krypton-Xenon Mixture from Air
FR2113843A3 (fr) * 1970-11-10 1972-06-30 Messer Griesheim Gmbh
US4384876A (en) * 1980-08-29 1983-05-24 Nippon Sanso K.K. Process for producing krypton and Xenon
US4421536A (en) * 1980-08-29 1983-12-20 Nippon Sanso K.K. Process for producing krypton and xenon
US4401448A (en) * 1982-05-24 1983-08-30 Union Carbide Corporation Air separation process for the production of krypton and xenon

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2690711A1 (fr) * 1992-04-29 1993-11-05 Air Liquide Procédé de mise en Óoeuvre d'un groupe turbine à gaz et ensemble combiné de production d'énergie et d'au moins un gaz de l'air.
US5386686A (en) * 1992-04-29 1995-02-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for the operation of a gas turbine group and the production of at least one air gas
DE4332870C2 (de) * 1993-09-27 2003-02-20 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Krypton-/Xenon-Konzentrats durch Tieftemperaturzerlegung von Luft
WO2010019308A3 (fr) * 2008-08-14 2013-11-21 Praxair Technology, Inc. Procédé de récupération de krypton et de xénon
CN102721262A (zh) * 2012-07-04 2012-10-10 开封空分集团有限公司 粗氪氙的提取装置及利用该装置提取粗氪氙的工艺
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage

Also Published As

Publication number Publication date
ATE48691T1 (de) 1989-12-15
DE3574770D1 (de) 1990-01-18
EP0218741B1 (fr) 1989-12-13

Similar Documents

Publication Publication Date Title
EP0173168B1 (fr) Procédé pour la production d'oxygène de très haute pureté
EP0674144B1 (fr) Procédé de rectification cryogénique pour la production de l'azote à pression élevée
US4568528A (en) Process to produce a krypton-xenon concentrate and a gaseous oxygen product
EP0183446A2 (fr) Production d'azote
US4838913A (en) Double column air separation process with hybrid upper column
EP0558082A1 (fr) Procédé de rectification cryogénique en utilisant une pompe de chaleur d'argon
US5678427A (en) Cryogenic rectification system for producing low purity oxygen and high purity nitrogen
US4574006A (en) Process to produce a krypton-xenon concentrate from a liquid feed
US4902321A (en) Cryogenic rectification process for producing ultra high purity nitrogen
EP0222026B1 (fr) Procédé de préparation d'un concentré crypton-xénon exempt d'oxygène
US5669236A (en) Cryogenic rectification system for producing low purity oxygen and high purity oxygen
EP1156291A1 (fr) Système de séparation d'air cryogénique avec recyclage de bouilloire fractionée
EP0563800B2 (fr) Procédé de rectification cryogénique à récupération élevée
US5918482A (en) Cryogenic rectification system for producing ultra-high purity nitrogen and ultra-high purity oxygen
US5682766A (en) Cryogenic rectification system for producing lower purity oxygen and higher purity oxygen
US5836174A (en) Cryogenic rectification system for producing multi-purity oxygen
EP0218741B1 (fr) Procédé pour la préparation d'un concentré crypton-xénon et un produit gazeux d'oxygène
US5596886A (en) Cryogenic rectification system for producing gaseous oxygen and high purity nitrogen
US6378333B1 (en) Cryogenic system for producing xenon employing a xenon concentrator column
US5682765A (en) Cryogenic rectification system for producing argon and lower purity oxygen
EP0218740B1 (fr) Procédé de préparation d'un concentré crypton-xénon à partir d'une charge liquide
EP0202843B1 (fr) Procédé et dispositif de séparation d'air
US5873264A (en) Cryogenic rectification system with intermediate third column reboil
KR19990023921A (ko) 질소를 생성시키기 위한 이중 칼럼 극저온 정류 시스템
JPS62102075A (ja) クリプトン−キセノン濃縮物及びガス状酸素生成物の製造法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870509

17Q First examination report despatched

Effective date: 19880212

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 48691

Country of ref document: AT

Date of ref document: 19891215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3574770

Country of ref document: DE

Date of ref document: 19900118

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19901025

Year of fee payment: 6

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT, WIESBADEN

Effective date: 19900903

NLR1 Nl: opposition has been filed with the epo

Opponent name: LINDE AG.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910919

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910923

Year of fee payment: 7

Ref country code: GB

Payment date: 19910923

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19910924

Year of fee payment: 7

Ref country code: FR

Payment date: 19910924

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19911011

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19911024

Year of fee payment: 7

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19911031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19911031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19911031

Year of fee payment: 7

EPTA Lu: last paid annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921014

Ref country code: AT

Effective date: 19921014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF REVOCATION BY EPO

Effective date: 19921031

Ref country code: BE

Effective date: 19921031

BERE Be: lapsed

Owner name: UNION CARBIDE CORP.

Effective date: 19921031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921014

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

RDAC Information related to revocation of patent modified

Free format text: ORIGINAL CODE: 0009299REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19940513

R27W Patent revoked (corrected)

Effective date: 19940513

EUG Se: european patent has lapsed

Ref document number: 85113014.6

Effective date: 19930510

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO