EP0212739A1 - Air-air heat exchanger with heat pipes - Google Patents

Air-air heat exchanger with heat pipes Download PDF

Info

Publication number
EP0212739A1
EP0212739A1 EP86201369A EP86201369A EP0212739A1 EP 0212739 A1 EP0212739 A1 EP 0212739A1 EP 86201369 A EP86201369 A EP 86201369A EP 86201369 A EP86201369 A EP 86201369A EP 0212739 A1 EP0212739 A1 EP 0212739A1
Authority
EP
European Patent Office
Prior art keywords
heat
heat exchanger
pipes
air
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP86201369A
Other languages
German (de)
French (fr)
Inventor
Reinhard Dr. Rer. Nat Kersten
Klaus Ing. Grad. Klinkenberg
Heinz Körver
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Corporate Intellectual Property GmbH
Philips Patentverwaltung GmbH
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Corporate Intellectual Property GmbH, Philips Patentverwaltung GmbH, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Philips Corporate Intellectual Property GmbH
Publication of EP0212739A1 publication Critical patent/EP0212739A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Definitions

  • the invention relates to an air-to-air heat exchanger consisting of several rows of individual heat pipes which are in thermal contact with metallic transverse fins and a central separating plate which extends parallel to the transverse fins and divides the heat exchanger into two halves, of which the warm air flows through the lower one and cold air flows through the upper one.
  • the lower part with the evaporator zones of the heat pipes is often exposed to the exhaust air from a room, while fresh air is passed through the upper half with the condenser zones of the heat pipes from the outside.
  • the warm exhaust air evaporates the heat pipe liquid in the evaporator zone of the heat pipes, which condenses in the condenser zone.
  • the liquid is returned by gravity, i.e. the liquid runs back along the inner wall of the heat pipe into the evaporator zone.
  • the temperature difference between the two heat exchanger halves is relatively small and can e.g. be only a few degrees Kelvin during the transition period.
  • the heat pipes are either designed as finned pipes (GEA air cooler company Happel, Bochum, West Germany) or as meandering corrugated pipes (cable and metal works of Gutehoffnungshne AG, Hanover, West Germany). In both cases, the heat transfer between the heat pipes and the air flowing past them is relatively low.
  • the invention has for its object to provide an air-to-air heat exchanger with individual heat pipes with gravity-driven return transport of the liquid from the condenser to the evaporator, which has a uniform distribution of the liquid and a uniform wetting of the evaporator zones in all heat pipes.
  • the lower compensating pipe is used to evenly distribute the liquid in a row of pipes.
  • a pressure equalization between the heat pipes of a row is produced by the upper compensating pipe, which prevents dry running or the overfilling of individual heat pipes of a row of pipes; This can happen if the individual heat pipes are acted upon differently, either on the evaporator or condenser side.
  • the helical wire coil causes a uniform wetting of the inner walls of the heat pipe both in the longitudinal direction and by capillary action Circumferential direction of the heat pipes. In this way, optimal heat transfer between the evaporator zones and the condenser zones of the individual heat pipes is achieved.
  • the slope of the wire helix preferably decreases toward the lower compensating tube. This has the advantage that the start-up of the tube, i.e. the beginning of the evaporation, is accelerated by the increased evaporation area.
  • the wire helix expediently extends into the lower compensating tube. This prevents individual evaporator zones from drying out at unequal temperatures.
  • the heat pipe liquid located in the lower compensating pipe protrudes into the evaporator zone of the heat pipes to a height of approximately the inner diameter of the heat pipe. It is hereby achieved that the warmer evaporator is filled with a sufficient amount of liquid to start up even when the lower compensating tube is colder.
  • the air-air heat exchanger according to FIG. 1 consists of several rows 1 of individual heat pipes 2, which are in thermal contact with metallic transverse fins 3.
  • Partition plate 4 divides the heat exchanger into an upper and lower half 5 and 6. With 7 and 8, an upper and a lower cover plate of the heat exchanger are designated.
  • the transverse lamellae 3 consist, for example, of thin perforated aluminum sheets, which are provided with an upright collar 9 along each hole edge by deep drawing.
  • the individual transverse fins 3 are pushed onto the heat pipes 2. Then the heat pipes are expanded under high pressure so that they lie against the collar 9 of the transverse fins 3. In this way, a good heat-conducting connection between the heat pipes 2 and the transverse fins 3 is achieved.
  • the lower half 6 of the heat exchanger with the evaporator zones 2b of the heat pipes 2 is acted upon by a hot air flow, while the upper half 5 of the heat exchanger with the condenser zones 2a of the heat pipes 2 is flowed through by a cold air flow.
  • the heat pipes 2 of each pipe row 1 are connected to each other by a lower compensating pipe 10 and an upper compensating pipe 11.
  • a lower compensating pipe 10 and an upper compensating pipe 11 To fill the heat pipes with the heat-transporting liquid, only the structure consisting of a row of pipes and the compensating pipes needs to be evacuated, filled and closed through an opening.
  • the height up to which the individual rows of tubes 1 are filled with liquid is indicated by h in FIG.
  • each heat pipe 2 which extends over the lower half 6 of the heat exchanger, a helical wire helix 12 or 13, tightly fitting against the inner wall of the heat pipe, is introduced, from which the wire helix 13 extends into the lower compensating tube 10.
  • the wire diameter of the wire coils 12 and 13 is between 0.01 and 0.1 and the slope of the Wire coils between 0.3 and 1 of the inner diameter of the heat pipes 2.
  • the wire coil 12 has a uniform slope, while the slope of the wire coil 13 decreases towards the lower compensating tube 10.
  • the heat pipes consisted of copper tubes with an outer diameter of 10 mm and an inner diameter of 8 mm.
  • the wire coils 12 and 13 had a wire diameter of 0.3 mm; the uniform pitch of the wire coil 12 was 5 mm.
  • one or two adjacent transverse fins can also be used to separate the two heat exchanger halves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

In this heat exchanger, consisting of several rows (1) of individual heat pipes (2) which are in thermal contact with metallic cross laminations (3) and a central separating plate (4) extending parallel to the cross laminations (3) which divides the heat exchanger into two halves (5, 6), through the lower one (6) of which hot air flows and through the upper one (5) of which cold air flows, the heat pipes (2) of each row of pipes (1) are connected to one another by a lower and an upper compensating pipe (10 and 11 respectively) and a helical wire helix (12 and 13) closely resting against the inside wall of the heat pipe is inserted into the vaporizer zone (2b) of each heat pipe (2), which extends over the lower half (6) of the heat exchanger, the wire diameter of which helix is between 0.01 and 0.15 of the inside diameter of the heat pipe (2) and the pitch of which is at least three times the wire diameter. <IMAGE>

Description

Die Erfindung bezieht sich auf einen Luft-Luft-Wärmeaustauscher, bestehend aus mehreren Reihen einzelner Wärmerohre, die mit metallischen Querlamellen in Wärmekontakt stehen, und einer mittigen, sich parallel zu den Querlamellen erstreckenden Trennplatte, welche den Wärmeaustauscher in zwei Hälften teilt, von denen die untere von Warmluft und die obere von Kaltluft durchflossen wird.The invention relates to an air-to-air heat exchanger consisting of several rows of individual heat pipes which are in thermal contact with metallic transverse fins and a central separating plate which extends parallel to the transverse fins and divides the heat exchanger into two halves, of which the warm air flows through the lower one and cold air flows through the upper one.

Bei derartigen Wärmeaustauschern wird der untere Teil mit den Verdampferzonen der Wärmerohre oftmals mit der Abluft eines Raumes beaufschlagt, während durch ihre obere Hälfte mit den Kondensatorzonen der Wärmerohre Frischluft von außen hindurchgeleitet wird. Durch die warme Abluft wird in der Verdampferzone der Wärmerohre die Wärmerohrflüssigkeit verdampft, welche in der Kondensatorzone kondensiert. Der Rücktransport der Flüssigkeit erfolgt bei derartigen Wärmeaustauschern durchweg mittels Schwerkraft, d.h. die Flüssigkeit läuft entlang der Wärmerohrinnenwand in die Verdampferzone zurück. Der Temperaturunterschied zwischen den beiden Wärmeaustauscherhälften ist relativ gering und kann z.B. während der Übergangszeit nur einige Grad Kelvin betragen.In such heat exchangers, the lower part with the evaporator zones of the heat pipes is often exposed to the exhaust air from a room, while fresh air is passed through the upper half with the condenser zones of the heat pipes from the outside. The warm exhaust air evaporates the heat pipe liquid in the evaporator zone of the heat pipes, which condenses in the condenser zone. In the case of such heat exchangers, the liquid is returned by gravity, i.e. the liquid runs back along the inner wall of the heat pipe into the evaporator zone. The temperature difference between the two heat exchanger halves is relatively small and can e.g. be only a few degrees Kelvin during the transition period.

Bei im Handel befindlichen Wärmeaustauschern dieser Art sind die Wärmerohre entweder als Rippenrohre (GEA-Luftkühlergesellschaft Happel, Bochum, West-Germany) ausgebildet oder als meanderförmig gebogene Wellrohre (Kabel- und Metallwerke der Gutehoffnungshütte AG, Hannover, West-Germany). In beiden Fällen ist die Wärmeübertragung zwischen den Wärmerohren und der an ihnen vorbeifließenden Luft relativ gering.In commercially available heat exchangers of this type, the heat pipes are either designed as finned pipes (GEA air cooler company Happel, Bochum, West Germany) or as meandering corrugated pipes (cable and metal works of Gutehoffnungshütte AG, Hanover, West Germany). In both cases, the heat transfer between the heat pipes and the air flowing past them is relatively low.

Bei einem anderen ebenfalls im Handel erhältlichen Wärmeaustauscher der Firma SF-Lufttechnik GmbH, Butzbach, West-Germany, sind die einzelnen Wärmerohre zwar durch metallische Querlamellen miteinander verbunden, jedoch müssen bei der Fertigung die Wärmerohre einzeln an einem Ende verschlossen, dann evakuiert, mit einer Flüssigkeit gefüllt und wiederum am anderen Ende verschlossen werden. Dies ist ein aufwendiges und teures Verfahren. Da in einem Wärmeaustauscher mit einzelnen Wärmerohren nicht alle Wärmerohre in ihren Verdampfer- bzw. Kondensatorzonen überall gleiche Temperaturen annehmen, besteht die Gefahr, daß Verdampferzonen einzelner Wärmerohre trocken laufen, so daß sich keine optimale Wärmeübertragung zwischen Verdampferzone und Kondensatorzone des Wärmeaustauschers erreichen läßt.In another heat exchanger from SF-Lufttechnik GmbH, Butzbach, West Germany, which is also commercially available, the individual heat pipes are connected to one another by metallic transverse fins, but during manufacture the heat pipes must be closed individually at one end, then evacuated, with one Liquid filled and sealed again at the other end. This is a complex and expensive process. Since in a heat exchanger with individual heat pipes not all heat pipes assume the same temperatures everywhere in their evaporator or condenser zones, there is a risk that evaporator zones of individual heat pipes run dry, so that optimal heat transfer between the evaporator zone and the condenser zone of the heat exchanger cannot be achieved.

Aus dem DE-GM 75 30 172 ist eine Wärmerohranordnung mit mehreren nebeneinander liegenden Wärmerohren bekannt, bei der die Wärmerohre durch untere und obere Sammelkanäle miteinander verbunden sind. Diese Wärmerohranordnung ist nach dem Rollbond-Verfahren als plattenförmiges Bauteil mit mehreren Wärmerohrkanälen hergestellt. Mit derartigen plattenförmigen Wärmerohranordnungen lassen sich Luft-Luft-Wärmeaustauscher praktisch nicht herstellen.From DE-GM 75 30 172 a heat pipe arrangement with several adjacent heat pipes is known, in which the heat pipes are connected to one another by lower and upper collecting channels. This heat pipe arrangement is manufactured according to the Rollbond process as a plate-shaped component with several heat pipe channels. With such plate-shaped heat pipe arrangements, air-air heat exchangers can practically not be manufactured.

Aus den DE-PS 21 04 183 und 22 52 292 sind Wärmerohre bekannt, in die ein- oder mehrlagige schraubenförmige Drahtwendel eingebracht sind, deren einzelne Windungen relativ eng aneinander liegen. Die eng gewickelte Drahtwendel erzeugt eine Kapillarstruktur zum Rücktransport der kondensierten Flüssigkeit vom Wärmerohrkondensator zum Wärmerohrverdampfer. Derartige Kapillarstrukturen sind in den rällen erforderlich, in denen kein Schwerkraftrücktransport der kondensierten Flüssigkeit auftreten kann. Aus diesem Grunde erstreckt sich bei den bekannten Wärmerohren die eingebrachte Drahtwendel auch nicht nur über die Verdampferzone, sondern auch über die Kondensatorzone, d.h. praktisch über die gesamte Länge des Wärmerohres, und behindert damit den Wärmeübergang.From DE-PS 21 04 183 and 22 52 292 heat pipes are known, in which single or multi-layer helical wire helices are introduced, the individual turns of which are relatively close to each other. The tightly wound wire coil creates a capillary structure for the return transport of the condensed liquid from the heat pipe condenser to the heat pipe evaporator. Capillary structures of this type are required in cases where the condensed liquid cannot be returned by gravity. For this reason, the wire coil introduced in the known heat pipes does not only extend over the evaporator zone, but also over the condenser zone, ie practically over the entire length of the heat pipe, and thus hinders the heat transfer.

Der Erfindung liegt die Aufgabe zugrunde, einen Luft-Luft-Wärmeaustauscher mit einzelnen Wärmerohren mit schwerkraftbedingtem Rücktransport der Flüssigkeit vom Kondensator zum Verdampfer zu schaffen, der eine gleichmäßige Verteilung der Flüssigkeit und eine gleichmäßige Benetzung der Verdampferzonen in allen Wärmerohren aufweist.The invention has for its object to provide an air-to-air heat exchanger with individual heat pipes with gravity-driven return transport of the liquid from the condenser to the evaporator, which has a uniform distribution of the liquid and a uniform wetting of the evaporator zones in all heat pipes.

Diese Aufgabe wird bei einem Luft-Luft-Wärmeaustauscher eingangs erwähnter Art gemäß der Erfindung dadurch gelöst, daß die Wärmerohre jeder Rohrreihe durch je ein unteres und ein oberes Ausgleichsrohr miteinander verbunden sind und daß in die sich über die untere Hälfte des Wärmeaustauschers erstreckende Verdampferzone jedes Wärmerohres eine an der Wärmerohrinnenwand eng anliegende schraubenförmige Drahtwendel eingebracht ist, deren Drahtdurchmesser zwischen 0,01 und 0,15 des Innendurchmessers des Wärmerohres liegt und deren Steigung mindestens das Dreifache des Drahtdurchmessers beträgt.This object is achieved in an air-air heat exchanger of the type mentioned according to the invention in that the heat pipes of each row of pipes are connected to each other by a lower and an upper compensating pipe and that in the evaporator zone of each heat pipe extending over the lower half of the heat exchanger a tightly fitting helical wire helix is inserted on the inner wall of the heat pipe, the wire diameter of which is between 0.01 and 0.15 of the inner diameter of the heat pipe and the pitch of which is at least three times the wire diameter.

Das untere Ausgleichsrohr dient zur gleichmäßigen Verteilung der Flüssigkeit in einer Rohrreihe. Durch das obere Ausgleichsrohr wird ein Druckausgleich zwischen den Wärmerohren einer Reihe hergestellt, wodurch das Trockenlaufen oder die Überfüllung einzelner Wärmerohre einer Rohrreihe verhindert wird; dies kann geschehen, wenn die einzelnene Wärmerohre entweder verdampfer-oder kondensatorseitig unterschiedlich beaufschlagt werden. Die schraubenförmige Drahtwendel bewirkt eine gleichmäßige Benetzung der Wärmerohrinnenwände sowohl in Längsrichtung als auch durch Kapillarwirkung in Umfangsrichtung der Wärmerohre. Auf diese Weise wird eine optimale Wärmeübertragung zwischen den Verdampferzonen und den Kondensatorzonen der einzelnen Wärmerohre erreicht.The lower compensating pipe is used to evenly distribute the liquid in a row of pipes. A pressure equalization between the heat pipes of a row is produced by the upper compensating pipe, which prevents dry running or the overfilling of individual heat pipes of a row of pipes; This can happen if the individual heat pipes are acted upon differently, either on the evaporator or condenser side. The helical wire coil causes a uniform wetting of the inner walls of the heat pipe both in the longitudinal direction and by capillary action Circumferential direction of the heat pipes. In this way, optimal heat transfer between the evaporator zones and the condenser zones of the individual heat pipes is achieved.

Vorzugsweise nimmt die Steigung der Drahtwendel zum unteren Ausgleichsrohr hin ab. Dies hat den Vorteil, daß der Anlauf des Rohres, d.h., der Beginn der Verdampfung, durch die vergrößerte Verdampfungsfläche beschleunigt wird.The slope of the wire helix preferably decreases toward the lower compensating tube. This has the advantage that the start-up of the tube, i.e. the beginning of the evaporation, is accelerated by the increased evaporation area.

Zweckmäßigerweise erstreckt sich die Drahtwendel bis in das untere Ausgleichsrohr hinein. Auf diese Weise wird ein Austrocknen einzelner Verdampferzonen bei ungleicher Temperatur verhindert.The wire helix expediently extends into the lower compensating tube. This prevents individual evaporator zones from drying out at unequal temperatures.

Gemäß einer vorteilhaften Weiterbildung des Wärmeaustauschers nach der Erfindung ragt die sich im unteren Ausgleichsrohr befindende Wärmerohr-Flüssigkeit bis zu einer Höhe von etwa dem Wärmerohrinnendurchmesser in die Verdampferzone der Wärmerohre hinein. Man erreicht hierdurch, daß auch bei kälterem unteren Ausgleichsrohr der wärmere Verdampfer mit zum Anlaufen ausreichender Flüssigkeitsmenge gefüllt ist.According to an advantageous development of the heat exchanger according to the invention, the heat pipe liquid located in the lower compensating pipe protrudes into the evaporator zone of the heat pipes to a height of approximately the inner diameter of the heat pipe. It is hereby achieved that the warmer evaporator is filled with a sufficient amount of liquid to start up even when the lower compensating tube is colder.

Ein Ausführungsbeispiel nach der Erfindung wird nunmehr anhand der Zeichnung näher beschrieben. Es zeigen:

  • Fig. 1 einen Luft-Luft-Wärmeaustauscher mit mehren Reihen von Wärmerohren in perspektivischer Darstellung,
  • Fig. 2 einen Schnitt durch einen Teil einer Wärmerohrreihe des Wärmeaustauschers nach Fig. 1.
An embodiment of the invention will now be described with reference to the drawing. Show it:
  • 1 shows an air-air heat exchanger with several rows of heat pipes in a perspective view,
  • FIG. 2 shows a section through part of a row of heat pipes of the heat exchanger according to FIG. 1.

Der Luft-Luft-Wärmeaustauscher nach Fig. 1 besteht aus mehreren Reihen 1 von einzelnen Wärmerohren 2, die mit metallischen Querlamellen 3 in Wärmekontakt stehen. Eine mittige, sich parallel zu den Querlamellen 3 erstreckende Trennplatte 4 teilt den Wärmeaustauscher in eine obere und untere Hälfte 5 bzw. 6. Mit 7 und 8 sind je eine obere und eine untere Abdeckplatte des Wärmeaustauschers bezeichnet. Die Querlamellen 3 bestehen z.B. aus dünnen gelochten Aluminiumblechen, die entlang jedes Lochrandes durch Tiefziehen mit einem aufrechten Kragen 9 versehen sind. Die einzelnen Querlamellen 3 werden auf die Wärmerohre 2 aufgeschoben. Anschließend werden die Wärmerohre unter hohem Druck aufgeweitet, so daß sie sich gegen die Kragen 9 der Querlamellen 3 legen. Auf diese Weise wird eine gut wärmeleitende Verbindung zwischen den Wärmerohren 2 und den Querlamellen 3 erreicht.The air-air heat exchanger according to FIG. 1 consists of several rows 1 of individual heat pipes 2, which are in thermal contact with metallic transverse fins 3. A central, extending parallel to the transverse blades 3 Partition plate 4 divides the heat exchanger into an upper and lower half 5 and 6. With 7 and 8, an upper and a lower cover plate of the heat exchanger are designated. The transverse lamellae 3 consist, for example, of thin perforated aluminum sheets, which are provided with an upright collar 9 along each hole edge by deep drawing. The individual transverse fins 3 are pushed onto the heat pipes 2. Then the heat pipes are expanded under high pressure so that they lie against the collar 9 of the transverse fins 3. In this way, a good heat-conducting connection between the heat pipes 2 and the transverse fins 3 is achieved.

Die untere Hälfte 6 des Wärmeaustauschers mit den Verdampferzonen 2b der Wärmerohre 2 wird von einem Warmluftstrom beaufschlagt, während die obere Hälfte 5 des Wärmeaustauschers mit den Kondensatorzonen 2a der Wärmerohre 2 von einem Kaltluftstrom durchflossen wird.The lower half 6 of the heat exchanger with the evaporator zones 2b of the heat pipes 2 is acted upon by a hot air flow, while the upper half 5 of the heat exchanger with the condenser zones 2a of the heat pipes 2 is flowed through by a cold air flow.

Die Wärmerohre 2 jeder Rohrreihe 1 sind durch je ein unteres Ausgleichsrohr 10 und ein oberes Ausgleichsrohr 11 miteinander verbunden. Zum Füllen der Wärmerohre mit der wärmetransportierenden Flüssigkeit braucht hierbei nur noch das aus einer Rohrreihe und den Ausgleichsrohren bestehende Gebilde durch eine Öffnung hindurch evakuiert, gefüllt und verschlossen zu werden. Die Höhe, bis zu der die einzelnen Rohrreihen 1 mit Flüssigkeit gefüllt sind, ist in Fig. 2 mit h angegeben.The heat pipes 2 of each pipe row 1 are connected to each other by a lower compensating pipe 10 and an upper compensating pipe 11. To fill the heat pipes with the heat-transporting liquid, only the structure consisting of a row of pipes and the compensating pipes needs to be evacuated, filled and closed through an opening. The height up to which the individual rows of tubes 1 are filled with liquid is indicated by h in FIG.

In die sich über die untere Hälfte 6 des Wärmeaustauschers erstreckende Verdampferzone 2b jedes Wärmerohres 2 ist eine an der Wärmerohrinnenwand eng anliegende schraubenförmige Drahtwendel 12 bzw. 13 eingebracht, von denen sich die Drahtwendel 13 bis in das untere Ausgleichsrohr 10 hinein erstreckt. Der Drahtdurchmesser der Drahtwendeln 12 bzw. 13 liegt zwischen 0,01 und 0,1 und die Steigung der Drahtwendeln zwischen 0,3 und 1 des Innendurchmessers der Wärmerohre 2. Die Drahtwendel 12 hat eine gleichmäßige Steigung, während die Steigung der Drahtwendel 13 zum unteren Ausgleichsrohr 10 hin abnimmt.In the evaporator zone 2b of each heat pipe 2, which extends over the lower half 6 of the heat exchanger, a helical wire helix 12 or 13, tightly fitting against the inner wall of the heat pipe, is introduced, from which the wire helix 13 extends into the lower compensating tube 10. The wire diameter of the wire coils 12 and 13 is between 0.01 and 0.1 and the slope of the Wire coils between 0.3 and 1 of the inner diameter of the heat pipes 2. The wire coil 12 has a uniform slope, while the slope of the wire coil 13 decreases towards the lower compensating tube 10.

Bei einem praktischen Ausführungsbeispiel bestanden die Wärmerohre aus Kupferrohren mit einem Außendurchmesser von 10 mm und einem Innendurchmesser von 8 mm. Die Drahtwendeln 12 und 13 hatten einen Drahtdurchmesser von 0,3 mm; die gleichmäßige Steigung der Drahtwendel 12 betrug 5 mm.In a practical embodiment, the heat pipes consisted of copper tubes with an outer diameter of 10 mm and an inner diameter of 8 mm. The wire coils 12 and 13 had a wire diameter of 0.3 mm; the uniform pitch of the wire coil 12 was 5 mm.

Anstelle gesonderter Trennplatten können auch ein oder zwei benachbarte Querlamellen zur Abtrennung der beiden Wärmetauscherhälften dienen.Instead of separate separating plates, one or two adjacent transverse fins can also be used to separate the two heat exchanger halves.

Claims (4)

1. Luft-Luft-Wärmeaustauscher, bestehend aus mehreren Reihen einzelner Wärmerohre, die mit metallischen Querlamellen in Wärmekontakt stehen, und einer mittigen, sich parallel zu den Querlamellen erstreckenden Trennplatte, welche den Wärmeaustauscher in zwei Hälften teilt, von denen die untere von Warmluft und die obere von Kaltluft durchflossen wird,
dadurch gekennzeichnet, daß die Wärmerohre (2) jeder Rohrreihe (1) durch je ein unteres und ein oberes Ausgleichsrohr (10 bzw. 11) miteinander verbunden sind und daß in die sich über die untere Hälfte (6) des Wärmeaustauschers erstreckende Verdampferzone (2b) jedes Wärmerohres (2) eine an der Wärmerohrinnenwand eng anliegende schraubenförmige Drahtwendel (12 bzw. 13) eingebracht ist, deren Drahtdurchmesser zwischen 0,01 und 0,15 des Innendurchmessers des Wärmerohres liegt und deren Steigung mindestens das Dreifache des Drahtdurchmessers beträgt.
1.Air-to-air heat exchanger, consisting of several rows of individual heat pipes which are in thermal contact with metallic transverse fins, and a central separating plate which extends parallel to the transverse fins and divides the heat exchanger into two halves, the lower one of which is heated air and cold air flows through the upper one,
characterized in that the heat pipes (2) of each row of pipes (1) are connected to each other by a lower and an upper compensating pipe (10 or 11) and in that in the evaporator zone (2b) which extends over the lower half (6) of the heat exchanger Each heat pipe (2) has a helical wire helix (12 or 13) tightly fitted to the inner wall of the heat pipe, the wire diameter of which is between 0.01 and 0.15 of the inner diameter of the heat pipe and the pitch of which is at least three times the wire diameter.
2. Wärmeaustauscher nach Anspruch 1,
dadurch gekennzeichnet, daß die Steigung der Drahtwendel (13) zum unteren Ausgleichsrohr (10) hin abnimmt.
2. Heat exchanger according to claim 1,
characterized in that the slope of the wire helix (13) decreases towards the lower compensating tube (10).
3. Wärmeaustauscher nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß sich die Drahtwendel (13) bis in das untere Ausgleichsrohr (10) hinein erstreckt.
3. Heat exchanger according to claim 1 or 2,
characterized in that the wire helix (13) extends into the lower compensating tube (10).
4. Wärmeaustauscher nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die sich im unteren Ausgleichsrohr (10) befindende Wärmerohr-Flüssigkeit bis zu einer Höhe (h) von etwa dem Wärmerohrinnendurchmesser in die Verdampferzone (2b) der Wärmerohre (2) hineinragt.4. Heat exchanger according to one of claims 1 to 3, characterized in that the heat pipe liquid located in the lower compensating tube (10) protrudes up to a height (h) of approximately the inner diameter of the heat pipe into the evaporator zone (2b) of the heat pipes (2) .
EP86201369A 1985-08-28 1986-08-04 Air-air heat exchanger with heat pipes Ceased EP0212739A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3530645 1985-08-28
DE19853530645 DE3530645A1 (en) 1985-08-28 1985-08-28 AIR-AIR HEAT EXCHANGER WITH HEAT PIPES

Publications (1)

Publication Number Publication Date
EP0212739A1 true EP0212739A1 (en) 1987-03-04

Family

ID=6279509

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86201369A Ceased EP0212739A1 (en) 1985-08-28 1986-08-04 Air-air heat exchanger with heat pipes

Country Status (3)

Country Link
EP (1) EP0212739A1 (en)
JP (1) JPS6252396A (en)
DE (1) DE3530645A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044008A3 (en) * 2006-10-12 2009-04-23 Energetix Genlec Ltd A closed cycle heat transfer device and method
US10473408B2 (en) * 2013-07-26 2019-11-12 Hamilton Sundstrand Corporation Heat exchanger with embedded heat pipes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2104183A1 (en) * 1971-01-29 1973-01-18 Univ Stuttgart Vertreten Durch HEAT TRANSFER DEVICE
DE2252292A1 (en) * 1971-11-06 1973-05-10 Philips Nv HEAT TRANSPORT DEVICE
US3823769A (en) * 1972-11-02 1974-07-16 Mc Donnell Douglas Corp Separable heat pipe assembly
DE7530172U (en) * 1975-09-24 1977-01-20 Dornier System Gmbh, 7990 Friedrichshafen Heat pipe
FR2436957A1 (en) * 1978-09-21 1980-04-18 Daimler Benz Ag THERMAL TRANSFER SYSTEM USING THE PRINCIPLE OF THE THERMAL TUBE
US4333520A (en) * 1979-06-04 1982-06-08 Hitachi, Ltd. Heating and cooling ventilating system with heat recovery
US4382466A (en) * 1980-09-01 1983-05-10 Agency Of Industrial Science And Technology Thermosiphon

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2104183A1 (en) * 1971-01-29 1973-01-18 Univ Stuttgart Vertreten Durch HEAT TRANSFER DEVICE
DE2252292A1 (en) * 1971-11-06 1973-05-10 Philips Nv HEAT TRANSPORT DEVICE
US3823769A (en) * 1972-11-02 1974-07-16 Mc Donnell Douglas Corp Separable heat pipe assembly
DE7530172U (en) * 1975-09-24 1977-01-20 Dornier System Gmbh, 7990 Friedrichshafen Heat pipe
FR2436957A1 (en) * 1978-09-21 1980-04-18 Daimler Benz Ag THERMAL TRANSFER SYSTEM USING THE PRINCIPLE OF THE THERMAL TUBE
US4333520A (en) * 1979-06-04 1982-06-08 Hitachi, Ltd. Heating and cooling ventilating system with heat recovery
US4382466A (en) * 1980-09-01 1983-05-10 Agency Of Industrial Science And Technology Thermosiphon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044008A3 (en) * 2006-10-12 2009-04-23 Energetix Genlec Ltd A closed cycle heat transfer device and method
US8141362B2 (en) 2006-10-12 2012-03-27 Energetix Genlec Limited Closed cycle heat transfer device and method
CN101573564B (en) * 2006-10-12 2012-09-19 埃内尔格蒂克斯根列克有限公司 A closed cycle heat transfer device and method
US10473408B2 (en) * 2013-07-26 2019-11-12 Hamilton Sundstrand Corporation Heat exchanger with embedded heat pipes

Also Published As

Publication number Publication date
DE3530645A1 (en) 1987-03-12
JPS6252396A (en) 1987-03-07

Similar Documents

Publication Publication Date Title
DE69209817T2 (en) Evaporator or evaporator / condenser
EP0131270B1 (en) Absorber using a solid for an absorption cycle
DE3856032T2 (en) Heat exchanger with improved condensate collection
DE69624984T2 (en) Heat exchange device with metal band provided with longitudinal holes
DE3650648T2 (en) Condenser with a small hydraulic diameter flow path.
DE69213914T2 (en) Evaporator for liquefied natural gas
DE3122197C2 (en) capacitor
DE69016119T2 (en) Heat pipe.
DE69926600T2 (en) Improved evaporator entry
DE4121534A1 (en) COOLING DEVICE
DE3123602C2 (en) Heat sink for heat generating elements
CH632084A5 (en) DEVICE FOR TRANSPORTING HEATING ENERGY BETWEEN TWO LOCATIONS OF DIFFERENT TEMPERATURE.
DE19623245C2 (en) Heat exchanger
DE2252732C2 (en) Refrigerant evaporator
EP0212739A1 (en) Air-air heat exchanger with heat pipes
DE3324745C1 (en) Solids absorber for a cyclic absorption process
DE3012286A1 (en) HEAT EXCHANGER
DE2615977C2 (en)
DE19802670C2 (en) Heat exchanger
DE3009532C2 (en) Heat exchanger
DE2519803C2 (en) Device for heat exchange
DE2219083C3 (en) Absorption refrigeration system
DE2926578C2 (en) Heat transfer device
EP0209107B1 (en) Heat exchanger with a relieving rod for the heat exchange tubes
DE1451291C3 (en) The heating pipe register crossed by the fluid to be heated up

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19870702

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: PHILIPS PATENTVERWALTUNG GMBH

17Q First examination report despatched

Effective date: 19880115

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19880702

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOERVER, HEINZ

Inventor name: KLINKENBERG, KLAUS, ING. GRAD.

Inventor name: KERSTEN, REINHARD, DR. RER. NAT