EP0211247A2 - Fine-grinding tool for the treatment of metallic, glass or ceramic work pieces - Google Patents

Fine-grinding tool for the treatment of metallic, glass or ceramic work pieces Download PDF

Info

Publication number
EP0211247A2
EP0211247A2 EP86109154A EP86109154A EP0211247A2 EP 0211247 A2 EP0211247 A2 EP 0211247A2 EP 86109154 A EP86109154 A EP 86109154A EP 86109154 A EP86109154 A EP 86109154A EP 0211247 A2 EP0211247 A2 EP 0211247A2
Authority
EP
European Patent Office
Prior art keywords
fine
grinding tool
fine grinding
glass
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86109154A
Other languages
German (de)
French (fr)
Other versions
EP0211247A3 (en
Inventor
Georg Dr.-Ing. Dipl.-Ing. Gliemeroth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno-Keramik GmbH
Original Assignee
Techno-Keramik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno-Keramik GmbH filed Critical Techno-Keramik GmbH
Publication of EP0211247A2 publication Critical patent/EP0211247A2/en
Publication of EP0211247A3 publication Critical patent/EP0211247A3/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/14Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic ceramic, i.e. vitrified bondings
    • B24D3/18Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic ceramic, i.e. vitrified bondings for porous or cellular structure
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes

Definitions

  • the invention relates generically to a fine grinding tool for machining workpieces made of metal, glass or ceramic, consisting of a fine-grained abrasive component with cubic boron nitride and a ceramic binder component, the abrasive component and the binder component being intimately mixed and the tool body by pressing and sintering is made.
  • a grinding fluid is supplied as usual.
  • the binder component ceramic is made from classic ceramic base materials, but not from glass.
  • the ratio of abrasive / ceramic is in the range 1: 2 to 1: 15.
  • the ceramic bond is e.g. B. made of feldspar, kaolin, clay and frit. It requires a burning process at a burning temperature of over 1000 ° C, for. B. of about 1350 ° C, in ceramic furnaces. On the one hand, this is complex and leads to problems if the abrasive component has a large inner surface as a result of fine-grained nature and the boron nitride component is therefore readily oxidized.
  • the cubic boron nitride oxidizes at least partially during a firing process at these temperatures.
  • the latter affects the service life of the fine grinding tools. With a grain size of less than 20 ⁇ m, this effect is very disruptive.
  • glass-forming raw materials SiO 2 , Na 2 O, CaO, A1203, K 2 O, B 2 O 3 and others
  • the binder component here is not sintered from fine-grained glass, but melted.
  • the invention is based on the object of specifying a generic fine grinding tool which can be produced in a simple manner, even with a very fine-grained abrasive component, and which is characterized by a long service life.
  • the binder component consists mainly of fine-grained sintered glass and the fine grinding tool has a pore volume of at least 5% by volume.
  • the abrasive component has a maximum grain size of less than 20 ⁇ m and consists of at least 50% by weight of the cubic boron nitride, the rest of other hard materials.
  • Fine-grain glass also means glass mixtures that are used as a raw material for the fine-grain binder component.
  • the abrasive component preferably consists exclusively of the cubic boron nitride.
  • the abrasive component can have a grain size in the range from less than 20 ⁇ m to 4 ⁇ m, while the binder component consists exclusively of fine-grained glass. However, the abrasive component can also be adjusted so that the maximum grain size of all grains of the abrasive component is less than 4 ⁇ m.
  • the invention is based on the knowledge that in a generic fine grinding tool, the binder component is not made of ceramic in the classic sense with z. B. the composition specified above must exist. Rather, the binder component can consist entirely or mainly of fine-grained glass. In this respect, the invention works from the start with glass, in contrast to the ceramic raw materials of the conventional binders. It goes without saying that the grain size of the binder component and that of the abrasive component must be coordinated with one another. A general rule is that at least part of the binder component should be in significantly larger particles than the abrasive component.
  • the binder grains are e.g. B. five times larger than the abrasive grains, but can also be larger.
  • the sintering temperature for the binder component which is used according to the invention is well below 1000 ° C, preferably the sintering takes place at a temperature of below 830 ° C, e.g. B. at 820 ° C. Since, as stated, glass ceramic is used, a disruptive oxidation of the boron nitride is no longer observed. You can also work with a protective gas atmosphere. Surprisingly, the grains of the abrasive component are held securely in the binder component mainly sintered from glass, despite the low sintering temperature. This applies in particular when the binder component in the temperature range between 20 and 300 ° C.
  • the binder component has a linear thermal expansion coefficient in the specified temperature range that is greater than or equal to the linear thermal expansion coefficient of the composition of the grains of the abrasive component, they are surprisingly securely held, namely mechanically clamped.
  • the pore volume is of particular importance. It should not be less than the above. In the fine grinding tool according to the invention, these pores form chip receiving spaces which receive the fine chips sheared off during the grinding process.
  • the pore volume of the binder component and its linear expansion coefficient can be adapted to different operating conditions. It goes without saying that the operating conditions, including the supply of the grinding liquid, are set so that a disruptive oxidation does not occur even during the grinding process.
  • a preferred embodiment of the invention is characterized in that the fine-grained glass is mixed from two types of glass, one of which has a lower, the other a higher range of weakness. Taking into account the specified grain sizes for the abrasive component, it is advisable to set such that the fine-grain glass with the lower softening range has a grain distribution maximum of less than 20 pm, the fine-grain glass with the higher softening area has a grain distribution maximum of over 50 ⁇ m.
  • the abrasive component can be matched to the binder component in the area initially treated with the prior art.
  • a specification is preferably made, namely in that the abrasive component on the one hand and the binder component on the other hand are approximately equal in weight.
  • the pore volume can be adjusted by the particle size distribution as well as by pressing and sintering, for example in the range from 5 to 65% by volume, preferably in the range from 30 to 50% by volume.
  • Fine grinding tools according to the invention, in which the binder component has a special structure, have proven particularly useful.
  • One embodiment in this context is characterized in that the fine-grained glass of the binder component has a composition in the range of all numbers in parts by weight.
  • the fine-grained glass can additionally contain one or more of the substances contain all numbers in parts by weight. It is essential that before the tools according to the invention are produced from the components, a homogeneous glass and first of all the fine-grained binder component is produced from it, even if it is composed of glass mixtures. Esp. if the binder component is set up as described above, there is the possibility of working with an extremely fine abrasive component, namely one which has a grain size below 4 pm, the binder component containing a fine-grained, crystalline additive, e.g. B. eucryptite, may have up to 10 parts by weight of the binder component.
  • a fine-grained, crystalline additive e.g. B. eucryptite
  • the binder component of the structure described above optionally with one or more additives, preferably has a grain size which is larger by a factor of 2 to 4 than that of the abrasive component. It can easily be achieved that a particle pore volume of about 12% is set by the grain distribution and by pressing or sintering. With a pore volume of less than or equal to 12 vol.%, The linear coefficient of thermal expansion should zient of the binder content in the range between 20 and 300 ° C by at least 2 x 10 -7 per degree Celsius above the average linear coefficient of thermal expansion of the composition of the grains of the abrasive.
  • the linear thermal expansion coefficient of the binder fraction is expediently in the range between 20 and 300 ° C. by at least 2 ⁇ 10-7 per degree Celsius below the average linear thermal expansion coefficient of the composition of the grains of the abrasive fraction.
  • the attached table shows some examples of glasses that are used individually or combined as a starting material for the binder.
  • the glasses are each fused to a homogeneous glass flow of optical quality and, after being formed into disks or any other shaped bodies, cooled to room temperature.
  • the glasses are then crushed separately in the crusher, dry milled in ball mills of a commercial design and then dry classified and sifted into grain fractions. Moisture at any stage in the process degrades the subsequent quality of the binder made from the glass.
  • a sinter press ie. H. with simultaneous application of pressure and temperature.
  • the fine grinding tools produced were tested for ultra-pure grinding on the bearings of a large number of shafts. These rotated in a machine tool at 180 rpm.
  • the bodies used as fine grinding tools also oscillated 700 / min oscillation frequency. With a contact pressure of the ultra-fine grinding bodies against the bearing surfaces of 1.5 bar, a surface roughness Ra of 0.22 ⁇ m resulted after a machining time of 1.9 seconds. Without the downtimes associated with conventional tools for fine grinding, which make up about 20% of the machine time, to adjust the conventional tools, the tools according to the invention were able to process more than 1000 bearing surfaces with the above-mentioned roughness depth result without any interruption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

The tool consists of a fine-grained abrasive component. The abrasive component and the binder component are intimately mixed. The binder component consists mainly of fine-grained glass. The tool body is made by pressing and sintering. The abrasive component has a maximum grain size of less than 20 mu m, and even smaller than 4 mu m, and at least 50% by weight thereof is composed of cubic boron nitride, and the remainder of other sintered materials.

Description

Die Erfindung bezieht sich gattungsgemäß auf ein Feinschleifwerkzeug für die Bearbeitung von Werkstücken aus Metall, Glas oder Keramik, - bestehend aus einer feinkörnigen Schleifmittelkomponente mit kubischem Bornitrid und einer keramischen Bindemittelkomponente, wobei die Schleifmittelkomponente und die Bindemittelkomponente innig gemischt sind und der Werkzeugkörper durch Pressen und Sintern hergestellt ist. - Es versteht sich, daß beim Arbeiten mit einem solchen Feinschleifwerkzeug eine Schleifflüssigkeit wie üblich zugeführt wird.The invention relates generically to a fine grinding tool for machining workpieces made of metal, glass or ceramic, consisting of a fine-grained abrasive component with cubic boron nitride and a ceramic binder component, the abrasive component and the binder component being intimately mixed and the tool body by pressing and sintering is made. - It goes without saying that when working with such a fine grinding tool, a grinding fluid is supplied as usual.

Bei dem (aus der Praxis) bekannten gattungsgemäßen Feinschleifwerkzeug ist die Bindemittelkomponente Keramik aus klassischen keramischen Grundstoffen, aber nicht aus Glas. Das Verhältnis Schleifmittel/ Keramik liegt im Bereich 1 : 2 bis 1 : 15. Die keramische Bindung ist z. B. aus Feldspat, Kaolin, Ton und Fritte aufgebaut. Sie verlangt einen Brennvorgang bei einer Brenntemperatur von über 1000 °C, z. B. von etwa 1350 °C, in keramischen Brennöfen. Das ist einerseits aufwendig und führt zu Problemen, wenn die Schleifmittelkomponente infolge Feinkörnigkeit eine große innere Oberfläche aufweist und dadurch die Bornitridkomponente oxidationsfreudig ist. Das kubische Bornitrid oxidiert bei einem Brennvorgang bei diesen Temperaturen zumindest teilweise. Letzteres beeinträchtigt die Standzeit der Feinschleifwerkzeuge. Bei einer Körnung von kleiner als 20 um ist dieser Effekt sehr störend. Zwar ist es bekannt, als Bindemittelkomponente glasbildende Rohstoffe (Si02, Na20, CaO, A1203, K 20, B203 u. a.) einzusetzen, jedoch ist die Bindemittelkomponente hier nicht aus feinkörnigem Glas gesintert, sondern geschmolzen.In the generic fine grinding tool known from practice, the binder component ceramic is made from classic ceramic base materials, but not from glass. The ratio of abrasive / ceramic is in the range 1: 2 to 1: 15. The ceramic bond is e.g. B. made of feldspar, kaolin, clay and frit. It requires a burning process at a burning temperature of over 1000 ° C, for. B. of about 1350 ° C, in ceramic furnaces. On the one hand, this is complex and leads to problems if the abrasive component has a large inner surface as a result of fine-grained nature and the boron nitride component is therefore readily oxidized. The cubic boron nitride oxidizes at least partially during a firing process at these temperatures. The latter affects the service life of the fine grinding tools. With a grain size of less than 20 μm, this effect is very disruptive. Although it is known to use glass-forming raw materials (SiO 2 , Na 2 O, CaO, A1203, K 2 O, B 2 O 3 and others) as the binder component, the binder component here is not sintered from fine-grained glass, but melted.

Der Erfindung liegt die Aufgabe zugrunde, ein gattungsgemäßes Feinschleifwerkzeug anzugeben, welches auf einfache Weise hergestellt werden kann, und zwar auch mit einer sehr feinkörnigen Schleifmittelkomponente, sowie sich durch eine hohe Standzeit auszeichnet.The invention is based on the object of specifying a generic fine grinding tool which can be produced in a simple manner, even with a very fine-grained abrasive component, and which is characterized by a long service life.

Zur Lösung dieser Aufgabe lehrt die Erfindung, daß die Bindemittelkomponente hauptsächlich aus feinkörnigem zusammengesinterten Glas besteht und das Feinschleifwerkzeug ein Porenvolumen von zumindest 5 Vol.% aufweist. Die Schleifmittelkomponente weist nach bevorzugter Ausführungsform der Erfindung eine maximale Korngröße von kleiner als 20 pm auf und besteht zu mindestens 50 Gew.% aus dem kubischen Bornitrid, im Rest aus anderen Hartstoffen. Feinkörniges Glas meint auch Glasmischungen, die als Rohstoff für die feinkörnige Bindemittelkomponente verwendet werden. Vorzugsweise besteht die Schleifmittelkomponente ausschließlich aus dem kubischen Bornitrid. Dabei kann die Schleifmittelkomponente eine Korngröße im Bereich von kleiner 20 pm bis 4 um aufweisen, während die Bindemittelkomponente ausschließlich aus feinkörnigem Glas besteht. Die Schleifrnittelkomponente kann jedoch auch so eingestellt sein, daß die maximale Korngröße aller Körner der Schleifmittelkomponente kleiner als 4 um ist.To achieve this object, the invention teaches that the binder component consists mainly of fine-grained sintered glass and the fine grinding tool has a pore volume of at least 5% by volume. According to a preferred embodiment of the invention, the abrasive component has a maximum grain size of less than 20 μm and consists of at least 50% by weight of the cubic boron nitride, the rest of other hard materials. Fine-grain glass also means glass mixtures that are used as a raw material for the fine-grain binder component. The abrasive component preferably consists exclusively of the cubic boron nitride. The abrasive component can have a grain size in the range from less than 20 μm to 4 μm, while the binder component consists exclusively of fine-grained glass. However, the abrasive component can also be adjusted so that the maximum grain size of all grains of the abrasive component is less than 4 µm.

Die Erfindung geht von der Erkenntnis aus, daß bei einem gattungsgemäßen Feinschleifwerkzeug die Bindemittelkomponente nicht aus Keramik im klassischen Sinne mit z. B. der eingangs angegebenen Zusammensetzung bestehen muß. Die Bindemittelkomponente kann vielmehr ganz oder hauptsächlich aus feinkörnigem Glas bestehen. Die Erfindung arbeitet insoweit von vornherein mit Glas im Gegensatz zu den keramischen Rohstoffen der konventionellen Bindemittel. Es versteht sich, daß die Körnung der Bindemittelkomponente und die der Schleifmittelkomponente aufeinander abzustimmen sind. Eine allgemeine Regel besagt dazu, daß zumindest ein Teil der Bindemittelkomponente in deutlich größeren Partikeln als die Schleifmittelkomponente vorliegen soll. Die Bindemittelkörner sind z. B. fünfmal größer als die Schleifmittelkörner, können aber auch noch größer sein.The invention is based on the knowledge that in a generic fine grinding tool, the binder component is not made of ceramic in the classic sense with z. B. the composition specified above must exist. Rather, the binder component can consist entirely or mainly of fine-grained glass. In this respect, the invention works from the start with glass, in contrast to the ceramic raw materials of the conventional binders. It goes without saying that the grain size of the binder component and that of the abrasive component must be coordinated with one another. A general rule is that at least part of the binder component should be in significantly larger particles than the abrasive component. The binder grains are e.g. B. five times larger than the abrasive grains, but can also be larger.

Die Sintertemperatur liegt bei der Bindemittelkomponente, mit der erfindungsgemäß gearbeitet wird, weit unter 1000 °C, vorzugsweise erfolgt die Sinterung bei einer Temperatur von unter 830 °C, z. B. bei 820 °C. Da, wie angegeben, mit Glaskeramik gearbeitet wird, wird eine störende Oxidation des Bornitrids nicht mehr beobachtet. Dazu kann auch mit einer Schutzgasatmosphäre gearbeitet werden. Überraschenderweise werden die Körner der Schleifmittelkomponente in der hauptsächlich aus Glas gesinterten Bindemittelkomponente trotz der niedrigen Sintertemperatur sicher festgehalten. Das gilt insbes. dann, wenn die Bindemittelkomponente im Temperaturbereich zwischen 20 und 300 °C einen linearen thermischen Ausdehnungskoeffizienten aufweist, der kleiner oder gleich dem linearen thermischen Ausdehnungskoeffizienten der Zusammensetzung der Körner der Schleifmittelkomponente ist. Eine solche Auslegung führt zwar nicht zu einer Einspannung der einzelnen Körner der Schleifmittelkomponente, jedoch findet eine überraschend gute Bindung statt. Aber auch wenn die vorstehende Bedingung nicht eingehalten ist und die Bindemittelkomponente im angegebenen Temperaturbereich einen linearen thermischen Ausdehnungskoeffizienten aufweist, der größer oder gleich dem linearen thermischen Ausdehnungskoeffizienten der Zusammensetzung der Körner der Schleifmittelkomponente ist, werden diese überraschenderweise sicher festgehalten, nämlich gleichsam mechanisch eingespannt. Von besonderer Bedeutung ist dabei das Porenvolumen. Es soll nicht kleiner sein als oben angegeben. Bei dem erfindungsgemäßen Feinschleifwerkzeug bilden diese Poren Spanaufnahmeräume, die die beim Schleifvorgang abgescherten feinen Späne aufnehmen. Das beeinflußt positiv die Qualität des Schleifvorganges sowie die Standzeit. Das Porenvolumen der Bindemittelkomponente und deren linearer Ausdehnungskoeffizient lassen sich unterschiedlichen Betriebsbedingungen anpassen. Es versteht sich, daß die Betriebsbedingungen, einschließlich der Zuführung der Schleifflüssigkeit, so eingestellt werden, daß auch beim Schleifvorgang eine störende Oxidation nicht auftritt.The sintering temperature for the binder component which is used according to the invention is well below 1000 ° C, preferably the sintering takes place at a temperature of below 830 ° C, e.g. B. at 820 ° C. Since, as stated, glass ceramic is used, a disruptive oxidation of the boron nitride is no longer observed. You can also work with a protective gas atmosphere. Surprisingly, the grains of the abrasive component are held securely in the binder component mainly sintered from glass, despite the low sintering temperature. This applies in particular when the binder component in the temperature range between 20 and 300 ° C. has a linear thermal expansion coefficient which is less than or equal to the linear thermal expansion coefficient of the composition of the grains of the abrasive component. Such a design does not lead to the individual grains of the abrasive component being clamped in, but surprisingly good bonding takes place. But even if the above condition is not met and the binder component has a linear thermal expansion coefficient in the specified temperature range that is greater than or equal to the linear thermal expansion coefficient of the composition of the grains of the abrasive component, they are surprisingly securely held, namely mechanically clamped. The pore volume is of particular importance. It should not be less than the above. In the fine grinding tool according to the invention, these pores form chip receiving spaces which receive the fine chips sheared off during the grinding process. This has a positive influence on the quality of the grinding process and the service life. The pore volume of the binder component and its linear expansion coefficient can be adapted to different operating conditions. It goes without saying that the operating conditions, including the supply of the grinding liquid, are set so that a disruptive oxidation does not occur even during the grinding process.

Im einzelnen bestehen im Rahmen der Erfindung mehrere Möglichkeiten der weiteren Ausbildung und Gestaltung. Eine bevorzugte Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß das feinkörnige Glas aus zwei Glassorten gemischt ist, von denen eine einen niedrigeren, die andere einen höheren Brweichungsbereich aufweist. Unter Berücksichtigung der angegebenen Körnungen für die Schleifmittelkomponente empfiehlt es sich dabei, so einzustellen, daß das feinkörnige Glas mit dem niedrigeren Brweichungsbereich ein Kornverteilungsmaximum von unter 20 pm, das feinkörnige Glas mit dem höheren Erweichungsbereich ein Kornverteilungsmaximum über 50 um aufweist. Grundsätzlich kann im Rahmen der Erfindung die Abstimmung der Schleifmittelkomponente auf die Bindemittelkomponente in dem eingangs zum Stand der Technik behandelten Bereich durchgeführt werden. Vorzugsweise erfolgt jedoch bei erfindungsgemäßen Schleifwerkzeugen eine Spezifizierung, und zwar dahingehend, daß der Schleifmittelanteil einerseits und der Bindemittelanteil andererseits gewichtsmäßig etwa gleich groß sind. Das führt zu Feinschleifwerkzeugen mit besonders großer Standzeit. Das Porenvolumen kann durch die Kornverteilung sowie durch die Pressung und Sinterung eingestellt werden, beispielsweise im Bereich von 5 bis 65 Vol.%, vorzugsweise im Bereich von 30 bis 50 Vol.%. Besonders bewährt haben sich Feinschleifwerkzeuge nach der Erfindung, bei denen die Bindemittelkomponente besonders aufgebaut ist. Eine Ausführungsform ist in diesem Zusammenhang dadurch gekennzeichnet, daß das feinkörnige Glas der Bindemittelkomponente eine Zusammensetzung im Bereich von

Figure imgb0001
alle Zahlen in Gewichtsanteilen, aufweist. Außerdem kann im Rahmen der Erfindung das feinkörnige Glas zusätzlich einen oder mehrere der Stoffe
Figure imgb0002
enthalten alle Zahlen in Gewichtsanteilen. Wesentlich ist, daß vor der erfindungsgemäßen Herstellung der Werkzeuge aus den Komponenten zunächst ein homogenes Glas und daraus die feinkörnige Bindemittelkomponente erzeugt wird, und zwar auch, wenn diese aus Glasmischungen zusammengesetzt ist. Insbes. wenn die Bindemittelkomponente wie vorstehend beschrieben eingerichtet ist, besteht die Möglichkeit, mit einer extrem feinen Schleifmittelkomponente zu arbeiten, nämlich mit einer solchen, die eine Korngröße unter 4 pm besitzt, wobei die Bindemittelkomponente einen feinkörnigen, kristallinen Zusatz, z. B. Eukryptit, von bis zu 10 Gewichtsanteilen der Bindemittelkomponente aufweisen kann. Die Bindemittelkomponente des vorstehend beschriebenen Aufbaus, mit ggf. einem Zusatzstoff oder mehreren Zusatzstoffen, besitzt vorzugsweise eine Korngröße, die um einen Faktor von 2 bis 4 größer ist als die der Schleifmittelkomponente. Ohne weiteres läßt sich erreichen, daß durch die Kornverteilung sowie durch die Pressung oder Sinterung dabei ein Porenvolumen von etwa 12 % eingestellt wird. Bei einem Porenvolumen von kleiner oder gleich 12 Vol.% soll der lineare thermische Ausdehnungskoeffizient des Bindemittelanteils im Bereich zwischen 20 und 300 °C um zumindest 2 x 10-7 pro Grad Celsius über dem mittleren linearen thermischen Ausdehnungskoeffizienten der Zusammensetzung der Körner des Schleifmittels liegen. Bei einem Porenvolumen größer oder gleich 12 Vol.% liegt der lineare thermische Ausdehnungskoeffizient des Bindemittelanteils zweckmäßigerweise im Bereich zwischen 20 und 300 °C um zumindest 2 x 10-7 pro Grad Celsius unter dem mittleren linearen thermischen Ausdehnungskoeffizienten der Zusammensetzung der Körner des Schleifmittelanteils.In particular, there are several possibilities for further training and design within the scope of the invention. A preferred embodiment of the invention is characterized in that the fine-grained glass is mixed from two types of glass, one of which has a lower, the other a higher range of weakness. Taking into account the specified grain sizes for the abrasive component, it is advisable to set such that the fine-grain glass with the lower softening range has a grain distribution maximum of less than 20 pm, the fine-grain glass with the higher softening area has a grain distribution maximum of over 50 μm. In principle, within the scope of the invention, the abrasive component can be matched to the binder component in the area initially treated with the prior art. In the case of grinding tools according to the invention, however, a specification is preferably made, namely in that the abrasive component on the one hand and the binder component on the other hand are approximately equal in weight. This leads to fine grinding tools with a particularly long service life. The pore volume can be adjusted by the particle size distribution as well as by pressing and sintering, for example in the range from 5 to 65% by volume, preferably in the range from 30 to 50% by volume. Fine grinding tools according to the invention, in which the binder component has a special structure, have proven particularly useful. One embodiment in this context is characterized in that the fine-grained glass of the binder component has a composition in the range of
Figure imgb0001
all numbers in parts by weight. In addition, within the scope of the invention, the fine-grained glass can additionally contain one or more of the substances
Figure imgb0002
contain all numbers in parts by weight. It is essential that before the tools according to the invention are produced from the components, a homogeneous glass and first of all the fine-grained binder component is produced from it, even if it is composed of glass mixtures. Esp. if the binder component is set up as described above, there is the possibility of working with an extremely fine abrasive component, namely one which has a grain size below 4 pm, the binder component containing a fine-grained, crystalline additive, e.g. B. eucryptite, may have up to 10 parts by weight of the binder component. The binder component of the structure described above, optionally with one or more additives, preferably has a grain size which is larger by a factor of 2 to 4 than that of the abrasive component. It can easily be achieved that a particle pore volume of about 12% is set by the grain distribution and by pressing or sintering. With a pore volume of less than or equal to 12 vol.%, The linear coefficient of thermal expansion should zient of the binder content in the range between 20 and 300 ° C by at least 2 x 10 -7 per degree Celsius above the average linear coefficient of thermal expansion of the composition of the grains of the abrasive. With a pore volume greater than or equal to 12% by volume, the linear thermal expansion coefficient of the binder fraction is expediently in the range between 20 and 300 ° C. by at least 2 × 10-7 per degree Celsius below the average linear thermal expansion coefficient of the composition of the grains of the abrasive fraction.

Im folgenden werden die Erfindung und die erreichten Vorteile anhand eines Ausführungsbeispiels erläutert.The invention and the advantages achieved are explained below using an exemplary embodiment.

Die beigefügte Tabelle zeigt einige Beispiele von Gläsern, die einzeln oder miteinander kombiniert als Ausgangsmaterial für das Bindemittel verwendet werden. Die Gläser werden jeweils zu einem homogenen Glasfluß optischer Qualität verschmolzen und nach Formung zu Scheiben oder beliebigen anderen Formkörpern abgekühlt auf Raumtemperatur. Anschließend werden die Gläser im Brecher getrennt zerkleinert, in Kugelmühlen handelsüblicher Bauart trocken gemahlen und dann zu Kornfraktionen trocken klassiert und gesichtet. Feuchtigkeit in irgendeinem Stadium des Verfahrens mindert die spätere Qualität des aus dem Glas erzeugten Bindemittels.The attached table shows some examples of glasses that are used individually or combined as a starting material for the binder. The glasses are each fused to a homogeneous glass flow of optical quality and, after being formed into disks or any other shaped bodies, cooled to room temperature. The glasses are then crushed separately in the crusher, dry milled in ball mills of a commercial design and then dry classified and sifted into grain fractions. Moisture at any stage in the process degrades the subsequent quality of the binder made from the glass.

Eine Rohmasse wird anschließend wie folgt hergestellt:

  • Vom Glas der Zusammensetzung 8 obiger Tabelle wird die Kornfraktion 0 bis 5 um verwendet. Von ihr werden 4,77 g in ein Mischgefäß eingewogen. Vom Glas mit der Zusammensetzung 1 wird die Kornfraktion 32 bis 50 um benutzt, von ihr werden 6,61 g in das Mischgefäß zugewogen. Anschließend wird kubisches Bornitrid mit der Korngrößenverteilung zwischen 6 und 12 um in einer Menge von 4,77 g zugewogen. Das Mischgefäß wird verschlossen, in einem Schaukelmischer wird 20 min trocken gemischt. Dann wird das Mischgefäß geöffnet, 1 ml Äthylalkohol und eine Gummikugel mit 1 cm Durchmesser werden zugegeben. Das Mischgefäß wird geschlossen und wieder dem Mischer für 20 min aufgegeben. Die von der Gummikugel durchgeknetete-Rohmasse wird in vier Chargen zu je 4,2G g ausgewogen und jede Rohmassen-Charge in eine viereckige Preßform aus Stahl mit 18 x 23 mm Querschnitt gefüllt. Auf einer kleinen Spindelpresse werden die Chargen zu Prismen mit der Höhe von 4 mm kalt verpreßt. Der Preßdruck beträgt 65 bar. Nach Entfernen der umgebenden Matrize und der Stempel werden die Körper mit der Abmessung 18 x 23 x 4 mm in den Trockenschrank gebracht, dort auf 105 °C aufgeheizt, 3 h auf dieser Temperatur belassen und dann im warmen Zustand in einen elektrisch beheizten, elektronisch geregelten Kammerofen gegeben. Dort werden Sie in 55 min kontinuierlich auf 505 °C aufgeheizt, von dort innerhalb von 29 min kontinuierlich auf 820 °C gebracht, auf dicser Temperatur 1 h gehalten und anschließend in 30 min auf 520 °C abgekühlt, dort 1 h gehalten, dann mit 50 grd/h auf Raumtemperatur abgekühlt. Die Prüfung ergab, daß das kubische Bornitrid in keiner Weise oxidiert war. Eine Reaktionszone von 1 um Dicke zur angrenzenden Glasphase wurde beobachtet. Die Körper besitzen nach dem Abkühlen eine Porosität von 26 Vol.%. 1m Rahmen der Erfindung liegt es, die Schleifmittelkomponente nur einem Teilvolumen des Werkzeuges beizugeben und den übrigen Teil als Halter anzuformen.
A raw mass is then produced as follows:
  • The grain fraction 0 to 5 μm of the glass of the composition 8 in the table above is used. 4.77 g of this are weighed into a mixing vessel. From the glass with the composition 1 the grain fraction 32 to 50 µm is used, from which 6.61 g are weighed into the mixing vessel. Cubic boron nitride with a particle size distribution between 6 and 12 µm is then weighed in an amount of 4.77 g. The mixing vessel is closed and mixed dry in a rocking mixer for 20 minutes. Then the mixing vessel is opened, 1 ml of ethyl alcohol and a rubber ball with a diameter of 1 cm are added. The mixing vessel is closed and returned to the mixer for 20 minutes. The raw mass kneaded by the rubber ball is weighed in four batches of 4.2G g each and each raw mass batch is filled into a square steel press mold with a cross section of 18 x 23 mm. The batches are cold pressed into prisms with a height of 4 mm on a small spindle press. The pressure is 65 bar. After removing the surrounding die and the stamp, the bodies with the dimensions 18 x 23 x 4 mm are placed in the drying cabinet, heated there to 105 ° C, left at this temperature for 3 h and then in a warm state in an electrically heated, electronically controlled one Chamber furnace given. There they are continuously heated to 505 ° C in 55 minutes, continuously brought to 820 ° C within 29 minutes, held at this temperature for 1 hour and then cooled to 520 ° C in 30 minutes, held there for 1 hour, then with 50 grd / h cooled to room temperature. The test showed that the cubic boron nitride was in no way oxidized. A 1 µm thick reaction zone to the adjacent glass phase was observed. After cooling, the bodies have a porosity of 26% by volume. It is within the scope of the invention to add the abrasive component only to a partial volume of the tool and to form the remaining part as a holder.

Bei der Durchführung des erfindurrgsgemäßen Verfahrens kann auch mit einer Sinterpresse, d. h. mit gleichzeitiger Anwendung von Druck und Temperatur, gearbeitet werden.When carrying out the method according to the invention, a sinter press, ie. H. with simultaneous application of pressure and temperature.

Die hergestellten Feinschleifwerkzeuge wurden zum reinstschleifen an den Lagern einer größeren Anzahl von Wellen erprobt. Diese rotierten in einer Werkzeugmaschine mit 180 Omdrehungen pro Minute. Die als Feinstschleifwerkzeuge verwendeten Körper oszillierten mit 700/min Oszillationsfrequenz. Bei einem Anpreßdruck der Feinstschleifkörper an die Lagerflächen von 1,5 bar ergab sich nach einer Bearbeitungszeit von 1,9 sec eine Rauhtiefe Ra von 0,22 µm. Ohne die bei herkömmlichen Werkzeugen zum Feinstschleifen anfallenden Stillstandszeiten zum Nachstellen der konventionellen Werkzeuge, die etwa 20 % der Maschinenzeit ausmachen, konnten mit den erfindungsgemässen Werkzeugen ohne jede Unterbrechung mehr als 1000 Lagerflächen mit obigem Rauhtiefenergebnis bearbeitet werden. - Konventionelle Werkzeuge sind demgegenüber nach etwa 430 Lagerflächen verbraucht, nachdem sie vorher im Durchschnitt drei- bis viermal nachgestellt worden ist. Die elektronenmikroskopische Prüfung der erfindungsgemäßen Werkzeuge ergab nur eine extrem geringe Interdiffusion zwischen kubischem Bornitrid und umgebender Glasphase, eine Beeinträchtigung des kubischen Bornitrids wurde nicht beobachtet und war auch im spanenden Verhalten nicht zu beobachten.The fine grinding tools produced were tested for ultra-pure grinding on the bearings of a large number of shafts. These rotated in a machine tool at 180 rpm. The bodies used as fine grinding tools also oscillated 700 / min oscillation frequency. With a contact pressure of the ultra-fine grinding bodies against the bearing surfaces of 1.5 bar, a surface roughness Ra of 0.22 µm resulted after a machining time of 1.9 seconds. Without the downtimes associated with conventional tools for fine grinding, which make up about 20% of the machine time, to adjust the conventional tools, the tools according to the invention were able to process more than 1000 bearing surfaces with the above-mentioned roughness depth result without any interruption. - On the other hand, conventional tools are used up after around 430 storage areas after they have been re-adjusted three to four times on average. The electron microscopic examination of the tools according to the invention showed only an extremely low interdiffusion between cubic boron nitride and the surrounding glass phase, no impairment of the cubic boron nitride was observed and was also not observed in the cutting behavior.

Andrejewski, Honke & Partner, Patentanwzlte in Essen

Figure imgb0003
Andrejewski, Honke & Partner, patent attorneys in Essen
Figure imgb0003

Claims (15)

1. Feinschleifwerkzeug für die Bearbeitung von Werkstücken aus Metall, Glas oder Keramik, - bestehend aus
einer feinkörnigen Schleifmittelkomponente mit kubischem Bornitrid und einer keramischen Bindemittelkomponente,
wobei die Schleifmittelkomponente und die Bindemittelkomponente innig gemischt sind und der Werkzeugkörper durch Pressen und Sintern hergestellt ist, dadurch gekennzeichnet, daß die Bindemittelkomponente hauptsächlich aus feinkörnigem zusammengesinterten Glas besteht und das Feinschleifwerkzeug ein Porenvolumen von zumindest 5 Vol.% aufweist.
1. Fine grinding tool for machining workpieces made of metal, glass or ceramic, - consisting of
a fine-grained abrasive component with cubic boron nitride and a ceramic binder component,
wherein the abrasive component and the binder component are intimately mixed and the tool body is produced by pressing and sintering, characterized in that the binder Component mainly consists of fine-grained sintered glass and the fine grinding tool has a pore volume of at least 5% by volume.
2. Feinschleifwerkzeug nach Anspruch 1, dadurch gekennzeichnet, daß in Kombination dazu die Schleifmittelkomponente eine maximale Korngröße von kleiner als 20 pm aufweist und zu mindestens 50 Gew.% aus dem kubischen Bornitrid, im Rest aus anderen Hartstoffen, besteht.2. Fine grinding tool according to claim 1, characterized in that in combination the abrasive component has a maximum grain size of less than 20 pm and consists of at least 50% by weight of the cubic boron nitride, the rest of other hard materials. 3. Feinschleifwerkzeug nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß die Schleifmittelkomponente eine Korngröße im Bereich von kleiner 20 um bis 4 µm aufweist und die Bindemittelkomponente ausschließlich aus feinkörnigem Glas besteht.3. Fine grinding tool according to one of claims 1 to 2, characterized in that the abrasive component has a grain size in the range from less than 20 µm to 4 µm and the binder component consists exclusively of fine-grained glass. 4. Feinschleifwerkzeug nach Anspruch 3, dadurch gekennzeichnet, daß die Bindemittelkomponente im Temperaturbereich zwischen 20 und 300 °C einen linearen tnermischen Ausdehnungskoeffizienten aufweist, der kleiner oder gleich dem linearen thermischen Ausdehnungskoeffizienten der Zusammensetzung der Körner der Schleifmittelkomponente ist.4. Fine grinding tool according to claim 3, characterized in that the binder component in the temperature range between 20 and 300 ° C has a linear thermal expansion coefficient which is less than or equal to the linear thermal expansion coefficient of the composition of the grains of the abrasive component. 5. Feinschleifwerkzeug nach den Ansprüchen 3 oder 4, dadurch gekennzeichnet, daß das feinkörnige Glas aus zwei Glassorten gemischt ist, von denen eine einen niedrigeren, die andere einen höheren Erweichungsbereich aufweist.5. Fine grinding tool according to claims 3 or 4, characterized in that the fine-grained glass is mixed from two types of glass, one of which has a lower, the other a higher softening range. 6. Feinschleifwerkzeug nach Anspruch 5, dadurch gekennzeichnet, daß das feinkörnige Glas mit dem niedrigeren Erweichungsbereich ein Kornverteilungsmaximum unter 20 µm, das feinkörnige Glas mit dem höheren Erweichungsbereich ein Kornverteilungsmaximum üoer 50 um aufweist.6. Fine grinding tool according to claim 5, characterized in that the fine-grained glass with the lower softening range has a maximum grain size distribution below 20 microns, the fine-grained glass with the higher softening range has a maximum grain size distribution above 50 microns. 7. Feinschleifwerkzeug nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Schleifmittelanteil einerseits und der Bindemittelanteil andererseits gewichtsmäßig etwa gleich groß sind.7. Fine grinding tool according to one of claims 1 to 6, characterized in that the abrasive portion on the one hand and the binder portion on the other hand are approximately equal in weight. 8. Feinschleifwerkzeug nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß durch die Kornverteilung sowie durch die Pressung und Sinterung ein Porenvolumen von 5 bis 65 Vol.%, vorzugsweise von 30 bis 50 Vol.%, eingestellt ist.8. Fine grinding tool according to one of claims 3 to 7, characterized in that a pore volume of 5 to 65% by volume, preferably 30 to 50% by volume, is set by the grain distribution and by pressing and sintering. 9. Feinschleifwerkzeug nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das feinkörnige Glas der Bindemittelkomponente eine Zusammensetzung im Bereich von
Figure imgb0004
alle Zahlen in Gewichtsanteilen, aufweist.
9. Fine grinding tool according to one of claims 1 to 8, characterized in that the fine-grained glass of the binder component has a composition in the range of
Figure imgb0004
all numbers in parts by weight.
10. Feinschleifwerkzeug nach Anspruch 9, dadurch gekennzeichnet, daß das feinkörnige Glas zusätzlich einen oder mehrere der Stoffe
Figure imgb0005
alle Zahlen in Gewichtsanteilen, enthält.
10. Fine grinding tool according to claim 9, characterized in that the fine-grained glass additionally one or more of the substances
Figure imgb0005
all numbers in parts by weight.
11. Feinschleifwerkzoug nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Schleifmittelkomponente eine Korngröße unter 4 pm besitzt und die Bindemittelkomponente einen feinkörnigen kristallinen Zusatz, z. B. Eukryptit, von bis zu 10 Gewichtsanteilen der Bindemittelkomponente aufweist.11. Feinschleifwerkzoug according to one of claims 1 or 2, characterized in that the abrasive component has a grain size below 4 pm and the binder component is a fine-grained crystalline additive, for. B. eucryptite, of up to 10 parts by weight of the binder component. 12. Feinschleifwerkzeug nach Anspruch 11, dadurch gekennzeichnet, daß die Bindemittelkomponente entsprechend den Ansprüchen 9 und 10 aufgebaut ist und eine Korngröße aufweist, die um einen Faktor 2 bis 4 größer ist als die der Schleifmittelkomponente.12. Fine grinding tool according to claim 11, characterized in that the binder component is constructed according to claims 9 and 10 and has a grain size which is larger by a factor of 2 to 4 than that of the abrasive component. 13. Feinschleifwerkzeug nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, daß durch die Kornverteilung sowie durch die Pressung und Sinterung ein Porenvolumen von etwa 12 Vol. % eingestellt ist.13. Fine grinding tool according to one of claims 11 or 12, characterized in that a pore volume of about 12 vol.% Is set by the grain distribution and by the pressing and sintering. 14. Feinschleifwerkzeug nach Anspruch 13, dadurch gekennzeichnet, daß bei einem Porenvolumen von kleiner oder gleich 12 Vol.% der lineare thermische Ausdehnungskoeffizient des Bindemittels im Bereich zwischen 20 und 300 °C um zumindest 2 x 10-7 pro Grad Celsius über dem mittleren linearen thermischen Ausdehnungskoeffizienten der Zusammensetzung der Körner des Schleifmittelanteils liegt.14. Fine grinding tool according to claim 13, characterized in that with a pore volume of less than or equal to 12 vol.%, The linear thermal expansion coefficient of the binder in the range between 20 and 300 ° C by at least 2 x 10 -7 per degree Celsius above the average linear thermal expansion coefficient of the composition of the grains of the abrasive component. 15. Feinschleifwerkzeug nach Anspruch 13, dadurch gekennzeichnet, daß bei einem Porenvolumen größer oder gleich 12 Vol.% der lineare thermische Ausdehnungskoeffizient des Bindemittelanteils im Bereich zwischen 20 und 300 °C um zumindest 2 x 10-7 pro Grad Celsius unter dem mittleren linearen thermischen Ausdehnungskoeffizienten der Zusammensetzung der Körner des Schleifmittelanteils liegt.15. Fine grinding tool according to claim 13, characterized in that at a pore volume greater than or equal to 12 vol.%, The linear thermal expansion coefficient of the binder portion in the range between 20 and 300 ° C by at least 2 x 10 -7 per degree Celsius below the average linear thermal Expansion coefficient of the composition of the grains of the abrasive component lies.
EP86109154A 1985-07-31 1986-07-04 Fine-grinding tool for the treatment of metallic, glass or ceramic work pieces Withdrawn EP0211247A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3527312 1985-07-31
DE3527312 1985-07-31

Publications (2)

Publication Number Publication Date
EP0211247A2 true EP0211247A2 (en) 1987-02-25
EP0211247A3 EP0211247A3 (en) 1987-05-27

Family

ID=6277190

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86109154A Withdrawn EP0211247A3 (en) 1985-07-31 1986-07-04 Fine-grinding tool for the treatment of metallic, glass or ceramic work pieces

Country Status (2)

Country Link
EP (1) EP0211247A3 (en)
JP (1) JPS6334075A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636457A1 (en) * 1993-07-30 1995-02-01 Norton Company A sol-gel alumina abrasive wheel with improved corner holding
WO1996037342A1 (en) * 1995-05-25 1996-11-28 Norton Company An alumina abrasive wheel with improved corner holding
US5863308A (en) * 1997-10-31 1999-01-26 Norton Company Low temperature bond for abrasive tools
EP1043410A1 (en) * 1999-04-07 2000-10-11 Sandvik Aktiebolag Porous cubic boron nitride based material suitable for subsequent production of cutting tools and method for its production
EP1278614A2 (en) * 2000-03-23 2003-01-29 Saint-Gobain Abrasives, Inc. Vitrified bonded abrasive tools
CN102119071A (en) * 2008-06-23 2011-07-06 圣戈班磨料磨具有限公司 High porosity vitrified superabrasive products and method of preparation
US8784519B2 (en) 2009-10-27 2014-07-22 Saint-Gobain Abrasives, Inc. Vitrious bonded abbrasive
JP2015526300A (en) * 2012-06-29 2015-09-10 サンーゴバン アブレイシブズ,インコーポレイティド Bonded abrasive and method for forming the same
US9138866B2 (en) 2009-10-27 2015-09-22 Saint-Gobain Abrasives, Inc. Resin bonded abrasive
US9266220B2 (en) 2011-12-30 2016-02-23 Saint-Gobain Abrasives, Inc. Abrasive articles and method of forming same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049165B1 (en) * 1989-01-30 1995-09-26 Ultimate Abrasive Syst Inc Composite material
US5791330A (en) 1991-06-10 1998-08-11 Ultimate Abrasive Systems, L.L.C. Abrasive cutting tool
US6482244B2 (en) 1995-06-07 2002-11-19 Ultimate Abrasive Systems, L.L.C. Process for making an abrasive sintered product
US6478831B2 (en) 1995-06-07 2002-11-12 Ultimate Abrasive Systems, L.L.C. Abrasive surface and article and methods for making them
US6609963B2 (en) * 2001-08-21 2003-08-26 Saint-Gobain Abrasives, Inc. Vitrified superabrasive tool and method of manufacture
JP5728257B2 (en) * 2011-03-08 2015-06-03 本田技研工業株式会社 Vitrified grinding wheel manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2090447A5 (en) * 1970-02-09 1972-01-14 Ducommun Inc
DE2933352A1 (en) * 1979-08-17 1981-03-26 Supfina Maschinenfabrik Hentzen Kg, 5630 Remscheid Porous grinding tools moulded from mixt. of abrasive grains - of fine silicon carbide and crushed waste glass frit, and baked to obtain vitreous bond between grains
FR2558151A1 (en) * 1984-01-17 1985-07-19 Le N Proizv Alkali-free borosilicate glass containing lead, and composition for abrasive tools containing this glass as vitreous binder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641391A (en) * 1979-09-13 1981-04-18 Kasatani Hatsujo Kk Automatic continuous alkali cleaning device
US4334895A (en) * 1980-05-29 1982-06-15 Norton Company Glass bonded abrasive tool containing metal clad graphite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2090447A5 (en) * 1970-02-09 1972-01-14 Ducommun Inc
DE2933352A1 (en) * 1979-08-17 1981-03-26 Supfina Maschinenfabrik Hentzen Kg, 5630 Remscheid Porous grinding tools moulded from mixt. of abrasive grains - of fine silicon carbide and crushed waste glass frit, and baked to obtain vitreous bond between grains
FR2558151A1 (en) * 1984-01-17 1985-07-19 Le N Proizv Alkali-free borosilicate glass containing lead, and composition for abrasive tools containing this glass as vitreous binder

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Band 101, Nr. 20, November 1984, Seite 300, Zusammenfassung Nr. 176205p, Columbus, Ohio, US; A.F. ANISIMOVA et al.: "Ceramic binder for an electrocorundum superhard abrasive tool", & ABRAZIVNYE INSTRUM. POLIM. KERAM. SUYAZUYUSHCHIMI: PROTSESSY POLUCH. PRIMEN. 1982, 56-9 *
CHEMICAL ABSTRACTS, Band 95, Nr. 5, September 1981, Seite 247, Zusammenfassung Nr. 84978x, Columbus, Ohio, US; A. BAKON et al.: "Glass ceramics as binders for abrasive tools", & EPITOANYAG 1981, 33(1), 36-41 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636457A1 (en) * 1993-07-30 1995-02-01 Norton Company A sol-gel alumina abrasive wheel with improved corner holding
WO1996037342A1 (en) * 1995-05-25 1996-11-28 Norton Company An alumina abrasive wheel with improved corner holding
US5863308A (en) * 1997-10-31 1999-01-26 Norton Company Low temperature bond for abrasive tools
US6676893B2 (en) 1999-04-07 2004-01-13 Sandvik Ab Porous cubic boron nitride based material suitable for subsequent production of cutting tools and method for its production
EP1043410A1 (en) * 1999-04-07 2000-10-11 Sandvik Aktiebolag Porous cubic boron nitride based material suitable for subsequent production of cutting tools and method for its production
EP1278614A4 (en) * 2000-03-23 2004-10-06 Saint Gobain Abrasives Inc Vitrified bonded abrasive tools
EP1278614A2 (en) * 2000-03-23 2003-01-29 Saint-Gobain Abrasives, Inc. Vitrified bonded abrasive tools
CN102119071A (en) * 2008-06-23 2011-07-06 圣戈班磨料磨具有限公司 High porosity vitrified superabrasive products and method of preparation
US8771390B2 (en) 2008-06-23 2014-07-08 Saint-Gobain Abrasives, Inc. High porosity vitrified superabrasive products and method of preparation
CN102119071B (en) * 2008-06-23 2015-01-28 圣戈班磨料磨具有限公司 High porosity vitrified superabrasive products and method of preparation
US8784519B2 (en) 2009-10-27 2014-07-22 Saint-Gobain Abrasives, Inc. Vitrious bonded abbrasive
US9138866B2 (en) 2009-10-27 2015-09-22 Saint-Gobain Abrasives, Inc. Resin bonded abrasive
US9266220B2 (en) 2011-12-30 2016-02-23 Saint-Gobain Abrasives, Inc. Abrasive articles and method of forming same
JP2015526300A (en) * 2012-06-29 2015-09-10 サンーゴバン アブレイシブズ,インコーポレイティド Bonded abrasive and method for forming the same

Also Published As

Publication number Publication date
EP0211247A3 (en) 1987-05-27
JPS6334075A (en) 1988-02-13

Similar Documents

Publication Publication Date Title
EP0211247A2 (en) Fine-grinding tool for the treatment of metallic, glass or ceramic work pieces
DE3306157C2 (en)
DE69433172T2 (en) Grinding wheel containing sol-gel-alumina grinding wheel and a glass-like binder for this grinding wheel
DE60007873T2 (en) METHOD FOR PRODUCING MICRO GRINDING TOOLS
DE69730438T2 (en) PROCESS FOR PRODUCING GRINDING WHEELS WITH HIGH PERMEABILITY
DE3039827A1 (en) METHOD FOR PRODUCING A CUTTING TOOL
DE2923213A1 (en) CUTTING INSERT FOR CUTTING MACHINING
DE60314790T2 (en) Sintered cordierite ceramic and method of making the same
DE2635030B2 (en) Balls made of ceramic mass
DE60130704T2 (en) Ceramic products based on Alumina
DE4217720C1 (en) SINTERED VERBUNDSCHLEIFKOERPER, PROCESS FOR THEIR PRODUCTION AND THEIR USE
DE2811316A1 (en) CHIPPING TOOL TIP
DE2056873A1 (en) Grinding element
DE2947336A1 (en) METHOD FOR PRODUCING A Sintered Aluminum Product
CH676433A5 (en)
DE60307777T2 (en) Tool insert and associated manufacturing method
DE3322458A1 (en) Ceramic binder for producing grinding tools
EP0545145A1 (en) Manufacture of a porous copper-based material as a preform for a machining process
DE1571567B1 (en) Process for the production of a carrier for gas chromatography
DE3616257A1 (en) Fine grinding tool for machining workpieces of metal, glass or ceramic
DE3346772C2 (en)
DE3529265C2 (en)
DE2500665A1 (en) CERAMIC GRINDING WHEELS AND PROCESS FOR THEIR PRODUCTION
DE4036883C2 (en) Ceramic cutting tool, process for its manufacture and its use
DE960435C (en) Abrasive bodies made from molten alumina cores and process for their manufacture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH FR GB LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 19870219

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH FR GB LI NL SE

17Q First examination report despatched

Effective date: 19880427

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19880908

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GLIEMEROTH, GEORG, DR.-ING. DIPL.-ING.