EP0210575B1 - Electrical radiant heating element for heating hot plates, and process and device for its manufacture - Google Patents

Electrical radiant heating element for heating hot plates, and process and device for its manufacture Download PDF

Info

Publication number
EP0210575B1
EP0210575B1 EP86110033A EP86110033A EP0210575B1 EP 0210575 B1 EP0210575 B1 EP 0210575B1 EP 86110033 A EP86110033 A EP 86110033A EP 86110033 A EP86110033 A EP 86110033A EP 0210575 B1 EP0210575 B1 EP 0210575B1
Authority
EP
European Patent Office
Prior art keywords
coil
insulator
heater
heating resistor
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86110033A
Other languages
German (de)
French (fr)
Other versions
EP0210575A1 (en
Inventor
Bernhard Mikschl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EGO Elektro Geratebau GmbH
Original Assignee
EGO Elektro Gerate Blanc und Fischer GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EGO Elektro Gerate Blanc und Fischer GmbH filed Critical EGO Elektro Gerate Blanc und Fischer GmbH
Priority to AT86110033T priority Critical patent/ATE72615T1/en
Publication of EP0210575A1 publication Critical patent/EP0210575A1/en
Application granted granted Critical
Publication of EP0210575B1 publication Critical patent/EP0210575B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/688Fabrication of the plates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • H05B3/748Resistive heating elements, i.e. heating elements exposed to the air, e.g. coil wire heater

Definitions

  • the invention relates to an electric radiant heater for heating heating surfaces and a method and a device for its production.
  • a radiant heater has become known in which heating coils with a circular cross section are embedded in the surface of an insulating body which contains fibrous material by being pressed in and thereby fixed. It is also mentioned there that the heating coils can have an oval shape, namely lying flat, i.e. with its smallest extension, i.e. the small axis towards the heating plate. This serves to save overall height.
  • a radiant heater has become known in which a resistance wire bent in the form of a sinus curve band is embedded with the apexes of one side of the curve in an initially plastic, hardenable material.
  • This arrangement requires an absolutely rigid fixation in hardened ceramic material, otherwise the band could tip to the side and cause short circuits with neighboring bands. This makes the radiator very thermally and mechanically sensitive and unsuitable for thin resistance wires.
  • the embedding of an approximately oval wire helix on one of its narrow sides has several advantages: Given the width of the helix in the direction of the surface, that is, depending on the usable area unit, the oval shape of the wire length is somewhat longer than that of the circular helix and much larger than in the case of lying oval shape. Furthermore, the coil is fixed much better when embedding a certain fraction of its total wire length, because a much larger arc piece is held. For example, when embedding a 180 ° bend make up, for example, only a third or a quarter of the total winding circumference, so that sufficient radiation area remains.
  • the helix pitch ie the proportion of the gaps between the individual turns, can also be greater, so that penetration into the embedding material is promoted.
  • the penetration of the more curved side surface into the material is easier to make, and when pressed in, even thin wires do not tend to deform or fall over in the longitudinal direction of the coil and lie flat.
  • This also contributes to the fact that the helix can be guided in a groove when inserted over two thirds or three quarters of its circumference and the pressure acting on the free apex presses the flatter sides of the oval against the groove walls and thereby stiffens the helix, which in the Transverse direction also has a large section modulus.
  • the radiant heater 11 shown in Fig. 1 is used to heat a glass ceramic heating surface 12 or other heating surfaces made of ceramic. Although it is preferably intended for heating one of several hotplates on a coherent cooking surface, it can also be used for single hotplates etc.
  • the radiant heater 11 contains a sheet metal carrier shell 13, in which a plate-like insulating body 14 with a round bottom 15 and a peripheral edge 16 is arranged like the carrier shell.
  • this mechanically quite firm and manageable insulating body 14 can be underlaid by an insulating layer 17, which is less mechanically strong but has excellent thermal insulation, for example made of pyrogenic silica.
  • the insulating body is pressed with the upper end face of the edge 16 onto the underside of the cooking surface 12 by spring elements, not shown. It preferably consists of a fibrous, high-temperature-resistant insulating material, for example an aluminum oxide fiber, which is commercially available under the name "Fiberfrax". Other mineral fibers or other compressible insulating materials, such as vermiculite, can also be used.
  • Heating coils 20 made of wire-shaped electrical resistance material 21 are partially pressed and fixed into the substantially flat surface 18 of the bottom 15 of the insulating body 14.
  • Each turn 60 of the heating coil 20 has an approximately oval shape, which can be seen in particular in FIG. 3, which consists of two approximately semicircular arches on the narrow sides of the oval and two connecting them, essentially rectilinear or slightly outward or inward (dash-dotted line in Fig. 3) there are curved sides 24, 25.
  • the more curved narrow sides 22, 23 can, in deviation from the semicircular shape, be slightly more curved in the area of their apex 26.
  • the insulating body 14 is produced according to the following method: from a slurry of the insulating fibers in water, to which inorganic or organic binders of the usual type are also added, the fibers are sucked in by a suction mold which has a negative in the thickness of the insulating body, but with a free lower one Bottom 29 forms. A resulting thickening on the bottom 29 is cut off and, if necessary after a pre-pressing, the soft, moist insulating body 14 '(FIG. 5) is introduced into a mold 30.
  • the prepared oval heating coils are inserted over their entire length into grooves 33 in the area of non-distorted ends after welding of connecting pins 28, the shape of which corresponds to the oval shape of the heating coils 20, but has a smaller depth.
  • the oval heating coils are thus inserted into the grooves 33 with an upright cross section and project with about a third to a quarter of their larger cross sectional dimensions a (FIG. 3) over a pressing surface 34 of the punch 32 carrying the grooves.
  • the width of the grooves is such that the heating coils can be inserted well, but are guided as precisely as possible.
  • the grooves 33 run in the case of circular radiators mostly spirally, in single or multi-course spirals or also a double spiral, which has a reversal point in the middle and can consist of one or more spiral sections, each of which is provided with electrical connection pins 28, which are provided with the insulator 14 lead wires 61 are welded.
  • the insertion die 32 and the mold 30 are moved relatively towards each other in the direction of the arrows 34 and 35 and the insertion die presses the still plastically deformable insulating body preform 14 'into its final shape 14, which can be seen in FIG. 6.
  • the heating coils 20 with their Narrow sides 22 pressed or pressed into the surface 18 and thus the material of the insulating body and fixed.
  • the heating coils consist of very thin resistance material in the order of magnitude between 0.15 and 0.25 mm, this would hardly be possible with round coils. Due to the oval shape and the good guidance in the grooves 33, even greater compressions of the insulating body and thus a good fixing can be achieved. Due to the good guidance, the helixes do not tend to buckle laterally and cannot fall over in the longitudinal direction of the helix because the pressure on the curved section 22 of the helix spreads the sides 24 and 25 somewhat apart and clamps them on the groove inner wall (FIG. 6). A good definition also contributes to the fact that the helix pitch h (FIG.
  • the embedding can be more or less complete and deep and the depressions 43 can also be completely closed, in particular if a less elastic and fibrous material is used.
  • Fig. 3 it can be seen that the embedding of the coil on the outer edge of each turn is slightly higher than on the inner edge, so that a flat channel forms in the area of the heating coil, which favors the fixing. Above all, however, it can be seen that it is possible to keep the majority of the interior 45 of the insulating material free, so that no heat accumulation can form there, which could lead to premature mechanical and thermal wear of the heating coils.
  • the insertion die 32 and the mold 30 are removed from one another again, the heating coils remaining in the insulating body. They can be easily pulled out of the grooves 33 because they spring back a little when the punch is relieved and have play with the groove walls.
  • the now pressed, but still moist insulating body 14 is now brought into its relatively solid final state by drying or other hardening measures.
  • the invention makes it possible to accommodate large lengths of wire on a given unit area, so that even radiators in a multi-cycle circuit with small ones Partial services can be produced.
  • the relatively large ratio between the possible helix pitch h to the wire diameter d of the resistance material 21, preferably h / d 2 to 10, also contributes to the radiation and ventilation conditions being good. Since, in addition to the extension of the wire diameter for a given width, the oval shape also improves the fixability, it is possible to arrange the spirals in relatively closely spaced spiral paths, so that this also increases the wire length to be accommodated per unit area and enables very uniform heating.
  • the preferred uniform fixing of the heating coils over their entire length also avoids creeping movements of the coil and creates short-circuit protection even at a short distance.
  • a value of more than 1.5, preferably approximately 2 has proven to be the preferred ratio between the length of the large axis a of the oval helical cross section directed towards the heating surface 12 and away from the insulating body, in the direction of the small oval axis 51.
  • the large axis 50 (FIG. 3) is approximately perpendicular to the surface of the insulating body 18.
  • the good guidance and stability of the heating coil and the "cutting effect" of the relatively thin usable wires also make it possible to press-fit into insulating materials whose resistance to penetration is relatively high and can be used after pressing without hardening or drying process. This includes, in particular, granular insulation materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • General Induction Heating (AREA)

Abstract

An electric radiant heater (11) for heating a glass ceramic cooking surface (12) contains a dish-shaped insulator (14), to whose inner bottom surface (18) are fixed heater coils (20). The heater coils have an oval cross-section and are pressed by their narrow sides into surface (18) and fixed. The fixing pressing in takes place during the moulding of the moist insulator (14), made from fibrous material and by means of a male mould receiving the heater coils in slots.

Description

Die Erfindung betrifft einen elektrischen Strahlheizkörper zur Beheizung von Heizflächen sowie ein Verfahren und eine Vorrichtung zu seiner Herstellung.The invention relates to an electric radiant heater for heating heating surfaces and a method and a device for its production.

Aus der DE-OS 27 29 929 ist ein Strahlheizkörper bekanntgeworden, bei dem Heizwendeln mit kreisrundem Querschnitt in die Oberfläche eines Isolierkörpers, der faseriges Material enthält, durch Eindrücken eingebettet und dadurch festgelegt werden. Es ist dort auch erwähnt, daß die Heizwendeln eine ovale Form haben können, und zwar flachliegend, d.h. mit ihrer geringsten Erstreckung, d.h. der kleinen Achse in Richtung auf die Heizplatte gerichtet. Dies dient zur Einsparung von Bauhöhe.From DE-OS 27 29 929 a radiant heater has become known in which heating coils with a circular cross section are embedded in the surface of an insulating body which contains fibrous material by being pressed in and thereby fixed. It is also mentioned there that the heating coils can have an oval shape, namely lying flat, i.e. with its smallest extension, i.e. the small axis towards the heating plate. This serves to save overall height.

Diese Art der Einbettung funktioniert hervorragend, solange die Heizspiralen eine gewisse Drahtstärke nicht unterschreiten und ihre Gesamtlänge in Relation zu der zur Verfügung stehenden Oberfläche nicht zu groß wird. Für viele Strahlheizkörper, z.B. in Mehrtakt-Schaltung betriebene, werden jedoch die erforderlichen Drahtlängen sehr groß und die Drahtdurchmesser klein, insbesondere bei Ausführungen für höhere Spannungen (380 V). Bei den dadurch nötigen geringen Wendelsteigungen und der geringeren Stabilität der Wendel ist eine einwandfreie Festlegung nicht mehr möglich.This type of embedding works excellently as long as the heating coils do not fall below a certain wire thickness and their total length does not become too great in relation to the surface available. For many radiant heaters, for example those operated in a multi-cycle circuit, the required wire lengths are very large and the wire diameter is small, especially for versions with higher voltages (380 V). With the resulting small helix pitches and the lower stability of the helix, a correct fixing is no longer possible.

Aus der FR-A-929 589 ist ein Strahlheizkörper bekanntgeworden, bei dem ein in Form eines Sinus-Kurven-Bandes gebogener Widerstandsdraht mit den Kurvenscheiteln einer Seite in ein anfänglich Plastisches, härtbares Material eingebettet ist. Diese Anordnung erfordert eine absolut starre Festlegung in gehärtetem Keramikmaterial, weil das Band sonst zur Seite kippen und mit benachbarten Bändern Kurzschlüsse verursachen könnte. Der Heizkörper ist dadurch thermisch und mechanisch sehr empfindlich und für dünne Widerstandsdrähte ungeeignet.From FR-A-929 589 a radiant heater has become known in which a resistance wire bent in the form of a sinus curve band is embedded with the apexes of one side of the curve in an initially plastic, hardenable material. This arrangement requires an absolutely rigid fixation in hardened ceramic material, otherwise the band could tip to the side and cause short circuits with neighboring bands. This makes the radiator very thermally and mechanically sensitive and unsuitable for thin resistance wires.

Es ist Aufgabe der Erfindung, einen elektrischen Strahlheizkörper zu schaffen, dessen Heizwendel sich bei guter Festlegung auf dem Isolierkörper und bei einem relativ geringen Anteil an eingebetteter Heizwiderstandsfläche (Einbettungsgrad) auch mit geringerem Drahtdurchmesser herstellen läßt.It is an object of the invention to provide an electric radiant heater, the heating coil of which, with a good fixation on the insulating body and with a relatively small proportion of embedded heating resistance surface (degree of embedding), can also be produced with a smaller wire diameter.

Diese Aufgabe wird erfindungsgemäß durch die Ansprüche 1, 2, 8 und 9 gelöst.This object is achieved by claims 1, 2, 8 and 9.

Die erfindungsgemäße Einbettung einer etwa ovalen Drahtwendel an einer ihrer Schmalseiten bringt einen mehrfachen Vorteil: Bei gegebener Breite der Wendel in Richtung der Oberfläche, also je nutzbarer Flächeneinheit, ist die Drahtlänge durch die Ovalform um einiges größer als bei der kreisrunden Wendel und viel größer als bei liegender Ovalform. Ferner wird die Wendel bei einer Einbettung eines bestimmten Bruchteils ihrer Gesamtdrahtlänge wesentlich besser festgelegt, weil ein wesentlich größeres Bogenstück festgehalten ist. So kann beispielsweise bei der Einbettung eines 180°-Bogens dieser z.B. nur ein DRittel oder ein Viertel des Gesamt-Windungsumfanges ausmachen, so daß ausreichend Abstrahlungsfläche verbleibt. Aufgrund der größeren unterzubringenden Gesamtlänge des drahtförmigen Widerstandsmaterials kann auch die Wendelsteigung, d.h. der Anteil der Lücken zwischen den einzelnen Windungen, größer sein, so daß das Eindringen in das Einbettmaterial gefördert wird. Vor allem ist aber das Eindringen der stärker gekrümmten Seitenfläche in das Material leichter vorzunehmen, und beim Eindrücken neigen auch dünne Drähte nicht dazu, sich zu verformen oder in Wendellängsrichtung umzufallen und sich flach zu legen. Dazu trägt auch bei, daß die Wendel beim Einlegung über zwei Drittel oder drei Viertel ihres Umfanges in einer Nut geführt sein kann und der auf den freien Scheitel wirkende Druck die flacheren Seiten des Ovals gegen die Nutwände preßt und die Wendel dadurch versteift, die in der Querrichtung auch ein großes Widerstandsmoment hat. Ein seitliches Kippen der Heizwendel ist nicht zu befürchten, weil die eingebetteten Drahtbereiche, im Gegensatz zur FR-A-919 589, quer zur Heizwendelerstreckung verlaufen.The embedding of an approximately oval wire helix on one of its narrow sides has several advantages: Given the width of the helix in the direction of the surface, that is, depending on the usable area unit, the oval shape of the wire length is somewhat longer than that of the circular helix and much larger than in the case of lying oval shape. Furthermore, the coil is fixed much better when embedding a certain fraction of its total wire length, because a much larger arc piece is held. For example, when embedding a 180 ° bend make up, for example, only a third or a quarter of the total winding circumference, so that sufficient radiation area remains. Due to the larger total length of the wire-shaped resistance material to be accommodated, the helix pitch, ie the proportion of the gaps between the individual turns, can also be greater, so that penetration into the embedding material is promoted. Above all, the penetration of the more curved side surface into the material is easier to make, and when pressed in, even thin wires do not tend to deform or fall over in the longitudinal direction of the coil and lie flat. This also contributes to the fact that the helix can be guided in a groove when inserted over two thirds or three quarters of its circumference and the pressure acting on the free apex presses the flatter sides of the oval against the groove walls and thereby stiffens the helix, which in the Transverse direction also has a large section modulus. There is no fear of the heating coil tipping to the side because, unlike FR-A-919 589, the embedded wire areas run transversely to the heating coil extension.

Dies und weitere Merkmale der Erfindung gehen aus den Unteransprüchen und der Beschreibung sowie der Zeichnung hervor, wobei die einzelnen Merkmale jeweils für sich allein oder zu mehreren in Form von Unterkombinationen bei einer Ausführungsform der Erfindung und auch auf anderen Gebieten vorteilhaft verwirklicht sein können. Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher erläutert. Es zeigen:

Fig. 1
einen schematischen Schnitt durch einen elektrischen Strahlheizkörper und eine Heizplatte,
Fig. 2
einen vergrößerten Schnitt durch ein Detail des Strahlheizkörpers mit Heizwendel,
Fig. 3
einen vergrößerten Querschnitt nach der Linie III-III in Fig. 2,
Fig. 4
ein stark vergrößertes Detail aus Fig. 2 und
Fig. 5 und 6
zwei Herstellungsschritte für den Strahlheizkröper mit zugehöriger Vorrichtung.
This and further features of the invention are evident from the subclaims and the description and the drawing, the individual features being able to be advantageously realized individually or in groups in the form of subcombinations in one embodiment of the invention and also in other fields. Embodiments of the invention are shown in the drawing and are explained in more detail below. Show it:
Fig. 1
1 shows a schematic section through an electric radiant heater and a heating plate,
Fig. 2
an enlarged section through a detail of the radiant heater with heating coil,
Fig. 3
3 shows an enlarged cross section along the line III-III in FIG. 2,
Fig. 4
a greatly enlarged detail from Fig. 2 and
5 and 6
two manufacturing steps for the radiant heater with associated device.

Der in Fig. 1 dargestellte Strahlheizkörper 11 dient zur Beheizung einer Glaskeramik-Heizfläche 12 oder anderer Heizflächen aus Keramik. Obwohl er bevorzugt zur Beheizung einer von mehreren Kochstellen einer zusammenhängenden Kochfläche bestimmt ist, kann er auch für Einzelkochplatten etc. verwendet werden.The radiant heater 11 shown in Fig. 1 is used to heat a glass ceramic heating surface 12 or other heating surfaces made of ceramic. Although it is preferably intended for heating one of several hotplates on a coherent cooking surface, it can also be used for single hotplates etc.

Der Strahlheizkörper 11 enthält eine Blech-Trägerschale 13, in der ein wie die Trägerschale tellerförmiger Isolierkörper 14 mit einem runden Boden 15 und einem umlaufenden Rand 16 angeordnet ist. Zur besseren thermischen Isolation kann dieser mechanisch recht feste und handhabbare Isolierkörper 14 von einer mechanisch weniger festen, aber thermisch ausgezeichnet isolierenden Isolierschicht 17, beispielsweise aus pyrogener Kieselsäure, unterlegt sein. Der Isolierkörper ist mit der oberen Stirnfläche des Randes 16 an die Unterseite der Kochfläche 12 durch nicht dargestellte Federelemente angedrückt. Er besteht vorzugsweise aus einem faserigen, hochtemperaturfesten Isoliermaterial, beispielsweise einer Aluminiumoxid-Faser, die unter der Bezeichnung "Fiberfrax" im Handel ist. Es können auch andere mineralische Fasern oder sonstige verpreßbare Isoliermaterialien, wie beispielsweise Vermiculit, verwendet werden.The radiant heater 11 contains a sheet metal carrier shell 13, in which a plate-like insulating body 14 with a round bottom 15 and a peripheral edge 16 is arranged like the carrier shell. For better thermal insulation, this mechanically quite firm and manageable insulating body 14 can be underlaid by an insulating layer 17, which is less mechanically strong but has excellent thermal insulation, for example made of pyrogenic silica. The insulating body is pressed with the upper end face of the edge 16 onto the underside of the cooking surface 12 by spring elements, not shown. It preferably consists of a fibrous, high-temperature-resistant insulating material, for example an aluminum oxide fiber, which is commercially available under the name "Fiberfrax". Other mineral fibers or other compressible insulating materials, such as vermiculite, can also be used.

In die im wesentlichen ebene Oberfläche 18 des Bodens 15 des Isolierkörpers 14 sind Heizwendeln 20 aus drahtförmigem elektrischen Widerstandsmaterial 21 teilweise eingepreßt und festgelegt. Jede Windung 60 der Heizwendel 20 hat eine, insbesondere aus Fig. 3 zu erkennende, etwa ovale Gestalt, die aus zwei etwa halbkreisförmigen Bögen an den Schmalseiten des Ovals und zwei diese verbindende, im wesentlichen geradlinige oder leicht nach außen oder innen (strichpunktierte Linie in Fig. 3) gekrümmten Seiten 24, 25 besteht. Die stärker gekrümmten Schmalseiten 22, 23 können, in Abweichung von der Halbkreisform, im Bereich ihres Scheitels 26 etwas stärker gekrümmt sein. Sie sind dadurch hergestellt, daß eine anfänglich eng, d.h. Windung an Windung kreisrund gewickelte Wendel durch Druck zwischen zwei Backen- oder Rollenpaaren in die etwa ovale Form verformt und schließlich durch mechanische Streckung auf die gewünschte Länge bzw. Wendelsteigung (in Fig. 2 links zu erkennen) gebracht und durch Glühen unter Eigenerwärmung infolge Stromdurchgang in dieser Form weitgehend spannungsfrei fixiert werden. Durch die Art der Verformung in die Ovalform ergibt sich auch die in Fig. 3 dargestellte Form, die sich für den gewünschten Zweck als sehr vorteilhaft erwiesen hat. Vor allem die entstehende stärkere, spitzbogenartige Krümmung im Bereich des Scheitels 26 erleichtert das Eindringen in den Isolierkörper, während die geraden Seiten für eine gute Führung im Herstellungswerkzeug sorgen. Es sind aber auch andere ovale oder einem Oval ähnliche Formen brauchbar, die einen deutlichen Unterschied in den Abmessungen zwischen ihrer senkrechten und horizontalen Erstreckung haben. Alle diese Querschnittsformen werden hier als etwa oval bezeichnet.Heating coils 20 made of wire-shaped electrical resistance material 21 are partially pressed and fixed into the substantially flat surface 18 of the bottom 15 of the insulating body 14. Each turn 60 of the heating coil 20 has an approximately oval shape, which can be seen in particular in FIG. 3, which consists of two approximately semicircular arches on the narrow sides of the oval and two connecting them, essentially rectilinear or slightly outward or inward (dash-dotted line in Fig. 3) there are curved sides 24, 25. The more curved narrow sides 22, 23 can, in deviation from the semicircular shape, be slightly more curved in the area of their apex 26. They are produced by deforming an initially tightly wound spiral, that is to say circular to circular, by pressure between two pairs of jaws or rollers into the approximately oval shape and finally by mechanical stretching to the desired length or spiral pitch (left in FIG. 2) detect) and be fixed in this form largely stress-free by annealing with self-heating due to current passage. The type of deformation into the oval shape also results in the shape shown in FIG. 3, which has proven to be very advantageous for the desired purpose. Above all, the resulting stronger, pointed arch-like curvature in the region of the apex 26 facilitates penetration into the insulating body, while the straight sides ensure good guidance in the production tool. However, other oval or oval-like shapes can also be used, which have a clear difference in dimensions between their vertical and horizontal extension. All of these cross-sectional shapes are referred to here as approximately oval.

Der Isolierkörper 14 wird nach folgendem Verfahren hergestellt: Aus einer Aufschlämmung der Isolierfasern in Wasser, dem auch anorganische oder organische Bindemittel üblicher Art zugesetzt sind, werden die Fasern von einer Saugform angesaugt, die ein in der Dicke vergrößertes Negativ des Isolierkörpers, jedoch mit freiem unteren Boden 29 bildet. Eine entstehende Verdickung am Boden 29 wird abgeschnitten und, ggf. nach einer Vorpressung, der weiche, feuchte Isolierkörper 14' (Fig. 5) in eine Form 30 eingebracht.The insulating body 14 is produced according to the following method: from a slurry of the insulating fibers in water, to which inorganic or organic binders of the usual type are also added, the fibers are sucked in by a suction mold which has a negative in the thickness of the insulating body, but with a free lower one Bottom 29 forms. A resulting thickening on the bottom 29 is cut off and, if necessary after a pre-pressing, the soft, moist insulating body 14 '(FIG. 5) is introduced into a mold 30.

Die vorbereiteten ovalen Heizwendeln werden nach Anschweißen von Anschlußstiften 28 im Bereich von nicht verzogenen Enden auf ihrer ganzen Länge in Nuten 33 eingelegt, die in ihrer Form der Ovalform der Heizwendeln 20 entsprechen, jedoch eine geringere Tiefe haben. Die ovalen Heizwendeln werden also mit aufrecht stehendem Querschnitt in die Nuten 33 eingelegt und stehen mit etwa einem Drittel bis einem Viertel ihrer größeren Querschnittsabmessungen a (Fig. 3) über eine Preßfläche 34 des die Nuten tragenden Stempels 32 über. Die Nuten sind in der Breite so bemessen, daß die Heizwendeln sich gut einlegen lassen, jedoch möglichst genau geführt werden. Die Nuten 33 verlaufen bei kreisrunden Heizkörpern meist spiralig und zwar in ein- oder mehrgängigen Spiralen oder auch einer Doppelspirale, die in der Mitte einen Umkehrpunkt hat und können aus einem oder mehreren Wendelabschnitten bestehen, die jeweils mit elektrischen Anschlußstiften 28 versehen sind, die mit durch den Isolierkörper 14 geführten Leitungsdrähten 61 verschweißt werden.The prepared oval heating coils are inserted over their entire length into grooves 33 in the area of non-distorted ends after welding of connecting pins 28, the shape of which corresponds to the oval shape of the heating coils 20, but has a smaller depth. The oval heating coils are thus inserted into the grooves 33 with an upright cross section and project with about a third to a quarter of their larger cross sectional dimensions a (FIG. 3) over a pressing surface 34 of the punch 32 carrying the grooves. The width of the grooves is such that the heating coils can be inserted well, but are guided as precisely as possible. The grooves 33 run in the case of circular radiators mostly spirally, in single or multi-course spirals or also a double spiral, which has a reversal point in the middle and can consist of one or more spiral sections, each of which is provided with electrical connection pins 28, which are provided with the insulator 14 lead wires 61 are welded.

Der Einlegestempel 32 und die Form 30 werden in Richtung der Pfeile 34 und 35 relativ aufeinander zu bewegt und der Einlegestempel preßt den noch plastisch verformbaren Isolierkörper-Vorformling 14' in seine in Fig. 6 zu erkennende Endform 14. Dabei werden die Heizwendeln 20 mit ihren Schmalseiten 22 in die Oberfläche 18 und damit das Material des Isolierkörpers hineingedrückt bzw. -gepreßt und festgelegt.The insertion die 32 and the mold 30 are moved relatively towards each other in the direction of the arrows 34 and 35 and the insertion die presses the still plastically deformable insulating body preform 14 'into its final shape 14, which can be seen in FIG. 6. The heating coils 20 with their Narrow sides 22 pressed or pressed into the surface 18 and thus the material of the insulating body and fixed.

Insbesondere, wenn die Heizwendeln aus sehr dünnem Widerstandsmaterial in der Größenordnung zwischen 0,15 und 0,25 mm besteht, wäre dies mit Rundwendeln kaum möglich. Durch die Ovalform und die gute Führung in den Nuten 33 lassen sich aber selbst stärkere Verpressungen des Isolierkörpers und damit eine gute Festlegung erreichen. Die Wendeln neigen durch die gute Führung nicht dazu, seitlich wegzuknicken und können auch nicht in Längsrichtung der Wendel umfallen, weil durch den Druck auf den gekrümmten Abschnitt 22 der Wendel sich die Seiten 24 und 25 etwas auseinanderspreizen und sich an der Nutinnenwand festklemmen (Fig. 6). Zu einer guten Festlegung trägt auch bei, daß die Wendelsteigung h (Fig. 2) im Vergleich zum Durchmesser d des Widerstandsmaterials 21 verhältnismäßig groß ausfällt und damit ein ausreichender Raum verbleibt, damit das Fasermaterial zwischen den Windungen 60 hindurchdringen und einen Wulst 40 bilden kann. Dessen Oberfläche 41 liegt zwar etwas unterhalb der unbeeinflußten, ebenen Oberfläche 18 des Isolierkörpers 14, jedoch oberhalb der eingedrungenen Windungsabschnitte 42. Diese schneiden sich in das faserige Material ein, das sich hinter ihnen, zumindest teilweise, wieder schließt. Es ist dabei vorteilhaft, daß durch das Eindringen Vertiefungen bzw. Kanäle 43 gebildet werden, die sich nur teilweise über dem eingedrungenen Windungsabschnitt 42 wieder schließen. Dadurch ist einerseits auch von diesem Teil noch eine Abstrahlung bzw. ein Wärmeabgang ohne Vermittlung des Isolierkörpers möglich und andererseits bilden die diesen Windungsabschnitt 42 übergreifenden Fasern 44 einen besonders elastischen und auch bei wärmedehnungsbedingten Bewegungen nicht ausbrechenden Halt. Je nach den verwendeten Materialien und Dimensionen kann aber die Einbettung mehr oder weniger vollständig und tief sein und die Vertiefungen 43 können auch ganz geschlossen sein, insbesondere wenn ein weniger elastisches und faseriges Material verwendet wird. Aus Fig. 3 ist zu erkennen, daß die Einbettung der Wendel am Außenrand jeder Windung etwas höher ist als am Innenrand, so daß sich im Bereich der Heizwendel eine flache Rinne bildet, die die Festlegung begünstigt. Vor allem ist aber zu sehen, daß es möglich ist, den größten Teil des Wendelinneren 45 von Isoliermaterial freizuhalten, so daß sich dort kein Wärmestau bilden kann, der zu einem frühzeitigen mechanischen und thermischen Verschleiß der Heizwendeln führen könnte.In particular, if the heating coils consist of very thin resistance material in the order of magnitude between 0.15 and 0.25 mm, this would hardly be possible with round coils. Due to the oval shape and the good guidance in the grooves 33, even greater compressions of the insulating body and thus a good fixing can be achieved. Due to the good guidance, the helixes do not tend to buckle laterally and cannot fall over in the longitudinal direction of the helix because the pressure on the curved section 22 of the helix spreads the sides 24 and 25 somewhat apart and clamps them on the groove inner wall (FIG. 6). A good definition also contributes to the fact that the helix pitch h (FIG. 2) is relatively large compared to the diameter d of the resistance material 21 and thus leaves sufficient space for the fiber material to penetrate between the turns 60 and form a bead 40. Its surface 41 is somewhat below the uninfluenced, flat surface 18 of the insulating body 14, but above the penetrated winding sections 42. These cut into the fibrous material, which at least partially closes behind them. It is advantageous that depressions or channels 43 are formed by the penetration, which are only partially above the penetrated turn section 42 close again. On the one hand, radiation from this part is still possible or heat is dissipated without mediation of the insulating body, and on the other hand, the fibers 44 that cross this winding section 42 form a particularly elastic hold that does not break even during movements due to thermal expansion. Depending on the materials and dimensions used, however, the embedding can be more or less complete and deep and the depressions 43 can also be completely closed, in particular if a less elastic and fibrous material is used. From Fig. 3 it can be seen that the embedding of the coil on the outer edge of each turn is slightly higher than on the inner edge, so that a flat channel forms in the area of the heating coil, which favors the fixing. Above all, however, it can be seen that it is possible to keep the majority of the interior 45 of the insulating material free, so that no heat accumulation can form there, which could lead to premature mechanical and thermal wear of the heating coils.

Nach der in Fig. 6 dargestellten Verpressung werden der Einlegestempel 32 und die Form 30 wieder voneinander entfernt, wobei die Heizwendeln in dem Isolierkörper verbleiben. Sie lassen sich leicht aus den Nuten 33 herausziehen, weil sie bei Entlastung des Stempels wieder etwas zusammenfedern und Spiel zu den Nutwänden haben. Der nun gepreßte, aber noch feuchte Isolierkörper 14 wird nun durch Trocknung oder andere Härtungsmaßnahmen in seinen relativ festen Endzustand gebracht.After the pressing shown in FIG. 6, the insertion die 32 and the mold 30 are removed from one another again, the heating coils remaining in the insulating body. They can be easily pulled out of the grooves 33 because they spring back a little when the punch is relieved and have play with the groove walls. The now pressed, but still moist insulating body 14 is now brought into its relatively solid final state by drying or other hardening measures.

Durch die Erfindung ist es möglich, auf einer vorgegebenen Flächeneinheit große Drahtlängen unterzubringen, so daß auch Heizkörper in Mehrtakt-Schaltung mit kleinen Teilleistungen hergestellt werden können. Dabei trägt das relativ große Verhältnis zwischen möglicher Wendelsteigung h zum Drahtdurchmesser d des Widerstandsmaterials 21 von vorzugsweise h/d = 2 bis 10 auch dazu bei, daß die Abstrahlungs- und Belüftungsverhältnisse gut sind. Da außer der Verlängerung des Drahtdurchmessers bei gegebener Breite durch die Ovalform auch die Festlegbarkeit verbessert wird, ist es möglich, die Wendeln in relativ eng nebeneinanderliegenden Spiralbahnen anzuordnen, so daß auch dadurch eine Vergrößerung der je Flächeneinheit unterzubringenden Drahtlänge sowie eine sehr gleichmäßige Beheizung möglich sind. Auch die bevorzugte gleichmäßige Festlegung der Heizwendeln über ihre ganze Länge vermeidet Kriechbewegungen der Wendel und schafft auch bei geringem Abstand Kurzschlußsicherheit. Es wäre allerdings, falls es auf eine sehr enge Belegung nicht ankommt, auch möglich, die Festlegung in in Abstand voneinander befindlichen Rippen oder Warzen vorrangig vorzunehmen. Als bevorzugtes Verhältnis zwischen der Länge der auf die Heizfläche 12 und von dem Isolierkörper weg gerichteten großen Achse a des ovalen Wendelquerschnittes zu den Querabmessungen b in Richtung der kleinen Ovalachse 51 hat sich ein Wert von mehr als 1,5, vorzugsweise ca. 2 erwiesen. Üblicherweise steht die große Achse 50 (Fig. 3) etwa senkrecht auf der Isolierkörperoberfläche 18. Es ist bei entsprechenden Verhältnissen jedoch auch möglich, sie etwas schräg zu stellen, so lange noch die durch die bevorzugte Eindrückung der Schmalseite 22 in den Isolierkörper erreichten Vorteile beibehalten werden können. Die gute Führung und Stabilität der Heizwendel und die "Schneidwirkung" der relativ dünnen verwendbaren Drähte ermöglichen es auch, die Einpressung in Isoliermaterialien vorzunehmen, deren Widerstand gegen Eindringen relativ hoch ist und die nach dem Verpressen ohne Härtungs- oder Trocknungsvorgang verwendbar sind. Dazu gehören insbesondere körnige Isoliermaterialien.The invention makes it possible to accommodate large lengths of wire on a given unit area, so that even radiators in a multi-cycle circuit with small ones Partial services can be produced. The relatively large ratio between the possible helix pitch h to the wire diameter d of the resistance material 21, preferably h / d = 2 to 10, also contributes to the radiation and ventilation conditions being good. Since, in addition to the extension of the wire diameter for a given width, the oval shape also improves the fixability, it is possible to arrange the spirals in relatively closely spaced spiral paths, so that this also increases the wire length to be accommodated per unit area and enables very uniform heating. The preferred uniform fixing of the heating coils over their entire length also avoids creeping movements of the coil and creates short-circuit protection even at a short distance. However, if it is not a question of a very narrow occupancy, it would also be possible to fix the ribs or warts at a distance from one another as a priority. A value of more than 1.5, preferably approximately 2, has proven to be the preferred ratio between the length of the large axis a of the oval helical cross section directed towards the heating surface 12 and away from the insulating body, in the direction of the small oval axis 51. Usually, the large axis 50 (FIG. 3) is approximately perpendicular to the surface of the insulating body 18. However, given appropriate conditions, it is also possible to set it somewhat obliquely, as long as the advantages achieved by the preferred indentation of the narrow side 22 in the insulating body are retained can be. The good guidance and stability of the heating coil and the "cutting effect" of the relatively thin usable wires also make it possible to press-fit into insulating materials whose resistance to penetration is relatively high and can be used after pressing without hardening or drying process. This includes, in particular, granular insulation materials.

Die bevorzugten Werte des Verhältnisses Wendelsteigung/Drahtdurchmesser (Verzug) h/d können sich in Abhängigkeit von dem Achslängen-Verhältnis a/b des ovalen Wendelquerschnitts und den absoluten Drahtdurchmessern ändern. Es ist bei einem Isolierkörper aus Fiberfrax ermittelt worden, daß gute Festlegungsverhältnisse für einen Drahtdurchmesser d = 0,25 mm bei a/b = 2 und h/d = 2,5 oder darüber erreicht wurden, wobei die Minimalwerte für h/d bei größerem a/b abnehmen könnten und bei kleinerem a/b ansteigen sollten (z.B. für a/b = 1,5 auf h/d = 3). Kleinere Drahtdurchmesser ermöglichen demgegenüber größere h/d-Werte, z.B. d = 0,18; a/b = 2; h/d über 3. Diese Verhältnisse können sich in Abhängigkeit der Faserlänge, Saugdichte, Faserqualität, Bindemittelanteil etc. des Isolierkörpers ändern.The preferred values of the ratio helix pitch / wire diameter (warp) h / d can change depending on the axis length ratio a / b of the oval helix cross section and the absolute wire diameters. It has been determined with an insulating body made of Fiberfrax that good fixing ratios for a wire diameter d = 0.25 mm at a / b = 2 and h / d = 2.5 or above have been achieved, the minimum values for h / d being larger a / b could decrease and should increase with smaller a / b (e.g. for a / b = 1.5 to h / d = 3). In contrast, smaller wire diameters enable larger h / d values, e.g. d = 0.18; a / b = 2; h / d over 3. These ratios can change depending on the fiber length, absorbance, fiber quality, binder content etc. of the insulating body.

Wegen der relativ großen Einpreßtiefe im Vergleich zum Wendeldurchmesser wirken sich Toleranzen in den Wendelabmessungen und in der Einpreßtiefe wesentlich weniger aus.Because of the relatively large press-in depth compared to the helix diameter, tolerances in the helix dimensions and in the press-in depth have a much smaller effect.

Claims (11)

  1. Electric radiant heater for heating heating surfaces (12), particularly glass ceramic hotplates, with an insulator (14) made from electrically and thermally insulating material, in whose surface (18) is partly embedded in an area of more marked curvature at least one heating resistor (20) comprising a wire bent with a non-uniform curvature and the greater transverse extension of the heating resistor (20) is directed away from the surface (18) of the insulator (14), characterized in that the heating resistor (20) is a heater coil with numerous, spaced turns of electric resistance material (21), which has a roughly coil cross-section with a longer and a shorter axis (50, 51) and with in each case two facing sides (22, 23; 24, 25) with a greater and lesser curvature up to an optionally linear configuration and that the embedded wire areas (42) extend roughly at right angles to the longitudinal extension of the heating resistor (20) and that the insulator (14) is mainly made from fibres (14) bound to form a relatively rigid body and preferably the resistance material (21) in the embedded portion (42) of the fibres (44) of the insulator (14) engaging in the coil interior, but the remaining coil interior (45) is substantially free from insulating material.
  2. Electric radiant heater for heating heating surfaces (12), particularly glass ceramic hotplates, with an insulator (14) made from electrically and thermally insulating material, in whose surface (18) is partly embedded in an area of more marked curvature at least one heating resistor (20) comprising a wire bent with a non-uniform curvature and the greater transverse extension of the heating resistor (20) is directed away from the surface (18) of the insulator (14), characterized in that the heating resistor (20) is a heater coil with numerous, spaced turns of electric resistance material (21), which has a roughly coil cross-section with a longer and a shorter axis (50, 51) and with in each case two facing sides (22, 23; 24, 25) with a greater and lesser curvature up to an optionally linear configuration and that the embedded wire areas (42) extend roughly at right angles to the longitudinal extension of the heating resistor (20) and that the insulator (14) comprises a granular insulating material usable after compressing without a hardening process and preferably in the embedded portion (42) the resistance material (21) is overengaged by parts of the insulator (14) engaging in the coil interior, but the remainder of the coil interior (45) is substantially free from insulating material.
  3. Radiant heater according to claims 1 or 2, characterized in that the oval coil cross-section comprises two roughly semicircular sides (22, 23), which are preferably more curved in the apex region and sides (24, 25) connecting the same having a substantially linear configuration of the resistance material (21) and preferably the embedding on the outsides of the heater coil (20) extends up to the sides (24, 25) with a substantially linear configuration of the resistance material (21).
  4. Radiant heater according to one of the preceding claims, characterized in that the embedding on the entire length of the heater coil (20) is substantially uniform for each turn (60), but only over a portion (42) taking up a fraction of the turn circumference.
  5. Radiant heater according to one of the preceding claims, characterized in that in the embedded portion (42) located pressed-in depressions (43) running along its turn configuration and which are partly open towards the surface (18) of the insulator (14) and/or the turns (60) of the resistance material (21) are further surrounded by the material of the insulator (14) on the outsides thereof than in the coil interior (45).
  6. Radiant heater according to one of the preceding claims, characterized in that several different heater coils (20) are embedded in spiral paths in an insulator (14).
  7. Radiant heater according to one of the preceding claims, characterized in that the ratio of the major to the minor axis (50, 51) of the oval coil cross-section is larger than 1.5 and is preferably approximately 2 and/or the ratio of the coil pitch (h) to the diameter (d) of the resistance material (21) is greater than 2 and is preferably between 4 and 8.
  8. Process for the production of an electric radiant heater, in which a heating resistor with curved portions is pressed into the surface (18) of a plastically deformable insulator (14), characterized in that the heating resistor is a heater coil (20) with an approximately oval helical cross-sectional shape, which is pressed in with its narrow side (22), for which purpose a circular heater coil under lateral pressure is compressed in the oval turn cross-sectional shape, is expanded axially, held over more than half the turn circumference with upright coil cross-section and is pressed by the free, unsecured part into the surface (18) of the plastically deformable insulator (14) mainly comprising fibres or a subsequently not hardened or dried granular insulating material.
  9. Process according to claim 8, characterized in that pressing takes place into the moist insulator (14), mainly made from insulating material fibres mixed with binders and after pressing in the heater coil (20), the insulator (14) is hardened, optionally by drying.
  10. Process according to one of the claims 8 or 9, characterized in that on pressing in the heater coil (20), the insulator (14) is pressed into its final shape.
  11. Apparatus for producing an electric radiant heater, characterized by an insert male mould (32), which has at least one preferably spiral slot (33) for receiving a roughly oval heater coil (20) with upright coil cross-section, which is sufficiently deep to receive more than half and advantageously more than 60% of the heater coil dimensions (a) in the direction of the larger oval axis (50) and laterally guides the same.
EP86110033A 1985-07-31 1986-07-22 Electrical radiant heating element for heating hot plates, and process and device for its manufacture Expired - Lifetime EP0210575B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86110033T ATE72615T1 (en) 1985-07-31 1986-07-22 ELECTRIC RADIANT RADIATOR FOR HEATING HEATING SURFACES, AND METHOD AND DEVICE FOR ITS MANUFACTURE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853527413 DE3527413A1 (en) 1985-07-31 1985-07-31 ELECTRIC RADIATOR FOR HEATING HEATING AREAS AND METHOD AND DEVICE FOR PRODUCING THE SAME
DE3527413 1985-07-31

Publications (2)

Publication Number Publication Date
EP0210575A1 EP0210575A1 (en) 1987-02-04
EP0210575B1 true EP0210575B1 (en) 1992-02-12

Family

ID=6277271

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86110033A Expired - Lifetime EP0210575B1 (en) 1985-07-31 1986-07-22 Electrical radiant heating element for heating hot plates, and process and device for its manufacture

Country Status (9)

Country Link
US (1) US4789773A (en)
EP (1) EP0210575B1 (en)
JP (1) JPS6235487A (en)
AT (1) ATE72615T1 (en)
AU (1) AU600906B2 (en)
DE (2) DE3527413A1 (en)
ES (1) ES2000793A6 (en)
YU (1) YU133986A (en)
ZA (1) ZA865596B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3828192A1 (en) * 1988-08-19 1990-02-22 Ego Elektro Blanc & Fischer RADIANT RADIATOR AND METHOD AND DEVICE FOR PRODUCING IT
DE4019898A1 (en) * 1990-06-22 1992-01-02 Ego Elektro Blanc & Fischer METHOD AND DEVICE FOR FIXING HEATING RESISTORS ON A CARRIER
DE4229375C2 (en) * 1992-09-03 2000-05-04 Ego Elektro Blanc & Fischer Radiant heater
US5796075A (en) * 1992-03-09 1998-08-18 E.G.O. Elektro-Gerate Blanc Und Fisher Gmbh & Co. Kg Heater, particularly for kitchen appliances
DE9214270U1 (en) * 1992-10-22 1994-04-07 Fritz Eichenauer Gmbh & Co Kg, 76870 Kandel Electric radiant heating insert for glass ceramic cooktop
GB2275161B (en) * 1993-02-11 1996-05-15 Ceramaspeed Ltd Method of manufacturing a radiant electric heater
GB2275160B (en) * 1993-02-11 1996-04-03 Ceramaspeed Ltd Method of manufacturing a radiant electric heater
GB2275162B (en) * 1993-02-11 1996-04-10 Ceramaspeed Ltd Radiant electric heater method
GB2278261B (en) * 1993-05-21 1996-07-03 Ceramaspeed Ltd Method of manufacturing a radiant electric heater
DE4320214A1 (en) * 1993-06-18 1994-12-22 Belzig Elektrowaerme Gmbh Arrangements of electrical connections and elements therefor
DE19522798A1 (en) * 1995-06-23 1997-01-02 Ego Elektro Blanc & Fischer Process for producing a radiant heater and radiant heater
US6194689B1 (en) * 1998-05-11 2001-02-27 Emerson Electric Co. Radiant heater element for use in grill and the like
US6232630B1 (en) 1999-07-07 2001-05-15 Advanced Micro Devices, Inc. Light floating gate doping to improve tunnel oxide reliability
DE102006001151B3 (en) * 2006-01-06 2007-05-10 Von Ardenne Anlagentechnik Gmbh Radiation heater box for vacuum system, has heater coils mechanically connected with section of coil winding, where coil winding is detachably connected with surface unit, by connection produced by three contact points
GB0811980D0 (en) * 2008-07-07 2008-07-30 Ceramaspeed Ltd Radiant electric heater
US8611799B2 (en) * 2010-07-21 2013-12-17 Casio Electronics Manufacturing Co., Ltd. Achromatic apparatus for achromatizing achromatic toner image formed on recording medium
US9113501B2 (en) 2012-05-25 2015-08-18 Watlow Electric Manufacturing Company Variable pitch resistance coil heater
US20210041108A1 (en) * 2019-08-09 2021-02-11 Eidon, Llc Apparatuses for radiant heating

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE464026A (en) *
US2235091A (en) * 1936-09-12 1941-03-18 Samuel S Vineberg Heating unit for electrical cooking devices
FR880865A (en) * 1941-03-31 1943-04-07 Heating device
FR929589A (en) * 1945-06-21 1947-12-31 advanced electric resistance heating element
US3047702A (en) * 1958-10-03 1962-07-31 Fredrick L Lefebvre Plate heater
US3991298A (en) * 1975-07-28 1976-11-09 Gould Inc. Heating unit for a ceramic top electric range
DE2551137C2 (en) * 1975-11-14 1986-04-24 E.G.O. Elektro-Geräte Blanc u. Fischer, 7519 Oberderdingen Electric radiant heater for glass ceramic hotplates
ZA774922B (en) * 1977-03-09 1978-06-28 Emerson Electric Co Open coil heater
SE7806238L (en) * 1977-07-02 1979-01-03 Fischer Karl ELECTRIC RADIATING HEATING ELEMENT, SPECIAL FOR GLASS CERAMIC COOKERS
DE2729929C3 (en) * 1977-07-02 1981-10-08 Karl 7519 Oberderdingen Fischer Radiant heating unit for glass ceramic electric cookers
DE2820138A1 (en) * 1978-05-09 1979-11-15 Karl Fischer Electric element for glass ceramic cooker plate - is partly embedded in raised portions of insulating base
CA1115761A (en) * 1977-12-21 1982-01-05 Ewald R. Werych Electrical heating unit with flattened embedded heating coil
DE2950302A1 (en) * 1979-12-14 1981-06-19 E.G.O. Elektro-Geräte Blanc u. Fischer, 7519 Oberderdingen ELECTRIC RADIANT RADIATOR, METHOD AND DEVICE FOR PRODUCING IT
LU82075A1 (en) * 1980-01-10 1980-04-23 Belge Isolants ELECTRIC HEATING ELEMENT
NZ197851A (en) * 1980-08-13 1984-09-28 Micropore International Ltd Cooker element:temperature sensor receives heated air
DE3129239A1 (en) * 1981-07-24 1983-02-10 E.G.O. Elektro-Geräte Blanc u. Fischer, 7519 Oberderdingen ELECTRIC RADIATOR FOR HEATING A PLATE AND METHOD FOR THE PRODUCTION THEREOF
DE3275804D1 (en) * 1982-10-20 1987-04-23 Elpag Ag Chur Electric heating device for ranges or cooking plates
DE3437940C2 (en) * 1984-10-17 1986-08-14 Roland Ing.(grad.) 5828 Ennepetal Abicht Holding device for an electrical heating conductor in a molded body made of insulating material

Also Published As

Publication number Publication date
AU600906B2 (en) 1990-08-30
JPS6235487A (en) 1987-02-16
DE3683881D1 (en) 1992-03-26
AU6009186A (en) 1987-02-05
ZA865596B (en) 1987-03-25
ATE72615T1 (en) 1992-02-15
EP0210575A1 (en) 1987-02-04
DE3527413A1 (en) 1987-02-12
ES2000793A6 (en) 1988-03-16
US4789773A (en) 1988-12-06
YU133986A (en) 1988-04-30

Similar Documents

Publication Publication Date Title
EP0210575B1 (en) Electrical radiant heating element for heating hot plates, and process and device for its manufacture
EP0204185B1 (en) Radiant-heating unit
EP0071048B1 (en) Radiant electric heating element and method of manufacturing the same
EP0031514B1 (en) Electric heating radiator, and process and apparatus for its manufacture
DE3043209C2 (en) Compression connectors for electrical lines
EP1414275A1 (en) Electrical heating device
DE2545011A1 (en) ANWUERG JOINT AND METHOD FOR MANUFACTURING IT
EP2353837B1 (en) Electric heating device with omega pipe
DE2325245A1 (en) MICROCHANNEL PLATE FOR SECONDARY ELECTRON EMISSION AND A METHOD OF MANUFACTURING SUCH PLATE
EP0355388A1 (en) Radiant heater and method and device for producing same
EP0743804B1 (en) Heater
DE2825980A1 (en) ELECTRIC PIPE RADIATOR AND METHOD FOR THE PRODUCTION THEREOF
CH627312A5 (en)
DE10316908A1 (en) heater
DE3539881A1 (en) Electrical radiant heating element for heating heating surfaces, and a method and device for its production
DE102007010958A1 (en) Heizölvorwärmer
AT524059B1 (en) INSULATING CONCRETE SHELL
DE4320214A1 (en) Arrangements of electrical connections and elements therefor
EP2965385A1 (en) Clip contact element for a printed circuit board, and method for producing same
DE102008056083B4 (en) Method of making a heater and heater
DE1440048B2 (en) Tubular internally cooled electrical conductor with irregular walls and method for its manufacture
EP3503671B1 (en) Electric heating device and a method for manufacturing the same
DE102007053348A1 (en) Support for an electric heater and electric heater and manufacturing method
WO2022167649A1 (en) Method for producing a tubular heating cartridge for electrical heating devices, heating element blank for such a heating cartridge, and heating cartridge
DE1440048C (en) Tubular internally cooled electrical conductor with irregular walls and method for its manufacture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19870409

17Q First examination report despatched

Effective date: 19890228

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 72615

Country of ref document: AT

Date of ref document: 19920215

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3683881

Country of ref document: DE

Date of ref document: 19920326

ITF It: translation for a ep patent filed
ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920710

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920716

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920731

Ref country code: CH

Effective date: 19920731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920917

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930722

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 86110033.7

Effective date: 19930204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050722