EP0197350B1 - Dual-band corrugated horn with a dielectric transition - Google Patents

Dual-band corrugated horn with a dielectric transition Download PDF

Info

Publication number
EP0197350B1
EP0197350B1 EP86103404A EP86103404A EP0197350B1 EP 0197350 B1 EP0197350 B1 EP 0197350B1 EP 86103404 A EP86103404 A EP 86103404A EP 86103404 A EP86103404 A EP 86103404A EP 0197350 B1 EP0197350 B1 EP 0197350B1
Authority
EP
European Patent Office
Prior art keywords
horn
length
dielectric
transition section
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86103404A
Other languages
German (de)
French (fr)
Other versions
EP0197350A1 (en
Inventor
Eberhard Dipl.-Ing. Tauscheck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0197350A1 publication Critical patent/EP0197350A1/en
Application granted granted Critical
Publication of EP0197350B1 publication Critical patent/EP0197350B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0208Corrugated horns

Definitions

  • the invention relates to a double-band horn radiator, consisting of a transition part adjoining a feed waveguide of circular cross-section and a horn, the funnel-shaped inner wall of which is provided with grooves, for two frequency bands lying apart.
  • Grooved horns of this type are frequently used in the microwave range because of their favorable properties. With suitable dimensioning in a broad frequency band, they have good adaptation as well as directional characteristics with high axial symmetry and low cross polarization. To achieve these properties, the groove dimensions must be dimensioned precisely.
  • short grooved horn radiators are mainly used as exciters for the mirror system, since horns with large opening angles. d. H. > 30 °, enable good diagram properties over a wide frequency range with a short overall length.
  • series antennas it is important that no mechanically complicated structures of the grooves and the transition zone from the feed waveguide to the groove part of the horn are required, since otherwise the horn has to be assembled in a complex manner from several fitting parts.
  • the optimization of the reflection factor in two frequency bands separated by a factor of 1.7 to values below 3% is not guaranteed in the design of the horns according to known dimensioning rules by simply varying the grooves and the transition form in the metal body of the horn.
  • the pressure seal on the horn usually a dielectric plate, must also be included in the reflection adjustment, the compensation of which is difficult at high bandwidths.
  • the invention has for its object to design a horn of the type described above so that an optimization of the reflection in two different frequency bands is achieved in a simple manner.
  • the horn emitter shown in Fig. 1 consists of a transition part 1 of length So and a horn 2 (groove part).
  • B o is the feed waveguide diameter
  • x the length of the horn
  • K is a coefficient with the value «1
  • n is a coefficient with a value 2 ⁇ n ⁇ 8, for example 5.
  • the transition part 1 has a flat start, in which the gradation only begins after about 2/3 of its length.
  • the following horn 2 is constructed in accordance with the known formulas and computer programs for radiation optimization. With appropriate dimensions, such a horn typically has reflection factors of r ⁇ 10% in the lower band and r ⁇ 5% in the upper band.
  • the disturbance of the fundamental wave H 11 in the lower band generated at the horn bend and at the first grooves is in an axially extended area in the B o - e K ⁇ xn transition with a very weak rigid foam dielectric 3 ( Er1 ⁇ 1.3) at the next possible location in the Transition compensated.
  • the dielectric 3 completely or partially fills the last quarter of the transition part 1 in the direction of the horn 2. Because of the large distance between the frequency bands and thus the waveguide wavelength ratio ⁇ H E 1 below / ⁇ H E1 above, it is possible to interpret the interference caused in the upper band by the axial distance between the interfaces of the weak dielectric itself.
  • the average electrically effective length of the dielectric 3 in the stepped transition part corresponds to the condition ⁇ H ⁇ 1 / 2 for the upper operating frequency range.
  • the mechanical length S of the continuous weak dielectric 3 that is to say the dielectric with a low dielectric constant, is approximately So / 8 to So / 3 if So is the length of the transition 1 .
  • a partial length of the dielectric 3 with a low dielectric constant ⁇ r1 is replaced by a thin disk 4 (film) with a higher dielectric constant Er2 (er 2 - 2.5 to 4.7).
  • the dielectric 3 with a low dielectric constant ⁇ r1 is removed in the end region, ie shortened by the length S - S'o, where S'o is the remaining length of the dielectric 3.
  • the thin disk 4 of the material of high dielectric constant Er2 is applied to the reduced end area of the dielectric 3, which is much thinner than the removed material layer.
  • the dielectric body 3, 4 is glued into the step transition.
  • the change in the radiation diagram compared to the unbalanced horn is small and can usually be neglected. This is a great advantage when dimensioning the grooved horn, because e.g. B. Changes in the first grooves to improve the fit, especially in the upper band, can have a major impact on the radiation pattern. If an axial groove structure is selected when dimensioning the horn, the type of compensation enables grooved horns without undercuts * ) and complicated curves to be built, so that production in one piece is possible as a turned part.
  • the horn emitter according to the invention with the specially designed transition part thus advantageously serves to fine-tune the reflection factor in two spaced-apart frequency bands in grooved horns, which are designed on the basis of radiation diagram optimization. At the same time, the problem of reflection of the pressure seal in two bands is also solved. * ) grooved grooves

Description

Die Erfindung bezieht sich auf einen Doppelbandhornstrahler, bestehend aus einem sich an einen Speisehohlleiter kreisförmigen Querschnitts anschließenden Übergangsteil und einem Horn, dessen sich trichterförmig erweiternde Innenwand mit Rillen versehen ist, für zwei auseinanderliegende Frequenzbänder.The invention relates to a double-band horn radiator, consisting of a transition part adjoining a feed waveguide of circular cross-section and a horn, the funnel-shaped inner wall of which is provided with grooves, for two frequency bands lying apart.

Im Mikrowellenbereich finden derartige Rillenhörner wegen ihrer günstigen Eigenschaften häufig Anwendung. Sie weisen bei geeigneter Dimensionierung in einem breiten Frequenzband eine gute Anpassung sowie Richtcharakteristiken mit hoher Axialsymmetrie und geringer Kreuzpolarisation auf. Zur Erreichung dieser Eigenschaften müssen die Rillenabmessungen genau dimensioniert sein.Grooved horns of this type are frequently used in the microwave range because of their favorable properties. With suitable dimensioning in a broad frequency band, they have good adaptation as well as directional characteristics with high axial symmetry and low cross polarization. To achieve these properties, the groove dimensions must be dimensioned precisely.

Bei der Dimensionierung von Doppelbandrichtfunkantennen werden als Erreger für das Spiegelsystem vorwiegend kurze Rillenhornstrahler verwendet, da Hörner mit großen Öffnungswinkeln. d. h. > 30°, gute Diagrammeigenschaften über einen weiten Frequenzbereich bei kurzer Baulänge ermöglichen. Dabei ist es bei Serienantennen wichtig, daß keine mechanisch zu komplizierten Strukturen der Rillen und der Übergangszone vom Speisehohlleiter zum Rillenteil des Horns benötigt werden, da sonst das Horn in aufwendiger Weise aus mehreren Paßteilen zusammengesetzt werden muß. Insbesondere die Optimierung des Reflexionsfaktors in zwei um den Faktor 1,7 auseinanderliegenden Frequenzbändern auf Werte unter 3 % ist beim Entwurf der Hörner nach bekannten Dimensionierungsregeln durch einfaches Variieren der Rillen und der Übergangsform im Metallkörper des Horns nicht gewährleistet. Bei trockenluftgeschützten Antennenzuleitungen ist zudem die Druckabdichtung am Horn, üblicherweise eine dielektrische Platte, in den Reflexionsabgleich miteinzubeziehen, deren Kompensation bei hohen Bandbreiten schwierig ist.When dimensioning double-band directional antennas, short grooved horn radiators are mainly used as exciters for the mirror system, since horns with large opening angles. d. H. > 30 °, enable good diagram properties over a wide frequency range with a short overall length. In the case of series antennas, it is important that no mechanically complicated structures of the grooves and the transition zone from the feed waveguide to the groove part of the horn are required, since otherwise the horn has to be assembled in a complex manner from several fitting parts. In particular, the optimization of the reflection factor in two frequency bands separated by a factor of 1.7 to values below 3% is not guaranteed in the design of the horns according to known dimensioning rules by simply varying the grooves and the transition form in the metal body of the horn. In the case of antenna feed lines protected from dry air, the pressure seal on the horn, usually a dielectric plate, must also be included in the reflection adjustment, the compensation of which is difficult at high bandwidths.

Der Erfindung liegt die Aufgabe zugrunde, einen Hornstrahler der eingangs beschriebenen Art so zu gestalten, daß eine Optimierung der Reflexion in zwei unterschiedlichen Frequenzbändern in einfacher Weise erreicht wird.The invention has for its object to design a horn of the type described above so that an optimization of the reflection in two different frequency bands is achieved in a simple manner.

Diese Aufgabe wird gemäß der Erfindung in der Weise gelöst, daß der Übergangsteil sich nach einer Bo . eK · xn-Kurve (Bo = Speisehohlleiterdurchmesser, x = Längsausdehnung des Horns, K = Koeffizient mit dem Wert « 1, n = Koeffizient mit einem Wert 2 < n < 8), in der Weise erweitert, daß der Öffnungswinkel bei der ersten Rille des Horns 0,5 ± 0,2 mal dem stetigen Öffnungswinkel des Horns entspricht und daß der dem Horn zugekehrte Endbereich des Übergangsteils auf einer Länge von S0/8 bis So/3 (So = Länge des Übergangsteils) mit einem Dielektrikum niedriger Dielektrizitätskonstante (Er1 < 1,3) ganz oder teilweise ausgefüllt ist, in der Weise, daß eine Teillänge des Dielektrikums niedriger Dielektrizitätskonstante ersetzt ist durch wenigstens eine dünne Scheibe eines Materials höherer Dielektrizitätskonstante (Er2 - 2,5 bis 4,7) zur Erfüllung der Funktion einer reflexionsoptimierten Druckabdichtung.This object is achieved according to the invention in such a way that the transition part after a B o . e K · xn curve (B o = feed waveguide diameter, x = longitudinal extension of the horn, K = coefficient with the value «1, n = coefficient with a value 2 <n <8), expanded in such a way that the opening angle at the first groove of the horn 0.5 ± 0.2 corresponds to times the steady opening angle of the horn and in that the facing the horn end portion of the transition part 0/8 to to / 3 (So = length of the transition portion) with a dielectric lower on a length of S Dielectric constant ( Er1 <1.3) is completely or partially filled in such a way that a partial length of the dielectric of low dielectric constant is replaced by at least one thin slice of a material of higher dielectric constant ( E r2 - 2.5 to 4.7) to fulfill the function of a reflection-optimized pressure seal.

Vorteilhafte Ausgestaltungen und Weiterbildungen des Erfindungsgegenstandes sind in den Unteransprüchen angegeben.Advantageous refinements and developments of the subject matter of the invention are specified in the subclaims.

Nachstehend wird die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigen

  • Fig. 1 den Hornstrahler mit Übergangsteil und Horn in einer geschnittenen Teildarstellung und
  • Fig. 2 den mit Dielektrikas gefüllten Endbereich des Übergangsteils.
The invention is explained in more detail below on the basis of an exemplary embodiment shown in the drawing. Show it
  • Fig. 1 the horn radiator with transition part and horn in a sectional partial view and
  • 2 shows the end region of the transition part filled with dielectrics.

Der in Fig. 1 dargestellte Hornstrahler besteht aus einem Übergangsteil 1 der Länge So und einem Horn 2 (Rillenteil). Der Durchmesser des Übergangsteils 1 im Anschlußbereich des Speisehohlleiters in der Fig. 1 an der Stelle x = o ist so dimensioniert, daß die Abhängigkeit des Feldwellenwiderstandes der Grundwelle H11 im unteren Band vom Hohlleiterdurchmesser aus dem sehr steilen Bereich nahe der Grenzfrequenz herauskommt, die E11-Welle im oberen Bereich jedoch möglichst noch nicht ausbreitungsfähig ist. Das Übergangsteil 1 erweitert sich bei x = o, ausgehend vom Durchmesser des Speisehohlleiters bis zu einem Durchmesser, bei dem die Bedingung fu/fc > 1.3 erfüllt ist (fu = unterste Betriebsfrequenz, fc = Grenzfrequenz der H11-Welle) nach einer Bo . eK . xn-Kurve in der Weise, daß der Öffnungswinkel bei der ersten Rille 0,5 * 0.2 mal dem stetigen Öffnungswinkel des folgenden Horns entspricht. Hierbei ist Bo der Speisehohlleiterdurchmesser, x die Längenausdehnung des Horns, K ein Koeffizient mit dem Wert « 1 und n ein Koeffizient mit einem Wert 2 < n < 8, beispielsweise 5. Statt einer stetigen Durchmessererweiterung werden zweckmäßigerweise im Übergangsteil Zylinderrohrbereiche mit konstanten Durchmessersprüngen verwendet. Dadurch wird die Lage des dielektrischen Körpers stabilisiert und die Herstellung der Anordnung vereinfacht. Der Übergangsteil 1 weist dabei einen flachen Anlauf auf, bei dem die Stufung erst nach etwa 2/3 seiner Länge beginnt. Das folgende Horn 2 ist entsprechend den bekannten Formeln und Rechenprogrammen zur Strahlungsoptimierung aufgebaut. Bei entsprechender Dimensionierung hat ein solches Horn typischerweise Reflexionsfaktoren von r < 10 % im unteren Band und r < 5 % im oberen Band.The horn emitter shown in Fig. 1 consists of a transition part 1 of length So and a horn 2 (groove part). The diameter of the transition part 1 in the connection area of the feed waveguide in FIG. 1 at the point x = o is dimensioned such that the dependence of the field wave resistance of the fundamental wave H 11 in the lower band on the waveguide diameter comes out of the very steep area near the cutoff frequency, the E 11 -wave in the upper area, however, is not yet capable of spreading. The transition part 1 widens at x = o, starting from the diameter of the feed waveguide to a diameter at which the condition fu / fc> 1.3 is fulfilled (f u = lowest operating frequency, f c = cut-off frequency of the H 11 wave) after one B o . e K. xn curve in such a way that the opening angle for the first groove corresponds to 0.5 * 0.2 times the continuous opening angle of the following horn. Here B o is the feed waveguide diameter, x the length of the horn, K is a coefficient with the value «1 and n is a coefficient with a value 2 <n <8, for example 5. Instead of a constant diameter expansion, cylinder tube regions with constant jumps in diameter are expediently used in the transition part . This stabilizes the position of the dielectric body and simplifies the manufacture of the arrangement. The transition part 1 has a flat start, in which the gradation only begins after about 2/3 of its length. The following horn 2 is constructed in accordance with the known formulas and computer programs for radiation optimization. With appropriate dimensions, such a horn typically has reflection factors of r <10% in the lower band and r <5% in the upper band.

Die am Hornknick und bei den ersten Rillen erzeugte Störung der Grundwelle H11 im unteren Band wird in einem axial ausgedehnten Bereich im Bo - eK · xn-Übergang mit einem sehr schwachen Hartschaumdielektrikum 3 (Er1 < 1,3) am nächstmöglichen Ort im Übergang kompensiert. Das Dielektrikum 3 füllt dabei etwa das letzte Viertel des Übergangsteils 1 in Richtung des Horns 2 ganz oder teilweise aus. Wegen des großen Abstands der Frequenzbänder und damit des Hohlleiterwellenlängenverhältnisses ÄHE1 unten/ λHE1 oben ist es möglich, die hervorgerufene Störung im oberen Band durch den axialen Abstand der Grenzflächen des schwachen Dielektrikums selbst kompensierend auszulegen. Dies ist erfüllt, wenn die mittlere elektrisch wirksame Länge des Dielektrikums 3 im gestuften Übergangsteil der Bedingung λHε1/2 für den oberen Betriebsfrequenzbereich entspricht. Die mechanische Länge S des durchgehenden schwachen Dielektrikums 3, d. h. des Dielektrikums mit niedriger Dielektrizitätskonstante, beträgt dabei je nach Lage der Frequenzbänder, der Übergangsdurchmesser und der Dielektrizitätskonstante Er1 etwa So/8 bis So/3, wenn So die Länge des Übergangs 1 ist.The disturbance of the fundamental wave H 11 in the lower band generated at the horn bend and at the first grooves is in an axially extended area in the B o - e K · xn transition with a very weak rigid foam dielectric 3 ( Er1 <1.3) at the next possible location in the Transition compensated. The dielectric 3 completely or partially fills the last quarter of the transition part 1 in the direction of the horn 2. Because of the large distance between the frequency bands and thus the waveguide wavelength ratio Ä H E 1 below / λH E1 above, it is possible to interpret the interference caused in the upper band by the axial distance between the interfaces of the weak dielectric itself. This is fulfilled if the average electrically effective length of the dielectric 3 in the stepped transition part corresponds to the condition λH ε1 / 2 for the upper operating frequency range. Depending on the position of the frequency bands, the transition diameter and the dielectric constant E r 1 , the mechanical length S of the continuous weak dielectric 3, that is to say the dielectric with a low dielectric constant, is approximately So / 8 to So / 3 if So is the length of the transition 1 .

Beim dargestellten Ausführungsbeispiel ist eine Teillänge des Dielektrikums 3 mit niedriger Dielektrizitätskonstante εr1 durch eine dünne Scheibe 4 (Folie) mit höherer Dielektrizitätskonstante Er2 (er2 - 2,5 bis 4,7) ersetzt. Dabei ist, wie Fig. 2 zeigt, das Dielektrikum 3 mit niedriger Dielektrizitätskonstante εr1 im Endbereich abgetragen, d. h. um die Länge S - S'o verkürzt, wobei S'o die verbleibende Länge des Dielektrikums 3 ist. Auf den reduzierten Endbereich des Dielektrikums 3 ist die dünne Scheibe 4 des Materials hoher Dielektrizitätskonstante Er2 (Dicke So - S'D) aufgebracht, die wesentlich dünner ist als die abgetragene Materialschicht. Durch diese Maßnahme wird die Kompensation im unteren Band kaum verändert, wenn die ersetzte Länge mit der Dielektrizitätskonstanten εr1 elektrisch dem Einfluß der dünnen Schicht mit der Dielektrizitätskonstanten Fr2 entspricht, da die Phasen-Amplitudenänderung bei der großen Wellenlänge gering bleibt. Im oberen Band wirkt sich diese Anderung stärker aus, so daß verschiedene Dielektrizitätskombinationen, die im unteren Band nahezu gleich wirken, zum Restabgleich im oberen Band ausgelegt werden können. Die dünne Schicht mit der Dielektrizitätskonstanten Er2 (z. B. bei einem Horn für 2,1 bis 2,3 Gigahertz und 3,4 bis 3,6 Gigahertz eine 0,1 mm dicke Glasfaserepoxidfolie mit εr2 = 4,7) wirkt nun zugleich als reflexionsoptimierte Druckabdichtung. Die dünne Schicht mit der Dielektrizitätskonstanten er2 kann auch an beiden Enden der Schicht mit der Dielektrizitätskonstanten Er1 angelegt sein.In the exemplary embodiment shown, a partial length of the dielectric 3 with a low dielectric constant εr1 is replaced by a thin disk 4 (film) with a higher dielectric constant Er2 (er 2 - 2.5 to 4.7). 2, the dielectric 3 with a low dielectric constant εr1 is removed in the end region, ie shortened by the length S - S'o, where S'o is the remaining length of the dielectric 3. The thin disk 4 of the material of high dielectric constant Er2 (thickness So - S ' D ) is applied to the reduced end area of the dielectric 3, which is much thinner than the removed material layer. This measure hardly changes the compensation in the lower band if the replaced length with the dielectric constant εr1 corresponds electrically to the influence of the thin layer with the dielectric constant Fr2 , since the phase amplitude change remains small at the large wavelength. This change has a greater effect in the upper band, so that different dielectric combinations, which act almost identically in the lower band, can be designed for residual adjustment in the upper band. The thin layer with the dielectric constant Er2 (e.g. a horn for 2.1 to 2.3 gigahertz and 3.4 to 3.6 gigahertz a 0.1 mm thick glass fiber epoxy film with εr2 = 4.7) now works at the same time as a reflection-optimized pressure seal. The thin layer with the dielectric constant e r2 can also be applied to both ends of the layer with the dielectric constant Er1 .

Der dielektrische Körper 3,4 wird in den Stufenübergang eingeklebt. Die Änderung des Strahlungsdiagramms gegenüber dem nicht abgeglichenen Horn ist gering und kann in der Regel vernachlässigt werden. Dies ist ein großer Vorteil bei der Dimensionierung des Rillenhorns, da z. B. Änderungen der ersten Rillen zur Verbesserung der Anpassung besonders im oberen Band starke Auswirkungen auf das Strahlendiagramm haben. Wird bei der Dimensionierung des Horns eine axiale Rillenstruktur gewählt, so ermöglicht die Art der Kompensation Rillenhörner ohne Hinterschneidungen *) und komplizierte Kurven zu bauen, so daß die Produktion in einem Stück als Drehteil möglich ist.The dielectric body 3, 4 is glued into the step transition. The change in the radiation diagram compared to the unbalanced horn is small and can usually be neglected. This is a great advantage when dimensioning the grooved horn, because e.g. B. Changes in the first grooves to improve the fit, especially in the upper band, can have a major impact on the radiation pattern. If an axial groove structure is selected when dimensioning the horn, the type of compensation enables grooved horns without undercuts * ) and complicated curves to be built, so that production in one piece is possible as a turned part.

Der erfindungsgemäße Hornstrahler mit dem speziell ausgebildeten Übergangsteil dient somit in vorteilhafter Weise zum Feinabgleich des Reflexionsfaktors in zwei auseinanderliegenden Frequenzbändern in Rillenhörnern, die nach Gesichtspunkten der Strahlungsdiagrammoptimierung entworfen werden. Zugleich wird damit auch das Problem der Reflexion der Druckabdichtung in zwei Bändern gelöst. *) hinterdrehter RillenThe horn emitter according to the invention with the specially designed transition part thus advantageously serves to fine-tune the reflection factor in two spaced-apart frequency bands in grooved horns, which are designed on the basis of radiation diagram optimization. At the same time, the problem of reflection of the pressure seal in two bands is also solved. * ) grooved grooves

Claims (5)

1. Dual-band horn radiator consisting of a transition section adjoining a feeder waveguide of circular cross-section and of a horn the inner wall of which, which widens in the form of a funnel, is provided with corrugations, for two separate frequency bands, characterized in that the transition section (1) widens in accordance with a Bo - eKxn curve, where Bo = feeder waveguide diameter, x = longitudinal dimension of the horn, K = coefficient having a value of « 1, n = coefficient having a value of 2 < n < 8, in such a manner that the aperture angle at the first corrugation of the horn corresponds to 0.5 0.2 times the constant aperture angle of the horn and that the end region of the transition section (1) facing the horn (2), having the length So is wholly or partially filled over a length of So/8 to So/3 (So = length of transition section) by a dielectric (3) of a low dielectric constant (Eri) of less than 1.3, in such a manner that the mean electrically active length of the dielectric (3) in the stepped transition section satisfies the condition λHε1/2 for the upper operating frequency range, where λHε1 is the wavelength of the upper operating frequency.
2. Arrangement according to Claim 1, characterized in that a part-length of the dielectric (3) of low dielectric constant is replaced by at least one thin disk (4) of a material having a higher dielectric constant (εr2) of approximately 2.5 to 4.7, to fulfil the function of a reflection-optimized pressure seal.
3. Arrangement according to Claim 2, characterized in that a thin disk (4) of higher dielectric constant is arranged at one or both ends of the dielectric (3) of low dielectric constant.
4. Arrangement according to one of Claims 1 to 3, characterized in that the inner contour of the transition section is divided into steps with constant small diameter changes in accordance with the variation Bo - eKxn.
EP86103404A 1985-03-14 1986-03-13 Dual-band corrugated horn with a dielectric transition Expired - Lifetime EP0197350B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853509259 DE3509259A1 (en) 1985-03-14 1985-03-14 DOUBLE BAND GROOVED HORN WITH DIELECTRIC ADJUSTMENT
DE3509259 1985-03-14

Publications (2)

Publication Number Publication Date
EP0197350A1 EP0197350A1 (en) 1986-10-15
EP0197350B1 true EP0197350B1 (en) 1990-02-28

Family

ID=6265254

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86103404A Expired - Lifetime EP0197350B1 (en) 1985-03-14 1986-03-13 Dual-band corrugated horn with a dielectric transition

Country Status (3)

Country Link
EP (1) EP0197350B1 (en)
AU (1) AU582630B2 (en)
DE (2) DE3509259A1 (en)

Families Citing this family (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7907097B2 (en) * 2007-07-17 2011-03-15 Andrew Llc Self-supporting unitary feed assembly
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE816424C (en) * 1948-05-28 1951-10-11 Emi Ltd Funnel emitter for sending and receiving electrical waves
US3055004A (en) * 1958-12-18 1962-09-18 Bell Telephone Labor Inc Horn radiator for spherical reflector
US4047180A (en) * 1976-06-01 1977-09-06 Gte Sylvania Incorporated Broadband corrugated horn antenna with radome
BR8307286A (en) * 1983-12-27 1985-08-06 Brasilia Telecom TRANSITION BETWEEN FLAT AND CORRUGATED GUIDE FOR OPERATION IN TWO DIFFERENT FREQUENCY BANDS

Also Published As

Publication number Publication date
DE3669237D1 (en) 1990-04-05
AU582630B2 (en) 1989-04-06
DE3509259A1 (en) 1986-09-18
AU5467986A (en) 1986-09-18
EP0197350A1 (en) 1986-10-15

Similar Documents

Publication Publication Date Title
EP0197350B1 (en) Dual-band corrugated horn with a dielectric transition
EP3220480B1 (en) Dipole-shaped radiator assembly
EP2784874B1 (en) Broadband monopole antenna for vehicles for two frequency bands separated by a frequency gap in the decimeter wavelength
EP1344277A1 (en) Antenna, in particular mobile radio antenna
DE2639813C3 (en) Spiral antenna
DE3009617A1 (en) METHOD FOR PRODUCING A MICROWAVE DELAY LINE AND DELAY LINE PRODUCED BY THIS METHOD
DE3612534A1 (en) BROADBAND ANTENNA
DE19646100A1 (en) Flat antenna
EP2073312B1 (en) Antenna coupler
DE4023528A1 (en) BROADBAND ANTENNA ON A MOTOR VEHICLE REAR WINDOW GLASS
WO2016042061A1 (en) Multi-structure broadband monopole antenna for two frequency bands in the decimeter wave range separated by a frequency gap, for motor vehicles
DE2930932A1 (en) RILLED HORN SPOTLIGHT
DE202017104142U1 (en) Miniature broadband antenna with parasitic element
DE69824466T2 (en) Window glass antenna system
DE2441638C3 (en) Broadband antenna with a spiral arranged near a reflector
DE69826500T2 (en) THREADED ANTENNA ANTENNA WITH CROSS-LINKED ELEMENTS
DE102005003685B4 (en) Antenna with reflector
DE4141783B4 (en) Motor vehicle antenna for several separate frequency ranges
DE602004006924T2 (en) ANTENNA DEVICE
DE102004024800A1 (en) Multiband antenna for motor vehicles has at least one parasitic element in addition to main radiator, whereby it also radiates in at least one other frequency band in addition to main frequency band
DE4002913A1 (en) DOUBLE REFLECTOR ANTENNA
EP0573971B1 (en) Antenna
DE2410498A1 (en) LOGARITHMIC-PERIODIC ANTENNA
DE2607809A1 (en) Low bunching microwave aerial - has transverse slot width and spacing from aperture chosen to ensure phase side lobes reversal
DE1541598B2 (en) Directional antenna, consisting of a mirror and a dipole exciter system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19870326

17Q First examination report despatched

Effective date: 19890612

RBV Designated contracting states (corrected)

Designated state(s): CH DE GB IT LI NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI NL

REF Corresponds to:

Ref document number: 3669237

Country of ref document: DE

Date of ref document: 19900405

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910218

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910331

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910621

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920331

Ref country code: CH

Effective date: 19920331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19921001

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940519

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050313