EP0192926B1 - Separator film for an alkaline electrolytic cell, and manufacturing process thereof - Google Patents

Separator film for an alkaline electrolytic cell, and manufacturing process thereof Download PDF

Info

Publication number
EP0192926B1
EP0192926B1 EP86100106A EP86100106A EP0192926B1 EP 0192926 B1 EP0192926 B1 EP 0192926B1 EP 86100106 A EP86100106 A EP 86100106A EP 86100106 A EP86100106 A EP 86100106A EP 0192926 B1 EP0192926 B1 EP 0192926B1
Authority
EP
European Patent Office
Prior art keywords
film
titanium
solvent
separator
polysulphone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86100106A
Other languages
German (de)
French (fr)
Other versions
EP0192926A1 (en
Inventor
Giancarlo Pierini
Luigi Giuffré
Ezio Tempesti
Giovanni Modica
Silvia Maffi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
European Atomic Energy Community Euratom
Original Assignee
European Atomic Energy Community Euratom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by European Atomic Energy Community Euratom filed Critical European Atomic Energy Community Euratom
Priority to AT86100106T priority Critical patent/ATE44053T1/en
Publication of EP0192926A1 publication Critical patent/EP0192926A1/en
Application granted granted Critical
Publication of EP0192926B1 publication Critical patent/EP0192926B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material

Definitions

  • the invention relates to a separating film for an alkaline electrolyser and to a method for manufacturing such a film.
  • Isotopic separation of hydrogen by electrolysis is based on the difference in potential discharge at the cathode. In order to obtain purely cathodic gases, it is necessary to avoid any mixing with the anodic gases constituted by oxygen.
  • Known separators meet this requirement by using different materials. Asbestos separators, which are generally used in the alkaline electrolysis of natural water up to a temperature of 80 ° C, are attacked by tritiated water.
  • the isotopic exchange between hydrogen and tritium takes place in chains of magnesium hydrate and polysilicate, which constitute the basic polymer structure of this material. The exchanged tritium breaks down "in situ" in the structure of asbestos, emitting beta radiation and transforming into gas. This action, which takes place in practically all places of the fibrous structure, causes the rapid destruction of asbestos.
  • inorganic polymerized materials When researching other materials for the separator film, we also studied inorganic polymerized materials. These materials exhibit very high chemical inactivity and good wettability, even under alkaline electrolysis conditions. However, these materials can only rarely be prepared in the form of fibers or microporous films, since their state of aggregation is generally pulverulent.
  • polymerized organic materials there are only very few which withstand severe conditions existing in an alkaline electrolytic cell.
  • these materials there are some such as polytetrafluoroethylene, polyphenylsulfide, polychinoxalines, polyphenylechinoxalines, polyphenylenes, which are sufficiently chemically resistant, but their wettability is not sufficient for the intended application.
  • the object of the invention is to propose a new material for a composite separator comprising an organic binder and an inorganic ion exchanger.
  • a separator must be resistant to tritiated water and must have good wettability.
  • the separator contains an aromatic polymer chosen from a polysulphone, a polyethersulphone, or a polybenzimidazole as well as between 3 to 45% by weight, preferably between 5 and 30% by weight, of titanium polyacid.
  • an aromatic polymer chosen from a polysulphone, a polyethersulphone, or a polybenzimidazole as well as between 3 to 45% by weight, preferably between 5 and 30% by weight, of titanium polyacid.
  • Such a separating film can be manufactured according to a process as specified in claims 2 to 7.
  • the ion exchanger belongs to the family of polytitanic acids having the general formula Ti0 2 - nH 2 0. These polytitanic acids can be obtained by acid or alkaline hydrolysis of various alcoholates such as ethylate; butylate, crilate, nonilate. The presence of these acids guarantees good wettability and a great capacity for repelling gas bubbles. Another important point in favor of polytitanic acid is that it is able to exchange cations with the electrolyte.
  • the separators according to the invention are in the form of membranes impermeable to the electrolyte, or else as porous membranes, which are permeable to the electrolyte.
  • the composite separators according to the invention are very resistant to mechanical abrasion and can be manufactured with great stability of their structure, which makes it possible to obtain very thin separators. It is therefore possible to safely maintain predetermined and small distances between anode and cathode, and to increase the faradaic efficiency.
  • separators By modifying the quantity of polytitanic acid present in the structure and by modifying its method of preparation, separators can be produced which are suitable for very diverse applications. It has also been found that by mixing with the composite materials during the preparation phase a polymeric compound such as polyethylene glycol, polypropylene glycol, ethers and cellulose esters, polymaleic anhydride, and in general any polymer or compound which dissolves easily in a solvent, a porous structure of the composite materials is obtained, after treatment in this solvent, the porosity of this structure depending on the rate of soluble polymeric compound.
  • a polymeric compound such as polyethylene glycol, polypropylene glycol, ethers and cellulose esters, polymaleic anhydride, and in general any polymer or compound which dissolves easily in a solvent, a porous structure of the composite materials is obtained, after treatment in this solvent, the porosity of this structure depending on the rate of soluble polymeric compound.
  • a cathode gas having a purity greater than 99.99% can be produced, even after 1500 hours of operation. Other characteristics such as mechanical strength and separation of the two gases have not changed either.
  • the titanium content expressed in the form of Ti0 2 is 19% by weight.
  • the water retention rate is 25% and the weight loss after 1500 hours in 30% KOH at 125 ° C is less than 1%.
  • the gas released from the cathode during electrolysis has a purity greater than 99.99%. These values remain unchanged after 1500 hours of operation.
  • the titanium content expressed as Ti0 2 in this separator is 26%.
  • polysulphone 3 g were dissolved in 20 ml of N. methylpyrrolidone at a temperature between 50 and 60 ° C.
  • polyethylene glycol having an average molecular weight of 6000 and 3 ml of titanium tetrabutanate were added to this solution.
  • Polyethylene glycol is added to obtain, after treatment with boiling water, a microporous film.
  • the clear solution is poured onto a glass plate and this plate is soaked in water, which diffuses the solvent and causes the polymer component to coagulate in a film which is then treated with boiling water, just as in Example 1, to convert titanium butanate to polytitanic acid and to remove the polyethylene glycol from this film to obtain the desired porosity.
  • a suspension of polytitanic acid is formed in the polysulphone solution, this suspension being poured onto a glass plate after having been correctly homogenized.
  • a film with a thickness of 0.13 mm was prepared.

Abstract

Separator film for alkaline electrolysis and method for making thereof, wherein said separator film includes an aromatic polymer and polytitanic acid.

Description

L'invention se réfère à un film séparateur pour un électrolyseur alcalin et à un procédé de fabrication d'un tel film.The invention relates to a separating film for an alkaline electrolyser and to a method for manufacturing such a film.

Pour un séparateur applicable à l'électrolyse alcaline de l'eau naturelle, de l'eau lourde et de l'eau tritiée, on exige surtout une stabilité chimique par rapport à des solutions alcalines et par rapport à un rayonnement beta. En outre, ce séparateur doit être mouillable sans difficulté. Cette dernière caractéristique est nécessaire pour éviter la formation de bulles gazeuses dans le séparateur, ce qui aurait pour effet de réduire la tension et de mélanger les gaz.For a separator applicable to the alkaline electrolysis of natural water, heavy water and tritiated water, above all, chemical stability is required with respect to alkaline solutions and with respect to beta radiation. In addition, this separator must be easily wettable. This last characteristic is necessary to avoid the formation of gas bubbles in the separator, which would have the effect of reducing the tension and mixing the gases.

La séparation isotopique d'hydrogène par électrolyse est basée sur la différence de décharge potentielle à la cathode. Pour obtenir des gaz purement cathodiques, il est nécessaire d'éviter tout mélange avec les gaz anodiques constitués par de l'oxygène. Des séparateurs connus répondent à cette exigence en utilisant des matériaux différents. Les séparateurs en asbeste, qui sont généralement utilisés dans l'électrolyse alcaline de l'eau naturelle jusqu'à une température de 80 °C, sont attaqués par de l'eau tritiée. L'échange isotopique entre l'hydrogène et le tritium a en effet lieu dans des chaînes d'hydrate et de polysilicate de magnésium, qui constituent la structure de base polymérique de ce matériau. Le tritium échangé se décompose «in situ» dans la structure de l'asbeste en émettant un rayonnement beta et en se transformant en gaz. Cette action, qui a lieu pratiquement à tous les endroits de la structure fibreuse, provoque la destruction rapide de l'asbeste.Isotopic separation of hydrogen by electrolysis is based on the difference in potential discharge at the cathode. In order to obtain purely cathodic gases, it is necessary to avoid any mixing with the anodic gases constituted by oxygen. Known separators meet this requirement by using different materials. Asbestos separators, which are generally used in the alkaline electrolysis of natural water up to a temperature of 80 ° C, are attacked by tritiated water. The isotopic exchange between hydrogen and tritium takes place in chains of magnesium hydrate and polysilicate, which constitute the basic polymer structure of this material. The exchanged tritium breaks down "in situ" in the structure of asbestos, emitting beta radiation and transforming into gas. This action, which takes place in practically all places of the fibrous structure, causes the rapid destruction of asbestos.

Lors de la recherche d'autres matériaux pour le film séparateur, on a étudié aussi des matériaux polymérisés inorganiques. Ces matériaux présentent une inactivité chimique très élevée et une bonne mouillabilité, même à des conditions d'une électrolyse alcaline. Néanmoins, ces matériaux ne peuvent que rarement être préparés sous forme de fibres ou de films microporeux, car leur état d'ag- gregation est en général pulvérulent. Parmi les matériaux organiques polymérisés, il n'y en a que très peu qui résistent à des conditions sévères existant dans une cellule électrolytique alcaline. Parmi ces matériaux il y en a quelques uns tels que le polytétrafluoréthylène, le polyphénylesulfure, les polychinoxalines, les polyphénylechinoxali- nes, les polyphénylènes, qui sont suffisamment résistants chimiquement, mais leur mouillabilité ne suffit pas pour l'application visée.When researching other materials for the separator film, we also studied inorganic polymerized materials. These materials exhibit very high chemical inactivity and good wettability, even under alkaline electrolysis conditions. However, these materials can only rarely be prepared in the form of fibers or microporous films, since their state of aggregation is generally pulverulent. Among the polymerized organic materials, there are only very few which withstand severe conditions existing in an alkaline electrolytic cell. Among these materials there are some such as polytetrafluoroethylene, polyphenylsulfide, polychinoxalines, polyphenylechinoxalines, polyphenylenes, which are sufficiently chemically resistant, but their wettability is not sufficient for the intended application.

Ensuite, on a étudié le polysulphone, qui peut être produit sous forme de fibres ou d'un film microporeux. Comme dans le cas précédent, on observe des bulles gazeuses à l'intérieur du séparateur. Quelques essais ont en outre été faits avec des matériaux inorganiques polymérisés tels que par exemple l'acide polytitanique, mélangé avec des matériaux organiques polymérisés, qui sont chimiquement résistants, tels que du polytétrafluoréthylène, mais après peu de temps, ces mélanges perdent leur mouillabilité, car l'acide polytitanique, qui n'adhère pas bien au polytétrafluoréthylène, était parti.Next, we studied the polysulphone, which can be produced in the form of fibers or a microporous film. As in the previous case, gas bubbles are observed inside the separator. Some tests have also been carried out with inorganic polymerized materials such as for example polytitanic acid, mixed with organic polymerized materials, which are chemically resistant, such as polytetrafluoroethylene, but after a short time, these mixtures lose their wettability, because polytitanic acid, which does not adhere well to polytetrafluoroethylene, was gone.

Le but de l'invention est de proposer un nouveau matériau pour un séparateur composite comportant un liant organique et un échangeur d'ions inorganiques. Un tel séparateur doit être résistant à l'eau tritiée et doit présenter une bonne mouillabilité.The object of the invention is to propose a new material for a composite separator comprising an organic binder and an inorganic ion exchanger. Such a separator must be resistant to tritiated water and must have good wettability.

Ce but est atteint selon l'invention par le fait que le séparateur contient un polymère aromatique choisi parmi un polysulphone, un polyéthersulphone, ou un polybenzimidazole ainsi qu'entre 3 à 45% en poids, de préférence entre 5 et 30% en poids, de polyacide de titane. Un tel film séparateur peut être fabriqué selon un procédé tel que spécifié dans les revendications 2 à 7.This object is achieved according to the invention by the fact that the separator contains an aromatic polymer chosen from a polysulphone, a polyethersulphone, or a polybenzimidazole as well as between 3 to 45% by weight, preferably between 5 and 30% by weight, of titanium polyacid. Such a separating film can be manufactured according to a process as specified in claims 2 to 7.

L'échangeur d'ions appartient à la famille des acides polytitaniques ayant la formule générale Ti02 - nH20. Ces acides polytitaniques peuvent être obtenus par hydrolyse acide ou alcaline de divers alcoolates tels que l'éthylate; le butylate, le crésilate, le nonilate. La présence de ces acides garantit une bonne mouillabilité et une grande capacité pour répulser des bulles gazeuses. Un autre point important en faveur de l'acide polytitanique est qu'il est capable d'échanger des cations avec l'électrolyte.The ion exchanger belongs to the family of polytitanic acids having the general formula Ti0 2 - nH 2 0. These polytitanic acids can be obtained by acid or alkaline hydrolysis of various alcoholates such as ethylate; butylate, crilate, nonilate. The presence of these acids guarantees good wettability and a great capacity for repelling gas bubbles. Another important point in favor of polytitanic acid is that it is able to exchange cations with the electrolyte.

Les séparateurs selon l'invention se présentent sous forme de membranes imperméables à l'électrolyte, ou bien comme membranes poreuses, qui sont perméables à l'électrolyte. Les séparateurs composites selon l'invention sont très résistants à l'abrasion mécanique et peuvent être fabriqués avec une grande stabilité de leur structure, ce qui permet d'obtenir des séparateurs très minces. Il est donc possible de maintenir avec sécurité des distances prédéterminées et faibles entre anode et cathode, et d'augmenter le rendement faradique.The separators according to the invention are in the form of membranes impermeable to the electrolyte, or else as porous membranes, which are permeable to the electrolyte. The composite separators according to the invention are very resistant to mechanical abrasion and can be manufactured with great stability of their structure, which makes it possible to obtain very thin separators. It is therefore possible to safely maintain predetermined and small distances between anode and cathode, and to increase the faradaic efficiency.

Comme résultat inattendu, il a été trouvé qu'en mélangeant un polymère aromatique du type mentioné avec un polymère inorganique d'acide polytitanique, on obtient un séparateur d'une haute résistance à l'ambiance alcaline et à l'attaque mécanique et une bonne mouillabilité en présence de l'eau naturelle, lourde et tritiée. En outre, le séparateur selon l'invention permet de récupérer des gaz cathodiques très purs (supérieur à 99,99%).As an unexpected result, it has been found that by mixing an aromatic polymer of the type mentioned with an inorganic polymer of polytitanic acid, a separator of high resistance to the alkaline environment and to mechanical attack is obtained and good wettability in the presence of natural, heavy and tritiated water. In addition, the separator according to the invention makes it possible to recover very pure cathode gases (greater than 99.99%).

En modifiant la quantité d'acide polytitanique présente dans la structure et en modifiant sa méthode de préparation, on peut réaliser des séparateurs adaptés à des applications très diverses. Il a en outre été trouvé qu'en mélangeant aux matériaux composites pendant la phase de préparation un composé polymérique tel que le polyéthylèneglycole, le polypropylèneglycole, les éthers et les esters de cellulose, l'anhydride 'polymaléique, et en général tout polymère ou composé qui se dissout facilement dans un solvant, on obtient une structure poreuse des matériaux composites, après traitement dans ce solvant, la porosité de cette structure dépendant du taux en composé polymérique soluble.By modifying the quantity of polytitanic acid present in the structure and by modifying its method of preparation, separators can be produced which are suitable for very diverse applications. It has also been found that by mixing with the composite materials during the preparation phase a polymeric compound such as polyethylene glycol, polypropylene glycol, ethers and cellulose esters, polymaleic anhydride, and in general any polymer or compound which dissolves easily in a solvent, a porous structure of the composite materials is obtained, after treatment in this solvent, the porosity of this structure depending on the rate of soluble polymeric compound.

L'invention sera décrite ci-après à l'aide de quelques exemples.The invention will be described below using a few examples.

Exemple 1Example 1

On dissout 3 g de polysulphone dans 25 ml de chlorure de méthylène en chauffant à 35 °C. 3 ml de titanium tétrabutanate Ti(OBu)4 sont ajoutés à cette solution. On obtient une solution claire, qu'on verse sur une plaque en verre pour que le solvant puisse s'évaporer. On obtient ainsi un film d'une épaisseur de 0,1 mm, qui est traité à l'eau bouillante pour que le titanium butanate se transforme en acide polytitanique. En utilisant ce film comme séparateur dans l'électrolyse alcaline de l'eau avec 30% de KOH, on observe une chute de tension de 5,11 Ω cm2 à 30 °C, de 4,3 Ω cm2 à 50 °C, de 3,7 Ω cm2 à 65 °C, de 2,8 Ω cm2 à 80 °C et de 2,3 Ω cm2 à 100 °C. Le pourcentage de rétention d'eau, à savoir le rapport entre le poids de l'eau et le poids total (eau et film) s'élève à 20,6%. La perte de poids de ce film après 1500 heures dans KOH à 30% et à une température de 125 °C est inférieure à 5%.3 g of polysulphone are dissolved in 25 ml of methylene chloride while heating to 35 ° C. 3 ml of titanium tetrabutanate Ti (OBu) 4 are added to this solution. A clear solution is obtained, which is poured onto a glass plate so that the solvent can evaporate. A film with a thickness of 0.1 mm is thus obtained, which is treated with boiling water so that the titanium butanate is transformed into polytitanic acid. Using this film as a separator in the alkaline electrolysis of water with 30% KOH, a voltage drop of 5.11 Ω cm 2 at 30 ° C is observed, from 4.3 Ω cm 2 at 50 ° C , 3.7 Ω cm 2 at 65 ° C, 2.8 Ω cm 2 at 80 ° C and 2.3 Ω cm 2 at 100 ° C. The percentage of water retention, namely the ratio between the weight of the water and the total weight (water and film) is 20.6%. The weight loss of this film after 1500 hours in 30% KOH and at a temperature of 125 ° C. is less than 5%.

En utilisant ce film dans une cellule d'électrolyse alcaline, on peut produire un gaz cathodique ayant une pureté supérieure à 99,99%, même après 1500 heures de fonctionnement. Les autres caractéristiques telles que la résistance mécanique et la séparation des deux gaz n'ont pas changé non plus. Dans ce séparateur, le taux en titanium exprimé sous forme de Ti02 est de 19% en poids.By using this film in an alkaline electrolysis cell, a cathode gas having a purity greater than 99.99% can be produced, even after 1500 hours of operation. Other characteristics such as mechanical strength and separation of the two gases have not changed either. In this separator, the titanium content expressed in the form of Ti0 2 is 19% by weight.

Exemple 2Example 2

3 g de polysulphone ont été dissouts dans 30 ml de chlorure de méthylène à 35 °C. 4,5 ml de titanium tetrabutanate ont été ajoutés. De la même manière que décrit ci-dessus, un film d'une épaisseur de 0,1 mm a été réalisé et ensuite traité à l'eau bouillante. En utilisant ce film comme séparateur dans une cellule d'électrolyse avec 30% de KOH, on observe une chute de tension de 2.9, 2.6, 2.06, 1.83, 1.5 Ω cm2 à 30, 50, 65, 80,100 °C respectivement.3 g of polysulphone were dissolved in 30 ml of methylene chloride at 35 ° C. 4.5 ml of titanium tetrabutanate were added. In the same manner as described above, a film with a thickness of 0.1 mm was produced and then treated with boiling water. Using this film as a separator in an electrolysis cell with 30% KOH, a voltage drop of 2.9, 2.6, 2.06, 1.83, 1.5 Ω cm 2 is observed at 30, 50, 65, 80,100 ° C respectively.

Le taux de rétention d'eau est de 25% et la perte de poids après 1500 heures dans 30% de KOH à 125 °C est inférieure à 1 %. Le gaz dégagé de la cathode lors de l'électrolyse a une pureté supérieure à 99,99%. Ces valeurs restent inchangées après 1500 heures de fonctionnement. Le contenu en titanium exprimé sous forme de Ti02 dans ce séparateur est de 26%.The water retention rate is 25% and the weight loss after 1500 hours in 30% KOH at 125 ° C is less than 1%. The gas released from the cathode during electrolysis has a purity greater than 99.99%. These values remain unchanged after 1500 hours of operation. The titanium content expressed as Ti0 2 in this separator is 26%.

Exemple 3Example 3

3 g de polysulphone ont été dissouts dans 20 ml de N. methylpyrrolidone à une température entre 50 et 60 °C. 0,6 g de polyéthylèneglycole ayant un poids moléculaire moyen de 6000 et 3 ml de titanium tétrabutanate ont été ajoutés à cette solution. Le polyéthylèneglycole est ajouté pour obtenir après traitement à l'eau bouillante un film microporeux.3 g of polysulphone were dissolved in 20 ml of N. methylpyrrolidone at a temperature between 50 and 60 ° C. 0.6 g of polyethylene glycol having an average molecular weight of 6000 and 3 ml of titanium tetrabutanate were added to this solution. Polyethylene glycol is added to obtain, after treatment with boiling water, a microporous film.

La solution claire est versée sur une plaque en verre et cette plaque est trempée dans l'eau, ce qui fait diffuser le solvant et fait coaguler le composant polymérique dans un film qui est traité ensuite à l'eau bouillante, tout comme selon l'exemple 1, pour convertir du titanium butanate en acide polytitanique et pour éliminer le polyéthylèneglycole de ce film pour obtenir la porosité désirée.The clear solution is poured onto a glass plate and this plate is soaked in water, which diffuses the solvent and causes the polymer component to coagulate in a film which is then treated with boiling water, just as in Example 1, to convert titanium butanate to polytitanic acid and to remove the polyethylene glycol from this film to obtain the desired porosity.

Ce séparateur a une épaisseur d'environ 0,88 mm et présente les caractéristiques suivantes:

  • - chute de tension de 0.25, 0.16, 0.11 Ω cm2 à 50, 80,100 °C dans KOH à 30%
  • - pureté du gaz cathodique supérieure à 99,99%
  • -rétention de l'eau: 42,7%
  • - contenu en titanium exprimé sous forme de Ti02:19%en poids.
This separator has a thickness of approximately 0.88 mm and has the following characteristics:
  • - voltage drop from 0.25, 0.16, 0.11 Ω cm 2 to 50, 80.100 ° C in KOH at 30%
  • - purity of cathode gas greater than 99.99%
  • -water retention: 42.7%
  • - titanium content expressed as Ti02: 19% by weight.

Après 1500 heures de fonctionnement, les caractéristiques de ce séparateur n'onst pas changé.After 1500 hours of operation, the characteristics of this separator have not changed.

Exemple 4Example 4

On prépare selon la méthode de l'exemple 3 un film dont le pourcentage en Ti02 est de 23%. Ces caractéristiques ne changent pas après fonctionnement dans une cellule d'électrolyse pour 1500 heures.

  • - Chute de tension: 0.20, 0.13, 0.08 Ω cm2 pour 50,80,100 °C dans KO H de 30%
  • - taux de rétention d'eau 45,5%
  • - pureté du gaz cathodique supérieure à 99,99%.
A film is prepared according to the method of Example 3, the percentage of Ti0 2 of which is 23%. These characteristics do not change after operating in an electrolysis cell for 1500 hours.
  • - Voltage drop: 0.20, 0.13, 0.08 Ω cm 2 for 50.80,100 ° C in KO H of 30%
  • - water retention rate 45.5%
  • - purity of cathode gas greater than 99.99%.

Exemple 5Example 5

3 g de polysulphone ont été dissouts dans 25 ml de chlorure de méthylène à 35 °C. Séparément, 3 ml de titanium tétrabutanate ont été traités à 100 °C avec 30 ml d'eau, pour obtenir un précipité blanc et mince d'acide polytitanique. Ce produit est récupéré par filtration, séché et ajouté à la solution de polysulphone dans le chlorure de méthylène.3 g of polysulphone were dissolved in 25 ml of methylene chloride at 35 ° C. Separately, 3 ml of titanium tetrabutanate were treated at 100 ° C with 30 ml of water, to obtain a white and thin precipitate of polytitanic acid. This product is recovered by filtration, dried and added to the solution of polysulphone in methylene chloride.

Une suspension d'acide polytitanique est formée dans la solution de polysulphone, cette suspension étant versée sur une plaque en verre après avoir été correctement homogénéisée. Conformément à l'exemple 1, un film d'une épaisseur de 0,13 mm a été préparé.A suspension of polytitanic acid is formed in the polysulphone solution, this suspension being poured onto a glass plate after having been correctly homogenized. In accordance with Example 1, a film with a thickness of 0.13 mm was prepared.

Après 1500 heures de fonctionnement dans une cellule d'électrolyse à 39% de KOH, les caractéristiques de ce film n'ont pas changé, à savoir

  • - chute de tension 6.3, 5.4, 4.2, 3.6 Ω cm2 à 30, 50, 65, 80 °C respectivement
  • -taux de rétention d'eau: 14,7%
  • - perte en poids à 125 °C: environ 8%
  • - pureté du gaz cathodique: supérieure à 99,99%
  • -taux de Ti02: 19%
After 1,500 hours of operation in a 39% KOH electrolysis cell, the characteristics of this film have not changed, namely
  • - voltage drop 6.3, 5.4, 4.2, 3.6 Ω cm 2 at 30, 50, 65, 80 ° C respectively
  • - water retention rate: 14.7%
  • - weight loss at 125 ° C: around 8%
  • - purity of cathode gas: greater than 99.99%
  • - Ti0 2 rate : 19%

Exemple 6Example 6

3 g de polysulphone ont été correctement broyés et mélangés à la quantité nécessaire d'acide polytitanique qui a été obtenue par un traitement séparé de 3 mi de titanium tétrabutanate avec 30 ml d'eau, comme dans l'exemple 5.3 g of polysulphone were correctly ground and mixed with the necessary quantity of polytitanic acid which was obtained by a separate treatment of 3 ml of titanium tetrabutanate with 30 ml of water, as in Example 5.

Ce mélange pulvérulent est comprimé à 270 °C sous une pression de 29,4 bar (30 kg/cm2) afin d'obtenir un film de 0,1 mm d'épaisseur. En utilisant ce film comme séparateur dans une cellule alcaline d'électrolyse d'eau avec 30% de KOH, les caractéristiques suivantes ont été obtenues:

  • - chute de tension: 6.3, 5. 7,4. 7'4.5Ω cm2 à 30, 50,65,80 °C respectivement
  • -taux de rétention d'eau: 14%
  • - perte de poids après 1500 heures d'électrolyse: 8,5%
  • - taux de Ti02:19%
  • - pureté du gaz cathodique supérieur à 99,96%
This pulverulent mixture is compressed at 270 ° C under a pressure of 29.4 bar (30 kg / cm 2 ) in order to obtain a film 0.1 mm thick. By using this film as a separator in an alkaline cell for the electrolysis of water with 30% KOH, the following characteristics were obtained:
  • - voltage drop: 6.3, 5. 7.4. 7'4.5Ω cm 2 to 30, 50.65.80 ° C respectively
  • -water retention rate: 14%
  • - weight loss after 1500 hours of electrolysis: 8.5%
  • - Ti02 rate: 19%
  • - purity of cathode gas greater than 99.96%

Claims (7)

1. A separator film for an alkaline electrolysis cell, characterized by the fact that the separator comprises an aromatic polymer chosen among a polysulphone, a polyethersulphone, or a polybenzimidazole as well as between 3 and 45% by weight, preferably between 5 and 30% by weight, of titanium polyacide.
2. A method for manufacturing a separator film according to claim 1, characterized in that an aromatic polymer chosen among a polysulphone, a polyethersulphone or a polybenzimidazole is dissolved in a solvent, that to this solution titanium tetrabutanate is added, that this mixture is poured onto a plan support, that said solvent is eliminated, that then the film thus obtained is treated with boiling water and that finally the film is taken away from said support.
3. A method for manufacturing a separator film according to claim 1, characterized in that first titanium polybutanate is treated with water to obtain titanium polyacid, that then this polyacid is mixed with powderous polysulphone and that finally this powder mixture is submitted to a heating-pressing in order to obtain said film.
4. A method for manufacturing a separator film according to claim 1, characterized in that first titanium polybutanate is treated with water, that titanium polybutanate is recovered by filtering and drying, that then this polyacid is mixed with a solution of polysulphone in a methylene chloride or N- methyl-pyrrolidone solvent and that this mixture is poured onto a plan support where the solvent is eliminated, and that finally the film thus obtained is withdrawn from the support.
5. A method according to claim 2 or 4, characterized in that methylene chloride is used as solvent and is then eliminated by evaporation.
6. A method according to claim 2 or 4, characterized in that N-methyl-pyrrolidone is used as a solvent, which is then eliminated by diffusion in a water bath.
7. A method according to one of claims 5 and 6, characterized in that polyethylene glycol of a mean molecular weight of 6000 is added to said solvent and in that this product is withdrawn after obtention of the film on the support.
EP86100106A 1985-01-07 1986-01-07 Separator film for an alkaline electrolytic cell, and manufacturing process thereof Expired EP0192926B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86100106T ATE44053T1 (en) 1985-01-07 1986-01-07 SEPARATION FILM FOR ALKALINE ELECTROLYTIC CELL AND METHOD OF PRODUCTION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU85723A LU85723A1 (en) 1985-01-07 1985-01-07 SEPARATOR FILM FOR AN ALKALINE ELECTROLYSER AND PROCESS FOR THE PRODUCTION THEREOF
LU85723 1985-01-07

Publications (2)

Publication Number Publication Date
EP0192926A1 EP0192926A1 (en) 1986-09-03
EP0192926B1 true EP0192926B1 (en) 1989-06-14

Family

ID=19730382

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86100106A Expired EP0192926B1 (en) 1985-01-07 1986-01-07 Separator film for an alkaline electrolytic cell, and manufacturing process thereof

Country Status (5)

Country Link
US (1) US4663012A (en)
EP (1) EP0192926B1 (en)
AT (1) ATE44053T1 (en)
DE (1) DE3663957D1 (en)
LU (1) LU85723A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU86876A1 (en) * 1987-05-13 1988-06-13 Euratom SEPARATOR FILM FOR A MODERATELY TRITRIATED ACIDIC WATER ELECTROLYSER AND METHOD FOR THE PRODUCTION THEREOF
WO2014012188A1 (en) 2012-07-20 2014-01-23 Zhongwei Chen Highly ion-conductive nano-engineered porous electrolytic composite membrane for alkaline electrochemical energy systems

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4089758A (en) * 1974-05-24 1978-05-16 Imperial Chemical Industries Limited Electrolytic process
JPS52127479A (en) * 1976-04-20 1977-10-26 Agency Of Ind Science & Technol Chemical resistant diaphragm and its preparation
BE874961A (en) * 1979-03-20 1979-09-20 Studiecentrum Kernenergi PROCESS FOR PREPARING A MEMBRANE, THEREFORE PREPARED MEMBRANE, ELECTROCHEMICAL CELL WITH SUCH MEMBRANE AND USING SUCH ELECTROchemical cell
DE2938123A1 (en) * 1979-09-20 1981-04-09 Siemens AG, 1000 Berlin und 8000 München DIAPHRAGMS FOR ELECTROCHEMICAL CELLS AND THEIR PRODUCTION
DE3417004A1 (en) * 1984-05-09 1985-11-21 Coca Cola Gmbh, 4300 Essen POST MIX DRINKS

Also Published As

Publication number Publication date
LU85723A1 (en) 1986-02-12
DE3663957D1 (en) 1989-07-20
EP0192926A1 (en) 1986-09-03
US4663012A (en) 1987-05-05
ATE44053T1 (en) 1989-06-15

Similar Documents

Publication Publication Date Title
Sakai et al. Gas permeation properties of solid polymer electrolyte (SPE) membranes
JPH07103251B2 (en) Composite molded product, its application and manufacturing method
EP0960154A1 (en) Porous composite product particularly with high specific surface area, method for preparing and electrode for electrochemical assembly formed with a porous composite film
EP0412917B1 (en) Diaphragm, association of such a diaphragm with a cathodic element and their process of manufacture
FR2499594A1 (en) PROCESS FOR THE ELECTROLYSIS OF WATER
FR2475581A1 (en) SOLID POLYMER ELECTROLYTE AND PROCESS FOR PRODUCING THE SAME
FR2498197A1 (en) ION EXCHANGE MEMBRANE, ELECTROCHEMICAL CELL AND ELECTROLYSIS METHOD USING THE MEMBRANE
EP0630870A1 (en) Cathodic element not containing asbestos fibres
FR2743090A1 (en) ASBESTOS-FREE CATHODIC ELEMENT FOR ELECTROLYSIS OF SODIUM CHLORIDE SOLUTION
EP0745150B1 (en) Electroactivated material, its preparation and utilization for producing cathode elements
FR2466436A1 (en) PROCESS FOR PREPARING GEL AND SILICA XEROGEL AND SILICA XEROGEL OBTAINED
EP0192926B1 (en) Separator film for an alkaline electrolytic cell, and manufacturing process thereof
JPS5880306A (en) Esterification of fluorinated carboxylic acid polymer
EP0291039B1 (en) Separator film for an electrolytic cell for moderately tritiated acid water and process for its fabrication
EP0412916B1 (en) Diaphragm comprising asbestos fibres, association of such a diaphragm with a cathodic element and process of manufacture
FR2589787A1 (en) MICROPOROUS MATERIAL, PROCESS FOR OBTAINING THE SAME, AND APPLICATIONS IN PARTICULAR TO THE PRODUCTION OF CATHODIC ELEMENTS
KR100637570B1 (en) Process for the production of a composite membrane
FR2727102A1 (en) PROCESS FOR REMOVING METALLIC IMPURITIES BY ELECTROCHEMICAL PATHWAY
CN117512692B (en) Coating type alkaline water electrolysis hydrogen production diaphragm
FR2593328A1 (en) Materials with protonic conduction, their manufacturing process and their applications
US6692857B2 (en) Process for the production of a composite membrane
CN114516699B (en) Method for treating coating waste liquid of lithium ion battery diaphragm
WO2023002229A1 (en) Polymeric ion-conducting membrane material based on plasticized polysulphone
FI83227C (en) Polymer Blend Membrane
FR2590276A1 (en) Synthetic diaphragm and processes for its manufacture and use.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870226

17Q First examination report despatched

Effective date: 19880622

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19890614

Ref country code: NL

Effective date: 19890614

REF Corresponds to:

Ref document number: 44053

Country of ref document: AT

Date of ref document: 19890615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3663957

Country of ref document: DE

Date of ref document: 19890720

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19891218

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19891231

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19900107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900115

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900131

Ref country code: BE

Effective date: 19900131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: COMMUNAUTE EUROPEENNE DE L'ENERGIE ATOMIQUE EURAT

Effective date: 19900131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19901002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19910131

Ref country code: LI

Effective date: 19910131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910412

Year of fee payment: 6

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 86100106.3

Effective date: 19920510