EP0182109A2 - Solenoid valve for fluid control - Google Patents

Solenoid valve for fluid control Download PDF

Info

Publication number
EP0182109A2
EP0182109A2 EP85113280A EP85113280A EP0182109A2 EP 0182109 A2 EP0182109 A2 EP 0182109A2 EP 85113280 A EP85113280 A EP 85113280A EP 85113280 A EP85113280 A EP 85113280A EP 0182109 A2 EP0182109 A2 EP 0182109A2
Authority
EP
European Patent Office
Prior art keywords
valve
closing part
stop
solenoid
valve closing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85113280A
Other languages
German (de)
French (fr)
Other versions
EP0182109A3 (en
EP0182109B1 (en
Inventor
Ernst Dipl.-Ing. Linder
Helmut Dipl.-Ing. Rembold
Max Dr. Dipl.-Ing. Straubel
Walter Ing. Teegen (Grad.)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0182109A2 publication Critical patent/EP0182109A2/en
Publication of EP0182109A3 publication Critical patent/EP0182109A3/en
Application granted granted Critical
Publication of EP0182109B1 publication Critical patent/EP0182109B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/466Electrically operated valves, e.g. using electromagnetic or piezoelectric operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding

Definitions

  • the invention relates to a solenoid valve for fluid control according to the preamble of the main claim.
  • a solenoid valve is already known in which the movement of the valve closing part connected to the armature in the opening direction is limited by a fixed stop, so that while the valve closing part opens, there is a partial decrease in the pressure of the fluid to be controlled, but after If the valve closing part abuts against the stop between the valve closing part and the valve seat, only a constant flow cross section is available, via which the pressure reduction of the fluid takes place in an undesired manner with a delay.
  • the solenoid valve according to the invention with the characterizing features of the main claim has the advantage, while maintaining fast switching times of the solenoid valve in a desired manner to ensure a rapid pressure reduction of the fluid to be controlled immediately after opening of the solenoid valve.
  • the stop is particularly advantageous to design the stop as a compression spring, so that with the lowering of the fluid pressure when the solenoid valve is open, the armature and the core approach, which causes the solenoid valve to close quickly when the solenoid coil is excited.
  • FIG. 1 shows a first exemplary embodiment of a solenoid valve according to the invention
  • FIG. 2 shows a diagram which shows the course of the fluid pressure and the valve opening cross section over time
  • FIG. 3 shows a second exemplary embodiment of a solenoid valve according to the invention.
  • 1 denotes a valve housing.
  • a core 2 made of ferromagnetic material is provided within the valve housing 1 and carries a magnet coil 3.
  • the core 2 has an inner cylinder 4 and an outer cylinder 5, which are arranged concentrically to one another and which encompass the magnet coil 3.
  • Inner cylinder 4 and outer cylinder 5 are connected to one another in a magnetically conductive manner by a yoke 6.
  • Averted from the yoke 6, a magnetically conductive annular plate 7 projects from the outer cylinder 5 to the inner cylinder 4.
  • the magnet coil 3 is carried by a coil body 8.
  • the magnetic circuit interrupted between the inner cylinder 4 and the annular plate 7 is bridged by an armature 10.
  • the armature 10 has a plate-shaped part 11 which merges into a hollow cylindrical connecting piece 12.
  • the connecting piece 12 faces the end face of the inner cylinder 4 and, aligned with the inner cylinder, engages through an opening 9 of the plate 7.
  • a first air gap 13 is located between the connecting piece 12 and the inner cylinder 4.
  • the plate-shaped part 11 of the armature 10 projects away from the inner cylinder 4 beyond the plate 7 and forms a second air gap 14 therewith.
  • Two guide sections 18, 19 guide the valve closing part 15 in a cylinder bore 20 of a guide bushing 21.
  • the guide bushing 21 is part of a valve seat body 22 which has an inflow bore 23 in extension to the cylinder bore 20 of the guide bushing 21.
  • a valve seat 27 is formed in the valve seat body 22, with which a spherical closing body 28 of the valve closing part 15 cooperates.
  • Connection bores 29 in the guide bushing 21 connect the cavity 24 and the annular chamber 26.
  • the drain bores 25 lead to a return flow line 31 via intermediate chambers 30.
  • the inflow bore 23 is supplied with high pressure fluid when the solenoid valve is closed, for example from the pump delivery chamber of a fuel delivery pump for fuel injection systems of internal combustion engines, while the fluid pressure in the return line 31 is low.
  • the return flow line 31 is connected, for example, to the suction side of the pump tappet of the fuel delivery pump.
  • a restoring spring 35 is supported on the guide bushing 21, which on the other hand engages the armature head 16 of the valve closing part 15 and, in the non-excited state of the magnet coil 3, lifts the valve closing part 15 from the valve seat 27 and holds the solenoid valve in the open position.
  • a stop plate 36 is arranged in the valve housing 1 above the armature 10 and the plate 7.
  • a through bore 37 is provided in the stop plate 36, which is aligned with the cylinder bore 20 in the guide bushing 21 and through which a stop plunger 38 projects, which is connected to a stop head 39 of larger diameter.
  • the stop head 39 is located on the side of the stop plate 36 facing away from the armature 10.
  • the stop plunger 38 is slidably mounted in the through hole 37.
  • an additional spring 40 is supported, which on the other hand rests on a spring housing 41, which is connected to the stop plate 36, for example, by screws, not shown.
  • the additional spring 40 acts on the stop head 39 such that it below a predetermined force acting on the stop plunger 38, it bears against the surface of the stop plate 36 which forms a first stop 42 and faces away from the armature 10.
  • the power supply to the magnet coil 3 takes place via electrically conductive connection pins 47, which are arranged in the cover plate 45.
  • FIG. 2 shows the time t on the abscissa and the fluid pressure p in the inflow bore 23 on the left ordinate and the flow cross section F between the valve seat 27 and the closing body 28 of the valve closing part 15 on the right ordinate. If the magnet coil 3 is energized, the armature 10 is pulled towards the core 2, whereby the valve closing part 15 is moved according to the left-hand dashed line a in FIG. 2 to the valve seat 27, against which it bears with the closing body 28 at time t 1 .
  • the solenoid valve is now closed and a fluid pressure builds up in the inflow bore 23, for example as a result of the pump tappet delivery stroke of a fuel injection pump, as represented by the solid line b. If the excitation of the magnetic coil 3 is interrupted at time t 2 , the closing body 2d is in on the one hand by the force of the return spring 35 and on the other hand by the force of the high fluid pressure acting on the closing body 28 Opening direction moves to the stop plunger 38, which results in a flow cross section for the fluid between the valve seat 27 and the closing body 28 according to the right dashed curve c.
  • the stop plunger 38 is displaceably mounted against the force of the additional spring 40 such that, after the excitation of the magnetic coil 3 has been interrupted, the sum of the force of the return spring 35 and the force of the fluid pressure on the closing body 28 is sufficient, the force of the additional spring 40 to overcome, so that the valve closing part 15 after its contact with the stop plunger 38 moves the stop plunger 38 in the opening direction of the valve closing part 15, whereby the stop head 39 lifts off the stop plate 36 and a larger flow cross section is opened between the valve seat 27 and the closing body 28, such as it is represented by the dash-dotted line g.
  • the parts which remain the same and have the same effect as the magnetic valve according to FIG. 1 are identified by the same reference numerals.
  • no return spring 35 has to be provided in the solenoid valve according to FIG. 3 and the stop plunger 38 with stop head 39 and additional spring 40 is omitted.
  • a compression spring 50 is arranged which acts on the armature 10 and the valve closing part 15 in the direction of the valve seat 27 and serves as a resilient stop.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

Es wird ein Magnetventil vorgeschlagen, das zur Fluidsteuerung dient. Das Magnetventil umfaßt ein Ventilgehäuse (1) mit einer auf einem Kern (2) aus ferromagnetischem Material aufgebrachten Magnetspule (3) und einem Anker (10), der mit einem Ventilschließteil (15) verbunden ist, das mit einem festen Ventilsitz (27) zusammenwirkt. Nach Unterbrechung der Erregung der Magnetspule (3) wird das Ventilschließteil (15) durch die Kraft einer Rückstellfeder (35) und des am Ventilschließteil (15) angreifenden Fluiddruckes zu einem Anschlagstößel (38) hin bewegt, der entgegen der Kraft einer Zusatzfeder (40) in Öffnungsrichtung des Ventilschließteiles (15) verschiebbar gelagert ist, wodurch zwischen einem Schließkörper (28) des Ventilschließteiles (15) und dem Ventilsitz (27) ein großer Strömungsquerschnitt für das Fluid zur Verfügung steht und ein schneller Druckabbau ermöglicht wird. Sinkt der Fluiddruck unterhalb einen vorbestimmten Druck, so verschiebt die Zusatzfeder (40) den Anschlagstößel (38) und damit den Anker (10) und das Ventilschließteil (15) in eine Stellung, in der der Strömungsquerschnitt und die Luftspalte (13 und 14) am Anker verringert sind, wodurch ein schnelles Schließen des Magnetventiles bei Erregung der Magnetspule (3) gewährleistet ist.A solenoid valve is proposed which is used for fluid control. The solenoid valve comprises a valve housing (1) with a magnet coil (3) applied to a core (2) made of ferromagnetic material and an armature (10) which is connected to a valve closing part (15) which cooperates with a fixed valve seat (27) . After the excitation of the solenoid coil (3), the valve closing part (15) is moved by the force of a return spring (35) and the fluid pressure acting on the valve closing part (15) to a stop plunger (38) which counteracts the force of an additional spring (40) is displaceably mounted in the opening direction of the valve closing part (15), as a result of which a large flow cross section is available for the fluid between a closing body (28) of the valve closing part (15) and the valve seat (27) and rapid pressure reduction is made possible. If the fluid pressure drops below a predetermined pressure, the additional spring (40) moves the stop plunger (38) and thus the armature (10) and the valve closing part (15) into a position in which the flow cross section and the air gaps (13 and 14) are on Anchors are reduced, which ensures that the solenoid valve closes quickly when the solenoid coil (3) is excited.

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einem Magnetventil zur Fluidsteuerung nach der Gattung des Hauptanspruchs. Es ist schon ein Magnetventil bekannt, bei dem die Bewegung des mit dem Anker verbundenen Ventilschließteiles in Öffnungsrichtung durch einen festen Anschlag begrenzt wird, so daß zwar während des Öffnungshubes des Ventilschließteiles ein s.teiler Abfall des Druckes des zu steuernden Fluides erfolgt, Jedoch nach dem Anliegen des Ventilschließteiles am Anschlag zwischen dem Ventilschließteil und dem Ventilsitz nur noch ein konstanter Strömungsquerschnitt zur Verfügung steht, über den der Druckabbau des Fluids in unerwünschter Weise verzögert erfolgt. Eine Vergrößerung des Strömungsquerschnittes zwischen dem Ventilschließteil und dem Ventilsitz im geöffneten Zustand des Ventiles würde zwar einen schnelleren Druckabbau ermöglichen, hätte jedoch den Nachteil zur Folge, daß sich ein größerer Luftspalt zwischen dem Kern und dem Anker des Magnetventiles ergäbe, der die Schließzeit des Magnetventiles in unzulässiger Weise verlängern würde.The invention relates to a solenoid valve for fluid control according to the preamble of the main claim. A solenoid valve is already known in which the movement of the valve closing part connected to the armature in the opening direction is limited by a fixed stop, so that while the valve closing part opens, there is a partial decrease in the pressure of the fluid to be controlled, but after If the valve closing part abuts against the stop between the valve closing part and the valve seat, only a constant flow cross section is available, via which the pressure reduction of the fluid takes place in an undesired manner with a delay. An increase in the flow cross section between the valve closing part and the valve seat in the open state of the valve would allow faster pressure reduction, but would have the disadvantage that there would be a larger air gap between the core and the armature of the solenoid valve, which would result in the closing time of the solenoid valve in would prolong inappropriately.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Magnetventil mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, unter Beibehaltung schneller Schaltzeiten des Magnetventiles in gewünschter Weise unmittelbar nach der Öffnung des Magnetventiles einen schnellen Druckabbau des zu steuernden Fluides zu gewährleisten.The solenoid valve according to the invention with the characterizing features of the main claim has the advantage, while maintaining fast switching times of the solenoid valve in a desired manner to ensure a rapid pressure reduction of the fluid to be controlled immediately after opening of the solenoid valve.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Magnetventiles möglich.The measures listed in the subclaims permit advantageous developments and improvements of the solenoid valve specified in the main claim.

Besonders vorteilhaft ist es, den Anschlag als Druckfeder auszubilden, so daß mit dem Senken des Fluiddruckes beim geöffneten Magnetventil eine Annäherung zwischen dem Anker und dem Kern erfolgt, wodurch bei Erregung der Magnetspule ein schnelles Schließen des Magnetventiles bewirkt wird.It is particularly advantageous to design the stop as a compression spring, so that with the lowering of the fluid pressure when the solenoid valve is open, the armature and the core approach, which causes the solenoid valve to close quickly when the solenoid coil is excited.

Zeichnungdrawing

Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 ein erstes Ausführungsbeispiel eines erfindungsgemäßen Magnetventiles, Figur 2 ein Diagramm, das den Verlauf des Fluiddruckes und des Ventilöffnungsquerschnittes über der Zeit zeigt, Figur 3 ein zweites Ausführungsbeispiel eines erfindungsgemäßen Magnetventiles.Embodiments of the invention are shown in simplified form in the drawing and explained in more detail in the following description. 1 shows a first exemplary embodiment of a solenoid valve according to the invention, FIG. 2 shows a diagram which shows the course of the fluid pressure and the valve opening cross section over time, FIG. 3 shows a second exemplary embodiment of a solenoid valve according to the invention.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Bei dem in der Figur 1 dargestellten Magnetventil ist mit 1 ein Ventilgehäuse bezeichnet. Innerhalb des Ventilgehäuses 1 ist ein Kern 2 aus ferromagnetischem Material vorgesehen, der eine Magnetspule 3 trägt. Der Kern 2 weist einen Innenzylinder 4 und einen Außenzylinder 5 auf, die konzentrisch zueinander angeordnet sind und die die Magnetspule 3 umgreifen. Innenzylinder 4 und Außenzylinder 5 sind durch ein Joch 6 magnetisch leitend miteinander verbunden. Dem Joch 6 abgewandt ragt eine magnetisch leitende kreisringförmige Platte 7 vom Außenzylinder 5 zum Innenzylinder 4. Die Magnetspule 3 wird von einem Spulenkörper 8 getragen. Der zwischen dem Innenzylinder 4 und der kreisringförmigen Platte 7 unterbrochene Magnetkreis wird durch einen Anker 10 überbrückt. Der Anker 10 weist ein tellerförmiges Teil 11 auf, das in einen hohlzylindrischen Stutzen 12 übergeht. Der Stutzen 12 steht der Stirnfläche des Innenzylinders 4 gegenüber und greift auf den Innenzylinder ausgerichtet durch eine Öffnung 9 der Platte 7. Zwischen dem Stutzen 12 und dem Innenzylinder 4 liegt ein erster Luftspalt 13. Das tellerförmige Teil 11 des Ankers 10 ragt dem Innenzylinder 4 abgewandt über die Platte 7 hinaus und bildet mit dieser einen zweiten Luftspalt 14. Ein Ventilschließteil 15 aus amagnetischem Material, der einen scheibenförmigen Ankerkopf 16 und einen Stößel 17 aufweist, ist mit dem Ankerkopf 16 in das scheibenförmige Teil 11 des Anker 10 eingepreßt. Zwei Führungsabschnitte 18, 19 führen das Ventilschließteil 15 in einer Zylinderbohrung 20 einer Führungsbuchse 21. Die Führungsbuchse 21 ist Teil eines Ventilsitzkörpers 22, das in Verlängerung zur Zylinderbohrung 20 der Führungsbucnse 21 eine Zuflußbohrung 23 aufweist. Zwischen dem Joch 6 und dem Ventilsitzkörper 22 wird ein Hohlraum 24 eingeschlossen, von dem Abflußbohrungen 25 ausgehen. Zwischen der Zuflußbohrung 23 und einer Ringkammer 26 ist im Ventilsitzkörper 22 ein Ventilsitz 27 ausgebildet, mit dem ein kugelförmig ausgebildeter Schließkörper 28 des Ventilschließteiles 15 zusammenarbeitet. Verbindungsbohrungen 29 in der Führungsbuchse 21 verbinden den Hohlraum 24 und die Ringkammer 26. Die Abflußbohrungen 25 führen über Zwischenkammern 30 zu einer Rückströmleitung 31. Der Zuflußbohrung 23 wird bei geschlossenem Magnetventil Fluid mit Hochdruck zugeführt, beispielsweise aus dem Pumpenförderraum einer Kraftstofförderpumpe für Kraftstoffeinspritzanlagen von Brennkraftmaschinen, während der Fluiddruck in der Rückströmleitung 31 niedrig ist. Die Rückströmleitung 31 ist beispielsweise mit der Ansaugseite der Pumpenstößel der Kraftstofförderpumpe verbunden. An der Führungsbuchse 21 stützt sich eine Rückstellfeder 35 ab, die andererseits am Ankerkopf 16 des Ventilschließteiles 15 angreift und im nichterregten Zustand der Magnetspule 3 das Ventilschließteil 15 vom Ventilsitz 27 abhebt und das Magnetventil in Öffnungsstellung hält. Oberhalb des Ankers 10 und der Platte 7 ist eine Anschlagplatte 36 im Ventilgehäuse 1 angeordnet. In der Anchlagplatte 36 ist eine Durchgangsbohrung 37 vorgesehen, die auf die Zylinderbohrung 20 in der Führungsbuchse 21 ausgerichtet ist und durch die ein Anschlagstössel 38 ragt, der mit einem Anschlagkopf 39 größeren Durchmessers verbunden ist. Der Anschlagkopf 39 befindet sich auf der dem Anker 10 abgewandten Seite der Anschlagplatte 36. Der Anschlagstößel 38 ist in der Durchgangsbohrung 37 gleitbar gelagert. Auf dem Anschlagkopf 39 stützt sich eine Zusatzfeder 40 ab, die andererseits an einem Federgehäuse 41 anliegt, das beispeilsweise durch nichtdargestellte Schrauben mit der Anschlagplatte 36 verbunden ist. Die Zusatzfeder 40 beaufschlagt den Anschlagkopf 39 derart, daß er unterhalb einer vorbestimmten am Anschlagstößel 38 angreifenden Kraft an der einen ersten Anschlag 42 bildenden, dem Anker 10 abgewandten Fläche der Anschlagplatte 36 anliegt.In the solenoid valve shown in FIG. 1, 1 denotes a valve housing. A core 2 made of ferromagnetic material is provided within the valve housing 1 and carries a magnet coil 3. The core 2 has an inner cylinder 4 and an outer cylinder 5, which are arranged concentrically to one another and which encompass the magnet coil 3. Inner cylinder 4 and outer cylinder 5 are connected to one another in a magnetically conductive manner by a yoke 6. Averted from the yoke 6, a magnetically conductive annular plate 7 projects from the outer cylinder 5 to the inner cylinder 4. The magnet coil 3 is carried by a coil body 8. The magnetic circuit interrupted between the inner cylinder 4 and the annular plate 7 is bridged by an armature 10. The armature 10 has a plate-shaped part 11 which merges into a hollow cylindrical connecting piece 12. The connecting piece 12 faces the end face of the inner cylinder 4 and, aligned with the inner cylinder, engages through an opening 9 of the plate 7. A first air gap 13 is located between the connecting piece 12 and the inner cylinder 4. The plate-shaped part 11 of the armature 10 projects away from the inner cylinder 4 beyond the plate 7 and forms a second air gap 14 therewith. A valve closing part 15 made of non-magnetic material, which has a disk-shaped armature head 16 and a plunger 17, is pressed with the armature head 16 into the disk-shaped part 11 of the armature 10. Two guide sections 18, 19 guide the valve closing part 15 in a cylinder bore 20 of a guide bushing 21. The guide bushing 21 is part of a valve seat body 22 which has an inflow bore 23 in extension to the cylinder bore 20 of the guide bushing 21. Between the yoke 6 and the valve seat body 22 is a Including cavity 24 from which drain holes 25 extend. Between the inlet bore 23 and an annular chamber 26, a valve seat 27 is formed in the valve seat body 22, with which a spherical closing body 28 of the valve closing part 15 cooperates. Connection bores 29 in the guide bushing 21 connect the cavity 24 and the annular chamber 26. The drain bores 25 lead to a return flow line 31 via intermediate chambers 30. The inflow bore 23 is supplied with high pressure fluid when the solenoid valve is closed, for example from the pump delivery chamber of a fuel delivery pump for fuel injection systems of internal combustion engines, while the fluid pressure in the return line 31 is low. The return flow line 31 is connected, for example, to the suction side of the pump tappet of the fuel delivery pump. A restoring spring 35 is supported on the guide bushing 21, which on the other hand engages the armature head 16 of the valve closing part 15 and, in the non-excited state of the magnet coil 3, lifts the valve closing part 15 from the valve seat 27 and holds the solenoid valve in the open position. A stop plate 36 is arranged in the valve housing 1 above the armature 10 and the plate 7. A through bore 37 is provided in the stop plate 36, which is aligned with the cylinder bore 20 in the guide bushing 21 and through which a stop plunger 38 projects, which is connected to a stop head 39 of larger diameter. The stop head 39 is located on the side of the stop plate 36 facing away from the armature 10. The stop plunger 38 is slidably mounted in the through hole 37. On the stop head 39, an additional spring 40 is supported, which on the other hand rests on a spring housing 41, which is connected to the stop plate 36, for example, by screws, not shown. The additional spring 40 acts on the stop head 39 such that it below a predetermined force acting on the stop plunger 38, it bears against the surface of the stop plate 36 which forms a first stop 42 and faces away from the armature 10.

Das topfförmige Ventilgehäuse 1, in dem der Ventilsitzkörper 22, der Kern 2, die Platte 7 und die Anschlagplatte 36 angeordnet sind, nimmt weiterhin eine Deckplatte 45 auf, die einerseits an der Anchlagplatte 36 anliegt und an der andererseits ein Gewindering 46 angreift, der in das Ventilgehäuse 1 eingeschraubt ist und die Teile 22, 2, 7, 36, 45 im Ventilgehäuse 1 verspannt. Die Stromzuführung zur Magnetspule 3 erfolgt über elektrisch leitende Anschlußstifte 47, die in der Deckplatte 45 angeordnet sind.The cup-shaped valve housing 1, in which the valve seat body 22, the core 2, the plate 7 and the stop plate 36 are arranged, further receives a cover plate 45 which on the one hand abuts the stop plate 36 and on the other hand engages a threaded ring 46 which in the valve housing 1 is screwed in and the parts 22, 2, 7, 36, 45 clamped in the valve housing 1. The power supply to the magnet coil 3 takes place via electrically conductive connection pins 47, which are arranged in the cover plate 45.

Anhand der Figur 2 wird die Wirkungsweise des erfindungsgemäßen Magnetventiles beschrieben. In Figur 2 ist auf der Abszisse die Zeit t und auf der linken Ordinate der Fluiddruck p in der Zuflußbohrung 23 sowie auf der rechten Ordinate der Strömungsquerschnitt F zwischen dem Ventilsitz 27 und dem Schließkörper 28 des Ventilschließteiles 15 bezeichnet. Wird die Magnetspule 3 erregt, so wird der Anker 10 zum Kern 2 hin gezogen, wodurch das Ventilschließteil 15 entsprechend der linken gestrichelt dargestellten Linie a in Figur 2 zum Ventilsitz 27 hin bewegt wird, an dem sie zur Zeit t1 mit dem Schließkörper 28 anliegt. Das Magnetventil ist nun geschlossen und in der Zuflußbohrung 23 baut sich ein Fluiddruck auf, beispielsweise infolge des Pumpenstößelförderhubes einer Kraftstoffeinspritzpumpe, wie durch die durchgezogene Linie b dargestellt. Wird nun zur Zeit t2 die Erregung der Magnetspule 3 unterbrochen, so wird der Schließkörper 2d einerseits durch die Kraft der Rückstellfeder 35 und andererseits durch die Kraft des hohen am Schließkörper 28 angreifenden Fluiddruckes in öffnungsrichtung zum Anschlagstößel 38 bewegt, wodurch sich ein Strömungsquerschnitt für das Fluid zwischen dem Ventilsitz 27 und dem Schließkörper 28 entsprechend der rechten gestrichelten Kurve c ergibt. Für einen gehäusefest angeordneten Anschlagstößel 38 würde die Öffnungsbewegung des Ventilschließteiles 15 durch Anliegen am Anschlagstößel 38 begrenzt, so daß mit dem Anliegen des Ventilschließteiles 15 am Anschlagstößel 38 der Strömungsquerschnitt des Ventiles entsprechend der waagerecht verlaufenden gestrichelt dargestellten Kurve d konstant bleiben würde. Für eine Ausbildung mit einem gehäusefesten Anschlagstößel 38 ergibt sich dabei eine Absenkung des Fluiddruckes in der Zuflußbohrung 23 entsprechend der ausgezogen dargestellten Linie e, die zum Zeitpunkt der Beendigung der Öffnungsbewegung des Ventilschließteiles 15, also beim Übergang zum konstanten Strömungsquerschnitt entsprechend der Linie d eine Unstetigkeit f aufweist und zeigt, daß sich der Fluiddruck ab dieser Unstetigkeit nur noch verzögert abbaut, was unerwünscht ist. Gemäß der Erfindung ist der Anschlagstößel 38 entgegen der Kraft der Zusatzfeder 40 derart verschiebbar gelagert, daß nach dem Unterbrechen der Erregung der Magnetspule 3 die Summe aus der Kraft der Rückstellfeder 35 und der Kraft des Fluiddruckes auf den Schließkörper 28 ausreicht, die Kraft der Zusatzfeder 40 zu überwinden, so daß das Ventilschließteil 15 nach seiner Berührung mit dem Anschlagstößel 38 den Anschlagstößel 38 in Öffnungsrichtung des Ventilschließteiles 15 verschiebt, wodurch der Anschlagkopf 39 von der Anschlagplatte 36 abhebt und zwischen dem Ventilsitz 27 und dem Schließkörper 28 ein größerer Strömungsquerschnitt geöffnet wird, wie er durch die strichpunktierte Linie g dargestellt ist. Mit dem Absenken des Fluiddruckes am Schließkörper 26 verschiebt die Zusatzfeder 40 den Anschlagstößel 38 und damit auch das Ventilschließteil 15 in Richtung zum Ventilsitz 27, bis der Anschlagkopf 39 unterhalb eines vorbestimmten Fluiddruckes an der Anschlagplatte 36 zum Anliegen kommt und sich zwischen dem Ventilsitz 27 und dem Schließkörper 28 ein konstanter Strömungsquerschnitt entsprechend der Linie d einstellt. Infolge des zur Verfügung stehenden größeren Strömungsquerschnittes zwischen dem Ventilsitz 27 und dem Schließkörper 28 entsprechend der strichpunktierten Linie g erfolgt in erwünschter Weise ein schneller Druckabbau des Fluids über den Ventilsitz 27 entsprechend der strichgekreuzten Linie h. Bei an der Anschlagplatte 36 anliegendem Anschlagkopf 39 wird das Ventilschließteil 15 und der Anker 10 in einer Stellung gehalten, in der die Luftspalte 13 und 14 so klein sind, daß bei erneuter Erregung der Magnetspule 3 ein schnelles Schließen des Magnetventiles gewährleistet ist.The mode of operation of the solenoid valve according to the invention is described with reference to FIG. 2 shows the time t on the abscissa and the fluid pressure p in the inflow bore 23 on the left ordinate and the flow cross section F between the valve seat 27 and the closing body 28 of the valve closing part 15 on the right ordinate. If the magnet coil 3 is energized, the armature 10 is pulled towards the core 2, whereby the valve closing part 15 is moved according to the left-hand dashed line a in FIG. 2 to the valve seat 27, against which it bears with the closing body 28 at time t 1 . The solenoid valve is now closed and a fluid pressure builds up in the inflow bore 23, for example as a result of the pump tappet delivery stroke of a fuel injection pump, as represented by the solid line b. If the excitation of the magnetic coil 3 is interrupted at time t 2 , the closing body 2d is in on the one hand by the force of the return spring 35 and on the other hand by the force of the high fluid pressure acting on the closing body 28 Opening direction moves to the stop plunger 38, which results in a flow cross section for the fluid between the valve seat 27 and the closing body 28 according to the right dashed curve c. For a stop plunger 38 arranged fixed to the housing, the opening movement of the valve closing part 15 would be limited by abutment against the stop plunger 38, so that when the valve closing part 15 bears against the stop plunger 38, the flow cross section of the valve would remain constant in accordance with the horizontal curve d shown in dashed lines. For a design with a stop plunger 38 fixed to the housing, there is a reduction in the fluid pressure in the inflow bore 23 corresponding to the line e shown in solid lines, which at the time of the end of the opening movement of the valve closing part 15, that is to say a discontinuity f when the transition to the constant flow cross section corresponding to line d shows and shows that the fluid pressure decreases from this discontinuity only with a delay, which is undesirable. According to the invention, the stop plunger 38 is displaceably mounted against the force of the additional spring 40 such that, after the excitation of the magnetic coil 3 has been interrupted, the sum of the force of the return spring 35 and the force of the fluid pressure on the closing body 28 is sufficient, the force of the additional spring 40 to overcome, so that the valve closing part 15 after its contact with the stop plunger 38 moves the stop plunger 38 in the opening direction of the valve closing part 15, whereby the stop head 39 lifts off the stop plate 36 and a larger flow cross section is opened between the valve seat 27 and the closing body 28, such as it is represented by the dash-dotted line g. With the lowering of the fluid pressure on the closing body 26, the additional spring 40 moves the stop plunger 38 and thus also the valve closing part 15 in the direction of Valve seat 27 until the stop head 39 comes to rest against the stop plate 36 below a predetermined fluid pressure and a constant flow cross section corresponding to the line d is established between the valve seat 27 and the closing body 28. As a result of the larger flow cross-section available between the valve seat 27 and the closing body 28 in accordance with the dash-dotted line g, a rapid decrease in pressure of the fluid via the valve seat 27 in accordance with the dashed line h is desired. When the stop plate 39 abuts the stop plate 36, the valve closing part 15 and the armature 10 are held in a position in which the air gaps 13 and 14 are so small that rapid re-energization of the solenoid valve is ensured when the solenoid 3 is excited again.

Bei dem zweiten Ausführungsbeispiel des erfindungsgemäßen Magnetventiles nach Figur 3 sind die gegenüber dem Magnetventil nach Figur 1 gleichbleibenden und gleichwirkenden Teile durch die gleichen Bezugszeichen gekennzeichnet. Gegenüber dem Magnetventil nach Figur 1 muß bei dem Magnetventil nach Figur 3 keine Rückstellfeder 35 vorgesehen sein und es entfällt der Anchlagstößel 38 mit Anschlagkopf 39 und Zusatzfeder 40. Im Gegensatz zum Magnetventil nach Figur 1 ist bei dem Magnetventil nach Figur 3 zwischen dem Ankerkopf 16 des Ventilschießteiles 15 und der Anschlagplatte 36 eine Druckfeder 50 angeordnet, die den Anker 10 und das Ventilschließteil 15 in Richtung zum Ventilsitz 27 hin beaufschlagt und als nachgiebiger Anschlag dient. Wird die Erregung der Magnetspule 3 unterbrochen, so verschiebt die durch den Fluiddruck in der Zuflußbohrung 23 bewirkte Kraft auf den Schließkörper 28 das Ventilschießteil 15 und den Anker 10 entgegen der Kraft der Druckfeder 50, so daß ein großer Strömungsquerschnitt entsprechend der Linie g nach Figur 2 zwischen dem Ventilsitz 27 und dem Schließkörper 28 für das Fluid geöffnet wird. Hierdurch ist ein schneller Abbau des Fluiddruckes möglich. Mit sinkendem Fluiddruck verschiebt die Kraft der Druckfeder 50 den Anker 10 und das Ventilschließteil 15 mehr in Richtung zum Ventilsitz 27, so daß sich nicht nur der Strömungsquerschnitt zwischen Ventilsitz 27 und Schließkörper 28 verringert, sondern auch die Luftspalte 13 und 14, wodurch sich bei erneuter Erregung der Magnetspule 3 in gewünschter Weise ein schnelles Schließen des Magnetventiles ergibt.In the second exemplary embodiment of the magnetic valve according to the invention according to FIG. 3, the parts which remain the same and have the same effect as the magnetic valve according to FIG. 1 are identified by the same reference numerals. Compared to the solenoid valve according to FIG. 1, no return spring 35 has to be provided in the solenoid valve according to FIG. 3 and the stop plunger 38 with stop head 39 and additional spring 40 is omitted. In contrast to the solenoid valve according to FIG Valve firing part 15 and the stop plate 36, a compression spring 50 is arranged which acts on the armature 10 and the valve closing part 15 in the direction of the valve seat 27 and serves as a resilient stop. If the excitation of the magnet coil 3 is interrupted, the force caused by the fluid pressure in the inflow bore 23 moves the closing body 28, the valve-shooting part 15 and the armature 10 against the force of the compression spring 50, so that a large flow cross section along the line g of Figure 2 between the valve seat 27 and the closing body 28 is opened for the fluid. This enables a rapid reduction in the fluid pressure. With decreasing fluid pressure, the force of the compression spring 50 moves the armature 10 and the valve closing part 15 more towards the valve seat 27, so that not only the flow cross section between the valve seat 27 and the closing body 28 is reduced, but also the air gaps 13 and 14, as a result of which renewed Excitation of the solenoid 3 in the desired manner results in a quick closing of the solenoid valve.

Claims (4)

1. Magnetventil zur Fluidsteuerung mit einem Ventilgehäuse, einer auf einem Kern aus ferromagnetischem Material aufgebrachten Magnetspule und einem ein mit einem festen Ventilsitz zusammenwirkendes Ventilschließteil betätigenden Anker, der bei erregter Magnetspule das Ventilschließteil entgegen der Fluidströmungsrichtung auf den. Ventilsitz preßt, das nach dem Unterbrechen der Erregung der Magnetspule infolge der vom Fluiddruck erzeugten Kraft vom Ventilsitz weg in Öffnungsrichtung zu einem Anschlag hin bewegt wird, dadurch gekennzeichnet, daß der Anschlag (38, 50) in Öffnungsrichtung des Ventilschließteiles (15) nachgiebig so ausgebildet ist, daß nach dem Unterbrechen der Erregung der Magnetspule (3) das Ventilschließteil (15) in Abhängigkeit vom am Ventilschließteil (15) angreifenden Fluiddruck unterschiedlich weit vom Ventilsitz (27) abhebbar ist.1. Solenoid valve for fluid control with a valve housing, a magnet coil applied to a core made of ferromagnetic material and an armature which actuates a valve closing part which interacts with a fixed valve seat and which, when the solenoid coil is excited, the valve closing part counter to the fluid flow direction. Presses valve seat, which is moved after the interruption of the excitation of the solenoid due to the force generated by the fluid pressure force away from the valve seat in the opening direction towards a stop, characterized in that the stop (38, 50) in the opening direction of the valve closing part (15) is designed so resilient is that after the excitation of the solenoid (3) the valve closing part (15) can be lifted to different degrees from the valve seat (27) depending on the fluid pressure acting on the valve closing part (15). 2. Magnetventil nach Anspruch 1, dadurch gekennzeichnet, daß der Anschlag (33, 39) entgegen der Kraft einer Zusatzfeder (40) in Öffnungsrichtung des Ventilschließteiles (15) verschiebbar gelagert ist.2. Solenoid valve according to claim 1, characterized in that the stop (33, 39) against the force of an additional spring (40) in the opening direction of the valve closing part (15) is slidably mounted. 3. Magnetventil nach Anspruch 2, dadurch gekennzeichnet, daß der Anschlag (38, 39) oberhalb eines vorbestimmten, am Ventilschließteil (15) angreifenden Fluiddruckes von einem Hilfsanschlag (36, 42) abhebbar ist.3. Solenoid valve according to claim 2, characterized in that the stop (38, 39) above a predetermined, on the valve closing part (15) engaging fluid pressure from an auxiliary stop (36, 4 2) can be raised. 4. Magnetventil nach Anspruch 1, dadurch gekennzeichnet, daß der Anschlag als Druckfeder (50) ausgebildet ist.4. Solenoid valve according to claim 1, characterized in that the stop is designed as a compression spring (50).
EP85113280A 1984-11-23 1985-10-19 Solenoid valve for fluid control Expired EP0182109B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843442750 DE3442750A1 (en) 1984-11-23 1984-11-23 SOLENOID VALVE FOR FLUID CONTROL
DE3442750 1984-11-23

Publications (3)

Publication Number Publication Date
EP0182109A2 true EP0182109A2 (en) 1986-05-28
EP0182109A3 EP0182109A3 (en) 1987-08-05
EP0182109B1 EP0182109B1 (en) 1989-07-19

Family

ID=6250985

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85113280A Expired EP0182109B1 (en) 1984-11-23 1985-10-19 Solenoid valve for fluid control

Country Status (4)

Country Link
US (1) US4690373A (en)
EP (1) EP0182109B1 (en)
JP (1) JPH0633826B2 (en)
DE (2) DE3442750A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0318743A1 (en) * 1987-12-02 1989-06-07 Ganser-Hydromag Electronically controlled fuel injector
CH672358A5 (en) * 1986-10-21 1989-11-15 Jossi Hans Praezisionsmechanik
EP0372712A1 (en) * 1988-12-02 1990-06-13 Lucas Industries Public Limited Company Electromagnetic valve

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE67825T1 (en) * 1985-12-02 1991-10-15 Marco Alfredo Ganser FUEL INJECTION SYSTEM FOR COMBUSTION ENGINES.
DE3732553A1 (en) * 1987-09-26 1989-04-13 Bosch Gmbh Robert MAGNETIC VALVE
US5087315A (en) * 1988-01-15 1992-02-11 The Secretary Of State For Trade & Industry In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Fabric lifting apparatus and method
US5114077A (en) * 1990-12-12 1992-05-19 Siemens Automotive L.P. Fuel injector end cap
JPH0742644A (en) * 1992-10-29 1995-02-10 Nippon Soken Inc Solenoid valve
JP3142038B2 (en) * 1993-12-03 2001-03-07 株式会社デンソー solenoid valve
US5417373A (en) * 1994-02-10 1995-05-23 Siemens Automotive L.P. Electromagnet for valves
US5927614A (en) * 1997-08-22 1999-07-27 Touvelle; Matthew S. Modular control valve for a fuel injector having magnetic isolation features
US5961045A (en) * 1997-09-25 1999-10-05 Caterpillar Inc. Control valve having a solenoid with a permanent magnet for a fuel injector
US6360773B1 (en) * 1999-06-21 2002-03-26 Honeywell International Inc. Methods for monitoring wear in seat materials of valves
JP5271216B2 (en) * 2009-09-17 2013-08-21 日立オートモティブシステムズ株式会社 Normally open type solenoid valve
EP2706222B1 (en) * 2012-09-06 2016-07-13 Delphi International Operations Luxembourg S.à r.l. Pump unit
CN107218724B (en) * 2017-08-02 2022-08-16 广东华工环源环保科技有限公司 Heat conduction oil boiler protection device and protection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2826215A (en) * 1954-04-21 1958-03-11 Alco Valve Co Balanced pressure solenoid valve
CH387405A (en) * 1961-03-20 1965-01-31 Eldima Ag Electric valve without gland
DE2347864B1 (en) * 1973-09-22 1974-11-28 G.L. Rexroth Gmbh, 8770 Lohr Pressure valve to be set by a control solenoid
DE2836225A1 (en) * 1977-09-12 1979-03-22 Gen Motors Corp FUEL INJECTION DEVICE FOR COMBUSTION MACHINERY
DE3130851A1 (en) * 1981-08-04 1983-02-24 Mac Valves, Inc., 48096 Wixom, Mich. Three-way pilot-control valve closed only in the rest position
DE8232134U1 (en) * 1981-11-19 1983-03-24 Honeywell and Philips Medical Electronics B.V., 5611 Eindhoven SOLENOID VALVE, ESPECIALLY DOSING VALVE FOR VENTILATORS

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1175864A (en) * 1915-04-01 1916-03-14 Gold Car Heating & Lighting Co Magnetic valve.
CH405843A (en) * 1963-11-15 1966-01-15 Eldima Ag Electromagnetic drive magnet and use of the same as part of an electrovalve
US3529620A (en) * 1966-11-04 1970-09-22 Teldix Gmbh Electromagnetically actuated stroke adjustable valve
DE1913808C3 (en) * 1969-03-19 1976-01-08 Robert Bosch Gmbh, 7000 Stuttgart Overturn protection for injection pumps of internal combustion engines
DE2847748A1 (en) * 1978-11-03 1980-05-22 Bosch Gmbh Robert WATER CONTROL VALVE FOR A MOTOR VEHICLE AIR CONDITIONING, IN PARTICULAR HEATING SYSTEM, AND METHOD FOR THE PRODUCTION THEREOF, IN PARTICULAR ADJUSTMENT
IT1144260B (en) * 1981-07-01 1986-10-29 Fiat Ricerche PROPORTIONAL ELECTRIC PILOT HYDRAULIC SYSTEM
JPS5846284A (en) * 1981-09-14 1983-03-17 Kayaba Ind Co Ltd Proportional solenoid valve
DE3139669A1 (en) * 1981-10-06 1983-04-21 Robert Bosch Gmbh, 7000 Stuttgart SOLENOID VALVE, ESPECIALLY FUEL INJECTION VALVE
EP0077599B1 (en) * 1981-10-16 1985-09-25 Borg-Warner Corporation Proportional solenoid valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2826215A (en) * 1954-04-21 1958-03-11 Alco Valve Co Balanced pressure solenoid valve
CH387405A (en) * 1961-03-20 1965-01-31 Eldima Ag Electric valve without gland
DE2347864B1 (en) * 1973-09-22 1974-11-28 G.L. Rexroth Gmbh, 8770 Lohr Pressure valve to be set by a control solenoid
DE2836225A1 (en) * 1977-09-12 1979-03-22 Gen Motors Corp FUEL INJECTION DEVICE FOR COMBUSTION MACHINERY
DE3130851A1 (en) * 1981-08-04 1983-02-24 Mac Valves, Inc., 48096 Wixom, Mich. Three-way pilot-control valve closed only in the rest position
DE8232134U1 (en) * 1981-11-19 1983-03-24 Honeywell and Philips Medical Electronics B.V., 5611 Eindhoven SOLENOID VALVE, ESPECIALLY DOSING VALVE FOR VENTILATORS

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH672358A5 (en) * 1986-10-21 1989-11-15 Jossi Hans Praezisionsmechanik
EP0318743A1 (en) * 1987-12-02 1989-06-07 Ganser-Hydromag Electronically controlled fuel injector
EP0571001A2 (en) * 1987-12-02 1993-11-24 Ganser-Hydromag Electronically controlled fuel injector
EP0571001A3 (en) * 1987-12-02 1994-01-19 Ganser-Hydromag Electronically controlled fuel injector
EP0372712A1 (en) * 1988-12-02 1990-06-13 Lucas Industries Public Limited Company Electromagnetic valve

Also Published As

Publication number Publication date
JPH0633826B2 (en) 1994-05-02
JPS61130681A (en) 1986-06-18
US4690373A (en) 1987-09-01
EP0182109A3 (en) 1987-08-05
EP0182109B1 (en) 1989-07-19
DE3442750A1 (en) 1986-05-28
DE3571682D1 (en) 1989-08-24

Similar Documents

Publication Publication Date Title
EP0182109B1 (en) Solenoid valve for fluid control
EP0195261B1 (en) Magnetic valve, particularly a fuel quantity control valve
DE68903967T2 (en) ACCUMULATOR - FUEL INJECTION NOZZLE.
EP0745764B1 (en) Fuel injection valve for internal combustion engines
DE4142998C1 (en)
EP0444055B1 (en) Solenoid valve, in particular for fuel injection pumps
DE68922871T2 (en) Fuel injector.
EP0537175B1 (en) Magnetic valve
DE3544575C2 (en)
EP0840009A2 (en) High pressure pump
DE19932548A1 (en) Dual solenoids with a single circuit and fuel injector that uses them
DE3802648A1 (en) Electromagnetically actuated hydraulic quick-action switching valve
EP1157205A1 (en) System and method for controlling a control valve for a diesel fuel injection system
DE19700980A1 (en) Solenoid valve
DE69304830T2 (en) Fuel injector
DE60217252T2 (en) Fuel injection valve of an internal combustion engine
DE10239070A1 (en) Electromagnetic fluid control device with a magnetostrictive component
DE4337070A1 (en) Solenoid operated valve for fuel injection system - determines duration of fuel injection phase in conjunction with reciprocating fuel feed pump having cylinder indexing sensor
DE10004961B4 (en) Fuel injection valve and method for its operation
WO2003002868A1 (en) Magnetic valve for controlling an injection valve in an internal combustion engine
DE3500449C2 (en)
EP0975866A1 (en) Fuel injection valve for internal combustion engines
DE10124743A1 (en) Fuel injection valve for an internal combustion engine comprises an armature having an armature buffer sleeve inserted in a form-locking manner into an inner recess of an armature casing
DE3531153A1 (en) Solenoid intermittent injection valve
EP0184126A1 (en) Electromagnetically actuated fuel injector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19871211

17Q First examination report despatched

Effective date: 19881223

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3571682

Country of ref document: DE

Date of ref document: 19890824

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921012

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921027

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19921221

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931019

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST