EP0178893B1 - Solid detergent compositions - Google Patents
Solid detergent compositions Download PDFInfo
- Publication number
- EP0178893B1 EP0178893B1 EP85307387A EP85307387A EP0178893B1 EP 0178893 B1 EP0178893 B1 EP 0178893B1 EP 85307387 A EP85307387 A EP 85307387A EP 85307387 A EP85307387 A EP 85307387A EP 0178893 B1 EP0178893 B1 EP 0178893B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- emulsion
- alkali metal
- detergent composition
- sodium
- agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000203 mixture Substances 0.000 title claims description 86
- 239000013042 solid detergent Substances 0.000 title claims description 18
- 239000000839 emulsion Substances 0.000 claims description 65
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 52
- 229910001868 water Inorganic materials 0.000 claims description 51
- 239000003599 detergent Substances 0.000 claims description 45
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 28
- 239000003795 chemical substances by application Substances 0.000 claims description 28
- 229910019142 PO4 Inorganic materials 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 27
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 27
- 239000010452 phosphate Substances 0.000 claims description 26
- 239000007787 solid Substances 0.000 claims description 26
- 235000019832 sodium triphosphate Nutrition 0.000 claims description 24
- 239000004927 clay Substances 0.000 claims description 20
- -1 alkali metal tripolyphosphate Chemical class 0.000 claims description 19
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 16
- 239000003352 sequestering agent Substances 0.000 claims description 16
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 15
- 239000004094 surface-active agent Substances 0.000 claims description 14
- 229910052783 alkali metal Inorganic materials 0.000 claims description 13
- 229910052736 halogen Inorganic materials 0.000 claims description 13
- 150000002367 halogens Chemical class 0.000 claims description 13
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 claims description 9
- 239000005708 Sodium hypochlorite Substances 0.000 claims description 8
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 8
- 239000000375 suspending agent Substances 0.000 claims description 8
- 239000004115 Sodium Silicate Substances 0.000 claims description 7
- 230000036571 hydration Effects 0.000 claims description 7
- 238000006703 hydration reaction Methods 0.000 claims description 7
- 229940001593 sodium carbonate Drugs 0.000 claims description 7
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 7
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 7
- 235000011152 sodium sulphate Nutrition 0.000 claims description 7
- 235000019795 sodium metasilicate Nutrition 0.000 claims description 6
- AZJYLVAUMGUUBL-UHFFFAOYSA-A u1qj22mc8e Chemical compound [F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].O=[Si]=O.O=[Si]=O.O=[Si]=O.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3 AZJYLVAUMGUUBL-UHFFFAOYSA-A 0.000 claims description 4
- XYQRXRFVKUPBQN-UHFFFAOYSA-L Sodium carbonate decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[O-]C([O-])=O XYQRXRFVKUPBQN-UHFFFAOYSA-L 0.000 claims description 2
- 238000013019 agitation Methods 0.000 claims description 2
- 239000003945 anionic surfactant Substances 0.000 claims description 2
- 239000002736 nonionic surfactant Substances 0.000 claims description 2
- 229940018038 sodium carbonate decahydrate Drugs 0.000 claims description 2
- RSIJVJUOQBWMIM-UHFFFAOYSA-L sodium sulfate decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[O-]S([O-])(=O)=O RSIJVJUOQBWMIM-UHFFFAOYSA-L 0.000 claims description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 36
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 24
- 239000000460 chlorine Substances 0.000 description 24
- 229910052801 chlorine Inorganic materials 0.000 description 24
- 235000021317 phosphate Nutrition 0.000 description 24
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 18
- 238000004140 cleaning Methods 0.000 description 15
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 13
- 239000006185 dispersion Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 8
- 238000009472 formulation Methods 0.000 description 8
- 239000002002 slurry Substances 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- 229910052708 sodium Inorganic materials 0.000 description 7
- 235000017550 sodium carbonate Nutrition 0.000 description 7
- 239000003518 caustics Substances 0.000 description 6
- 238000007711 solidification Methods 0.000 description 6
- 230000008023 solidification Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 150000001340 alkali metals Chemical class 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 229940094522 laponite Drugs 0.000 description 5
- XCOBTUNSZUJCDH-UHFFFAOYSA-B lithium magnesium sodium silicate Chemical compound [Li+].[Li+].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Na+].[Na+].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3 XCOBTUNSZUJCDH-UHFFFAOYSA-B 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 239000000271 synthetic detergent Substances 0.000 description 5
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 4
- 238000004061 bleaching Methods 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Inorganic materials Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- QDHHCQZDFGDHMP-UHFFFAOYSA-N Chloramine Chemical class ClN QDHHCQZDFGDHMP-UHFFFAOYSA-N 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- YZQBYALVHAANGI-UHFFFAOYSA-N magnesium;dihypochlorite Chemical compound [Mg+2].Cl[O-].Cl[O-] YZQBYALVHAANGI-UHFFFAOYSA-N 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 3
- 239000008247 solid mixture Substances 0.000 description 3
- 238000001694 spray drying Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002562 thickening agent Substances 0.000 description 3
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 3
- QLAJNZSPVITUCQ-UHFFFAOYSA-N 1,3,2-dioxathietane 2,2-dioxide Chemical compound O=S1(=O)OCO1 QLAJNZSPVITUCQ-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- ZKQDCIXGCQPQNV-UHFFFAOYSA-N Calcium hypochlorite Chemical compound [Ca+2].Cl[O-].Cl[O-] ZKQDCIXGCQPQNV-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000007859 condensation product Substances 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 150000004691 decahydrates Chemical class 0.000 description 2
- IQDGSYLLQPDQDV-UHFFFAOYSA-N dimethylazanium;chloride Chemical compound Cl.CNC IQDGSYLLQPDQDV-UHFFFAOYSA-N 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000002979 fabric softener Substances 0.000 description 2
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 2
- 229910000271 hectorite Inorganic materials 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 2
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 2
- 229910001947 lithium oxide Inorganic materials 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 2
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 2
- JBJWASZNUJCEKT-UHFFFAOYSA-M sodium;hydroxide;hydrate Chemical compound O.[OH-].[Na+] JBJWASZNUJCEKT-UHFFFAOYSA-M 0.000 description 2
- 239000008234 soft water Substances 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- LTAFUYCOQAJRBT-UHFFFAOYSA-J tricalcium;tetrahydroxide;dihypochlorite Chemical compound [OH-].[OH-].[OH-].[OH-].[Ca+2].[Ca+2].[Ca+2].Cl[O-].Cl[O-] LTAFUYCOQAJRBT-UHFFFAOYSA-J 0.000 description 2
- YRIZYWQGELRKNT-UHFFFAOYSA-N 1,3,5-trichloro-1,3,5-triazinane-2,4,6-trione Chemical compound ClN1C(=O)N(Cl)C(=O)N(Cl)C1=O YRIZYWQGELRKNT-UHFFFAOYSA-N 0.000 description 1
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 1
- CPKVUHPKYQGHMW-UHFFFAOYSA-N 1-ethenylpyrrolidin-2-one;molecular iodine Chemical compound II.C=CN1CCCC1=O CPKVUHPKYQGHMW-UHFFFAOYSA-N 0.000 description 1
- UYKWDAPDQOLFRV-UHFFFAOYSA-N 2-methyloxirane;molecular iodine;oxirane Chemical compound II.C1CO1.CC1CO1 UYKWDAPDQOLFRV-UHFFFAOYSA-N 0.000 description 1
- MOMKYJPSVWEWPM-UHFFFAOYSA-N 4-(chloromethyl)-2-(4-methylphenyl)-1,3-thiazole Chemical compound C1=CC(C)=CC=C1C1=NC(CCl)=CS1 MOMKYJPSVWEWPM-UHFFFAOYSA-N 0.000 description 1
- QNGVNLMMEQUVQK-UHFFFAOYSA-N 4-n,4-n-diethylbenzene-1,4-diamine Chemical compound CCN(CC)C1=CC=C(N)C=C1 QNGVNLMMEQUVQK-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 239000004484 Briquette Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- SPAGIJMPHSUYSE-UHFFFAOYSA-N Magnesium peroxide Chemical compound [Mg+2].[O-][O-] SPAGIJMPHSUYSE-UHFFFAOYSA-N 0.000 description 1
- FUVGZDDOHNQZEO-UHFFFAOYSA-N NS(=O)(=O)NCl Chemical compound NS(=O)(=O)NCl FUVGZDDOHNQZEO-UHFFFAOYSA-N 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229920000153 Povidone-iodine Polymers 0.000 description 1
- 239000004902 Softening Agent Substances 0.000 description 1
- 241001122767 Theaceae Species 0.000 description 1
- KFOLLPUZRCFERL-UHFFFAOYSA-N [O-2].[Mg+2].O=[Si]=O Chemical compound [O-2].[Mg+2].O=[Si]=O KFOLLPUZRCFERL-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000002752 cationic softener Substances 0.000 description 1
- VDQQXEISLMTGAB-UHFFFAOYSA-N chloramine T Chemical compound [Na+].CC1=CC=C(S(=O)(=O)[N-]Cl)C=C1 VDQQXEISLMTGAB-UHFFFAOYSA-N 0.000 description 1
- 229940059864 chlorine containing product ectoparasiticides Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- JSYGRUBHOCKMGQ-UHFFFAOYSA-N dichloramine Chemical class ClNCl JSYGRUBHOCKMGQ-UHFFFAOYSA-N 0.000 description 1
- CEJLBZWIKQJOAT-UHFFFAOYSA-N dichloroisocyanuric acid Chemical compound ClN1C(=O)NC(=O)N(Cl)C1=O CEJLBZWIKQJOAT-UHFFFAOYSA-N 0.000 description 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 1
- FPDLLPXYRWELCU-UHFFFAOYSA-M dimethyl(dioctadecyl)azanium;methyl sulfate Chemical compound COS([O-])(=O)=O.CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC FPDLLPXYRWELCU-UHFFFAOYSA-M 0.000 description 1
- PGZPBNJYTNQMAX-UHFFFAOYSA-N dimethylazanium;methyl sulfate Chemical compound C[NH2+]C.COS([O-])(=O)=O PGZPBNJYTNQMAX-UHFFFAOYSA-N 0.000 description 1
- REZZEXDLIUJMMS-UHFFFAOYSA-M dimethyldioctadecylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC REZZEXDLIUJMMS-UHFFFAOYSA-M 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- FZFYOUJTOSBFPQ-UHFFFAOYSA-M dipotassium;hydroxide Chemical compound [OH-].[K+].[K+] FZFYOUJTOSBFPQ-UHFFFAOYSA-M 0.000 description 1
- 238000004851 dishwashing Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000004664 distearyldimethylammonium chloride (DHTDMAC) Substances 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- CFUNAYGQFFNNSD-UHFFFAOYSA-L ferrous ammonium sulfate heptahydrate Chemical compound [NH4+].[NH4+].O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O CFUNAYGQFFNNSD-UHFFFAOYSA-L 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- TVHALOSDPLTTSR-UHFFFAOYSA-H hexasodium;[oxido-[oxido(phosphonatooxy)phosphoryl]oxyphosphoryl] phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O TVHALOSDPLTTSR-UHFFFAOYSA-H 0.000 description 1
- 238000011086 high cleaning Methods 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000004900 laundering Methods 0.000 description 1
- 239000012705 liquid precursor Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229910001463 metal phosphate Inorganic materials 0.000 description 1
- 229910052914 metal silicate Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- ARGDYOIRHYLIMT-UHFFFAOYSA-N n,n-dichloro-4-methylbenzenesulfonamide Chemical compound CC1=CC=C(S(=O)(=O)N(Cl)Cl)C=C1 ARGDYOIRHYLIMT-UHFFFAOYSA-N 0.000 description 1
- PJBJJXCZRAHMCK-UHFFFAOYSA-N n,n-dichlorobenzenesulfonamide Chemical compound ClN(Cl)S(=O)(=O)C1=CC=CC=C1 PJBJJXCZRAHMCK-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- FWFGVMYFCODZRD-UHFFFAOYSA-N oxidanium;hydrogen sulfate Chemical class O.OS(O)(=O)=O FWFGVMYFCODZRD-UHFFFAOYSA-N 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- 239000006069 physical mixture Substances 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 150000003109 potassium Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- SATVIFGJTRRDQU-UHFFFAOYSA-N potassium hypochlorite Chemical compound [K+].Cl[O-] SATVIFGJTRRDQU-UHFFFAOYSA-N 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- IFIDXBCRSWOUSB-UHFFFAOYSA-M potassium;1,5-dichloro-4,6-dioxo-1,3,5-triazin-2-olate Chemical compound [K+].ClN1C(=O)[N-]C(=O)N(Cl)C1=O IFIDXBCRSWOUSB-UHFFFAOYSA-M 0.000 description 1
- 229960001621 povidone-iodine Drugs 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- 235000019983 sodium metaphosphate Nutrition 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 235000019794 sodium silicate Nutrition 0.000 description 1
- 229960000776 sodium tetradecyl sulfate Drugs 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- PYILKOIEIHHYGD-UHFFFAOYSA-M sodium;1,5-dichloro-4,6-dioxo-1,3,5-triazin-2-olate;dihydrate Chemical compound O.O.[Na+].[O-]C1=NC(=O)N(Cl)C(=O)N1Cl PYILKOIEIHHYGD-UHFFFAOYSA-M 0.000 description 1
- HEBRGEBJCIKEKX-UHFFFAOYSA-M sodium;2-hexadecylbenzenesulfonate Chemical compound [Na+].CCCCCCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O HEBRGEBJCIKEKX-UHFFFAOYSA-M 0.000 description 1
- RLJSXMVTLMHXJS-UHFFFAOYSA-M sodium;4-decylbenzenesulfonate Chemical compound [Na+].CCCCCCCCCCC1=CC=C(S([O-])(=O)=O)C=C1 RLJSXMVTLMHXJS-UHFFFAOYSA-M 0.000 description 1
- DUXXGJTXFHUORE-UHFFFAOYSA-M sodium;4-tridecylbenzenesulfonate Chemical compound [Na+].CCCCCCCCCCCCCC1=CC=C(S([O-])(=O)=O)C=C1 DUXXGJTXFHUORE-UHFFFAOYSA-M 0.000 description 1
- GGHPAKFFUZUEKL-UHFFFAOYSA-M sodium;hexadecyl sulfate Chemical compound [Na+].CCCCCCCCCCCCCCCCOS([O-])(=O)=O GGHPAKFFUZUEKL-UHFFFAOYSA-M 0.000 description 1
- NWZBFJYXRGSRGD-UHFFFAOYSA-M sodium;octadecyl sulfate Chemical compound [Na+].CCCCCCCCCCCCCCCCCCOS([O-])(=O)=O NWZBFJYXRGSRGD-UHFFFAOYSA-M 0.000 description 1
- ORLPWCUCEDVJNN-UHFFFAOYSA-N sodium;tetradecyl benzenesulfonate Chemical compound [Na].CCCCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 ORLPWCUCEDVJNN-UHFFFAOYSA-N 0.000 description 1
- UPUIQOIQVMNQAP-UHFFFAOYSA-M sodium;tetradecyl sulfate Chemical compound [Na+].CCCCCCCCCCCCCCOS([O-])(=O)=O UPUIQOIQVMNQAP-UHFFFAOYSA-M 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- JTERPZLSUHFRRP-UHFFFAOYSA-N sulfuric acid;decahydrate Chemical class O.O.O.O.O.O.O.O.O.O.OS(O)(=O)=O JTERPZLSUHFRRP-UHFFFAOYSA-N 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 1
- 235000019801 trisodium phosphate Nutrition 0.000 description 1
- ASTWEMOBIXQPPV-UHFFFAOYSA-K trisodium;phosphate;dodecahydrate Chemical class O.O.O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[Na+].[O-]P([O-])([O-])=O ASTWEMOBIXQPPV-UHFFFAOYSA-K 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/06—Phosphates, including polyphosphates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0047—Detergents in the form of bars or tablets
- C11D17/0052—Cast detergent compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0047—Detergents in the form of bars or tablets
- C11D17/0065—Solid detergents containing builders
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/10—Carbonates ; Bicarbonates
Definitions
- the method according to the invention is carried out by using one or more of the following preferred features (a) to (d);
- the method for forming the solid detergent product comprises:
- the present solid detergent compositions When the present solid detergent compositions are designed for use as laundry detergents they will preferably be formulated to contain effective amounts of synthetic organic surfactants and/or fabric softeners.
- the surfactants and softeners must be selected so as to be stable and chemically-compatible in the presence of alkaline builder salts.
- One class of preferred surfactants is the anionic synthetic detergents.
- This class of synthetic detergents can be broadly described as the water-soluble salts, particularly the alkali metal (sodium or potassium) salts, or organic sulfuric reaction products having in the molecular structure an alkyl radical containing from eight to 22 carbon atoms and a radical selected from the group consisting of sulfonic acid and sulfuric acid ester radicals.
- the highly alkaline cleaning composition of this invention can be made by combining the components in suitable mixing or agitating equipment which are lined or protected from the highly caustic and bleaching nature of the ingredients and agitating the components until a smooth, stable emulsion is formed which is then permitted to cool and harden.
- a preferred method for forming the stable emulsions of the invention comprises first forming a stable suspension of the clay thickening-suspending agent in 20-50% of the total water, and then adding the additional components slowly until a stable emulsion is formed.
- One precaution involves the addition of caustic which must be added slowly to avoid destabilizing or shocking the clay suspension.
- Table I summarizes the results of a glass spot and film test employing the composition of Ex. I.
- a stainless steel mixing vessel equipped with a water cooling jacket and variable speed turbine stirring was charged with 2.94 l of soft water and stirring begun.
- Laponite RDS (108g) was slowly sprinkled into the water and the mixture stirred for 20-30 min until the Laponite was totally dispersed.
- Aqueous 50% sodium hydroxide (4349g) was slowly added and cold water circulated through the jacket to limit the internal temperature to 49°C.
- To the stirred solution was added 1200g of low density anhydrous sodium carbonate and 2829g of anhydrous sodium tripolyphosphate, while maintaining the temperature of the stirred slurry at 40-46°C.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
Description
- This invention relates to solid alkaline detergent compositions. The solid detergent compositions can take the form of powders, flakes, granules, tablets or larger cast objects, and can be employed as highly effective warewashing detergents, laundry detergents and general surface cleansers.
- Solid alkaline detergent compositions are widely used for household and industrial dishwashing, laundering clothing and general surface cleansing. The greater amount of such cleaning compositions consumed consists of solid powders, granules, or tablets. These detergent compositions typically incorporate a condensed phosphate hardness sequestering agent and a source of alkalinity such as an alkali metal hydroxide, carbonate, bicarbonate, silicate or mixtures thereof as their primary cleaning components. The hardness sequestering agent acts to condition the wash water by chelating or otherwise complexing the metal cations responsible for the precipitation of alkali metal builder salts and detergents. The alkaline components impart detergency to the compositions by breaking down acidic and proteinacious soils. For heavy duty industrial and institutional washing, highly alkaline chemicals such as the alkali metal hydroxides are commonly incorporated into solid detergent compositions.
- In order to be effective for these applications it is necessary that the components of the solid detergent be uniformly distributed throughout the composition and that they dissolve readily in the aqueous washing medium which is employed. Soluble, solid granules incorporating uniformly-dispersed components have been formed by spray-drying aqueous slurries of the detergent components. This method requires expensive equipment such as spray drying towers and consumes large amounts of energy in the drying process. Water-sodium hydroxide slurries can be hardened by externally heating the slurries above the melting point of the sodium hydroxide monohydrate. Besides being energetically disadvantageous, these methods commonly employ temperatures at which sodium tripolyphosphate can wholly or partially revert to the pyrophosphate, orthophosphate or mixtures thereof which are much less effective in sequestering water hardness factors. Attempts to form effective solid detergent compositions by simply blending the components in particulate form often fail to achieve adequate homogenization of the components. Furthermore, solubilization difficulties are often encountered when anhydrous builder salts are combined in this manner. The high temperatures used in the spray-drying or aqueous dispersion processes can degrade other detergent components. Many applications require a source of active halogen in the solid detergent compositions to destain or bleach. The high temperatures necessary to dry and disperse the various components often lead to the total destruction of organic halogen-containing components.
- A substantial need exists for homogeneous solid alkaline detergent compositions which rapidly dissolve in aqueous media. A need also exists for water-conditioning and/or active-halogenated solid detergent compositions which avoid phosphate reversion and loss of active halogen.
- In US-A-2382165, there is disclosed a detergent briquette that consists of particular amounts of trisodium phosphate, sodium silicate, soda ash, water, either sodium hexametaphosphate or sodium tetraphosphate, and an alkali-stable surface active agent.
- According to the present invention, there is provided a method for forming a solid alkaline detergent composition comprising forming an emulsion comprising water, a source of alkalinity, a condensed phosphate hardness sequestering agent and a solidifying agent selected from anhydrous sodium carbonate, anhydrous sodium sulfate and mixtures thereof, said agent being incorporated into said emulsion with agitation and while maintaining said emulsion at 35-50°C, the amount of said agent being effective to solidify said emulsion when it is cooled to ambient temperatures.
- The present invention also provides a homogenous solid detergent composition comprising:
- (a) 5-25% by weight of an alkali metal hydroxide;
- (b) a condensed phosphate hardness sequestering agent; and
- (c) 5-35% by weight of a hydrated solidifying agent selected from hydrated sodium carbonate, hydrated sodium sulfate or mixtures thereof.
- Preferably, the method according to the invention is carried out by using one or more of the following preferred features (a) to (d);
- (a) the source Of alkalinity comprises an alkali metal hydroxide, and alkali metal silicate or mixtures thereof;
- (b) the alkali metal hydroxide comprises sodium or potassium hydroxide;
- (c) the hardness sequestering agent comprises sodium tripolyphosphate;
- (d) the emulsion further comprises an active halogen source.
- According to a preferred embodiment of the present invention, the method for forming the solid detergent product comprises:
- (a) forming a stirred dispersion of a synthetic hectorite clay suspending agent in water;
- (b) adding sufficient sodium or potassium hydroxide to said dispersion to raise the temperature of said dispersion up to 40-45oC;
- (c) adding sodium tripolyphosphate and a solidifying agent selected from anhydrous sodium carbonate, anhydrous sodium sulfate or mixtures thereof to said dispersion while maintaining the temperature at 40-45oC to form a detergent emulsion; and
- (d) cooling said dispersion to ambient temperatures to form a solid detergent product.
- Preferably this preferred method is carried out using one or more of the following preferred features (a) to (i):
- (a) further comprising adding an active chlorine source to the dispersion in step (c);
- (b) the active chlorine source comprises an aqueous alkali metal hypochlorite;
- (c) further comprising adding a synthetic organic surfactant to the dispersion in step (c);
- (d) the detergent emulsion comprises 30-45% by weight of water and 55-70% by weight of solids;
- (e) an aqueous solution of sodium or potassium hydroxide is added to the stirred clay-water dispersion;
- (f) the detergent emulsion comprises water, 0.1-2.5% by weight synthetic hectorite clay, 5-15% by weight sodium hydroxide, 10-30% by weight solidifying agent and 20-40% by weight sodium tripolyphosphate;
- (g) the detergent emulsion comprises 1-5% by weight of sodium hypochlorite;
- (h) the sodium hypochlorite is encapsulated in a chlorine resistant coating;
- (i) further comprising adding a quaternary ammonium softening agent to the dispersion in step (c).
- Thus, the present invention is directed to a solid alkaline detergent comprising compounds such as a condensed phosphate hardness sequestering agent and an alkaline builder salt. Alkaline detergents can also be formulated to contain a source of active halogen, organic surfactants, softeners or dispersing agents. We have discovered that aqueous emulsions of detergent components can be solidified by incorporating therein an effective amount of one or both of anhydrous sodium carbonate and anhydrous sodium sulfate as a solidifying agent. The solidifying agent can hydrate to bind free water present in the emulsion to the extent that the liquid emulsion is hardened or solidified to a homogeneous solid. Preferably, the emulsion is heated to a temperature effective to form a molten, hydrated solidifying agent. The emulsion is then cooled below the melting point of the hydrated agent to effect solidification.
- The solidifying agents used according to the invention have high hydration capacities and can be melted and hydrated at temperatures below those at which phosphate reversion occurs. Thus the anhydrous sodium carbonate and/or anhydrous sodium sulfate can be added to the emulsion during its formation at a temperature in excess of the melting point of their decahydrates. Upon cooling, the carbonate and sulfate hydrates solidify and a firm, uniform solid detergent component results. The solid detergent can be granulated or formed into tablets by filling molds with the hardening liquid. Since the temperatures required to maintain sodium carbonate decahydrate and sodium sulfate decahydrate in the liquid state are less than that at which significant phosphate reversion occurs, the finished detergent products can maintain a high level of water conditioning power. The temperatures employed in the present process are also below the decomposition points of many commonly employed active halogen sources such as halogenated diisocyanurate and alkali metal hypochlorites. Therefore, finished chlorine containing products can retain substantial available chlorine upon extended storage. The present process has been found generally useful to convert an emulsion into a solid detergent product which can be employed as a warewashing detergent, laundry detergent or a general surface cleanser.
- The method of the present invention is particularly effective to form solid cleaners from emulsions containing a sodium condensed phosphate hardness sequestering agent and an inorganic source of alkalinity, such as an alkaline metal hydroxide. Such detergent emulsions may also incorporate a source of active halogen which will impart bleaching and disinfectant properties to the final composition. In preparing such mixtures, it has been found useful to employ clay suspending agents such as the hectorite clays in order to evenly disperse the solid components and to prevent their settling or precipitation when the mixture is cooled. Such clays have also been found to inhibit the decomposition of the active halogen source during formation of the emulsion. Methods to prepare stable emulsions comprising these components are disclosed in EP-A-0130678, published 09.01.85.
- These emulsions are solidified by the incorporation therein of an effective amount of the solidifying agent, which is such as to hydrate and melt at a temperature below that at which significant phosphate reversion occurs. Such temperatures fall within the range of 35-50°C. The dispersed, hydrated salt solidifies when the emulsion is cooled and can bind sufficient free water to afford a stable, homogeneous solid at ambient temperatures, e.g., at 15-25°C. An amount of anhydrous sodium carbonate, anhydrous sodium sulfate or mixtures thereof effective to solidify the emulsions when they are cooled to ambient temperatures will be employed. The emulsion may be formed into tablets or cakes by allowing it to solidify in appropriately sized molds or may be granulated, flaked, or powdered.
- The anhydrous sodium carbonate or sodium sulfate is added to the stirred liquid phase at a point during its processing where it has attained a temperature in excess of that required to hydrate and melt the hydrated salts, but at a temperature below that at which significant phosphate reversion occurs. Anhydrous sodium carbonate and anhydrous sodium sulfate have been found to be ideal solidifying agents for use in these systems since their decahydrates melt at 34.0°C and 32.3°C respectively. At these temperatures effective amounts of solidification agents can be introduced into the emulsions and homogenized without the occurrence of significant phosphate reversion or decomposition of the active halogen source. Furthermore, the hydration and homogenization of the anhydrous salts can often be accomplished without the application of external heat but rather by use of the internal heat generated by the dissolution of the alkaline metal hydroxide. Preferably this exotherm will be controlled so as to maintain the liquid phase at a temperature slightly above the melting point of the carbonate and sulfate decahydrates. In this manner the internal temperature of the liquid phase will be maintained at within the range of 35 to 50°C, preferably within the range of 40 to 45°C, until the addition of all the components is completed.
- The amount of solidifying agent required to solidify a liquid detergent emulsion will depend on the percentage of water present in the emulsion as well as the hydration capacity of the other detergent components. For example, prior to solidification, preferred liquid detergent emulsions will comprise by weight 45 to 75% solids, most preferably 55 to 70% solids and 25 to 55%, most preferably 30-45% water. The majority of the solid detergent components will commonly comprise a mixture of a sodium condensed phosphate hardness sequestering agent, e.g., sodium tripolyphosphate, and an inorganic source of alkalinity, preferably an alkali metal hydroxide or silicate. These components will commonly be present in a weight ratio of phosphate to hydroxide of 3-4:1. When emulsions of this composition are heated to 35-50°C, it is not believed that the phosphate and/or alkali metal hydroxide components would form amounts of molten hydrates effective to significantly contribute to the uniform solidification of the emulsions. Therefore, the alkali metal hydroxide and phosphate are not considered "solidifying agents" within the scope of this invention.
- In liquid detergent emulsions which comprise sodium or potassium hydroxide as the primary source of alkalinity, it has been found highly preferable to employ 0.5-3.0% by weight of a natural or synthetic hectorite clay as a dispersing agent. Although the precise hydration capacities of the clay and the tripolyphosphate under the emulsion formation conditions employed are not known, it has been found in such systems that the addition of 5-35% by weight of anhydrous sodium carbonate, sodium sulfate or mixtures thereof will effectively solidify these emulsions. Preferably 10-30% by weight of the solidifying agent will be employed. Of the two solidifying agents, sodium carbonate is preferred since it imparts additional alkalinity to the compositions, and it can be added in any commercially-available form of the anhydrous material, e.g., as light or dense ash.
- In the present compositions, the sodium condensed phosphate hardness sequestering agent component functions as a water softener, a cleaner, and a detergent builder. Alkali metal (M) linear and cyclic condensed phosphates commonly have a M₂O:P₂O₅ mole ratio of about 1:1 to 2:1 and greater. Typical polyphosphates of this kind are the preferred sodium tripolyphosphate, sodium hexametaphosphate, sodium metaphosphate as well as corresponding potassium salts of these phosphates and mixtures thereof. The particle size of the phosphate is not critical, and any finely divided or granular commercially available product can be employed.
- Sodium tripolyphosphate is the most preferred hardness sequestering agent for reasons of its ease of availability, low cost, and high cleaning power. Sodium tripolyphosphate acts to sequester calcium and/or magnesium cations, providing water softening properties. It contributes to the removal of soil from hard surfaces and keeps soil in suspension. It has little corrosive action on washing machines or industrial equipment, and is low in cost compared to other water conditioners. Sodium tripolyphosphate has relatively low solubility in water (about 14 wt-%) and its concentration must be increased using means other than solubility. We believe that there is an interaction between condensed phosphate water conditioning agents, alkali metal hydroxides and the hectorite clay suspending-thickening agents used in the invention which results in stable, white, smooth, pumpable emulsions. These emulsions can be hardened to homogeneous solid compositions with the solidifying agents used according to the invention which melt and hydrate at lower temperatures than those commonly employed to harden liquid alkaline detergent compositions. It has further been determined that the use of mixtures of powdered sodium tripolyphosphate and light density sodium tripolyphosphate permits substantial control of the final hardness of the solid compositions. For example, the hardness of the product increases as the amount of powdered tripolyphosphate is increased.
- The inorganic alkali content of the highly alkaline cleaners of this invention is preferably derived from sodium or potassium hydroxide which can be used in both liquid (10 to 60 wt-% aqueous solution) or in solid (powdered or pellet) form. The preferred form is commercially-available sodium hydroxide, which can be obtained in aqueous solution at concentrations of about 50 wt-% and in a variety of solid forms of varying particle size.
- For some cleaning applications, it is desirable to replace a part or all of the alkali metal hydroxide with an alkali metal silicate such as anhydrous sodium metasilicate. When incorporated into the emulsions within the preferred temperature ranges, at a concentration of 20-30% by weight of the emulsion, anhydrous sodium metasilicate acts as an adjunct solidifying agent and also protects metal surfaces against corrosion.
- The alkaline cleaning compositions of this invention can also contain a source of available halogen which acts as a bleaching or destaining agent. Agents which yield active chlorine in the form of hypochlorite or Cl₂ can be used. Both organic and inorganic sources of available chlorine are useful. Examples of the chlorine source include alkali metal and alkaline earth metal hypochlorite hypochlorite addition products, chloramines, chlorimines, chloramides, and chlorimides. Specific examples of compounds of this type include sodium hypochlorite, potassium hypochlorite, monobasic calcium hypochlorite, dibasic magnesium hypochlorite, chlorinated trisodium phosphate dodecahydrate, potassium dichloroisocyanurate, trichlorocyanuric acid, sodium dichloroisocyanurate, sodium dichloroisocyanurate dihydrate, 1,3-dichloro-5, 5-dimethylhydantoin, N-chlorosulfamide, Chloramine T, Dichloramine T, Chloramine B and Dichloramine B. The preferred class of sources of available chlorine comprise inorganic chlorine sources such as sodium hypochlorite, monobasic calcium hypochlorite, dibasic calcium hypochlorite, monobasic magnesium hypochlorite, dibasic magnesium hypochlorite, and mixtures thereof. The most preferred source of available chlorine comprises sodium hypochlorite, mono and dibasic calcium hypochlorite, for reasons of availability, low cost and highly effective bleaching action. Encapsulated chlorine sources may also be employed to enhance the storage stability of the chlorine source. Sources of active iodine include povidone-iodine and poloxamer-iodine.
- We have discovered that a specific clay thickening agent enhances the stability of the available chlorine concentrations in highly alkaline cleaning systems, inhibits phosphate reversion and provides stable precursor emulsions of the highly alkaline cleaners. The preferred class of clay thickening-suspending agents comprise "synthetic" clays. A synthetic clay is a clay made by combining the individual components from relatively pure materials in production equipment to form a physical mixture which interacts to form a clay-like substance. Non-synthetic or natural clays are minerals which can be derived from the earth's surface. A preferred inorganic synthetic clay combines silicon dioxide, magnesium dioxide, and alkali metal oxides wherein the ratio of silicon dioxide:magnesium oxide is 1:1 to 1:10 and the ratio of silicon dioxide to alkali metal oxides is 1:0.5 to 1:0.001. The alkali metal oxides can comprise lithium oxide (Li₂O), sodium oxide (Na₂O)or potassium oxide (K₂O) and mixtures thereof. The most preferred clay thickening-suspending agent comprises hectorite-like inorganic synthetic clays which are available from Laporte, Inc., Hackensack, N.J. under the designation Laponite® and Laponite® RDS. These clays comprise silicon dioxide, magnesium oxide, sodium oxide, lithium oxide, and structural water of hydration wherein the ratios of SiO₂:MgO:Na₂O:Li₂O:H₂O are 25-75:20-40:1-10:.1-1:1-10. These clays appear to be white, finely divided solids having a specific gravity of 2-3, an apparent bulk density of about 1 gram per milliliter at 8% moisture, and an absorbance (optical density) of a 1% dispersion in water of about 0.25 units.
- When the present solid detergent compositions are designed for use as laundry detergents they will preferably be formulated to contain effective amounts of synthetic organic surfactants and/or fabric softeners. The surfactants and softeners must be selected so as to be stable and chemically-compatible in the presence of alkaline builder salts. One class of preferred surfactants is the anionic synthetic detergents. This class of synthetic detergents can be broadly described as the water-soluble salts, particularly the alkali metal (sodium or potassium) salts, or organic sulfuric reaction products having in the molecular structure an alkyl radical containing from eight to 22 carbon atoms and a radical selected from the group consisting of sulfonic acid and sulfuric acid ester radicals.
- Preferred anionic organic surfactants include alkali metal (sodium, potassium, lithium) alkyl benzene sulfonates, alkali metal alkyl sulfates, and mixtures thereof, wherein the alkyl group is of straight or branched chain configuration and contains nine to 18 carbon atoms. Specific compounds preferred from the standpoints of superior performance characteristics and ready availability include the following: sodium decyl benzene sulfonate, sodium dodecyl benzene sulfonate, sodium tridecyl benzene sulfonate, sodium tetradecyl benzene sulfonate, sodium hexadecyl benzene sulfonate, sodium octadecyl sulfate, sodium hexadecyl sulfate and sodium tetradecyl sulfate.
- Nonionic synthetic surfactants may also be employed, either alone or in combination with anionic types. This class of synthetic detergents may be broadly defined as compounds produced by the condensation of alkylene oxide groups (hydrophilic in nature) with an organic hydrophobic compound, which may be aliphatic or alkyl aromatic in nature. The length of the hydrophilic or polyoxyalkylene radical which is condensed with any particular hydrophobic group can be readily adjusted to yield a water soluble or dispersable compound having the desired degree of balance between hydrophilic and hydrophobic elements.
- For example, a well-known class of nonionic synthetic detergents is made available on the market under the trade name of "Pluronic." These compounds are formed by condensing ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol. The hydrophobic portion of the molecule has a molecular weight of from 1,500 to 1,800. The addition of polyoxyethylene radicals to this hydrophobic portion tends to increase the water solubility of the molecule as a whole and the liquid character of the products is retained up to the point where the polyoxyethylene content is about 50 percent of the total weight of the condensation product.
- Other suitable nonionic synthetic detergents include the polyethylene oxide condensates of alkyl phenols, the products derived from the condensation of ethylene oxide with the reaction product of propylene oxide and ethylene diamine, the condensation product of aliphatic fatty alcohols with ethylene oxide as well as amine oxides and phosphine oxides.
- Cationic softeners useful herein are commercially-available materials and are of the high-softening type. Included are the imidazolinium softeners, phosphinates and the N,N-di(higher)-C₁₂-C₂₄, N,N-di(lower)-C₁-C₄ alkyl quaternary ammonium salts with water solubilizing anions such as halide, e.g., chloride, bromide and iodide; sulfate, methosulfate and the heterocyclic imides such as imidazolinium salts.
- For convenience, the aliphatic quaternary ammonium salts may be structurally defined as follows:
(R)(R₁)(R₂)(R₃)N⁺X⁻
wherein R and R₁ represent alkyl of 12 to 24 and preferably 14 to 22 carbon atoms; R₂ and R₃ represent lower alkyl of 1 to 4 and preferably 1 to 3 carbon atoms, and X represents an anion capable of imparting water solubility or dispersibility including the aforementioned chloride, bromide, iodide, sulfate and methosulfate. Particularly preferred species of aliphatic quats include: distearyl dimethylammonium chloride, di-hydrogenated tallow dimethyl ammonium chloride, ditallow dimethyl ammonium chloride, distearyl dimethyl ammonium methyl sulfate, and di-hydrogenated tallow dimethyl ammonium methyl sulfate. - Prior to solidification, the cleaning compositions are suspended in water. Soft or deionized water is preferred for reasons that inorganic (Ca⁺⁺ or Mg⁺⁺) cations in service or tap water can combine with and reduce the efficiency of the hardness sequestering agents and can interfere in the formation of a stable emulsion.
- The hardness sequestering agent can be present in the emulsion in an effective hardness sequestering amount which comprises 10 to 40 wt-% based on the total composition. Preferably the hardness sequestering sodium condensed phosphate can be present in an amount of 20 to 35 wt-%.
- Caustic builders are commonly added to the emulsion cleaner in amounts of 5 to 25 wt-%. Sodium hydroxide can be added to the emulsion cleaner in solid powders or pellets or in the form of commercially available 50 wt-% caustic concentrates. Preferably the caustic is present in the emulsion in concentrations of 5 to 15 wt-% (dry basis).
- The concentration of the chlorine source in warewashing compositions must be sufficient to provide destaining of dishes in order to remove objectionable tea, coffee, and other generally organic stain materials from the dish surfaces. Commonly in the alkaline cleaners, the concentration of the chlorine yielding substance is 0.5 to 10 wt-% of the total composition. The preferred concentration of the alkali metal hypochlorite comprises 1.0 to 5.0 wt-%.
- An inorganic magnesium oxide-silicon dioxide clay thickening-suspending agent is commonly present in the emulsion cleaner at a sufficient concentration to result in the smooth, stable suspension or emulsion of the alkaline cleaning composition. An effective amount of the clay comprises from 0.05 to 5 wt-% of the composition. Preferably, the suspending-thickening clay is present at a concentration of 0.1 to 2 wt-% of the highly alkaline emulsion cleaning composition.
- The amount of synthetic surfactants and fabric softeners which may be added to the present compositions will vary widely depending on the intended end use of the composition. For example, effective laundry detergents may be prepared comprising 1-15% of these adjuvants.
- The highly alkaline cleaning composition of this invention can be made by combining the components in suitable mixing or agitating equipment which are lined or protected from the highly caustic and bleaching nature of the ingredients and agitating the components until a smooth, stable emulsion is formed which is then permitted to cool and harden. A preferred method for forming the stable emulsions of the invention comprises first forming a stable suspension of the clay thickening-suspending agent in 20-50% of the total water, and then adding the additional components slowly until a stable emulsion is formed. One precaution involves the addition of caustic which must be added slowly to avoid destabilizing or shocking the clay suspension.
- The heat generated by the addition of the sodium or potassium hydroxide solutions can be controlled by adjusting the addition rate, or by the use of external cooling, to raise and maintain the internal temperature of the liquid phase to within the desired range. The addition of the other detergent components can then be controlled so as to maintain the desired temperature until emulsion formation has been completed and it is desired to cool and solidify the emulsion. For example, the further exotherm resulting from the tripolyphosphate addition can be offset by the endotherm resulting from the addition of the anhydrous sodium carbonate. If necessary the emulsion may be allowed to cool slightly, e.g. to 30-38°C, prior to the addition of thermally unstable compounds such as surfactants and the chlorine source in order to preserve their activity.
- Therefore, prior to solidification the present detergent compositions are liquid, high solids emulsions which preferably comprise by weight 25 to 45% water, 0.1-2.5% of the clay thickening agent, 5 to 15% of an alkali metal hydroxide, 20-40% of sodium tripolyphosphate, and 10 to 30% of the solidifying salt, sodium carbonate, sodium sulfate or mixtures thereof, which solidifying salt has been added to the emulsion in its anhydrous form. Additional components such as 1-5% of an inorganic chlorine source, added surfactants, softeners, dyes and fillers may also be added. Since the mixing times and temperatures employed to combine these ingredients does not result in substantial moisture loss, the final solid detergent compositions will exhibit substantially the same weight percentages of ingredients as is exhibited by the liquid precursor. Of course, in the solid compositions substantially all of the water is present as water of hydration rather than as free water.
- The slurry may then be poured into suitable molds in order to form solid cakes or tablets, which may further be reduced to granules, flakes or powder by conventional grinding and screening procedures.
- The solid detergent compositions are stable under storage at ambient conditions, being resistant to eruption, billowing or deliquescence, and rapidly disperse in cold or warm water when introduced into standard washing equipment. The concentration of the components of the highly alkaline emulsion cleaner in the wash water necessary to obtain a destaining effect comprises 250 to 1,000 parts of sodium tripolyphosphate per million parts of wash water, 100 to 1,000 parts of sodium hydroxide per million parts of wash water, and 25 to 100 parts of active chlorine per million parts of wash water. Depending on the concentration of the active ingredients, the cleaner can be added to wash water at a total concentration of all components of 0.05 to 12 wt-% of the wash water. Preferably, 1.0 to 2.0 wt-% of the cleaner can be added to the wash water to obtain acceptable results. Most preferably the cleaner of the invention can be added to wash water at 0.1 to 0.5 wt-% to attain high destaining and desoiling activity at low cost.
- For warewashing, the compositions of the invention are added to wash water at a temperature of from 49°C to 93°C and preferably are used in wash water having a temperature of 60°C to 77°C. The compositions are thereby applied in the wash water to the surfaces of articles to be cleaned. Although any technique common in the use of available ware washing equipment can be used, the cleaning compositions of this invention are specifically designed for and are highly effective in cleaning highly soiled and stained cooking and eating utensils. High effective cleaning with low foaming is obtained in institutional ware washing machines. After contact with the cleaning solutions prepared from the compositions of this invention, the ware is commonly rinsed with water and dried, generally to an unspotted finish. In the use of the highly alkaline cleaners of this invention, food residues are effectively removed and the cleaned dishes and glassware exhibit less spotting and greater clarity than is found in many conventional cleaning compositions, both of a solid and liquid nature.
- The invention is further illustrated by the following specific Examples, which should not be used to limit the scope of the invention. All parts or percentages are by weight unless otherwise specifically indicated.
- A lightning mixer was charged with 980 ml of water and stirring commenced. Laponite RDS (72.48g) was added in small portions, followed by 1450g of 50% aqueous sodium hydroxide. The caustic solution was added at a rate so that the temperature of the stirred solution is 49°C at the completion of the addition. Anhydrous sodium sulfate (724.8g) was added and the mixture allowed to cool to 40.5°C. Aqueous 5% sodium hypochlorite (1450g) was added, followed by the addition of 130.6g of low density sodium tripolyphosphate, 689.6g of anhydrous low density sodium carbonate, and 579g anhydrous sodium sulfate, maintaining the temperature of the emulsion at 38-40.5°C. Stirring was discontinued, and the white slurry poured into two, 8 lb. (3624g) molds and allowed to cool and harden for 24 hours.
- The resultant white solid exhibited a total available chlorine content of 1.57% (sodium thiosulfate titration) which decreased by 9% after one week and by 22.1% after 19 days at ambient conditions. After five days a 0.2% solution was determined to contain 36.7 ppm of free chlorine and 37.9 ppm available chlorine (ferrous ammonium sulfate titration with N,N-diethyl-p-phenylenediamine indicator).
-
- The procedure of Ex. I was followed, eliminating the sodium sulfate. The first sodium sulfate addition was replaced with 978g of anhydrous sodium carbonate, the sodium tripolyphosphate content was increased from 18% to 24% (1741g), and the second anhydrous sodium carbonate addition was increased to 609g (23.5% total low density ash).
-
- A stainless steel mixing vessel equipped with a water cooling jacket and variable speed turbine stirring was charged with 2.94 l of soft water and stirring begun. Laponite RDS (108g) was slowly sprinkled into the water and the mixture stirred for 20-30 min until the Laponite was totally dispersed. Aqueous 50% sodium hydroxide (4349g) was slowly added and cold water circulated through the jacket to limit the internal temperature to 49°C. To the stirred solution was added 1200g of low density anhydrous sodium carbonate and 2829g of anhydrous sodium tripolyphosphate, while maintaining the temperature of the stirred slurry at 40-46°C. The slurry was stirred an additional 10 min and 4349g of 5% aqueous sodium hypochlorite (at least 7.5% available chlorine) added, followed by addition of 4569g of low density sodium tripolyphosphate and 1415g of anhydrous low density sodium carbonate. The mixture was stirred an additional 0.5 hr at 38-43°C and then employed to fill six, 3.6 kg (8 lb.) capsules and allowed to harden under ambient conditions to yield a white solid (1.57% available chlorine). The available chlorine was about 70% retained after one month of storage under ambient conditions, and about 50% retained after two months.
-
- The solid formulations of Exs. III, IVA-B and D are designed to function as high-performing, low temperature warewashing detergents. The high phosphate levels in the formulations of Exs. III, IVA and IVB should render them highly effective against protein and chloroprotein soils. The formulation of Ex. IV-D, in which anhydrous sodium metasilicate replaces the sodium hydroxide, is designed as a metal-protecting, destaining warewashing detergent.
- The formulation of Ex. IVC is designed as a high performance laundry product. The sodium hydroxide could be partially or totally replaced by anhydrous sodium metasilicate. Other chlorine-stable anionic and/or nonionic surfactants could be employed in place of the indicated sodium s-alkyl sulfonate.
- The formulation of Ex. IVE is designed as a heavy-duty grease-removing composition which is expected to be effective for hard-surface cleaning, especially in institutional settings.
- The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within scope of the invention.
Claims (20)
- A method for forming a solid alkaline detergent composition comprising forming an emulsion comprising water, a source of alkalinity, a condensed phosphate hardness sequestering agent and a solidifying agent selected from anhydrous sodium carbonate, anhydrous sodium sulfate and mixtures thereof, said agent being incorporated into said emulsion with agitation and while maintaining said emulsion at 35-50oC, the amount of said agent being effective to solidify said emulsion when it is cooled to ambient temperature.
- A method according to claim 1 wherein said emulsion comprises 25-55% water and 45-75% solids.
- A method according to claim 1 or 2 wherein the condensed phosphate hardness sequestering agent comprises an alkali metal tripolyphosphate and the source of alkalinity comprises an alkali metal hydroxide.
- A method according to claim 3 wherein the weight ratio of alkali metal tripolyphosphate to the alkali metal hydroxide is 3-4:1.
- A method according to any of claims 1 to 4 wherein said emulsion further comprises a synthetic hectorite clay suspending agent.
- A method according to any of claims 1 to 5 wherein said emulsion further comprises a source of active halogen.
- A method according to claim 6 wherein the active halogen source comprises sodium hypochlorite.
- A method according to any of claims 1 to 7 wherein the source of alkalinity comprises anhydrous sodium metasilicate.
- A method according to any of claims 1 to 8 wherein the emulsion further comprises a synthetic organic surfactant.
- A method according to claim 9 wherein the surfactant is selected from an anionic surfactant, a nonionic surfactant and mixtures thereof.
- A homogenous solid detergent composition comprising:(a) 5-25% by weight of an alkali metal hydroxide;(b) a condensed phosphate hardness sequestering agent; and(c) 5-35% by weight of a hydrated solidifying agent selected from hydrated sodium carbonate, hydrated sodium sulfate or mixtures thereof.
- A detergent composition according to claim 11 wherein the hydrated solidifying agent is selected from the group consisting of sodium carbonate decahydrate, sodium sulfate decahydrate or mixtures thereof.
- A detergent composition according to claim 11 or 12 further comprising hydrated sodium metasilicate.
- A detergent composition according to any of claims 11 to 13 wherein the condensed phosphate hardness sequestering agent comprises an alkali metal tripolyphosphate.
- A detergent composition according to any of claims 11 to 14 wherein the weight ratio of the alkali metal tripolyphosphate to the alkali metal hydroxide is 3-4:1.
- A detergent composition according to any of claims 11 to 15 which comprises a synthetic clay suspending agent.
- A detergent composition according to any of claims 11 to 16 which comprises a source of active halogen.
- A detergent composition according to any of claims 11 to 17 which comprises an effective amount of a synthetic organic surfactant.
- A detergent composition according to any of claims 11 to 18 which comprises 25-45% by weight of water of hydration.
- A detergent composition according to any of claims 11 to 19, the composition being cast and solidified in a mold.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US663473 | 1984-10-18 | ||
US06/663,473 US4595520A (en) | 1984-10-18 | 1984-10-18 | Method for forming solid detergent compositions |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0178893A2 EP0178893A2 (en) | 1986-04-23 |
EP0178893A3 EP0178893A3 (en) | 1989-09-20 |
EP0178893B1 true EP0178893B1 (en) | 1992-01-22 |
Family
ID=24661964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85307387A Expired EP0178893B1 (en) | 1984-10-18 | 1985-10-15 | Solid detergent compositions |
Country Status (7)
Country | Link |
---|---|
US (1) | US4595520A (en) |
EP (1) | EP0178893B1 (en) |
JP (1) | JPS6198799A (en) |
AU (1) | AU573897B2 (en) |
CA (1) | CA1259543A (en) |
DE (1) | DE3585261D1 (en) |
DK (1) | DK168300B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011147646A1 (en) | 2010-05-24 | 2011-12-01 | Unilever Nv | Builder composition and process for building |
Families Citing this family (129)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4744917A (en) * | 1985-07-31 | 1988-05-17 | Olin Corporation | Toxic chemical agent decontamination emulsions, their preparation and application |
US4725376A (en) * | 1986-04-23 | 1988-02-16 | Ecolab Inc. | Method of making solid cast alkaline detergent composition |
US4753755A (en) * | 1986-08-25 | 1988-06-28 | Diversey Wyandotte Corporation | Solid alkaline detergent and process for making the same |
US5342450A (en) * | 1989-01-26 | 1994-08-30 | Kay Chemical Company | Use of noncorrosive chemical composition for the removal of soils originating from an animal or vegetable source from a stainless steel surface |
US5061392A (en) * | 1990-02-07 | 1991-10-29 | Dubois Chemicals, Inc. | Method of making paste detergent and product produced |
US5358653A (en) * | 1990-06-25 | 1994-10-25 | Ecolab, Inc. | Chlorinated solid rinse aid |
WO1992002611A1 (en) * | 1990-08-06 | 1992-02-20 | Ecolab Inc. | Manufacture of solid, cast non-swelling detergent compositions |
US5340501A (en) * | 1990-11-01 | 1994-08-23 | Ecolab Inc. | Solid highly chelated warewashing detergent composition containing alkaline detersives and Aminocarboxylic acid sequestrants |
NZ239112A (en) * | 1991-01-29 | 1994-12-22 | Ecolab Inc | Solid alkaline compositions containing the reaction product in water of alkali metal hydroxide and alkali metal silicate; process of manufacture |
CA2107356C (en) * | 1991-05-14 | 2002-09-17 | Elizabeth J. Gladfelter | Two part solid detergent chemical concentrate |
US5209864A (en) * | 1991-07-03 | 1993-05-11 | Winbro Group, Ltd. | Cake-like detergent and method of manufacture |
US5427711A (en) * | 1991-12-29 | 1995-06-27 | Kao Corporation | Synthesized inorganic ion exchange material and detergent composition containing the same |
US5318713A (en) * | 1992-06-08 | 1994-06-07 | Binter Randolph K | Solid detergent composition with multi-chambered container |
US5482641A (en) * | 1993-09-02 | 1996-01-09 | Fleisher; Howard | Stratified solid cast detergent compositions and methods of making same |
US5474698A (en) * | 1993-12-30 | 1995-12-12 | Ecolab Inc. | Urea-based solid alkaline cleaning composition |
JP3920325B2 (en) * | 1993-12-30 | 2007-05-30 | エコラボ インコーポレイテッド | High alkaline solid cleaning composition |
NZ278722A (en) * | 1993-12-30 | 1997-03-24 | Ecolab Inc | Solid cleaning composition comprising a hardening amount of urea and an effective amount of a cleaning agent |
AU1516795A (en) * | 1993-12-30 | 1995-07-17 | Ecolab Inc. | Method of making non-caustic solid cleaning compositions |
US5618783A (en) * | 1994-03-03 | 1997-04-08 | Kao Corporation | Synthesized inorganic ion exchange material and detergent composition containing the same |
US5858117A (en) * | 1994-08-31 | 1999-01-12 | Ecolab Inc. | Proteolytic enzyme cleaner |
CA2167971C (en) | 1995-02-01 | 2008-08-26 | Paula J. Carlson | Solid acid cleaning block and method of manufacture |
JP4502405B2 (en) * | 1995-02-01 | 2010-07-14 | エコラブ インコーポレイテッド | Floor cleaning method |
US6673765B1 (en) | 1995-05-15 | 2004-01-06 | Ecolab Inc. | Method of making non-caustic solid cleaning compositions |
US20030014629A1 (en) | 2001-07-16 | 2003-01-16 | Zuccherato Robert J. | Root certificate management system and method |
US5830839A (en) | 1995-05-17 | 1998-11-03 | Sunburst Chemicals, Inc. | Solid detergents with active enzymes and bleach |
US5670473A (en) * | 1995-06-06 | 1997-09-23 | Sunburst Chemicals, Inc. | Solid cleaning compositions based on hydrated salts |
US5786320A (en) * | 1996-02-01 | 1998-07-28 | Henkel Corporation | Process for preparing solid cast detergent products |
US5739095A (en) * | 1996-10-25 | 1998-04-14 | Noramtech Corporation | Solid peroxyhydrate bleach/detergent composition and method of preparing same |
US5929011A (en) * | 1996-10-30 | 1999-07-27 | Sunburst Chemicals, Inc. | Solid cast chlorinated cleaning composition |
US6258765B1 (en) * | 1997-01-13 | 2001-07-10 | Ecolab Inc. | Binding agent for solid block functional material |
US6150324A (en) * | 1997-01-13 | 2000-11-21 | Ecolab, Inc. | Alkaline detergent containing mixed organic and inorganic sequestrants resulting in improved soil removal |
US6177392B1 (en) * | 1997-01-13 | 2001-01-23 | Ecolab Inc. | Stable solid block detergent composition |
US6156715A (en) | 1997-01-13 | 2000-12-05 | Ecolab Inc. | Stable solid block metal protecting warewashing detergent composition |
US5876514A (en) * | 1997-01-23 | 1999-03-02 | Ecolab Inc. | Warewashing system containing nonionic surfactant that performs both a cleaning and sheeting function and a method of warewashing |
US5968370A (en) * | 1998-01-14 | 1999-10-19 | Prowler Environmental Technology, Inc. | Method of removing hydrocarbons from contaminated sludge |
US5981463A (en) * | 1998-06-08 | 1999-11-09 | Noramtech Corporation | Anhydrous detergent/bleach composition and method of preparing same |
USD419262S (en) * | 1999-03-12 | 2000-01-18 | Ecolab Inc. | Solid block detergent |
US6180592B1 (en) | 1999-03-24 | 2001-01-30 | Ecolab Inc. | Hydrophobic and particulate soil removal composition and method for removal of hydrophobic and particulate soil |
US5998345A (en) * | 1999-03-25 | 1999-12-07 | Colgate Palmolive Company | Automatic dishwashing tablets |
US6162777A (en) * | 1999-03-25 | 2000-12-19 | Colgate-Palmolive Company | Automatic dishwashing tablets |
US6191089B1 (en) * | 1999-03-25 | 2001-02-20 | Colgate-Palmolive Company | Automatic dishwashing tablets |
US6387870B1 (en) * | 1999-03-29 | 2002-05-14 | Ecolab Inc. | Solid pot and pan detergent |
DE10005575A1 (en) * | 2000-02-09 | 2001-08-23 | Reckitt Benckiser Nv | Detergent composition in tablet form |
US6475969B2 (en) | 2000-03-16 | 2002-11-05 | Sunburst Chemicals, Inc. | Solid cast chlorinated composition |
US7037886B2 (en) * | 2000-06-01 | 2006-05-02 | Ecolab Inc. | Method for manufacturing a molded detergent composition |
US6730653B1 (en) | 2000-06-01 | 2004-05-04 | Ecolab Inc. | Method for manufacturing a molded detergent composition |
US20020045010A1 (en) * | 2000-06-14 | 2002-04-18 | The Procter & Gamble Company | Coating compositions for modifying hard surfaces |
US6624132B1 (en) | 2000-06-29 | 2003-09-23 | Ecolab Inc. | Stable liquid enzyme compositions with enhanced activity |
US7569532B2 (en) | 2000-06-29 | 2009-08-04 | Ecolab Inc. | Stable liquid enzyme compositions |
US7795199B2 (en) | 2000-06-29 | 2010-09-14 | Ecolab Inc. | Stable antimicrobial compositions including spore, bacteria, fungi, and/or enzyme |
US20050164902A1 (en) * | 2003-10-24 | 2005-07-28 | Ecolab Inc. | Stable compositions of spores, bacteria, and/or fungi |
DE10061897A1 (en) * | 2000-12-12 | 2002-06-13 | Clariant Gmbh | Washing or cleaning composition, useful for fabrics or hard surfaces, contains microdisperse, hydrophilic silicate particles that improve soil removal and prevent resoiling |
US6638902B2 (en) | 2001-02-01 | 2003-10-28 | Ecolab Inc. | Stable solid enzyme compositions and methods employing them |
US6632291B2 (en) | 2001-03-23 | 2003-10-14 | Ecolab Inc. | Methods and compositions for cleaning, rinsing, and antimicrobial treatment of medical equipment |
US6645924B2 (en) * | 2001-04-09 | 2003-11-11 | Ecolab Inc. | Device and method for generating a liquid detergent concentrate from a solid detergent and a method for washing a vehicle |
US7153820B2 (en) * | 2001-08-13 | 2006-12-26 | Ecolab Inc. | Solid detergent composition and method for solidifying a detergent composition |
US20040157760A1 (en) * | 2002-12-05 | 2004-08-12 | Man Victor Fuk-Pong | Solid alkaline foaming cleaning compositions with encapsulated bleaches |
US20040157762A1 (en) * | 2002-12-05 | 2004-08-12 | Meinke Melissa C. | Solid solvent-containing cleaning compositions |
US20040157761A1 (en) * | 2002-12-05 | 2004-08-12 | Man Victor Fuk-Pong | Encapsulated, defoaming bleaches and cleaning compositions containing them |
KR100541440B1 (en) * | 2003-06-02 | 2006-01-10 | 삼성전자주식회사 | Notebook-computer |
US7423005B2 (en) * | 2003-11-20 | 2008-09-09 | Ecolab Inc. | Binding agent for solidification matrix |
US7534157B2 (en) * | 2003-12-31 | 2009-05-19 | Ganz | System and method for toy adoption and marketing |
CA2558266C (en) | 2004-03-05 | 2017-10-17 | Gen-Probe Incorporated | Reagents, methods and kits for use in deactivating nucleic acids |
US7442679B2 (en) * | 2004-04-15 | 2008-10-28 | Ecolab Inc. | Binding agent for solidification matrix comprising MGDA |
US8063010B2 (en) * | 2004-08-02 | 2011-11-22 | Ecolab Usa Inc. | Solid detergent composition and methods for manufacturing and using |
US7659836B2 (en) * | 2005-07-20 | 2010-02-09 | Astrazeneca Ab | Device for communicating with a voice-disabled person |
US7662238B2 (en) * | 2006-05-31 | 2010-02-16 | Germany Company, Inc. | Powdered coil cleaner |
US20080015133A1 (en) * | 2006-07-14 | 2008-01-17 | Rigley Karen O | Alkaline floor cleaning composition and method of cleaning a floor |
ATE481470T1 (en) | 2006-07-14 | 2010-10-15 | Ecolab Inc | ALKALINE FLOOR CLEANING AGENT AND FLOOR CLEANING METHOD |
DE102006040103A1 (en) * | 2006-08-28 | 2008-03-06 | Henkel Kgaa | Melt granules for detergents and cleaners |
US20100311633A1 (en) * | 2007-02-15 | 2010-12-09 | Ecolab Usa Inc. | Detergent composition for removing fish soil |
US8093200B2 (en) | 2007-02-15 | 2012-01-10 | Ecolab Usa Inc. | Fast dissolving solid detergent |
US7763576B2 (en) * | 2008-01-04 | 2010-07-27 | Ecolab Inc. | Solidification matrix using a polycarboxylic acid polymer |
US7893012B2 (en) | 2007-05-04 | 2011-02-22 | Ecolab Inc. | Solidification matrix |
US7888303B2 (en) * | 2007-05-04 | 2011-02-15 | Ecolab Inc. | Solidification matrix |
US8338352B2 (en) * | 2007-05-07 | 2012-12-25 | Ecolab Usa Inc. | Solidification matrix |
US7759300B2 (en) | 2007-07-02 | 2010-07-20 | Ecolab Inc. | Solidification matrix including a salt of a straight chain saturated mono-, di-, or tri- carboxylic acid |
US8759269B2 (en) * | 2007-07-02 | 2014-06-24 | Ecolab Usa Inc. | Solidification matrix including a salt of a straight chain saturated mono-, di-, and tri- carboxylic acid |
US8772221B2 (en) | 2008-01-04 | 2014-07-08 | Ecolab Usa Inc. | Solidification matrices using phosphonocarboxylic acid copolymers and phosphonopolyacrylic acid homopolymers |
US8138138B2 (en) | 2008-01-04 | 2012-03-20 | Ecolab Usa Inc. | Solidification matrix using a polycarboxylic acid polymer |
US8198228B2 (en) | 2008-01-04 | 2012-06-12 | Ecolab Usa Inc. | Solidification matrix using an aminocarboxylate |
US8951956B2 (en) | 2008-01-04 | 2015-02-10 | Ecolab USA, Inc. | Solid tablet unit dose oven cleaner |
MX2010010247A (en) | 2008-04-07 | 2010-10-20 | Ecolab Inc | Ultra-concentrated solid degreaser composition. |
US7964548B2 (en) * | 2009-01-20 | 2011-06-21 | Ecolab Usa Inc. | Stable aqueous antimicrobial enzyme compositions |
US7723281B1 (en) | 2009-01-20 | 2010-05-25 | Ecolab Inc. | Stable aqueous antimicrobial enzyme compositions comprising a tertiary amine antimicrobial |
EP2435550B1 (en) * | 2009-05-26 | 2017-08-09 | Ecolab USA Inc. | Pot and pan soaking composition |
US8530403B2 (en) * | 2009-11-20 | 2013-09-10 | Ecolab Usa Inc. | Solidification matrix using a maleic-containing terpolymer binding agent |
US20110124547A1 (en) * | 2009-11-23 | 2011-05-26 | Ecolab Inc. | Solidification matrix using a sulfonated/carboxylated polymer binding agent |
US8802611B2 (en) | 2010-05-03 | 2014-08-12 | Ecolab Usa Inc. | Highly concentrated caustic block for ware washing |
US20120231990A1 (en) | 2011-03-10 | 2012-09-13 | Ecolab Usa Inc. | Solidification matrix using a carboxymethyl carbohydrate polymer binding agent |
BR112015002416B1 (en) | 2012-08-03 | 2021-09-21 | Ecolab Usa Inc | SOLID DETERGENT COMPOSITION |
US20140308162A1 (en) | 2013-04-15 | 2014-10-16 | Ecolab Usa Inc. | Peroxycarboxylic acid based sanitizing rinse additives for use in ware washing |
US9752105B2 (en) | 2012-09-13 | 2017-09-05 | Ecolab Usa Inc. | Two step method of cleaning, sanitizing, and rinsing a surface |
US9574163B2 (en) | 2012-10-26 | 2017-02-21 | Ecolab Usa Inc. | Caustic free low temperature ware wash detergent for reducing scale build-up |
CN103911225B (en) | 2013-01-04 | 2017-12-12 | 艺康美国股份有限公司 | Solid tablet unit dose stove cleaning agent |
US9267096B2 (en) | 2013-10-29 | 2016-02-23 | Ecolab USA, Inc. | Use of amino carboxylate for enhancing metal protection in alkaline detergents |
MX2016005941A (en) | 2013-11-11 | 2016-07-13 | Ecolab Usa Inc | Multiuse, enzymatic detergent and methods of stabilizing a use solution. |
WO2015134404A1 (en) | 2014-03-07 | 2015-09-11 | Ecolab Usa Inc. | Detergent composition that performs both a cleaning and rinsing function |
US10549245B2 (en) | 2014-08-05 | 2020-02-04 | Ecolab Usa Inc. | Apparatus and method for dispensing solutions from solid products |
US10017714B2 (en) | 2015-05-19 | 2018-07-10 | Ecolab Usa Inc. | Efficient surfactant system on plastic and all types of ware |
US10118137B2 (en) | 2015-07-23 | 2018-11-06 | Ecolab Usa Inc. | Solid product dispenser for small volume applications |
ES2839198T3 (en) | 2015-08-21 | 2021-07-05 | Ecolab Usa Inc | Pyrithione preservative system in solid brightener products |
WO2017049076A1 (en) | 2015-09-17 | 2017-03-23 | Ecolab Usa Inc. | Triamine solidification using diacids |
CA2998356C (en) | 2015-09-17 | 2022-04-26 | Ecolab Usa Inc. | Methods of making triamine solids |
US10626350B2 (en) * | 2015-12-08 | 2020-04-21 | Ecolab Usa Inc. | Pressed manual dish detergent |
US10351803B2 (en) | 2016-02-01 | 2019-07-16 | Ecolab Usa Inc. | Solid laundry detergent for restaurant soils |
AR109059A1 (en) | 2016-07-15 | 2018-10-24 | Ecolab Usa Inc | DEGREASING AND SAFE PRE-PROMOTION TECHNOLOGY FOR ALUMINUM FOR PASTRY AND FIAMBRERIA ITEMS |
WO2018160809A1 (en) | 2017-03-01 | 2018-09-07 | Ecolab Usa Inc. | Mechanism of urea/solid acid interaction under storage conditions and storage stable solid compositions comprising urea and acid |
KR102437623B1 (en) | 2017-09-26 | 2022-08-26 | 에코랍 유에스에이 인코퍼레이티드 | Acid/anionic antibacterial and virucidal compositions and uses thereof |
US11377628B2 (en) | 2018-01-26 | 2022-07-05 | Ecolab Usa Inc. | Solidifying liquid anionic surfactants |
EP3743494A1 (en) | 2018-01-26 | 2020-12-02 | Ecolab Usa Inc. | Solidifying liquid amine oxide, betaine, and/or sultaine surfactants with a binder and optional carrier |
CA3089629A1 (en) | 2018-01-26 | 2019-08-01 | Ecolab Usa Inc. | Solidifying liquid amine oxide, betaine, and/or sultaine surfactants with a carrier |
BR112020015174A2 (en) | 2018-01-26 | 2021-01-26 | Ecolab Usa Inc. | solidified surfactant mixture methods for forming the solidified surfactant mixture, for cleaning a surface and for dispensing a cleaning composition, and solid cleaning composition |
US11383922B2 (en) | 2018-02-05 | 2022-07-12 | Ecolab Usa Inc. | Packaging and docking system for non-contact chemical dispensing |
SG11202007734PA (en) | 2018-02-13 | 2020-09-29 | Ecolab Usa Inc | System and method for dissolving solid chemicals and generating liquid solutions |
CA3091132A1 (en) | 2018-02-13 | 2019-08-22 | Ecolab Usa Inc. | Portable solid product dispenser and use thereof, and method of dispensing a solution of a fluid and a solid product |
CA3128188C (en) | 2019-01-29 | 2023-10-17 | Ecolab Usa Inc. | Use of cationic sugar-based compounds as corrosion inhibitors in a water system |
EP3921275A1 (en) | 2019-02-05 | 2021-12-15 | Ecolab USA Inc. | Packaging and docking system for non-contact chemical dispensing |
AU2020296116B2 (en) | 2019-06-21 | 2023-09-21 | Ecolab Usa Inc. | Solid nonionic surfactant compositions |
US11845910B2 (en) | 2019-07-03 | 2023-12-19 | Ecolab Usa Inc. | Hard surface cleaning compositions with reduced surface tension |
US12096768B2 (en) | 2019-08-07 | 2024-09-24 | Ecolab Usa Inc. | Polymeric and solid-supported chelators for stabilization of peracid-containing compositions |
WO2021046285A1 (en) | 2019-09-06 | 2021-03-11 | Ecolab Usa Inc. | Concentrated surfactant systems for rinse aid and other applications |
CN114222808A (en) | 2019-09-27 | 2022-03-22 | 埃科莱布美国股份有限公司 | Concentrated two-in-one dishwasher detergent and rinse aid |
CA3161330A1 (en) | 2019-12-16 | 2021-06-24 | Ecolab Usa Inc. | Anionic surfactant impact on virucidal efficacy |
US20210340464A1 (en) | 2020-04-30 | 2021-11-04 | Ecolab Usa Inc. | Low foam cleaning compositions |
DE102020216458A1 (en) | 2020-12-22 | 2022-06-23 | Henkel Ag & Co. Kgaa | Hand dishwashing detergent shaped bodies with bulges |
WO2022221670A2 (en) | 2021-04-15 | 2022-10-20 | Ecolab Usa Inc. | Enzymatic floor cleaning composition |
WO2024196726A1 (en) | 2023-03-17 | 2024-09-26 | Ecolab Usa Inc. | Capped block copolymers, their synthesis, manufacture, and methods of use |
US20240336874A1 (en) | 2023-04-05 | 2024-10-10 | Ecolab Usa Inc. | Solid 2-in-1 detergent rinse formula for under-counter machine ware wash |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2382165A (en) * | 1945-08-14 | Detergent briquette | ||
GB687075A (en) * | 1949-04-28 | 1953-02-04 | George Franklyn Hicks | Improvements in detergent briquettes and in method of and apparatus for making same |
US2987483A (en) * | 1956-07-02 | 1961-06-06 | Pennsalt Chemicals Corp | Cleaning composition |
US2920417A (en) * | 1958-01-22 | 1960-01-12 | Sylvia T Wertheimer | Detergent-solution dispensing container |
JPS5413169A (en) * | 1977-06-30 | 1979-01-31 | Iseki & Co Ltd | Device for sorting articles to be conveyed |
IN160448B (en) * | 1982-12-07 | 1987-07-11 | Albright & Wilson | |
US4512908A (en) * | 1983-07-05 | 1985-04-23 | Economics Laboratory, Inc. | Highly alkaline liquid warewashing emulsion stabilized by clay thickener |
-
1984
- 1984-10-18 US US06/663,473 patent/US4595520A/en not_active Expired - Lifetime
-
1985
- 1985-09-11 AU AU47343/85A patent/AU573897B2/en not_active Expired
- 1985-10-01 CA CA000491959A patent/CA1259543A/en not_active Expired
- 1985-10-11 DK DK467185A patent/DK168300B1/en not_active IP Right Cessation
- 1985-10-15 DE DE8585307387T patent/DE3585261D1/en not_active Expired - Lifetime
- 1985-10-15 JP JP60227947A patent/JPS6198799A/en active Granted
- 1985-10-15 EP EP85307387A patent/EP0178893B1/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011147646A1 (en) | 2010-05-24 | 2011-12-01 | Unilever Nv | Builder composition and process for building |
Also Published As
Publication number | Publication date |
---|---|
DK467185A (en) | 1986-04-19 |
JPS6198799A (en) | 1986-05-17 |
AU4734385A (en) | 1986-04-24 |
EP0178893A2 (en) | 1986-04-23 |
US4595520A (en) | 1986-06-17 |
CA1259543A (en) | 1989-09-19 |
DK467185D0 (en) | 1985-10-11 |
DE3585261D1 (en) | 1992-03-05 |
EP0178893A3 (en) | 1989-09-20 |
AU573897B2 (en) | 1988-06-23 |
DK168300B1 (en) | 1994-03-07 |
JPH041800B2 (en) | 1992-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0178893B1 (en) | Solid detergent compositions | |
US4680134A (en) | Method for forming solid detergent compositions | |
US5281351A (en) | Processes for incorporating anti-scalants in powdered detergent compositions | |
US6995129B2 (en) | Shaped solid comprising oxidant bleach with encapsulate source of bleach | |
US4265790A (en) | Method of preparing a dry blended laundry detergent containing coarse granular silicate particles | |
US4933102A (en) | Solid cast warewashing composition; encapsulated bleach source | |
US4973419A (en) | Hydrated alkali metal phosphate and silicated salt compositions | |
US4512908A (en) | Highly alkaline liquid warewashing emulsion stabilized by clay thickener | |
AU593602B2 (en) | Soap encapsulated bleach particles | |
US5443751A (en) | Powder detergent composition for cold water washing of fabrics | |
CA1304649C (en) | Solid cast warewashing composition | |
US5205954A (en) | Automatic dishwasher powder detergent composition | |
JPH0413399B2 (en) | ||
EP0002293A1 (en) | Detergent tablet having a hydrated salt coating and process for preparing the tablet | |
US4707160A (en) | Particles containing active halogen bleach in a diluted core | |
US4196095A (en) | Dry blending using magnesium stearate | |
US4237024A (en) | Dishwashing composition and method of making the same | |
JPH046760B2 (en) | ||
FI81376B (en) | BENTONIT INNEHAOLLANDE, TEXTILUPPMJUKANDE, FLYTANDE TVAETTMEDELSKOMPOSITION. | |
US6274545B1 (en) | Laundry detergent product with improved cold water residue properties | |
US5024778A (en) | Spray dried base beads for detergent compositions containing zeolite, bentonite and polyphosphate | |
JPS60262896A (en) | Granular nonionic detergent composition containing builder | |
GB2190921A (en) | Granular detergent composition | |
US6265369B1 (en) | High carbonate-low phosphate powder laundry detergent product with improved cold water residue properties | |
JP2869310B2 (en) | Stable sodium percarbonate, method for producing the same, and bleaching detergent composition containing stable sodium percarbonate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): BE DE FR GB IT NL SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ECOLAB, INC. |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): BE DE FR GB IT NL SE |
|
RHK1 | Main classification (correction) |
Ipc: C11D 11/00 |
|
17P | Request for examination filed |
Effective date: 19900206 |
|
17Q | First examination report despatched |
Effective date: 19901212 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 3585261 Country of ref document: DE Date of ref document: 19920305 |
|
ET | Fr: translation filed | ||
ITTA | It: last paid annual fee | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19940920 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19940929 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19941031 Year of fee payment: 10 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 85307387.2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19951016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19951031 |
|
BERE | Be: lapsed |
Owner name: ECOLAB INC. Effective date: 19951031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19960501 |
|
EUG | Se: european patent has lapsed |
Ref document number: 85307387.2 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19960501 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040915 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20041004 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20041029 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20051014 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 |