EP0174171B1 - Supercharger with reduced noise - Google Patents

Supercharger with reduced noise Download PDF

Info

Publication number
EP0174171B1
EP0174171B1 EP19850306198 EP85306198A EP0174171B1 EP 0174171 B1 EP0174171 B1 EP 0174171B1 EP 19850306198 EP19850306198 EP 19850306198 EP 85306198 A EP85306198 A EP 85306198A EP 0174171 B1 EP0174171 B1 EP 0174171B1
Authority
EP
European Patent Office
Prior art keywords
lobes
rotor
blower
backflow
outlet port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19850306198
Other languages
German (de)
French (fr)
Other versions
EP0174171A2 (en
EP0174171A3 (en
Inventor
Robert Seaver Mueller
Dannie Lamar Kimmons
Daniel Rusell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eaton Corp
Original Assignee
Eaton Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/647,071 external-priority patent/US4564346A/en
Priority claimed from US06/647,072 external-priority patent/US4564345A/en
Application filed by Eaton Corp filed Critical Eaton Corp
Publication of EP0174171A2 publication Critical patent/EP0174171A2/en
Publication of EP0174171A3 publication Critical patent/EP0174171A3/en
Application granted granted Critical
Publication of EP0174171B1 publication Critical patent/EP0174171B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • F04C29/0035Equalization of pressure pulses

Definitions

  • EP-A-0176269 and 0176268 European Applications published as EP-A-0176269 and 0176268. These applications are assigned to the assignee of this application, and all are incorporated herein by reference.
  • This invention relates to rotary compressors or blowers, particularly to blowers of the backflow type. More specifically, the present invention relates to reducing airborne noise associated wityh Roots-type blowers employed as superchargers for internal combustion engines.
  • Rotary blowers particularly Roots-type blowers are characterized by noisy operation.
  • the blower noise may be roughly classified into two groups: solid borne noise caused by rotation of timing gears and rotor shaft bearings subjected to fluctuating loads, and fluid borne noise caused byfluid flow characteristics such as rapid changes in fluid velocity. Fluctuating fluid flow contributes to both solid and fluid borne noise.
  • Roots-type blowers are similar to gear-type pumps in that both employ toothed or lobed rotors meshingly disposed in transversely overlapping cylindrical chambers. Top lands of the lobes sealingly cooperate with the inner surfaces of the cylindrical chambers to trap and transfer volumes of fluid between adjacent lobes on each rotor. Roots-type blowers are used almost exclusively to pump or transfer volumes of compressible fluids, such as air, from an inlet receiver chamber to an outlet receiver chamber. Normally, the inlet chamber continuously communicates with an inlet port and the outlet chamber continuously communicates with an outlet port. The inlet and outlet ports often have a transverse width nominally equal to the transverse distance between the axes of the rotors.
  • each receiver chamber volume is defined by the inner boundary of the associated port, the meshing interface of the lobes, and sealing lines between the top lands of the lobes and cylindrical wall surfaces.
  • the inlet receiver chamber expands and contracts between maximum and minimum volumes while the outlet receiver chamber contracts and expands between like minimum and maximum volumes.
  • transfer volumes are moved to the outlet receiver chamber without compression of the air therein by mechanical reduction of the transfer volume size. If outlet port air pressure is greater than the air pressure in the transfer volume, outlet port air rushes or backflows into the volumes as they become exposed to or merged into the outlet receiver chamber. Backflow continues until pressure equalization is reached.
  • backflow blower in which compression is realized by way of this backflow is hereinafter called a backflow blower.
  • Nonuniform displacement is caused by cyclic variations in the rate of volume change of the receiver chamber due to meshing geometry of the lobes and due to trapped volumes between the meshing lobes.
  • first and second trapped volumes are formed.
  • the first trapped volumes contain outlet port or receiver chamber air which is abruptly removed from the outlet receiver chamber as the lobes move into mesh and abruptly returned or carried back to the inlet receiver chamber as the lobes move out of mesh.
  • the trapped volumes are further sources of airborne noise and inefficiency for both straight and helical lobed rotors.
  • both the first and second trapped volumes are formed along the entire length of the lobes, whereas with helical lobes rotors, the trapped volumes are formed along only a portion of the length of the lobes with a resulting decrease in the degrading effects on noise and efficiency.
  • the first trapped volumes contain outlet port air and decrease in size from a maximum to a minimum, with a resulting compressing of the fluid therein.
  • the second trapped volumes are substantially void of fluid and increase in size from a minimum to a maximum with a resulting vacuum tending expansion of fluid therein. The resulting compression of air in the first trapped volumes, which are subsequently expanded back into the inlet port, and expansion of the second trapped volumes are sources of airborne noise and inefficiencies.
  • Nonuniform displacement, due to trapped volumes, is of little or no concern with respect to the Hallett blower since the lobe profiles therein inherently minimize the size of the trapped volumes.
  • lobe profiles in combination with the helical twist, can be difficult to accurately manufacture and accurately time with respect to each other when the blowers are assembled.
  • Hallett also addressed the backflow problem and proposed reducing the initial rate of backflow to reduce the instantaneous magnitude of the backflow pulses. This was done by a mismatched or rectangular shaped outlet port having two sides parallel to the rotor axes and, therefore, skewed relative to the traversing top lands of the helical lobes.
  • US ⁇ A ⁇ 2,463,080 to Beier is considered the State of the Art and discloses a related backflow solution for a straight lobe blower by employing a triangular outlet port having two sides skewed relative to the rotor axes and, therefore, mismatched relative to the traversing lands of the straight lobes.
  • the Weatherston blower provides preflow of outlet receiver chamber air to the transfer volumes via. circumferentially disposed, arcuate channels or slots formed in the inner surface of the cylindrical walls which sealingly. cooperate with the top lands of the rotor lobes. The top lands and channels cooperate to define orifices for directing outlet receiver chamber air into the transfer volumes.
  • the arc or setback length of the channels determines the beginning of preflow.
  • Weatherston suggests the use of additional channels of lesser setback length to hold the rate of preflow relatively constant as pressure in the transfer volumes increases.
  • the Weatherston preflow arrangement which is analogous to backflow, is believed theoretically capable of providing a relatively constant preflow rate for predetermined blower speeds and differential pressures. However, to obtain relatively constant preflow, several channels of different setback length would be necessary. Further, accurate and consistent forming of the several channels on the interior surface of the cylindrical walls is, at best, an added manufacturing cost.
  • An object of the present invention is to provide a rotary blower of the backflow type for compressible fluids which is relatively free of airborne noises due to nonuniform displacement.
  • Another object of the present invention is to provide a rotary blower of the backflow type for compressible fluids wherein backflow is relatively constant when the blower operates at predetermined speeds and differential pressures.
  • Another object of the present invention is to provide a rotary blower of the backflow type for compressible fluids wherein nonuniform displacement, due to meshing geometry and trapped volumes, is substantially eliminated.
  • US-A-2463080 discloses the pre-characterizing portion of Claim 1 but can undesirably restrict outflow.
  • a rotary blower of the backflow type includes a housing defining inlet and outlet ports and a chamber containing first and second meshed lobes rotors for transferring volumes of relatively low- pressure inlet port fluid, via spaces between adjacent, unmeshed lobes, to relatively highpressure outlet port fluid, which alternately backflows into each volume in response to alternate and initial travesing of wall surfaces, defining traversely opposite boundaries of the outlet port.
  • the outlet port longitudinal and traverse boundaries and the expanding orifices form a somewhat hourglass port shape.
  • FIGURES 1-4 illustrate a rotary pump or blower 10 of the Roots-type.
  • blowers are used almost exclusively to pump or transfer volumes of compressible fluid, such as air, from an inlet port to an outlet port without compressing the transfer volumes prior to exposure to the outlet port.
  • the rotors operate somewhat like gear-type pumps, i.e., as the rotor teeth or lobes move out of mesh, air flows into volumes or spaces defined by adjacent lobes on each rotor. The air in the volumes is then trapped therein at substantially inlet pressure when the top lands of the trailing lobe of each transfer volume moves into a sealing relation with the cylindrical wall surfaces of the associated chamber.
  • the volumes of air are transferred or exposed to outlet air when the top land of the leading lobe of each volume moves out of sealing relation with the cylindrical wall surfaces by traversing the boundary of the outlet port. If the volume of the transfer volumes remains constant during the trip from inlet to outlet, the air therein remains at inlet pressure, i.e., transfer volume air pressure remains constant if the top lands of the leading lobes traverse the outlet port boundary before the volumes are squeezed by virtue of remeshing of the lobes. Hence, if air pressure at the discharge port is greater than inlet port presure, outlet port air rushes or backflows into the transfer volumes as the top lands of the leading lobes traverse the outlet port boundary.
  • Blower 10 includes a housing assembly 12, a pair of lobed rotors 14, 16, and an input drive pulley 18.
  • Housing assembly 12 as viewed in FIGURE 1, includes a center section 20, left and right end sections 22, 24 secured to opposite ends of the center section by a plurality of bolts 26, and an outlet duct member 28 secured to the center section by a plurality of unshown bolts.
  • the housing assembly and rotors are preferably formed from a lightweight material such as aluminum.
  • the center section and end 24 define a pair of generally cylindrical working chambers 32, 34 circumferentially defined by cylindrical wall portions or surfaces 20a, 20b, an end wall surface indicated by phantom line 20c in FIGURE 1, and an end wall surface 24a. Chambers 32, 34 traversely overlap or intersect at cusps 20d, 20e, as seen in FIGURE 2. Openings 36, 38 in the bottom and top of center section 20 respectively define the transverse and longitudinal boundaries of inlet and outlet ports.
  • Rotors 14,16 respectively include three circumferentially spaced apart helical teeth or lobes 14a, 14b, 14c and 16a, 16b, 16c of modified involute profile with an end-to-end twist of 60°.
  • the lobes of teeth mesh and preferably do not touch.
  • a sealing interface between meshing lobes 14c, 16c is represented by point M in FIGURE 2.
  • Interface or point M moves along the lobe profiles as the lobes progress through each mesh cycle and may be defined in several places as shown in FIGURE 7.
  • the lobes also include top lands 14d, 14e, 14f, and 16d, 16e, 16f.
  • Rotors 14, 16 are respectively mounted for rotation in cylindrical chambers 32, 34 about axes coincident with the longitudinally extending, transversely spaced apart, parallel axes of the cylindrical chambers. Such mountings are well-known in the art. Hence, it should suffice to say that unshown shaft ends extending from and fixed to the rotors are supported by unshown bearings carried by end wall 20c and end section 24. Bearings for carrying the shaft ends extending rightwardly into end section 24 are carried by outwardly projecting bosses 24b, 24c.
  • the rotors may be mounted and timed as shown in EP-A-0135256 and incorporated herein by reference.
  • Rotor 16 is directly driven by pulley 18 which is fixed to the left end of a shaft 40.
  • Shaft 40 is either connected to or an extension of the shaft end extending from the left end of rotor-16.
  • Rotor 14 is driven in a conventional manner by unshown timing gears fixed to the shaft ends extending from the left ends of the rotors.
  • the timing gears are of the substantially no backlash type and are disposed in a chamber defined by a portion 22a of end section 22.
  • the rotors have three circumferentially spaced lobes of modified involute profile with an end-to-end helical twist of 60°.
  • Rotors with other than three lobes, with different profiles and with different twist angles, may be used to practice certain aspects or features of the inventions disclosed herein.
  • the lobes are preferably provided with a helical twist from end-to-end which is substantially equal to the relation 360°/2n, where n equals the number of lobes per rotor.
  • involute profiles are also preferred since such profiles are more readily and accurately formed than most other profiles; this is particularly true for helically twisted lobes.
  • involute profiles are preferred since they have been more readily and accurately timed during supercharger assembly.
  • inlet receiver chamber 36a is defined by portions of the cylindrical wall surfaces disposed between top lands 14e, 16e and the lobe surfaces extending from the top lands to the interface M of meshing lobes 14c, 16c.
  • Interface M defines the point or points of closest contact between the meshing lobes.
  • outlet receiver chamber 38a is defined by portions of the cylindrical wall surfaces disposed between, top lands 14d, 16d and the lobe surfaces extending from the top lands to the interface M of meshing lobes 14c, 16c.
  • meshing interface M moves along the lobe profile and is often defined at several places such as illustrated in FIGURES 6 and 7.
  • the cylindrical wall surfaces defining both the inlet and outlet receiver chambers include those surface portions which were removed to define the inlet and outlet ports.
  • Transfer volume 32a is defined by adjacent lobes 14a, 14b and the portion of cylindrical wall surfaces 20a disposed between top lands 14d, 14e.
  • transfer volume 34a is defined by adjacent lobes 16a, 16b and the portion of cylindrical wall surface 20b disposed between top lands 16d, 16e. As the rotors turn, transfer volumes 32a, 34a are reformed between subsequent pairs of adjacent lobes.
  • Inlet port 36 is provided with an opening shaped substantially like an isosceles trapezoid by wall surfaces 20f, 20g, 20h, 20i defined by housing section 20.
  • Wall surfaces 20f, 20h define the longitudinal extent of the port and wall surfaces 20g, 20i define the transverse boundaries or extent of the port.
  • the isosceles sides or wall surfaces 20g, 20i are matched or substantially parallel to the traversing top lands of the lobes.
  • the top lands of the helically twisted lobes in both FIGURES 3 and 4 are schematically illustrated as being straight for simplicity herein. As viewed in FIGURES 3 and 4, such lands actually have a curvature.
  • Wall surfaces 20g, 20i may be curved to more closely conform to the helical twist of the top lands.
  • Outlet port 38 is provided with a somewhat T-shaped opening by wall surfaces 20m, 20n, 20p, 20r, 20s, 20t:defined by housing section 20.
  • the top surface of housing 20 includes a recess 20wto provide an increased flow area for outlet duct 28.
  • Wall surfaces 20m, 20r are parallel and define the longitudinal extent or boundaries of the port.
  • Wall surfaces 20p, 20s and their projections to surface 20m define the transverse boundaries or extent of the port for outflow of most air from the blower.
  • Wall surfaces 20p, 20s are also parallel and may be spaced farther apart than shown herein if additional outlet port area is needed to prevent a pressure drop or back pressure across the outlet port.
  • the expanding orifices control the rate of back flow air into the transfer volumes.
  • Orifices 42, 44 are designed to expand at a rate operative to maintain a substantially constant backflow rate of air into the transfer volumes when the blower operates at predetermined speed and differential pressure relationships.
  • Apexes 20x, 20z are respectively spaced approximately 60 rotational degrees from surfaces 20p, 20s and are alternately transversed by the top lands of the associated lobes.
  • inlet port wall surfaces 20g, 20i and the apexes allow the top lands of the trailing lobes of each transfer volume to move into sealing relation with the cylindrical wall surfaces before backflow starts and allows a full 60° rotation of the lobes for backflow.
  • curves S and H illustrate cyclic variations in volumetric displacement over 60° periods of rotor rotation.
  • the variations are illustrated herein in terms of degrees of rotation but may be illustrated in terms of time.
  • Such cyclic variations are due to the meshing geometry of the rotor lobes which effect the rate of change of volume of the outlet receiver chamber 38a. Since the inlet and outlet receiver chamber volumes vary at substantially the same rate and merely inverse to each other, the curves for outlet receiver chamber 38a should suffice to illustrate the rate of volume change for both chambers.
  • Curve S illustrates the rate of change for a blower having three straight lobes of modified involute profile per rotor and curve H for a blower having three 60° helical twist lobes of modified involute profile per rotor.
  • the absolute value of rate-of-change is approximately 7% of theoretical displacement for straight lobe rotors while there is no variation in the rate of displacement for 60° helical lobes.
  • the rate of volume change or uniform displacement for both straight and helical lobes is due in part to the meshing geometry of the lobes.
  • the meshing relationship of the lobes is the same along the entire length of the lobes, i.e., the meshing relationship at any cross section or incremental volume along the meshing lobes is the same.
  • interface or point M of FIGURE 2 is the same along the entire length of the meshing lobes, and a line through the points is straight and parallel to the rotor axis.
  • a rate of volume change, due to meshing geometry is the same and additive for all incremental . volumes along the entire length of the meshing lobes.
  • Volumes of fluid trapped between meshing lobes are another cause or source affecting the rate of cyclic volume change of the receiver chambers.
  • the trapped volumes are abruptly removed from the outlet receiver chamber and abruptly returned or carried back to the inlet receiver chamber.
  • the trapped volumes also reduce blower displacement and pumping efficiency.
  • Curves ST and HT in the graph of FIGURE 5 respectively illustrate the rate of cyclic volume change of the outlet receiver chamber due to trapped volumes for straight and 60° helical twist lobes. As may be seen the rate of volume change, as a percentage of theoretical displacement due to trapped volumes is approximately 4.5 times greater for straight lobes.
  • the total rate of volume change of the receiver chamber is obtained by adding the associated curves for meshing geometry and trapped volume together.
  • FIGURES 6 and 7 therein is shown areas trapped between adjacent lobes 14a, 14c and 16c.
  • the areas may be thought of as incremental volumes when they have a small depth.
  • the areas for meshing relationship of FIGURE 6 represents a maximum incremental volume TV 1 .
  • incremental volume TV decreases in size while a second incremental volume TV 2 is formed which increases in size.
  • each maximum incremental volume TV 1 is formed along the entire length of the meshing lobes at substantially the same instant.
  • each incremental volume TV 2 is formed along the entire length of the meshing lobes at substantially the same instant.
  • the individual sums ⁇ TV 1 and rTV 2 of the incremental volumes define or form trapped volumes.
  • ⁇ TV 1 and ⁇ TV 2 contribute to airborne noise and reduced blower efficiency. Both, particularly ⁇ TV 1 , cause substantial rates of volume change as illustrated in the graph of FIGURE 5.
  • the carryback of fluid in ⁇ TV 1 and the respective decrease and increase in the size of 7-TV, and 2:TV2 directly reduce blower efficiency.
  • Helical lobes greatly reduce the size of TV, and TV 2 ; this may be illustrated with reference to FIGURE 6, which is an end view of the rightward end of the rotors.
  • FIGURE 6 is an end view of the rightward end of the rotors.
  • incremental volume TV, at the rightward end of meshing lobes 14a, 14c and 16c is not trapped and subsequent incremental volumes TV, from right-to-left are not trapped until the leftward end of lobes 14a, 14c and 16c move into the same meshing relationship.
  • For 60° twist lobes this does not occur until the rotors turn an additional 60°.
  • each successive incremental volume TV, from right-to-left decreases in size while still in communication with the outlet receiver chamber.
  • the number of trapped incremental volumes TV is greatly reduced. Further, the total volume of this number of trapped incremental volumes is less than the total volume of a comparable number of straight lobe incremental volumes since trapped incremental volumes with helical lobes vary in cross-sectional area from a minimum to a maximum.
  • the number of trapped incremental volumes TV 2 and their total volume is the same as described for incremental volumes TV,. However, their formation sequence occurs in the reverse order, i.e., when incremental volume TV 2 starts to form and expand at the right end of the lobes, it and subsequent incremental volumes TV 2 are trapped until the right end of the lobes moves to the meshing relationship shown in FIGURE 8; from thereon all incremental volumes TV 2 are in constant communication with the inlet receiver chamber.
  • Outlet port 138 is provided with a somewhat hourglass shaped opening by wall surfaces 120m, 120n, 120p, 120q defined by housing section 20'.
  • the top surface of housing 20' includes a recess 20w' to provide an increased flow area for outlet duct 28.
  • Spaced apart wall surfaces 120m, 120p extend transverse to the rotational axes of the rotors and define the longitudinal extent or boundaries of the port.
  • Spaced apart wall surfaces 120n, 120q extend between wall surfaces 120m, 120p and define the transverse boundaries of the port.
  • Wall surfaces 120n, 120q respectively include surface portions 120r, 120s convergently extending from wall surface 120p toward wall surface 120m and surface portions 120t, 120u convergently extending from wall surface 120m to points of intersection with portions 120r, 120s.
  • Surface portions 120t, 120u and wall surface 120m cooperate with the top lands of the rotor lobes to provide expanding orifices 142, 144 which begin at apexes 120x, 120z and which are alternately active.
  • the expanding orifices control the rate of backflow air into the transfer volumes.
  • Orifices 142, 144 may be designed to expand at a rate operative to maintain a substantially constant backflow rate of air into the transfer volumes when the blower operates at predetermined speed and differential pressure relationships. When such relationships exist, the traversing lands will be traversing surface portions 120r, 120s at the instant backflow ceases.
  • Apexes 120x, 120z are respectively spaced approximately 60 rotational degrees from the intersections 142a, 144a of surface portions 120t, 120r and 120s, 120u, and are alternately traversed by the top lands of the associated lobes.
  • the spacing between inlet port wall surfaces 120g, 120i and the apexes allows the top lands of the trailing lobes of each transfer volume to move into sealing relation with the cylindrical wall surfaces before backflow starts and allows a full 60° rotation of the lobes for backflow.
  • Apexes 120x, 120z may be positioned to allow backflow slightly before the top lands .of the trailing lobes of each transfer volume move into sealing relation with cylindrical wall surfaces 20a, 20b, thereby providing a slight overlap between the beginning and ending of backflow to ensure a smooth and continuous transition of backflow from one transfer volume to the next.
  • outlet port 138 effectively divides the port into controlled backflow areas and an unrestricted outflow area.
  • the exact shape of outlet port may vary substantially from what is illustrated herein yet still provide substantial advantages.
  • the angles or inclination of surface portions 120t, 120u with wall surface 20m may be greater or less than as shown herein.

Description

    Cross-Reference to Related Applications
  • The invention of this application relates to European Applications published as EP-A-0176269 and 0176268. These applications are assigned to the assignee of this application, and all are incorporated herein by reference.
  • Background of the Invention Field of the Invention
  • This invention relates to rotary compressors or blowers, particularly to blowers of the backflow type. More specifically, the present invention relates to reducing airborne noise associated wityh Roots-type blowers employed as superchargers for internal combustion engines.
  • Description of the Prior Art
  • Rotary blowers particularly Roots-type blowers are characterized by noisy operation. The blower noise may be roughly classified into two groups: solid borne noise caused by rotation of timing gears and rotor shaft bearings subjected to fluctuating loads, and fluid borne noise caused byfluid flow characteristics such as rapid changes in fluid velocity. Fluctuating fluid flow contributes to both solid and fluid borne noise.
  • As is well-known, Roots-type blowers are similar to gear-type pumps in that both employ toothed or lobed rotors meshingly disposed in transversely overlapping cylindrical chambers. Top lands of the lobes sealingly cooperate with the inner surfaces of the cylindrical chambers to trap and transfer volumes of fluid between adjacent lobes on each rotor. Roots-type blowers are used almost exclusively to pump or transfer volumes of compressible fluids, such as air, from an inlet receiver chamber to an outlet receiver chamber. Normally, the inlet chamber continuously communicates with an inlet port and the outlet chamber continuously communicates with an outlet port. The inlet and outlet ports often have a transverse width nominally equal to the transverse distance between the axes of the rotors. Hence, the cylindrical wall surfaces on either side of the ports are nominally 180° in arc length. Each receiver chamber volume is defined by the inner boundary of the associated port, the meshing interface of the lobes, and sealing lines between the top lands of the lobes and cylindrical wall surfaces. The inlet receiver chamber expands and contracts between maximum and minimum volumes while the outlet receiver chamber contracts and expands between like minimum and maximum volumes. In most Roots-type blowers, transfer volumes are moved to the outlet receiver chamber without compression of the air therein by mechanical reduction of the transfer volume size. If outlet port air pressure is greater than the air pressure in the transfer volume, outlet port air rushes or backflows into the volumes as they become exposed to or merged into the outlet receiver chamber. Backflow continues until pressure equalization is reached. The amount of backflow air and rate of backflow are, of course, a function of pressure differential. Backflow into one transfer volume which ceases before backflow starts into the next transfer volume, or which varies in rate, is said to be cyclic and is a known major source of airborne noise. A blower in which compression is realized by way of this backflow is hereinafter called a backflow blower.
  • Another major source of airborne noise is cyclic variations in volumetric displacement or nonuniform displacement of the blower. Nonuniform displacement is caused by cyclic variations in the rate of volume change of the receiver chamber due to meshing geometry of the lobes and due to trapped volumes between the meshing lobes. During each mesh of the lobes first and second trapped volumes are formed. The first trapped volumes contain outlet port or receiver chamber air which is abruptly removed from the outlet receiver chamber as the lobes move into mesh and abruptly returned or carried back to the inlet receiver chamber as the lobes move out of mesh. As the differential pressure between the receiver chambers increases, so does the mass of carry-over air to the inlet receiver chamber with corresponding increases in the rate of volume change in the receiver chambers and corresponding increases in airborne noise. Further, blower efficiency decreases as the mass of carry-over air increases.
  • The trapped volumes are further sources of airborne noise and inefficiency for both straight and helical lobed rotors. With straight lobed rotors, both the first and second trapped volumes are formed along the entire length of the lobes, whereas with helical lobes rotors, the trapped volumes are formed along only a portion of the length of the lobes with a resulting decrease in the degrading effects on noise and efficiency. The first trapped volumes contain outlet port air and decrease in size from a maximum to a minimum, with a resulting compressing of the fluid therein. The second trapped volumes are substantially void of fluid and increase in size from a minimum to a maximum with a resulting vacuum tending expansion of fluid therein. The resulting compression of air in the first trapped volumes, which are subsequently expanded back into the inlet port, and expansion of the second trapped volumes are sources of airborne noise and inefficiencies.
  • Many prior art patents have addressed the problems of airborne noise. For example, it has long been known that nonuniform displacement, due to meshing geometry, is greater when rotor lobes are straight or parallel to the rotor axes and that substantially uniform displacement is provided when the rotor lobes are helically twisted. US-A-2,014,932 to Hallett teaches substantially uniform displacements with a Roots-type blower having two rotors and three 60° helical twist lobes per rotor. Theoretically, such helical lobes could or would provide uniform displacement were it not for cyclic backflow and trapped volumes. Nonuniform displacement, due to trapped volumes, is of little or no concern with respect to the Hallett blower since the lobe profiles therein inherently minimize the size of the trapped volumes. However, such lobe profiles, in combination with the helical twist, can be difficult to accurately manufacture and accurately time with respect to each other when the blowers are assembled.
  • Hallett also addressed the backflow problem and proposed reducing the initial rate of backflow to reduce the instantaneous magnitude of the backflow pulses. This was done by a mismatched or rectangular shaped outlet port having two sides parallel to the rotor axes and, therefore, skewed relative to the traversing top lands of the helical lobes. US―A―2,463,080 to Beier is considered the State of the Art and discloses a related backflow solution for a straight lobe blower by employing a triangular outlet port having two sides skewed relative to the rotor axes and, therefore, mismatched relative to the traversing lands of the straight lobes. The arrangement of Hallett and Beier slowed the initial rate of backflow into the transfer volume and therefore reduced the instantaneous magnitude of the backflow. However, both of these arrangements inherently limit or restrict outlet port area available for outflow of air following backflow. Hence, the outlet ports, which slow the initial backflow rate, can undesirably restrict the outflow of air and thereby contribute to airborne noise and inefficiencies. However, neither teaches nor suggests controlling the rate of backflow so as to obtain a continuous and constant rate of backflow.
  • Several other prior art U.S. Patents have also addressed the backflow problem by preflowing outlet port or receiver chamber air into the transfer volumes before the lands of the leading lobe of each transfer volume traverses the outer boundary of the outlet port. In some of these patents, preflow is provided by passages of fixed flow area through the cylindrical walls of the housing sealing cooperating with the top lands of the rotor lobes. Since the passages are of fixed flow area, the rate of preflow decreases with decreasing differential pressure. Hence, the rate of preflow is not constant.
  • US-A-4,215,977 to Weatherston discloses preflow and purports to provide a Roots-type blower having uniform displacement. However, the lobes of Weatherston are straight and, therefore, believed incapable of providing uniform displacement due to meshing geometry.
  • The Weatherston blower provides preflow of outlet receiver chamber air to the transfer volumes via. circumferentially disposed, arcuate channels or slots formed in the inner surface of the cylindrical walls which sealingly. cooperate with the top lands of the rotor lobes. The top lands and channels cooperate to define orifices for directing outlet receiver chamber air into the transfer volumes. The arc or setback length of the channels determines the beginning of preflow. Weatherston suggests the use of additional channels of lesser setback length to hold the rate of preflow relatively constant as pressure in the transfer volumes increases. The Weatherston preflow arrangement, which is analogous to backflow, is believed theoretically capable of providing a relatively constant preflow rate for predetermined blower speeds and differential pressures. However, to obtain relatively constant preflow, several channels of different setback length would be necessary. Further, accurate and consistent forming of the several channels on the interior surface of the cylindrical walls is, at best, an added manufacturing cost.
  • Summary of the Invention
  • An object of the present invention is to provide a rotary blower of the backflow type for compressible fluids which is relatively free of airborne noises due to nonuniform displacement.
  • Another object of the present invention is to provide a rotary blower of the backflow type for compressible fluids wherein backflow is relatively constant when the blower operates at predetermined speeds and differential pressures.
  • Another object of the present invention is to provide a rotary blower of the backflow type for compressible fluids wherein nonuniform displacement, due to meshing geometry and trapped volumes, is substantially eliminated. US-A-2463080 discloses the pre-characterizing portion of Claim 1 but can undesirably restrict outflow.
  • According to an important feature of the present invention set out in Claim 1, a rotary blower of the backflow type includes a housing defining inlet and outlet ports and a chamber containing first and second meshed lobes rotors for transferring volumes of relatively low- pressure inlet port fluid, via spaces between adjacent, unmeshed lobes, to relatively highpressure outlet port fluid, which alternately backflows into each volume in response to alternate and initial travesing of wall surfaces, defining traversely opposite boundaries of the outlet port. The subject matter of Claim 1 is insofar different that
    • the inlet port is a single opening extending through at least a portion of one of the cusps and with the first and second transverse boundaries thereof disposed on opposite sides of the one cusp;
    • the outlet port is a single opening extending through at least a portion of the other cusp and with the first and second transverse boundaries thereof disposed on opposite sides of the other cusp; and
    • the first and second backflow means are respectively defined by V-shaped extensions of the outlet port first and second transverse boundaries, each V-shaped extension extending counter to the direction of rotation of the respective rotor and with an apex of each V-shaped extension defining the maximum extension of each and with each apex being positioned for traversal by the top land of the lead lobe of the respective upcoming transfer volume of the associated rotor at approximately the same time the top land of the lead lobe of the preceding transfer volume of the other rotor traverses the outlet port transverse boundary associated therewith, whereby said backflow means are alternately operative at predetermined rotor speeds and pressure differential relationships to maintain a substantially constant backflow rate into each of the transfer volumes.
  • According to another feature of the present invention, the outlet port longitudinal and traverse boundaries and the expanding orifices form a somewhat hourglass port shape.
  • Brief Description of the Drawings
    • FIGURE 1 is a side elevational view of the Roots-type blower;
    • FIGURE 2 is a schematic sectional view of the blower looking along line 2-2 FIGURE 1;
    • FIGURE 3 is a bottom view of a portion of the blower looking in the direction of arrow 3 in FIGURE 1;
    • FIGURE 4 is a top view of a portion of the blower looking along line 4-4 of FIGURE 1;
    • FIGURE 5 is a graph illustrating operational characteristics of the blower;
    • FIGURES 6 and 8 are reduced views of the blower section of FIGURE 2 with the meshing relationships of the rotors therein varied; and
    • FIGURE 9 illustrates an alternate shape of the outlet port of FIGURE 4.
    Detailed Description of the Drawings
  • FIGURES 1-4 illustrate a rotary pump or blower 10 of the Roots-type. As previously mentioned, such blowers are used almost exclusively to pump or transfer volumes of compressible fluid, such as air, from an inlet port to an outlet port without compressing the transfer volumes prior to exposure to the outlet port. The rotors operate somewhat like gear-type pumps, i.e., as the rotor teeth or lobes move out of mesh, air flows into volumes or spaces defined by adjacent lobes on each rotor. The air in the volumes is then trapped therein at substantially inlet pressure when the top lands of the trailing lobe of each transfer volume moves into a sealing relation with the cylindrical wall surfaces of the associated chamber. The volumes of air are transferred or exposed to outlet air when the top land of the leading lobe of each volume moves out of sealing relation with the cylindrical wall surfaces by traversing the boundary of the outlet port. If the volume of the transfer volumes remains constant during the trip from inlet to outlet, the air therein remains at inlet pressure, i.e., transfer volume air pressure remains constant if the top lands of the leading lobes traverse the outlet port boundary before the volumes are squeezed by virtue of remeshing of the lobes. Hence, if air pressure at the discharge port is greater than inlet port presure, outlet port air rushes or backflows into the transfer volumes as the top lands of the leading lobes traverse the outlet port boundary.
  • Blower 10 includes a housing assembly 12, a pair of lobed rotors 14, 16, and an input drive pulley 18. Housing assembly 12, as viewed in FIGURE 1, includes a center section 20, left and right end sections 22, 24 secured to opposite ends of the center section by a plurality of bolts 26, and an outlet duct member 28 secured to the center section by a plurality of unshown bolts. The housing assembly and rotors are preferably formed from a lightweight material such as aluminum. The center section and end 24 define a pair of generally cylindrical working chambers 32, 34 circumferentially defined by cylindrical wall portions or surfaces 20a, 20b, an end wall surface indicated by phantom line 20c in FIGURE 1, and an end wall surface 24a. Chambers 32, 34 traversely overlap or intersect at cusps 20d, 20e, as seen in FIGURE 2. Openings 36, 38 in the bottom and top of center section 20 respectively define the transverse and longitudinal boundaries of inlet and outlet ports.
  • Rotors 14,16 respectively include three circumferentially spaced apart helical teeth or lobes 14a, 14b, 14c and 16a, 16b, 16c of modified involute profile with an end-to-end twist of 60°. The lobes of teeth mesh and preferably do not touch. A sealing interface between meshing lobes 14c, 16c is represented by point M in FIGURE 2. Interface or point M moves along the lobe profiles as the lobes progress through each mesh cycle and may be defined in several places as shown in FIGURE 7. The lobes also include top lands 14d, 14e, 14f, and 16d, 16e, 16f. The lands move in close sealing noncontacting relation with cylindrical wall surfaces 20a, 20b and with the root portions of the lobes they are in mesh with. Rotors 14, 16 are respectively mounted for rotation in cylindrical chambers 32, 34 about axes coincident with the longitudinally extending, transversely spaced apart, parallel axes of the cylindrical chambers. Such mountings are well-known in the art. Hence, it should suffice to say that unshown shaft ends extending from and fixed to the rotors are supported by unshown bearings carried by end wall 20c and end section 24. Bearings for carrying the shaft ends extending rightwardly into end section 24 are carried by outwardly projecting bosses 24b, 24c. The rotors may be mounted and timed as shown in EP-A-0135256 and incorporated herein by reference. Rotor 16 is directly driven by pulley 18 which is fixed to the left end of a shaft 40. Shaft 40 is either connected to or an extension of the shaft end extending from the left end of rotor-16. Rotor 14 is driven in a conventional manner by unshown timing gears fixed to the shaft ends extending from the left ends of the rotors. The timing gears are of the substantially no backlash type and are disposed in a chamber defined by a portion 22a of end section 22.
  • The rotors, as previously mentioned, have three circumferentially spaced lobes of modified involute profile with an end-to-end helical twist of 60°. Rotors with other than three lobes, with different profiles and with different twist angles, may be used to practice certain aspects or features of the inventions disclosed herein. However, to obtain uniform displacement based on meshing geometry and trapped volumes, the lobes are preferably provided with a helical twist from end-to-end which is substantially equal to the relation 360°/2n, where n equals the number of lobes per rotor. Further, involute profiles are also preferred since such profiles are more readily and accurately formed than most other profiles; this is particularly true for helically twisted lobes. Still further, involute profiles are preferred since they have been more readily and accurately timed during supercharger assembly.
  • As may be seen in FIGURE 2, the rotor lobes and cylindrical wall surfaces sealingly cooperate to define an inlet receiver chamber 36a, an outlet receiver chamber 38a, and transfer volumes 32a, 34a. For the rotor positions of FIGURE 2, inlet receiver chamber 36a is defined by portions of the cylindrical wall surfaces disposed between top lands 14e, 16e and the lobe surfaces extending from the top lands to the interface M of meshing lobes 14c, 16c. Interface M defines the point or points of closest contact between the meshing lobes. Likewise, outlet receiver chamber 38a is defined by portions of the cylindrical wall surfaces disposed between, top lands 14d, 16d and the lobe surfaces extending from the top lands to the interface M of meshing lobes 14c, 16c. During each meshing cycle and as previously mentioned, meshing interface M moves along the lobe profile and is often defined at several places such as illustrated in FIGURES 6 and 7. The cylindrical wall surfaces defining both the inlet and outlet receiver chambers include those surface portions which were removed to define the inlet and outlet ports. Transfer volume 32a is defined by adjacent lobes 14a, 14b and the portion of cylindrical wall surfaces 20a disposed between top lands 14d, 14e. Likewise, transfer volume 34a is defined by adjacent lobes 16a, 16b and the portion of cylindrical wall surface 20b disposed between top lands 16d, 16e. As the rotors turn, transfer volumes 32a, 34a are reformed between subsequent pairs of adjacent lobes.
  • Inlet port 36 is provided with an opening shaped substantially like an isosceles trapezoid by wall surfaces 20f, 20g, 20h, 20i defined by housing section 20. Wall surfaces 20f, 20h define the longitudinal extent of the port and wall surfaces 20g, 20i define the transverse boundaries or extent of the port. The isosceles sides or wall surfaces 20g, 20i are matched or substantially parallel to the traversing top lands of the lobes. The top lands of the helically twisted lobes in both FIGURES 3 and 4 are schematically illustrated as being straight for simplicity herein. As viewed in FIGURES 3 and 4, such lands actually have a curvature. Wall surfaces 20g, 20i may be curved to more closely conform to the helical twist of the top lands.
  • Outlet port 38 is provided with a somewhat T-shaped opening by wall surfaces 20m, 20n, 20p, 20r, 20s, 20t:defined by housing section 20. The top surface of housing 20 includes a recess 20wto provide an increased flow area for outlet duct 28. Wall surfaces 20m, 20r are parallel and define the longitudinal extent or boundaries of the port. Wall surfaces 20p, 20s and their projections to surface 20m define the transverse boundaries or extent of the port for outflow of most air from the blower. Wall surfaces 20p, 20s are also parallel and may be spaced farther apart than shown herein if additional outlet port area is needed to prevent a pressure drop or back pressure across the outlet port. Diagonal wall surfaces 20n, 20t, which converge with transverse extensions of wall surface 20m at apexes 20x, 20z to form V-shaped backflow means 42, 44 which define expanding orifices in combination with the transversing top lands of the lobes. The expanding orifices control the rate of back flow air into the transfer volumes. Orifices 42, 44 are designed to expand at a rate operative to maintain a substantially constant backflow rate of air into the transfer volumes when the blower operates at predetermined speed and differential pressure relationships. Apexes 20x, 20z are respectively spaced approximately 60 rotational degrees from surfaces 20p, 20s and are alternately transversed by the top lands of the associated lobes. The spacing between inlet port wall surfaces 20g, 20i and the apexes allows the top lands of the trailing lobes of each transfer volume to move into sealing relation with the cylindrical wall surfaces before backflow starts and allows a full 60° rotation of the lobes for backflow.
  • Looking now for a moment at the graph of FIGURE 5, therein curves S and H illustrate cyclic variations in volumetric displacement over 60° periods of rotor rotation. The variations are illustrated herein in terms of degrees of rotation but may be illustrated in terms of time. Such cyclic variations are due to the meshing geometry of the rotor lobes which effect the rate of change of volume of the outlet receiver chamber 38a. Since the inlet and outlet receiver chamber volumes vary at substantially the same rate and merely inverse to each other, the curves for outlet receiver chamber 38a should suffice to illustrate the rate of volume change for both chambers. Curve S illustrates the rate of change for a blower having three straight lobes of modified involute profile per rotor and curve H for a blower having three 60° helical twist lobes of modified involute profile per rotor. As may be seen, the absolute value of rate-of-change is approximately 7% of theoretical displacement for straight lobe rotors while there is no variation in the rate of displacement for 60° helical lobes.
  • The rate of volume change or uniform displacement for both straight and helical lobes, as previously mentioned, is due in part to the meshing geometry of the lobes. For straight lobes, the meshing relationship of the lobes is the same along the entire length of the lobes, i.e., the meshing relationship at any cross section or incremental volume along the meshing lobes is the same. For example, interface or point M of FIGURE 2 is the same along the entire length of the meshing lobes, and a line through the points is straight and parallel to the rotor axis. Hence, a rate of volume change, due to meshing geometry, is the same and additive for all incremental . volumes along the entire length of the meshing lobes. This is not the case for helical lobes formed according to the relation 360°/2n. For three lobe rotors having 60° helical lobes, the meshing relationship varies along the entire length of the meshing lobes over a 60° period. For example, if the meshing lobes were divided into 60 incremental volumes along their length, 60 different meshing relationships would exist at any given time, and a specific meshing relationship, such as illustrated in FIGURE 2, would first occur at one end of the meshing lobes and then be sequentially repeated for each incremental volume as the rotors turn through 60 rotational degrees. If the meshing relationship of an incremental volume at one end of meshing lobes tends to increase the rate of volume change, the meshing relationship of the incremental volume at the other end of the meshing lobes tends to decrease the rate of volume change an equal amount. This additive- substractive or canceling relationship exists along the entire length of the meshing lobes and thereby cancels rates of volume change or provides uniform displacement with respect to meshing geometry.
  • Volumes of fluid trapped between meshing lobes are another cause or source affecting the rate of cyclic volume change of the receiver chambers. The trapped volumes are abruptly removed from the outlet receiver chamber and abruptly returned or carried back to the inlet receiver chamber. The trapped volumes also reduce blower displacement and pumping efficiency. Curves ST and HT in the graph of FIGURE 5 respectively illustrate the rate of cyclic volume change of the outlet receiver chamber due to trapped volumes for straight and 60° helical twist lobes. As may be seen the rate of volume change, as a percentage of theoretical displacement due to trapped volumes is approximately 4.5 times greater for straight lobes. The total rate of volume change of the receiver chamber is obtained by adding the associated curves for meshing geometry and trapped volume together.
  • Looking briefly at the rightward end of the rotors, as illustrated in FIGURES 6 and 7, therein is shown areas trapped between adjacent lobes 14a, 14c and 16c. The areas may be thought of as incremental volumes when they have a small depth. The areas for meshing relationship of FIGURE 6 represents a maximum incremental volume TV1. With reference to FIGURE 7, as the rotors turn, incremental volume TV,, decreases in size while a second incremental volume TV2 is formed which increases in size.
  • For straight lobe rotors, each maximum incremental volume TV1 is formed along the entire length of the meshing lobes at substantially the same instant. Likewise, each incremental volume TV2 is formed along the entire length of the meshing lobes at substantially the same instant. Hence, the individual sums ΣTV1 and rTV2 of the incremental volumes define or form trapped volumes. ΣTV1 and ΣTV2 contribute to airborne noise and reduced blower efficiency. Both, particularly ΣTV1, cause substantial rates of volume change as illustrated in the graph of FIGURE 5. The carryback of fluid in ΣTV1 and the respective decrease and increase in the size of 7-TV, and 2:TV2 directly reduce blower efficiency.
  • Helical lobes greatly reduce the size of TV, and TV2; this may be illustrated with reference to FIGURE 6, which is an end view of the rightward end of the rotors. With helical lobes, incremental volume TV, at the rightward end of meshing lobes 14a, 14c and 16c is not trapped and subsequent incremental volumes TV, from right-to-left are not trapped until the leftward end of lobes 14a, 14c and 16c move into the same meshing relationship. For 60° twist lobes this does not occur until the rotors turn an additional 60°. During this 60° period, each successive incremental volume TV, from right-to-left decreases in size while still in communication with the outlet receiver chamber. Hence, the number of trapped incremental volumes TV, is greatly reduced. Further, the total volume of this number of trapped incremental volumes is less than the total volume of a comparable number of straight lobe incremental volumes since trapped incremental volumes with helical lobes vary in cross-sectional area from a minimum to a maximum. The number of trapped incremental volumes TV2 and their total volume is the same as described for incremental volumes TV,. However, their formation sequence occurs in the reverse order, i.e., when incremental volume TV2 starts to form and expand at the right end of the lobes, it and subsequent incremental volumes TV2 are trapped until the right end of the lobes moves to the meshing relationship shown in FIGURE 8; from thereon all incremental volumes TV2 are in constant communication with the inlet receiver chamber.
  • Looking now at the alternately shaped outlet port 138 of FIGURE 9, therein components identical to components of FIGURE 4 are provided with the same reference numeral, suffixed with a prime. Outlet port 138 is provided with a somewhat hourglass shaped opening by wall surfaces 120m, 120n, 120p, 120q defined by housing section 20'. The top surface of housing 20' includes a recess 20w' to provide an increased flow area for outlet duct 28. Spaced apart wall surfaces 120m, 120p extend transverse to the rotational axes of the rotors and define the longitudinal extent or boundaries of the port. Spaced apart wall surfaces 120n, 120q extend between wall surfaces 120m, 120p and define the transverse boundaries of the port. Wall surfaces 120n, 120q respectively include surface portions 120r, 120s convergently extending from wall surface 120p toward wall surface 120m and surface portions 120t, 120u convergently extending from wall surface 120m to points of intersection with portions 120r, 120s. Surface portions 120t, 120u and wall surface 120m cooperate with the top lands of the rotor lobes to provide expanding orifices 142, 144 which begin at apexes 120x, 120z and which are alternately active. The expanding orifices control the rate of backflow air into the transfer volumes. Orifices 142, 144 may be designed to expand at a rate operative to maintain a substantially constant backflow rate of air into the transfer volumes when the blower operates at predetermined speed and differential pressure relationships. When such relationships exist, the traversing lands will be traversing surface portions 120r, 120s at the instant backflow ceases.
  • Apexes 120x, 120z are respectively spaced approximately 60 rotational degrees from the intersections 142a, 144a of surface portions 120t, 120r and 120s, 120u, and are alternately traversed by the top lands of the associated lobes. The spacing between inlet port wall surfaces 120g, 120i and the apexes allows the top lands of the trailing lobes of each transfer volume to move into sealing relation with the cylindrical wall surfaces before backflow starts and allows a full 60° rotation of the lobes for backflow. Apexes 120x, 120z may be positioned to allow backflow slightly before the top lands .of the trailing lobes of each transfer volume move into sealing relation with cylindrical wall surfaces 20a, 20b, thereby providing a slight overlap between the beginning and ending of backflow to ensure a smooth and continuous transition of backflow from one transfer volume to the next.
  • While expanding orifices 42, 44 are advantageous in that they are readily incorporated into an outlet port and provide significant noise reduction, they can be disadvantageous in that they occupy space needed for unrestricted outflow of air. Such a restriction is obviated by forming surface portions 120r, 120s substantially parallel to the traversing lobes, whereby the outflow area of the port increases at a maximum rate. Hence, the hourglass shape of the outlet port provides both controlled rate of backflow and unrestricted outflow of air. As in the duscussion of inlet port 36, the top lands of the helically twisted lobes in are schematically illustrated as being straight for simplicity herein. Such lands actually have a curvature. Hence, surface portions 120r, 120s may be curved to more closely conform to the curvature of the helical twist of the top lands.
  • The hourglass shape of outlet port 138 effectively divides the port into controlled backflow areas and an unrestricted outflow area. The exact shape of outlet port may vary substantially from what is illustrated herein yet still provide substantial advantages. For example, the angles or inclination of surface portions 120t, 120u with wall surface 20m may be greater or less than as shown herein.

Claims (11)

1. A rotary backflow blower (10) of the Roots type including: a housing (12) defining first and second parallel, transversely overlapping, cylindrical chambers (32, 34) having internal cylindrical wall surfaces (20a, 20b) defining at their intersections cusps (20d, 20e); inlet and outlet ports (36, 38) each having longitudinal and first and second transverse boundaries (20f, 20g, 20h, 20i, 20m, 20p, 20n, 20s) formed by wall surfaces of the housing; first and second meshed lobes rotors (14, 16) respectively disposed in the first and second chambers (32, 34) for transferring volumes of relatively low pressure inlet port air via spaces (32a, 34a) between adjacent, unmeshed lobes to relatively high pressure outlet port air; the lobes of each rotor having a top land (14d, 14e, 14f and 16d, 16e, 16f) and the first and second transverse boundaries of the ports respectively disposed for traversal by the top lands of the first and second rotor lobes; the outlet port (38) having first and second backflow means (42, 44) for respectively controlling the rate at which outlet port air backflows into the transfer volumes (32a, 34a) of the first and second rotors; characterized by:
the inlet port (36) being a single opening extending through at least a portion of one of the cusps (20e) and with the first and second transverse boundaries (20i, 20g) thereof disposed on opposite sides of the one cusp (20e);
the outlet port (38) being a single opening extending through at least a portion of the other cusp (20d) and with the first and second transverse boundaries (20p, 20q) thereof disposed on opposite sides of the other cusp (20d); and
the first and second backflow means. (42, 44) respectively defined by V-shaped extensions (20m, 20n and 20m, 20t) of the outlet port first and second transverse boundaries (20p, 20q), each V-shaped extension extending counter to the direction of rotation of the respective rotor and with an apex (20x, 20z) of each V-shaped extension defining the maximum extension of each and with each apex being positioned for traversal by the top land of the lead lobe of the respective upcoming transfer volume of the associated rotor at approximately the same time the top land of the lead lobe of the preceding transfer volume of the other rotor traverses the outlet port transverse boundary associated therewith, whereby said backflow means are alternately operative at predetermined rotor speeds and pressure differential relationships to maintain a substantially constant backflow rate into each of the transfer volumes.
2. The blower of claim 1, wherein the lobes (14a, 14b, 14c and 16a, 16b, 16c) are formed with end-to-end helical twist substantially equal to the relation 360°/2n, where n equals the number of lobes per rotor.
3. The blower of claim 1, wherein said V-shaped extensions (42, 44) are each operative at said predetermined rotor speeds and pressure differential relationships to backflow over a period substantially equal to 360°/2n where n equals the number of lobes per rotor.
41 The rotary blower of claim 1, wherein the rotors (14, 16) are disposed for rotation about parallel axes and timed with respect to each other by meshed gears fixed to the rotors; each rotor including three lobes formed with a helical twist from end-to-end of substantially 60°, and said V-shaped extensions are each operative over rota- , tional periods of substantially 60°.
5. The rotary blower of claim 1 or 4, wherein the wall surfaces defining the transverse boundaries (20g, 20h) of the inlet port (36) are disposed substantially parallel to the traversing lobes at the time of lobe traversing.
6. The rotary blower of claim 1, 4, or 5, wherein the wall surfaces defining the transverse boundaries (120r, 120s, or 120n, 120q) of the outlet port (38 or 138) are disposed substantially parallel to the traversing lobes at the time of lobe traversing.
7. The rotary blower of claim 2 or 4, wherein the lobes are formed with a substantially involute profile.
8. The rotary blower of claim 1, wherein the rotors are disposed for rotation about parallel axes.
9. The rotary blower of claim 1, wherein each rotor includes three lobes.
10. The rotary blower of claim 9, further including meshed timing gears fixed to the rotors for preventing contact of the meshing lobes.
11. The blower of claim 2, wherein the outlet port (138) longitudinal and transverse boundaries and the V-shaped extensions defining the backflow means (142, 144) form a somewhat hourglass port (138) shape.
EP19850306198 1984-09-04 1985-09-02 Supercharger with reduced noise Expired EP0174171B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US647072 1984-09-04
US06/647,071 US4564346A (en) 1984-09-04 1984-09-04 Supercharger with hourglass outlet port
US647071 1984-09-04
US06/647,072 US4564345A (en) 1984-09-04 1984-09-04 Supercharger with reduced noise

Publications (3)

Publication Number Publication Date
EP0174171A2 EP0174171A2 (en) 1986-03-12
EP0174171A3 EP0174171A3 (en) 1987-03-18
EP0174171B1 true EP0174171B1 (en) 1990-03-07

Family

ID=27095079

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19850306198 Expired EP0174171B1 (en) 1984-09-04 1985-09-02 Supercharger with reduced noise

Country Status (2)

Country Link
EP (1) EP0174171B1 (en)
DE (1) DE3576390D1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0458134A1 (en) * 1990-05-25 1991-11-27 Eaton Corporation Inlet port opening for a Roots-type blower
EP0458135A1 (en) * 1990-05-25 1991-11-27 Eaton Corporation Roots-type blower with improved inlet
EP1286053A1 (en) 2001-08-21 2003-02-26 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Rotary pump with backflow

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2028414A (en) * 1933-05-19 1936-01-21 Fairbanks Morse & Co Fluid displacement device
US2701683A (en) * 1951-12-15 1955-02-08 Read Standard Corp Interengaging rotor blower
AT242855B (en) * 1962-02-21 1965-10-11 Polysius Gmbh Roots blower
US3667874A (en) * 1970-07-24 1972-06-06 Cornell Aeronautical Labor Inc Two-stage compressor having interengaging rotary members
DE3238015C2 (en) * 1982-10-13 1986-07-31 Aerzener Maschinenfabrik Gmbh, 3251 Aerzen Roots compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0458134A1 (en) * 1990-05-25 1991-11-27 Eaton Corporation Inlet port opening for a Roots-type blower
EP0458135A1 (en) * 1990-05-25 1991-11-27 Eaton Corporation Roots-type blower with improved inlet
EP1286053A1 (en) 2001-08-21 2003-02-26 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Rotary pump with backflow
US6589034B2 (en) 2001-08-21 2003-07-08 Ford Global Technologies, Inc. Backflow orifice for controlling noise generated by a rotary compressor

Also Published As

Publication number Publication date
EP0174171A2 (en) 1986-03-12
DE3576390D1 (en) 1990-04-12
EP0174171A3 (en) 1987-03-18

Similar Documents

Publication Publication Date Title
EP0176270B1 (en) Supercharger with reduced noise and improved efficiency
US4564345A (en) Supercharger with reduced noise
EP0225070B1 (en) Port arrangement for rotary positive displacement blower
AU2006202131B2 (en) Optimized helix angle rotors for roots-style supercharger
EP0176269B1 (en) Supercharger carryback pulsation damping means
US9822781B2 (en) Optimized helix angle rotors for roots-style supercharger
US5131829A (en) Trapped volume vent means for meshing lobes of roots-type supercharger
US10436197B2 (en) Optimized helix angle rotors for roots-style supercharger
EP0176268B1 (en) Supercharger carry-over venting means
US5118268A (en) Trapped volume vent means with restricted flow passages for meshing lobes of roots-type supercharger
EP0246382B1 (en) Backflow passage for rotary blower of the roots-type
US4564346A (en) Supercharger with hourglass outlet port
EP0174171B1 (en) Supercharger with reduced noise
JP3189069B2 (en) Rotary pump for roots type supercharger
JPH08189485A (en) Screw machine
US11286932B2 (en) Optimized helix angle rotors for roots-style supercharger
WO2018093999A1 (en) Optimized helix angle rotors for roots-style supercharger
JPH0718416B2 (en) Rotor for rotary pump

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19870907

17Q First examination report despatched

Effective date: 19881007

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3576390

Country of ref document: DE

Date of ref document: 19900412

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960808

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960910

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960927

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980603

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST