EP0171824A1 - Reaktor zum Vergasen fester Brennstoffe - Google Patents

Reaktor zum Vergasen fester Brennstoffe Download PDF

Info

Publication number
EP0171824A1
EP0171824A1 EP85200824A EP85200824A EP0171824A1 EP 0171824 A1 EP0171824 A1 EP 0171824A1 EP 85200824 A EP85200824 A EP 85200824A EP 85200824 A EP85200824 A EP 85200824A EP 0171824 A1 EP0171824 A1 EP 0171824A1
Authority
EP
European Patent Office
Prior art keywords
jacket
reactor
inner jacket
support
reactor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP85200824A
Other languages
English (en)
French (fr)
Inventor
Hans Küpfer
Heribert Dernbach
Heinz Wolf
Manfred Dr. Duda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0171824A1 publication Critical patent/EP0171824A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • C10J3/24Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
    • C10J3/26Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed downwardly
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/86Other features combined with waste-heat boilers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0969Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam

Definitions

  • the invention relates to a reactor for gasifying solid fuels with oxygen, water vapor and / or carbon dioxide under a pressure of 10 to 150 lar, the reactor having an inner jacket made of steel surrounding the gasification area and an outer jacket surrounding the inner jacket and being under pressure between the inner and outer jacket boiling cooling water is located.
  • the hot gasification area is located on the inside of the inner jacket, the outside of the inner jacket being in contact with cooling water so that the average temperature of the inner jacket does not become too high.
  • thermal stresses occur in the inner jacket, which can be controlled in known reactors, if the wall thickness of the inner jacket is not necessary.
  • the process conditions require greater wall thicknesses of the inner jacket made of steel, the inevitable thermal stresses can lead to the formation of cracks in the inner jacket.
  • the invention has for its object to be able to design the inner jacket at high to extreme loads so that cracking is avoided even during long gasification operation.
  • this is done according to the invention in that there is a support jacket between the inner jacket, which is water-cooled, and the outer jacket, which is welded in places to the inner jacket.
  • This support jacket absorbs a considerable part of the mechanical load on the inner jacket coming from the gasification area and ensures that one can manage with a relatively small wall thickness of the inner jacket.
  • the support jacket is completely surrounded by cooling water and not thermally stressed, so that it can easily be made sufficiently stable.
  • the support jacket is welded to the inner jacket along vertical ribs.
  • These fins are easy to manufacture, they form channels that promote the circulation of the cooling water, which improves the heat transfer to the cooling water. Only slight thermal stresses can arise in the intensely cooled inner jacket.
  • the support jacket can be formed as a flat surface between the ribs, which on the one hand reduces the cost of producing the support jacket and on the other hand also improves the stability of the support jacket with respect to curved surfaces between the ribs.
  • the reactor is suitable both for the gasification of granular fuels, in particular coal or lignite, in a fixed bed or for the gasification of dusty fuels in a fluidized bed.
  • the gasification in the fixed bed can take place in a known manner so that on the one hand the ash remains solid when it is withdrawn from the gasification chamber, on the other hand higher gasification temperatures can be used, the mineral components becoming liquid slag and this slag continuously or periodically from the Reactor flows off.
  • the fuel is fed into the reactor from above through an inlet 2 through an inlet 2.
  • the reactor has an inner jacket 3 made of steel, which the Vergasungsbe rich 4 surrounds. Non-gasifiable components leave the gasification area 4 at the lower end 15; the product gas discharge, which is located above the gasification area 4 in the vicinity of the inlet 2, is also not shown.
  • the gasification area 4 there are pressures in the range from 10 to 150 bar and preferably from 20 to 100 bar. However, these high pressures are not absorbed by the inner jacket 3 but by the outer jacket 5. Between the inner jacket 3 and the outer jacket 5 there is cooling water from the line 6, water vapor formed being able to flow through a line 16 into the gasification area 4.
  • the pressure at which the cooling water is is only slightly higher than the pressure in the gasification area 4, so the inner jacket 3 is largely relieved of pressure, but it must be designed so that it can accommodate pressure differences of about 2 to 3 bar.
  • the inner jacket 3 must be able to withstand the high temperatures in the range of 1,000 to 1,600 ° C. which occur on the inside during gasification.
  • the design of this support jacket 7 can be seen in FIGS. 2 and 3.
  • the support jacket has spaced vertical ribs 8 _ which are welded to the outside of the inner jacket 3. Adjacent ribs, seen from the vertical axis of symmetry A of the inner jacket, form an angle of approximately 10 to 20 °, cf. Fig. 2. The surfaces 9 between adjacent ribs are flat, as can be seen in Fig. 2.
  • the support jacket 7 is practically completely surrounded by cooling water, the higher temperatures in the vicinity of the inner jacket 3 resulting in a circulation of the cooling water, which is shown in FIG Fig. 1 is indicated by the dotted arrows 10a and 10b. Accordingly, the cooling liquid flows in the channels 11, which result between the ribs 8, the surfaces 9 and the outside of the inner jacket 3, upwards and in the region between the outside of the support jacket 7 and the inside of the outer jacket 5, a downward flow is formed.
  • the ribs can also be provided with individual cutouts 12, as can be seen in FIG. 3. These cutouts 12 form openings between the inner jacket 3 and the support jacket 7, through which the cooling liquid can also flow from one to the adjacent channel 11, but these cutouts are not absolutely necessary.
  • the wall thickness of the inner jacket is in the range from 7 to 25 mm, the support jacket 7 and its ribs 8, which are usually also made of steel, can have material thicknesses of about 5 to 25 mm.
  • the arrangement of the support jacket reduces the wall thickness of the inner jacket to 30 to 60% of the wall thickness that would be necessary without the support jacket.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Der Reaktor, der bei einem Druck von 10 bis 150 bar arbeitet, weist einen den Vergasungsbereich umgebenden Innenmantel aus Stahl und einen den Innenmantel umgebenden Außenmantel auf. Zwischen dem Innenmantel und dem Außenmantel ist ein Stützmantel angeordnet, der mit dem Innenmantel stellenweise verschweißt ist. Innen- und Stützmantel sind wassergekühlt. Vorzugsweise ist der Stützmantel mit dem Innenmantel entlang vertikaler Rippen verschweißt, wodurch Kanäle entstehen, durch die das Kühlwasser zirkuliert.

Description

  • Die Erfindung betrifft einen Reaktor zum Vergasen fester Brennstoffe mit Sauerstoff, Wasserdampf und/oder Kohlendioxid unter einem Druck von 10 bis 150 Lar, wobei der Reaktor einen den Vergasungsbereich umgebenden Innenmantel aus Stahl und einen den Innenmantel umgebenden Außenmantel aufweist und sich zwischen Innenund Außenmantel unter Druck siedendes Kühlwasser befindet.
  • Die Vergasung körniger Kohle im Festbett ist bekannt und z.B. in Ullmanns Enzyklopädie der Technischen Chemie, 4. Auflage (1977), Ed. 14, Seiten 383 bis 386, dargestellt. Dinzelheiten der Vergasung mit festbleibender Asche sind den US-Patentschriften 3 540 867 und 3 854 895 sowie der deutschen Offenlegungsschrift 22 01 278 zu entnehmen. Vergasungsreaktoren, bei denen die Asche flüssig abgezogen wird, sind in den Lritischen Patentschriften 1 507 905, 1 508 671 und 1 512 677 erläutert. Die Vergasung fester Brennstoffe im Wirbelbett wird im US-Patent 4 347 064 und im dazu korrespondierenden Europa-Patent 8469 beschrieben.
  • Bei den bekannten Reaktoren befindet sich der heiße Vergasungsbereich an der Innenseite des Innenmantels, wobei die Außenseite des Innenmantels mit Kühlwasser in Kontakt steht, damit die durchschnittliche Temperatur des Innenmantels nicht zu hoch wird. Dabei treten im Innenmantel zwangsläufig Thermospan- nungen auf, die bei bekannten Reaktoren beherrschbar sind, wenn nicht zu große Wanddicken des Innenmantels nötig sind. Erfordern die Verfahrensbedingungen jedoch größere Wanddicken des aus Stahl gefertigten Innenmantels, so können die unvermeidlichen Thermospannungen zur Rißbildung im Innenmantel führen.
  • Der Erfindung liegt die Aufgabe zugrunde, den Innenmantel bei hoher bis extremer Belastung so ausbilden zu können, daß Rißbildung auch bei langem Vergasungsbetrieb vermieden wird. Beim eingangs genannten Reaktor geschieht dies erfindungsgemäß dadurch, daß sich zwischen dem Innenmantel, der wassergekühlt ist, und dem Außenmantel ein Stützmantel befindet, der mit dem Innenmantel stellenweise verschweißt ist. Dieser Stützmantel nimmt einen beträchtlichen Teil der auf dem Innenmantel lastenden, vom Vergasungsbereich kommenden mechanischen Belastung auf und sorgt dafür, daß man mit einer relativ geringen Wandstärke des Innenmantels auskommt. Der Stützmantel ist völlig von Kühlwasser umgeben und nicht thermisch belastet, so daß er leicht ausreichend stabil ausgebildet werden kann.
  • Es ist zweckmäßig, daß der Stützmantel mit dem Innenmantel entlang vertikaler Rippen verschweißt ist. Diese Rippen sind leicht herzustellen, sie Lilden die Zirkulation des Kühlwassers fördernde Kanäle aus, wodurch der Wärmeübergang zum Kühlwasser verbessert wird. In dem dabei intensiv gekühlten Innenmantel können nur geringe thermische Spannungen entstehen.
  • Zwischen den Rippen kann der Stützmantel als ebene Fläche ausgebildet sein, was einerseits die Herstellung des Stützmantels verbilligt und andererseits auch die Stabilität des Stützmantels gegenüber gebogenen Flächen zwischen den Rippen verbessert.
  • Durch die Verwendung eines Stützmantels können nunmehr auch große Reaktoren mit einem Durchmesser aes Innenmantels von mindestens 2 m und mehr, vorzugsweise im Bereich von 2,5 bis 6 m, mit hoher Stabilität und Betriebssicherheit gebaut werden.
  • Der Reaktor ist sowohl für die Vergasung körniger Brennstoffe, insbesondere Kohle oder Braunkohle, im Festbett oder für die Vergasung staubförmiger Brennstoffe im Wirbelbett geeignet. Die Vergasung im Festbett kann dabei in bekannter Weise so erfolgen, daß einerseits die Asche festbleibt, wenn sie aus dem Vergasungsraum abgezogen wird, andererseits könnnen höhere Vergasungstemperaturen zur Anwendung kommen, wobei die mineralischen Bestandteile zu flüssiger Schlacke werden und diese Schlacke kontinuierlich oder periodisch aus dem Reaktor abfließt.
  • Ausgestaltungen des vergasungsreaktors werden mit hilfe der Zeichnung erläutert.
  • Es zeigt:
    • Fig. 1 in stark schematisierter Darstellung einen Längsschnitt durch den Mantelbereich eines Reaktors zum Vergasen fester Brennstoffe im festbett,
    • Fig. 2 einen Schnitt nach der Linie II - II durch den Mantelbereich in vergrößerter Darstellung und
    • Fig. 3 die Sicht auf den Stützmantel der Fig. 2, in Richtung des Pfeils III gesehen.
  • Bei dem in Fig. 1 dargestellten Mantel eines Vergasungsreaktors l, der der Vergasung fester Brennstoffe im Festbett dient, wird der Brennstoff durch eine nicht dargestellte Schleuse von oben durch einen Einlaß 2 dem Reaktor aufgegeben. Der Reaktor weist einen Innenmantel 3 aus Stahl auf, der den Vergasungsbereich 4 umgibt. Unvergasbare Bestandteile verlassen den Vergasungsbereich 4 am unteren Ende 15; der Produktgasabzug, der sich über dem Vergasungsbereich 4 in der Nähe des Einlasses 2 befindet, ist ebenfalls nicht dargestellt.
  • Im Vergasungsbereich 4 herrschen Drücke im Bereich von 10 bis 150 bar und vorzugsweise von 20 bis 100 bar. Diese hohen Drücke werden jedoch nicht vom Innenmantel 3 sondern vom Außenmantel 5 aufgenommen. Zwischen dem Innenmantel 3 und Außenmantel 5 befindet sich Kühlwasser aus der Leitung 6, wobei gebildeter Wasserdampf durch eine Leitung 16 in den VergasungsLereich 4 strömen kann. Der Druck, unter dem das Kühlwasser steht, ist nur geringfügig höher als der Druck im Vergasungsbereich 4, deshalb ist der Innenmantel 3 weitgehend druckentlastet, er muß jedoch so ausgelegt werden, daß er Druckdifferenzen von etwa 2 bis 3 bar aufnehmen kann. Gleichzeitig muß der Innenmantel 3 in der Lage sein, die hohen Temperaturen im Bereich von 1 000 bis 1 600 °C, die während der Vergasung an seiner Innenseite auftreten, auszuhalten.
  • Einen Teil der auf den Innenmantel 3 einwirkenden mechanischen Belastung nimmt ein Stützmantel 7 auf, der den am meisten beanspruchten zylindrischen Teil des Innenmantels 3 umgibt. Die Ausgestaltung dieses Stützmantels 7 ist den Fig. 2 und 3 zu entnehmen.
  • Der Stützmantel weist im Abstand angeordnete vertikale Rippen 8 _ auf, die mit der Außenseite des Innenmantels 3 verschweißt sind. Benachbarte Rippen biluen, von der vertikalen Symmetrieachse A des Innenmantels aus gesehen, einen Winkel von etwa 10 bis 20 °, vgl. Fig. 2. Die Flachen 9 zwischen benachbarten Rippen sind eben, wie man das Fig. 2 entnehmen kann.
  • Der Stützmantel 7 ist praktisch vollständig von Kühlwasser umgeben, wobei sich aufgrund der höheren Temperaturen in der Nähe des Innenmantels 3 eine zirkulation des Kühlwassers ergibt, die in Fig. 1 durch die punktierten Pfeile 10a und 10b angedeutet ist. Demnach strömt die Kühlflüssigkeit in den Kanälen 11, die sich zwischen den Rippen 8, den Flächen 9 und der Außenseite des Innenmantels 3 ergeben, nach oben und im Bereich zwischen der Außenseits des Stützmantels 7 und der Innenseite des Außenmantels 5 bildet sich eine Abwärtsströmung aus. Die Rippen können auch noch mit einzelnen Aussparungen 12 versehen sein, wie das der Fig. 3 zu entnehmen ist. Diese Aussparungen 12 bilden Öffnungen zwischen dem Innenmantel 3 und dem Stützmantel 7, üurch die die Kühlflüssigkeit auch vom einen zum benachbarten Kanal 11 fließen kann, doch sind diese Aussparungen nicht unbedingt erforderlich.
  • Die Wandstärke des Innenmantels liegt im Bereich von 7 bis 25 mm, der Stützmantel 7 und seine Rippen 8, die üblicherweise auch aus Stahl gefertigt werden, können Materialstärken von etwa 5 bis 25 mm aufweisen. Durch die Anordnung des Stützmantels läDt sich die Wandstärke des Innenmantels auf 30 bis 60% der Wandstärke verringern, die ohne Stützmantel nötig wäre.

Claims (7)

1. Reaktor zum Vergasen fester Brennstoffe mit Sauerstoff, Wasserdampf und/oder Kohlendioxid unter einem Druck von 10 bis 150 bar, wobei der Reaktor einen den Vergasungsbereich umgebenden Innenmantel aus Stahl und einen den Innenmantel umgebenden Außenmantel aufweist und sich zwischen Innen- und Außenmantel unter Druck siedendes Kühlwasser befindet, dadurch gekennzeichnet, daß sich zwischen dem Innenmantel, der wassergekühlt ist, und dem Außenmantel ein Stützmantel befindet, der mit dem Innenmantel stellenweise verscheißt ist.
2. Reaktor nach Anspruch 1, dadurch gekennzeichnet, daß der Stützmantel mit dem Innenmantel entlang vertikaler Rippen verschweißt ist.
3. Reaktor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Stützmantel zwischen den Rippen als ebene Fläche ausgebildet ist.
4. Reaktor nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Rippen Aussparungen aufweisen.
5. Reaktor nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß die Wandstärke des Innenmantels 7 bis 25 mm beträgt.
6. Reaktor nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß der Stützmantel aus Stahl mit einer Materialstärke von 5 bis 25 mm besteht.
7. Reaktor nach Anspruch 1 oder einnem der folgenden, dadurch gekennzeichnet, daß der Innenmantel einen Durchmesser von mindestens 2 m und vorzugsweise von 2,5 bis 6 m aufweist.
EP85200824A 1984-06-07 1985-05-22 Reaktor zum Vergasen fester Brennstoffe Withdrawn EP0171824A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3421124 1984-06-07
DE19843421124 DE3421124A1 (de) 1984-06-07 1984-06-07 Reaktor zum vergasen fester brennstoffe

Publications (1)

Publication Number Publication Date
EP0171824A1 true EP0171824A1 (de) 1986-02-19

Family

ID=6237772

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85200824A Withdrawn EP0171824A1 (de) 1984-06-07 1985-05-22 Reaktor zum Vergasen fester Brennstoffe

Country Status (4)

Country Link
EP (1) EP0171824A1 (de)
JP (1) JPS612792A (de)
DE (1) DE3421124A1 (de)
ZA (1) ZA854304B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027173A1 (en) * 1994-03-31 1995-10-12 Foster Wheeler Energia Oy A pressurized reactor system and a method of operating the same
CN104650984A (zh) * 2013-11-15 2015-05-27 通用电气公司 用于气化和冷却合成气的系统和方法
WO2017032318A1 (zh) * 2015-08-26 2017-03-02 上海泽玛克敏达机械设备有限公司 自处理废水的环保气化炉

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19829385C1 (de) * 1998-07-01 1999-10-28 Krc Umwelttechnik Gmbh Vorrichtung zur Flugstromvergasung von kohlenstoffhaltigen Brenn-, Rest- und Abfallstoffen
DE10000537B4 (de) * 2000-01-08 2006-04-20 Future Energy Gmbh Reaktor und Verfahren zur Flugstromvergasung
CN109848660B (zh) * 2019-03-11 2022-05-31 西安远航真空钎焊技术有限公司 一种主动冷却结构的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE567443C (de) * 1930-09-30 1933-01-02 Otto Schenk Indirekt heiz- oder kuehlbarer einwandiger Druckkessel
DE912385C (de) * 1941-10-18 1954-05-28 Metallgesellschaft Ag Verfahren und Vorrichtung zur Druckvergasung fester Brennstoffe
GB1037082A (en) * 1962-05-23 1966-07-27 Metallgesellschaft Ag A gas producer or like reactor for operation at elevated pressure and high temperatures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE567443C (de) * 1930-09-30 1933-01-02 Otto Schenk Indirekt heiz- oder kuehlbarer einwandiger Druckkessel
DE912385C (de) * 1941-10-18 1954-05-28 Metallgesellschaft Ag Verfahren und Vorrichtung zur Druckvergasung fester Brennstoffe
GB1037082A (en) * 1962-05-23 1966-07-27 Metallgesellschaft Ag A gas producer or like reactor for operation at elevated pressure and high temperatures

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027173A1 (en) * 1994-03-31 1995-10-12 Foster Wheeler Energia Oy A pressurized reactor system and a method of operating the same
CN104650984A (zh) * 2013-11-15 2015-05-27 通用电气公司 用于气化和冷却合成气的系统和方法
CN104650984B (zh) * 2013-11-15 2020-08-07 气体产品与化学公司 用于气化和冷却合成气的系统和方法
WO2017032318A1 (zh) * 2015-08-26 2017-03-02 上海泽玛克敏达机械设备有限公司 自处理废水的环保气化炉

Also Published As

Publication number Publication date
JPS612792A (ja) 1986-01-08
ZA854304B (en) 1987-02-25
DE3421124A1 (de) 1985-12-12

Similar Documents

Publication Publication Date Title
DE2513499C2 (de)
DE102009039920A1 (de) Verfahren und Vorrichtung zur Nutzung von Sauerstoff bei der Dampfreformierung von Biomasse
DE4128423A1 (de) Vorrichtung zur durchfuehrung einer katalytischen reaktion
DE1063579B (de) Wirbelschichtanlage mit kontinuierlichem Durchfluss der Feststoffe
EP0171824A1 (de) Reaktor zum Vergasen fester Brennstoffe
DE2738932A1 (de) Verfahren zur druckvergasung fester brennstoffe
DE3009851A1 (de) Anlage mit einem reaktorbehaelter, insbesondere zur vergasung fossiler brennstoffe
DD288614A5 (de) Reaktor zur flugstromvergasung
DE102014211755B4 (de) Vergaserkopf für die Partialoxidation von gasförmigen und flüssigen Vergasungsstoffen
DE102012009266B4 (de) Gasabzug für einen Vergasungsreaktor
DE2442122A1 (de) Pyrolyse-behaelter
DE2805244A1 (de) Verfahren und vorrichtung zum kuehlen von staubfoermigen oder feinkoernigen feststoffen
DE2338147A1 (de) Rotierender schachtofen mit gekuehltem brennerrohr
DE3017374C1 (de) Vorrichtung zur Herstellung von Glasfasern
DE2537948C2 (de) Vorrichtung zur Vergasung von Kohlenstoff enthaltenden Brennstoffstaub
DE2633061A1 (de) Blasverfahren fuer oefen mit schmelzschacht und duese zur durchfuehrung des verfahrens
DE3000541A1 (de) Anordnung zur zufuehrung von fluidisiertem gas in wirbelbetten von wirbelbettverbrennungsapparaten
EP0261462A2 (de) Strahlrohrbrenner mit Katalysatorbett für Wärmebehandlungsöfen
EP0369556B1 (de) Verfahren zur indirekten Erwärmung eines Prozessgasstroms in einem Reaktionsraum für eine endotherme Reaktion und Vorrichtung zu dessen Durchführung
DE2904855C3 (de) Koksbeheizter-Kupolofen
DD261280A3 (de) Apparat zur vergasung von kohlenstaub
DE1451460C (de) Im Boden des Brennschachtes eines einraumigen turmartigen Gas oder Wind erhitzers angeordnete Verbrennungsemrich tung
DE2055439A1 (de) Vorrichtung zur Durchführung katalytischer endothermer Reaktionen
DE4427860A1 (de) Generator zur Kohleverbrennung/Kohlevergasung
DD148727A5 (de) Druckbehaelter fuer heisse medien

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19860722

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WOLF, HEINZ

Inventor name: DUDA, MANFRED, DR.

Inventor name: DERNBACH, HERIBERT

Inventor name: KUEPFER, HANS