EP0169123B1 - Electronic focusing device for ultrasonic waves - Google Patents

Electronic focusing device for ultrasonic waves Download PDF

Info

Publication number
EP0169123B1
EP0169123B1 EP85401266A EP85401266A EP0169123B1 EP 0169123 B1 EP0169123 B1 EP 0169123B1 EP 85401266 A EP85401266 A EP 85401266A EP 85401266 A EP85401266 A EP 85401266A EP 0169123 B1 EP0169123 B1 EP 0169123B1
Authority
EP
European Patent Office
Prior art keywords
cells
delay
circuit
circuits
delays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85401266A
Other languages
German (de)
French (fr)
Other versions
EP0169123A1 (en
Inventor
Olivier Lannuzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CGR Ultrasonic SA
Original Assignee
CGR Ultrasonic SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9305971&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0169123(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by CGR Ultrasonic SA filed Critical CGR Ultrasonic SA
Priority to AT85401266T priority Critical patent/ATE41543T1/en
Publication of EP0169123A1 publication Critical patent/EP0169123A1/en
Application granted granted Critical
Publication of EP0169123B1 publication Critical patent/EP0169123B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/346Circuits therefor using phase variation

Definitions

  • the invention relates to a device for electronically focusing ultrasonic waves.
  • Ultrasonic wave devices are particularly used in the medical field and in industrial control. Their purpose is to allow the measurement of physical parameters of an environment in which these waves are emitted and / or received.
  • an ultrasonic device On transmission, an ultrasonic device comprises an emitter of electrical signals connected to a piezoelectric excitation probe.
  • an ultrasonic device On reception, an ultrasonic device includes a piezoelectric probe connected to a receiver.
  • a duplexer allows the use of a single reversible probe for transmission and reception by sharing the time between each of these two functions.
  • the mechanical pressure wave that propagates from a probe into a medium is a spherical wave. Consequently the quantity of excitation energy applied to a particular point of the volume studied decreases with the square of the distance which separates this point from the probe.
  • the backscattered signal coming from a particular point in the medium also propagates in a spherical wave. It is known, to increase the excitation power applied to a particular point in the medium at the time of transmission, and to increase the energy of the signal received from a particular point at the time of reception, to perform probes comprising an array of piezoelectric cells. In order for the expected effects to be effectively obtained, it is also necessary to organize delays between the electrical signals which attack the various cells of the network.
  • delays which are intended to focus the wave on the point in question, are conventionally obtained by using delay lines connected in series to the cells.
  • the delays of each delay line are fixed at given values for a given position of the point of the medium on which one wants to focus the emission wave or from which one wants to receive the transmitted wave.
  • Each cell is associated with a particular delay line: there are as many delay lines as there are cells.
  • the ultrasonic devices it is desired to be able to use the ultrasonic devices to point them at various regions of the environment. These regions are contained between two extreme depointing directions. It is then advisable to produce delay lines whose delay is variable and whose maximum delay corresponds to these extreme directions. For example, taking into account a deviation of 45 ° from a normal axis of propagation perpendicular to the network of cells, a propagation speed of 1,500 m per second in the medium, and a distance of approximately 100 mms between the target point and the network, it appears that a wave, which finds itself in phase on the point concerned, admits delay offsets between the different cells of the network.
  • the invention relates to a focusing device in which the delay of the delay lines is less than the maximum differential delay of the network and where, ultimately, the cumulative amount of delays of all the delay lines is much less than the total of the delays of all the delay lines of the cited state of the art.
  • the invention relates to an electronic focusing device for ultrasonic waves, in which an ultrasonic wave propagates, in one direction and / or another, between an array of piezoelectric cells and a focal point located inside a medium, in which the electrical signal corresponding to this wave is transmitted with different delays for each cell, delays which are dependent for each cell on the relative positions of the focal point and the cell in question, and in which means for creating the delays comprise delay circuits connected to the cells characterized in that these delay creation means comprise a hierarchical set of elementary circuits, each provided with a delay line connected, in parallel with a direct line, to a centralizer, and in that that the delay of the delay line in an elementary circuit is a function of the relative delay which must prevail between two cells or two circuits connected to this circuit t.
  • FIG. 1a represents an ultrasound device of the state of the art. It includes a piezoelectric probe 1 provided with a set of n cells C i .
  • An ultrasonic wave 2 propagates from a point P of a medium 3 in the direction of the probe. Wave 2 is spherical.
  • the pressure wave is detected by the cells Ci and is translated into a set of electrical signals S i (t).
  • the cells are connected to delay means 4 comprising a set of identical delay lines such as 5.
  • a multiplexing instruction M fixes, for each delay line, a specific delay T i . Wave 2 which is received at different times by the different cells Ci is then extracted simultaneously from all of the delay lines.
  • a delay T i can be expressed as follows: where d i is the distance which separates a cell Ci from the point P and where c is the speed of propagation of the wave 2 in the medium 3.
  • An adder 6 with multiple inputs receives the signals S i (t) after they have undergone their respective delay and combine them to deliver a signal S (t) representative of the wave which was emitted at point P.
  • the ultrasonic device is used in reception.
  • the adder 6 is replaced by a current distribution point (quite simply an electrical connection point) and a signal E (t), arriving at this sampling point in the opposite direction to the signal S (t ), attacks all 4 of the delay lines 5. If the distribution of the delays in the different lines is identical to the previous one, the sound wave emanating from the probe 1 then focuses on point P. So from the point of view delays it is immaterial to examine the problem on transmission or reception. To simplify understanding, the following description is given in a reception configuration, it being understood that the focusing device of the invention can also be used for transmission. Similarly, we are not obliged to use reversible probes, but it is still more economical.
  • Figure 1b shows an elementary circuit
  • Figure 1c shows how a hierarchy is organized.
  • the elementary circuit 7 of FIG. 1b essentially comprises a delay line 8 connected in parallel with a direct line 9 to a centralizer 10.
  • the centralizer is an electrical connection point.
  • the centralizer 10 is an adder for adding the signals coming from the two lines 8 and 9.
  • the circuit 7 has two inputs and one output.
  • the direct line 9 of the circuit 7 receives a signal S i (t) emanating from a sensor C i .
  • the delay line 8 of circuit 7 receives a signal S i + 1 (t) emanating from a sensor C i + 1 .
  • the invention consists in observing that rather than assigning each of the signals S i (t) and S i + 1 (t) of a delay T i and T i + 1 respectively it is possible to assign one of the two of a delay T i + 1 ⁇ T i . After the addition of these two signals, the result of a delay T i is affected. In the added signal the contribution of the signal S i (t) is indeed affected by a delay T, and the contribution of the signal S i + 1 (t) is effectively affected by a delay T i + 1 (T i + 1 -T i + T i ). This is of course only possible if T i + 1 is greater than T i since we do not know how to achieve a negative delay.
  • a circuit 11 adjacent to circuit 7 receives signals S i + 2 (t) and S i + 3 (t). Its output must be affected by a delay T i + 2 so that each of its signals cooperates with the final result with a fair contribution.
  • these two signals can be introduced into a third elementary circuit 13 also comprising a direct line 14 in parallel with a delay line 15.
  • the delay of the line with delay 15 must be equal to T i + 2 ⁇ T i .
  • the signal emanating from the circuit 13 must then be assigned a delay T i so that all the signals are assigned their respective delays T, T i + 1 , T i + 2 , and T i + 3 .
  • the structure of the elementary circuit of FIG. 1b implies three remarks. First the construction of the. The hierarchy of circuits can continue in a pyramidal manner according to the structure suggested in Figure 1c. On the other hand, given the complexity that there is in manufacturing delay lines whose maximum variable delay is high, it is advantageous to connect circuits 7 to adjacent cells and likewise circuits 13 to circuits adjacent elementaries. Indeed, the relative delay put by wave 2 to arrive on two geographically adjacent cells is low. It is for this reason that two adjacent cells, Ci and C i + 1 , are connected to the same circuit: the delay line 8 must be capable of a maximum delay which in the end is rather low. It is also for this reason that two adjacent circuits, 7 and 11 are connected to the same circuit 13.
  • the switch circuit 16 therefore has two inputs 17 and 18 and two outputs 19 and 20. It also has a control input 21 for receiving a switch signal A.
  • the switch circuit 16 has 4 analog gates 22 to 25 receiving two by two (22, 24 and 23, 25) respectively the signals Si and S i-1 .
  • the order A or its complement A obtained from an inverter 26, is applied to the validation input of these analog doors so as to transmit at the output of these doors, on the outputs 19 and 20 of circuit 16, respectively the signals S i (t) and S i + 1 (t) on the one hand or S i + 1 (t) and S i (t) on the other hand. This ultimately makes it possible to delay only one of these two signals with respect to the other by the desired quantity.
  • FIG. 2b makes it possible to grasp the technological gain of the accumulation of delays obtained with the delay means of the invention.
  • the hierarchical organization has several floors.
  • a first stage 30 combines in elementary circuits signals originating in each case from two adjacent cells.
  • a second stage 31 combines the signals coming from two adjacent circuits of the stage 30.
  • a third stage 32 combines the signals coming from two adjacent circuits of the stage 31.
  • the circuit of FIG. 2b comprises for each elementary circuit a line with delay 33 in parallel with a direct line 34, both connected on the one hand to a centralizer 35 and to a routing circuit 36. What differs from one stage to another is that the maximum differential delays of delay lines of the floors are not equal to each other.
  • the maximum delay of a delay line 33 is imposed by the relative delay that may exist, when the probe is at the maximum depointing, between two adjacent cells (that is to say cells whose index n ' is different than one unit). Let ⁇ T be this maximum delay.
  • the maximum delay of the delay lines 37 of the second stage is the delay which must exist between two cells whose index has a difference of two units: for example between Ci and C i + 2 . Consequently, the maximum delay of lines 37 is equal to twice ⁇ T. By extrapolation, the maximum delay of the delay line 38 of the third stage is 4 ⁇ T.
  • n is the number of cells.
  • FIG. 3a represents an analog embodiment of an elementary circuit 41 according to the invention.
  • This circuit 41 has two inputs 42 and 43 connected to the inputs of a switcher 44 whose outputs are connected to an analog delay line 45 on the one hand and to a direct line 46 on the other hand.
  • the delay line 45 is for example of a type with localized constants.
  • An adder 47 centralizes the signals from these two lines.
  • the output 48 delivers the combined signal.
  • the delay line 45 is provided with p intermediate sockets making it possible to obtain that a signal introduced at the input is delayed up to p times a minimum delay.
  • a direct tap 27 also makes it possible to take the signal introduced into the delay line 45 when the latter presents a zero relative delay with respect to the signal on the line 46.
  • a multiplexer 49 receives a multiplexing order M and selects a particular tap on delay line 45 to connect it at the input of the adder 47. This multiplexer 49 here plays the same role as in the state of the art cited. Its complexity is however less in the invention since the delay of the delay lines being less there the number of intermediate taps to be selected is less.
  • the instructions M of the invention are of course different from that of the state of the art cited. Note, however, that the number of multiplexing orders contained in a multiplexing instruction M for a given focus is substantially equal to the number of multiplexing orders that had to be given in the prior art. Indeed, with reference to FIG. 2b, it can be seen that for 8 cells there are 7 delay lines to be programmed: therefore at each multiplexing instruction there are seven multiplexing orders to be addressed to the delay lines. In a conventional configuration for the same 8 cells, there would be 8 delay lines, therefore 8 orders to be addressed. In the invention, there are therefore as many orders to be addressed as there are cells minus one unit. For the rest, the programming of the M orders is done as in the cited state of the art.
  • FIG. 3b represents a digital embodiment of an elementary circuit 50 of the invention.
  • signals S i (t) and S i + 1 (t) emanating from cells Ci and C i + 1 are each sent to an analog-digital converter 51 and 52 respectively. These converters are related to intermediate registers 53 and 54 contained in circuit 50.
  • a switch 55 selectively directs the contents of these registers to a direct line 56 or to a set 57 of shift registers.
  • the set 57 contains as many registers as there are bits for coding the sampled values of the signals S i (t). If these signals are coded on q bits there are q shift registers.
  • Each of these shift registers has p boxes and the set 57 is synchronized with the sampling frequency f ech which drives the converters 51 and 52.
  • a direct tap 28 allows the signal introduced into the delay line 57 to be taken without delay when the relative delay of this signal compared to the signal in the direct line is zero.
  • a multiplexer 58 receiving a multiplexing order M corresponding to a point P in the middle, extracts the contents of the corresponding boxes from the registers.
  • the summer 59 receives quantized signals from the direct line 56 and from the delay line 57.
  • the digital output of the summer 59 is coded on q + 1 bits.
  • FIG. 4 represents such an architecture for 8 cells.
  • An elementary circuit 60 receives signals from two cells CB 1 and CB 8 of a strip 61.
  • a second circuit 62 receives signals from cells CB 2 and CB 7 , a third circuit 63 receives signals from cells CB 3 and CB 6 , and the fourth circuit 64 receives it from CB 4 and CB S.
  • Delays T 1-8 , T 2-7 , T 3 . 6 and T 4 . 5 of the delay lines of these elementary circuits are therefore minimum delays.
  • the point P only moves very slightly away from the perpendicular bisector 65 of the group of cells.
  • the delay line with the highest maximum delay is the delay line producing the delay T 1-8 .
  • This delay T 1-8 corresponds to the difference in path of the wave when it propagates from point P towards the cell CB 1 on the one hand and the cell CB 8 on the other hand. For all other delay lines the relative delays are lower. Here again, it is noted that this delay T 1-8 which is the greatest, is much less than the delay T 4-8 which in the example would be the greatest. The latter is more than five times higher.
  • the circuits 60 and 62 to 64 are connected to two elementary circuits 66 and 67. The latter two are themselves connected to a last elementary circuit 68.
  • AIG circuits d 'switch
  • the presence of these routing circuits lies in the scanning ability of the probe used. Indeed, the microangulations 8 designate points P, the projection of which on the bar 61 cannot be beyond one of the central cells (C 4 , C 5 ).
  • the medium 3 has been explored between + 0 and ⁇ , use is made of another cell, on an adequate side, by eliminating from the group of selected cells that which is on the other side. Step by step we realize that the delay between two cells is thus brought to change sign. This justifies the presence of the switching circuits.
  • the scanning of the medium to be studied results in a selection of the CB cells ; used.
  • the multiplexer which performs this function is of a known type. If one wishes to carry out the invention in this application without modifying this multiplexer, one can choose to carry out the optimizations of the relative delays at the output of the first stage.
  • the elementary circuits of the first stage then receive signals from geographically adjacent cells CB (CB i ⁇ CB i + 1 ).
  • CB i ⁇ CB i + 1 In a second stage (66-67) are introduced signals from elementary circuits, 60-62 and 63-64, which themselves receive signals from cells geographically symmetrical to each other with respect to the center from the group of selected contiguous cells.
  • the transformation of the switching circuits for the passage of a device from a reception function to a transmission function does not present any difficulty. It only requires the production of a second set of switches interposed between the different circuits or between the circuits and the cells. This second set receives the signals from the delay lines and applies them to the piezoelectric cells. It is oriented in the opposite direction to that described. It conforms by design.

Abstract

A device for electronic focusing of ultrasonic waves in which the focusing means comprise a hierarchized assembly of elementary circuits each provided with a delay line connected in parallel with a direct line to a centralizing unit and in which the time-delay of the delay line in a circuit is a function of the relative time-delay which must exist between the two cells or the two circuits connected to said circuit. It is shown that, in the invention, a technological advance is achieved by thus minimizing the maximum time-delays to be established in the case of each delay line.

Description

L'invention concerne un dispositif de focalisation électronique d'ondes ultrasonores. Les dispositifs à ondes ultrasonores sont particulièrement utilisés dans le domaine médical et dans le contrôle industriel. Leur but est de permettre la mesure de paramètres physiques d'un milieu dans lequel ces ondes sont émises et/ou reçues. A l'émission un dispositif à ultrasons comporte un émetteur de signaux électriques raccordé à une sonde d'excitation piézoélectrique. En réception un dispositif à ultrasons comporte une sonde piézoélectrique reliée à un récepteur. Classiquement un duplexeur permet l'utilisation d'une sonde unique réversible pour l'émission et la réception en partageant le temps entre chacune de ces deux fonctions.The invention relates to a device for electronically focusing ultrasonic waves. Ultrasonic wave devices are particularly used in the medical field and in industrial control. Their purpose is to allow the measurement of physical parameters of an environment in which these waves are emitted and / or received. On transmission, an ultrasonic device comprises an emitter of electrical signals connected to a piezoelectric excitation probe. On reception, an ultrasonic device includes a piezoelectric probe connected to a receiver. Conventionally a duplexer allows the use of a single reversible probe for transmission and reception by sharing the time between each of these two functions.

L'onde mécanique de pression qui se propage depuis une sonde dans un milieu est une onde sphérique. En conséquence la quantité d'énergie d'excitation appliquée à un point particulier du volume étudié est décroissante avec le carré de la distance qui sépare ce point de la sonde. Par ailleurs à la réception le même phénomène joue : le signal rétrodiffusé en provenance d'un point particulier du milieu se propage également selon une onde sphérique. Il est connu, pour augmenter la puissance d'excitation appliquée à un point particulier du milieu au moment de l'émission, et pour augmenter l'énergie du signal reçu en provenance d'un point particulier au moment de la réception, de réaliser des sondes comportant un réseau de cellules piézoélectriques. Pour que les effets attendus soient effectivement obtenus il faut par ailleurs organiser des retards entre les signaux électriques qui attaquent les différentes cellules du réseau. Ces retards, qui ont pour but de focaliser l'onde sur le point en question, sont classiquement obtenus en utilisant des lignes à retard raccordées en série aux cellules. Les retards de chaque ligne à retard sont figés à des valeurs données pour une position donnée du point du milieu sur lequel on veut focaliser l'onde d'émission ou duquel on veut recevoir l'onde émise. Chaque cellule est associée à une ligne à retard particulière : il y a autant de lignes à retard qu'il y a de cellules.The mechanical pressure wave that propagates from a probe into a medium is a spherical wave. Consequently the quantity of excitation energy applied to a particular point of the volume studied decreases with the square of the distance which separates this point from the probe. In addition, on reception the same phenomenon plays out: the backscattered signal coming from a particular point in the medium also propagates in a spherical wave. It is known, to increase the excitation power applied to a particular point in the medium at the time of transmission, and to increase the energy of the signal received from a particular point at the time of reception, to perform probes comprising an array of piezoelectric cells. In order for the expected effects to be effectively obtained, it is also necessary to organize delays between the electrical signals which attack the various cells of the network. These delays, which are intended to focus the wave on the point in question, are conventionally obtained by using delay lines connected in series to the cells. The delays of each delay line are fixed at given values for a given position of the point of the medium on which one wants to focus the emission wave or from which one wants to receive the transmitted wave. Each cell is associated with a particular delay line: there are as many delay lines as there are cells.

Par ailleurs, on désire pouvoir utiliser les dispositifs à ultrasons pour les pointer sur diverses régions du milieu. Ces régions sont contenues entre deux directions extrêmes de dépointage. Il convient alors de réaliser des lignes à retard dont le retard est variable et dont le retard maximum correspond à ces directions extrêmes. Par exemple compte tenu d'un dépointage de 45° par rapport à un axe normal de propagation perpendiculaire au réseau des cellules, d'une vitesse de propagation de 1 500 m par seconde dans le milieu, et d'un éloignement d'environ 100 mms entre le point visé et le réseau, il apparaît qu'une onde, qui se retrouve en phase sur le point concerné, admet des décalages de retard entre les différentes cellules du réseau. Ces décalages sont tels qu'en particulier il existe un retard différentiel maximum d'environ 10 microsecondes entre deux cellules extrêmes d'un réseau mesurant environ 22 mms de long. Pour pouvoir explorer pareillement tous les points du milieu, par symétrie par rapport à la normale au centre du réseau, les retards des lignes à retard concernant les cellules situées aux extrémités du réseau doivent être identiques. Or, la fabrication des lignes à retard pose de nombreux problèmes techniques et technologiques. Il convient de réduire le nombre de ces lignes et surtout la durée de leur retard intrinsèque. Une approche de solution est décrite dans la demande de brevet FR-A-2 237 322.Furthermore, it is desired to be able to use the ultrasonic devices to point them at various regions of the environment. These regions are contained between two extreme depointing directions. It is then advisable to produce delay lines whose delay is variable and whose maximum delay corresponds to these extreme directions. For example, taking into account a deviation of 45 ° from a normal axis of propagation perpendicular to the network of cells, a propagation speed of 1,500 m per second in the medium, and a distance of approximately 100 mms between the target point and the network, it appears that a wave, which finds itself in phase on the point concerned, admits delay offsets between the different cells of the network. These offsets are such that in particular there is a maximum differential delay of approximately 10 microseconds between two extreme cells of a network measuring approximately 22 mm in length. To be able to explore all the points in the middle in the same way, by symmetry with respect to the normal at the center of the network, the delays of the delay lines concerning the cells situated at the ends of the network must be identical. However, the production of delay lines poses many technical and technological problems. It is advisable to reduce the number of these lines and especially the duration of their intrinsic delay. A solution approach is described in patent application FR-A-2 237 322.

L'invention concerne un dispositif de focalisation dans lequel le retard des lignes à retard est inférieur au retard différentiel maximum du réseau et où, en définitive, la quantité cumulée des retards de toutes les lignes à retard est bien inférieure au cumul des retards de toutes les lignes à retard de l'état de la technique cité.The invention relates to a focusing device in which the delay of the delay lines is less than the maximum differential delay of the network and where, ultimately, the cumulative amount of delays of all the delay lines is much less than the total of the delays of all the delay lines of the cited state of the art.

L'invention concerne un dispositif de focalisation électronique d'ondes ultrasonores, dans lequel une onde ultrasonore se propage, dans un sens et/ou dans un autre, entre un réseau de cellules piézoélectriques et un point focal situé à l'intérieur d'un milieu, dans lequel le signal électrique correspondant à cette onde est transmis avec des retards différents pour chaque cellule, retards qui sont dépendants pour chaque cellule des positions relatives du point focal et de la cellule en question, et dans lequel des moyens de création des retards comportent des circuits de retard raccordés aux cellules caractérisé en ce que ces moyens de création des retards comportent un ensemble hiérarchisé de circuits élémentaires, munis chacun d'une ligne à retard reliée, en parallèle avec une ligne directe, à un centralisateur, et en ce que le retard de la ligne à retard dans un circuit élémentaire est fonction du retard relatif devant régner entre deux cellules ou deux circuits raccordés à ce circuit.The invention relates to an electronic focusing device for ultrasonic waves, in which an ultrasonic wave propagates, in one direction and / or another, between an array of piezoelectric cells and a focal point located inside a medium, in which the electrical signal corresponding to this wave is transmitted with different delays for each cell, delays which are dependent for each cell on the relative positions of the focal point and the cell in question, and in which means for creating the delays comprise delay circuits connected to the cells characterized in that these delay creation means comprise a hierarchical set of elementary circuits, each provided with a delay line connected, in parallel with a direct line, to a centralizer, and in that that the delay of the delay line in an elementary circuit is a function of the relative delay which must prevail between two cells or two circuits connected to this circuit t.

L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Sur ces figures les mêmes repères désignent les mêmes éléments. Elles représentent :

  • - figure 1a : un dispositif à ultrasons de l'état de la technique,
  • - figure 1b : un circuit élémentaire des moyens de retard ;
  • - figure 1c : une représentation de l'organisation hiérarchique des circuits élémentaires ;
  • - figure 2a : un perfectionnement du circuit élémentaire ;
  • - figure 2b : une représentation schématique des moyens de retard de l'invention permettant la mise en évidence du gain quantitatif des retards à créer ;
  • - figure 3a : un exemple de réalisation analogique d'un circuit élémentaire,
  • - figure 3b : un exemple de réalisation numérique d'un circuit élémentaire ;
  • - figure 4 : un exemple d'utilisation de l'invention.
The invention will be better understood on reading the description which follows and on examining the figures which accompany it. In these figures, the same references designate the same elements. They represent :
  • - Figure 1a: an ultrasonic device of the prior art,
  • - Figure 1b: an elementary circuit of the delay means;
  • - Figure 1c: a representation of the hierarchical organization of elementary circuits;
  • - Figure 2a: an improvement of the elementary circuit;
  • - Figure 2b: a schematic representation of the delay means of the invention allowing the quantitative gain of the delays to be created to be highlighted;
  • FIG. 3a: an example of an analog embodiment of an elementary circuit,
  • - Figure 3b: an example of digital embodiment of an elementary circuit;
  • - Figure 4: an example of use of the invention.

La figure 1a représente un dispositif à ultrasons de l'état de la technique. Il comporte une sonde piézoélectrique 1 munie d'un ensemble de n cellules Ci. Une onde ultrasonore 2 se propage depuis un point P d'un milieu 3 en direction de la sonde. L'onde 2 est sphérique. L'onde de pression est détectée par les cellules Ci et est traduite en un ensemble de signaux électriques Si(t). Les cellules sont raccordées à des moyens 4 de retard comportant un ensemble de lignes à retard identiques telles que 5. Une instruction de multiplexage M fixe, pour chaque ligne à retard, un retard spécifique Ti. L'onde 2 qui est reçue à des instants différents par les différentes cellules Ci est alors extraite simultanément de l'ensemble des lignes à retard. Un retard Ti peut s'exprimer de la manière suivante :

Figure imgb0001
où di est la distance qui sépare une cellule Ci du point P et où c est la vitesse de propagation de l'onde 2 dans le milieu 3. Un additionneur 6 à multiples entrées reçoit les signaux Si(t) après qu'ils ont subi leur retard respectif et les combine pour délivrer un signal S(t) représentatif de l'onde qui a été émise au point P.FIG. 1a represents an ultrasound device of the state of the art. It includes a piezoelectric probe 1 provided with a set of n cells C i . An ultrasonic wave 2 propagates from a point P of a medium 3 in the direction of the probe. Wave 2 is spherical. The pressure wave is detected by the cells Ci and is translated into a set of electrical signals S i (t). The cells are connected to delay means 4 comprising a set of identical delay lines such as 5. A multiplexing instruction M fixes, for each delay line, a specific delay T i . Wave 2 which is received at different times by the different cells Ci is then extracted simultaneously from all of the delay lines. A delay T i can be expressed as follows:
Figure imgb0001
where d i is the distance which separates a cell Ci from the point P and where c is the speed of propagation of the wave 2 in the medium 3. An adder 6 with multiple inputs receives the signals S i (t) after they have undergone their respective delay and combine them to deliver a signal S (t) representative of the wave which was emitted at point P.

Dans la représentation qui est faite sur la figure 1a le dispositif à ultrasons est utilisé en réception. Dans une utilisation en émission, l'additionneur 6 est remplacé par un point de distribution de courant (tout simplement un point de raccordement électrique) et un signal E(t), arrivant sur ce point de prélèvement en sens inverse du signal S(t), attaque l'ensemble 4 des lignes à retard 5. Si la distribution des retards dans les différentes lignes est identique à la précédente, l'onde sonore émanant de la sonde 1 se focalise alors sur le point P. Donc du point de vue des retards il est indifférent d'examiner le problème à l'émission ou à la réception. Pour simplifier la compréhension la suite de la description est donnée dans une configuration en réception, étant entendu que le dispositif de focalisation de l'invention peut aussi servir à l'émission. De même on n'est pas obligé d'utiliser des sondes réversibles mais c'est quand même plus économique.In the representation which is made in FIG. 1a, the ultrasonic device is used in reception. In use in transmission, the adder 6 is replaced by a current distribution point (quite simply an electrical connection point) and a signal E (t), arriving at this sampling point in the opposite direction to the signal S (t ), attacks all 4 of the delay lines 5. If the distribution of the delays in the different lines is identical to the previous one, the sound wave emanating from the probe 1 then focuses on point P. So from the point of view delays it is immaterial to examine the problem on transmission or reception. To simplify understanding, the following description is given in a reception configuration, it being understood that the focusing device of the invention can also be used for transmission. Similarly, we are not obliged to use reversible probes, but it is still more economical.

La figure 1b présente un circuit élémentaire, la figure 1c montre comment s'organise une hiérarchie. Le circuit élémentaire 7 de la figure 1b comporte essentiellement une ligne à retard 8 reliée en parallèle avec une ligne directe 9 à un centralisateur 10. Dans une application en émission le centraliseur est un point de raccordement électrique. Dans l'application en réception le centralisateur 10 est un additionneur pour additionner les signaux provenant des deux lignes 8 et 9. Le circuit 7 comporte deux entrées et une sortie. La ligne directe 9 du circuit 7 reçoit un signal Si(t) émanant d'un capteur Ci. La ligne à retard 8 du circuit 7 reçoit un signal Si+1(t) émanant d'un capteur Ci+1. L'invention consiste à remarquer que plutôt que d'affecter chacun des signaux Si(t) et Si+1(t) d'un retard respectivement Ti et Ti+1 il est possible d'affecter l'un deux d'un retard Ti+1―Ti. Après l'addition de ces deux signaux on affecte le résultat d'un retard T,. Dans le signal additionné la contribution du signal Si(t) est bien affectée d'un retard T, et la contribution du signal Si+1(t) est effectivement affectée d'un retard Ti+1(Ti+1 -Ti + Ti). Ceci n'est bien entendu possible que si Ti+1 est supérieur à Ti puisque l'on ne sait pas réaliser de retard négatif.Figure 1b shows an elementary circuit, Figure 1c shows how a hierarchy is organized. The elementary circuit 7 of FIG. 1b essentially comprises a delay line 8 connected in parallel with a direct line 9 to a centralizer 10. In an application in transmission the centralizer is an electrical connection point. In the reception application, the centralizer 10 is an adder for adding the signals coming from the two lines 8 and 9. The circuit 7 has two inputs and one output. The direct line 9 of the circuit 7 receives a signal S i (t) emanating from a sensor C i . The delay line 8 of circuit 7 receives a signal S i + 1 (t) emanating from a sensor C i + 1 . The invention consists in observing that rather than assigning each of the signals S i (t) and S i + 1 (t) of a delay T i and T i + 1 respectively it is possible to assign one of the two of a delay T i + 1 ―T i . After the addition of these two signals, the result of a delay T i is affected. In the added signal the contribution of the signal S i (t) is indeed affected by a delay T, and the contribution of the signal S i + 1 (t) is effectively affected by a delay T i + 1 (T i + 1 -T i + T i ). This is of course only possible if T i + 1 is greater than T i since we do not know how to achieve a negative delay.

On constate en regardant la figure 1 que le signal émanant du circuit 7 doit être affecté d'un retard Ti. De même sur la figure 1c un circuit 11 adjacent au circuit 7 reçoit des signaux Si+2(t) et Si+3(t). Sa sortie doit être affectée d'un retard Ti+2 pour que chacun de ses signaux coopère au résultat final avec une juste contribution. En rapprochant le signal émis par le circuit 7 du signal émis par le circuit élémentaire 11 on peut introduire ces deux signaux dans un troisième circuit élémentaire 13 comportant lui aussi une ligne directe 14 en parallèle avec une ligne à retard 15. Le retard de la ligne à retard 15 doit être égal à Ti+2―Ti. Le signal émanant du circuit 13 doit alors être affecté d'un retard Ti pour que tous les signaux soient affectés de leur retard respectif T, Ti+1, Ti+2, et Ti+3.It can be seen by looking at FIG. 1 that the signal emanating from the circuit 7 must be affected by a delay T i . Similarly in FIG. 1c, a circuit 11 adjacent to circuit 7 receives signals S i + 2 (t) and S i + 3 (t). Its output must be affected by a delay T i + 2 so that each of its signals cooperates with the final result with a fair contribution. By bringing the signal emitted by circuit 7 closer to the signal emitted by elementary circuit 11, these two signals can be introduced into a third elementary circuit 13 also comprising a direct line 14 in parallel with a delay line 15. The delay of the line with delay 15 must be equal to T i + 2 ―T i . The signal emanating from the circuit 13 must then be assigned a delay T i so that all the signals are assigned their respective delays T, T i + 1 , T i + 2 , and T i + 3 .

La structure du circuit élémentaire de la figure 1b implique trois remarques. Premièrement la construction de la. hiérarchie des circuits peut se poursuivre d'une manière pyramidale selon la structure suggérée par la figure 1c. D'autre part, compte tenu de la complexité qu'il y a à fabriquer des lignes à retard dont le retard variable maximum est élevé il y a intérêt à raccorder les circuits 7 à des cellules adjacentes et de même les circuits 13 à des circuits élémentaires adjacents. En effet, le retard relatif mis par l'onde 2 pour arriver sur deux cellules géographiquement adjacentes est faible. C'est pour cette raison que deux cellules adjacentes, Ci et Ci+1, sont reliées à un même circuit : la ligne à retard 8 doit être capable d'un retard maximum qui en définitive est plutôt faible. C'est également pour cette raison que deux circuits adjacents, 7 et 11 sont reliés à un même circuit 13. Deux circuits élémentaires sont ainsi dits adjacents quand, à leur niveau de hiérarchie, les signaux qu'ils produisent présentent un retard relatif qui est le plus faible possible. En troisième lieu, on remarque que le retard Ti affecte les signaux reçus par toutes les cellules. Il est possible de se passer de cette dernière ligne à retard puisqu'elle ne contribue pas à une meilleure focalisation agissant d'une manière identique sur tous les signaux.The structure of the elementary circuit of FIG. 1b implies three remarks. First the construction of the. The hierarchy of circuits can continue in a pyramidal manner according to the structure suggested in Figure 1c. On the other hand, given the complexity that there is in manufacturing delay lines whose maximum variable delay is high, it is advantageous to connect circuits 7 to adjacent cells and likewise circuits 13 to circuits adjacent elementaries. Indeed, the relative delay put by wave 2 to arrive on two geographically adjacent cells is low. It is for this reason that two adjacent cells, Ci and C i + 1 , are connected to the same circuit: the delay line 8 must be capable of a maximum delay which in the end is rather low. It is also for this reason that two adjacent circuits, 7 and 11 are connected to the same circuit 13. Two elementary circuits are thus said to be adjacent when, at their level of hierarchy, the signals which they produce exhibit a relative delay which is as low as possible. Thirdly, we notice that the delay T i affects the signals received by all the cells. It is possible to do without this last delay line since it does not contribute to better focusing acting in an identical manner on all the signals.

La restriction précédente imposant que Ti+1 soit supérieur à Ti indique implicitement que le point P ne peut se trouver qu'à droite de la normale N au réseau qui s'élève au droit de la dernière cellule Cn. En effet, dans ce cas les cellules reçoivent l'onde 2 de plus en plus tôt selon que leur indice augmente (Cn la reçoit la première). Le retard Tn sera donc supérieur au retard Tn-1 etc... jusqu'au retard T1. Pour pouvoir focaliser l'onde sur des points situés à gauche de la cellule Ci, il faudrait pouvoir réaliser des lignes à retard Ti+1 ―Ti de retard négatif. On résout ce problème en apparence insoluble en adjoignant (fig. 2a) au circuit élémentaire 7 un circuit d'aiguillage 16 qui permet de choisir lequel des deux signaux Si(t) ou Si+1(t) sera affecté du retard Ti+1―Ti. En effet, si Ti+1 ― Ti est négatif on obtient le résultat correct en retardant l'autre signal de la valeur absolue de Ti+1―Ti. Le circuit d'aiguillage 16 comporte donc deux entrées 17 et 18 et deux sorties 19 et 20. Il comporte par ailleurs une entrée de commande 21 pour recevoir un signal d'aiguillage A. Dans un exemple, le circuit d'aiguillage 16 comporte 4 portes analogiques 22 à 25 recevant deux à deux (22, 24 et 23, 25) respectivement les signaux Si et Si-1. L'ordre A ou son complémentaire A obtenu à partir d'un inverseur 26, est appliqué sur l'entrée de validation de ces portes analogiques de manière à transmettre en sortie de ces portes, sur les sorties 19 et 20 du circuit 16, respectivement les signaux Si(t) et Si+1(t) d'une part ou Si+1(t) et Si(t) d'autre part. Ceci permet en définitive de retarder un seul de ces deux signaux par rapport à l'autre de la quantité désirée.The previous restriction requiring that T i + 1 be greater than T i implicitly indicates that the point P can only be found to the right of the normal N to the network which rises at the right of the last cell C n . Indeed, in this case the cells receive wave 2 earlier and earlier depending on whether their index increases (C n receives it first). The delay T n will therefore be greater than delay T n-1 etc ... until delay T 1 . To be able to focus the wave on points located to the left of cell C i , it would be necessary to be able to produce delay lines T i + 1 ―T i with negative delay. This apparently insoluble problem is solved by adding (fig. 2a) to the elementary circuit 7 a switching circuit 16 which makes it possible to choose which of the two signals S i (t) or S i + 1 (t) will be affected by the delay T i + 1 ―T i . Indeed, if T i + 1 - T i is negative we obtain the correct result by delaying the other signal by the absolute value of T i + 1 ―T i . The switch circuit 16 therefore has two inputs 17 and 18 and two outputs 19 and 20. It also has a control input 21 for receiving a switch signal A. In one example, the switch circuit 16 has 4 analog gates 22 to 25 receiving two by two (22, 24 and 23, 25) respectively the signals Si and S i-1 . The order A or its complement A obtained from an inverter 26, is applied to the validation input of these analog doors so as to transmit at the output of these doors, on the outputs 19 and 20 of circuit 16, respectively the signals S i (t) and S i + 1 (t) on the one hand or S i + 1 (t) and S i (t) on the other hand. This ultimately makes it possible to delay only one of these two signals with respect to the other by the desired quantity.

Cependant, il faut quand même remarquer que la position de la ligne à retard, eu égard à la distribution, Si(t) : Si-1(t), des signaux n'est pas indifférente. En reprenant le schéma de la figure 1b et en ayant inversé les entrées au moyen de l'aiguillage 16, du fait que le retard Ti+1 ―Ti est négatif, il faut bien se rendre compte que l'on a retardé dans ce cas le signal Si(t) d'un retard égal à Ti―Ti+1 et que donc en conséquence à la sortie du circuit 7 après l'additionneur 10 ce n'est plus un retard Ti qu'il faudrait imposer mais un retard Ti+1. Cette remarque est importante car elle permet de combiner avec exactitude dans un circuit 13 (figure 1c) les signaux provenant de deux circuits élémentaires 7 et 11 quand on a inversé les entrées. Dans la pratique cette question de retard Ti changé en Ti+1 ne pose pas de problème puisque le retard imposé par la ligne à retard est variable. On peut donc sans difficulté le rendre égal à Ti+1 ― Ti+3 au lieu de Ti+2―Ti. Un signal de commande M, en tous points comparable au signal de multiplexage de l'état de la technique cité, pilote les lignes à retard de l'invention. Seules changent entre l'invention et l'état de la technique les valeurs que l'on affiche pour les différentes lignes à retard.However, it should still be noted that the position of the delay line, having regard to the distribution, S i (t): S i-1 (t), of the signals is not indifferent. By taking again the diagram of figure 1b and by having inverted the entries by means of the switch 16, of the fact that the delay T i + 1 ―T i is negative, it is necessary well to realize that one delayed in this case the signal S i (t) of a delay equal to T i ―T i + 1 and that therefore consequently at the output of the circuit 7 after the adder 10 it is no longer a delay T i that should be imposed but a delay T i + 1 . This remark is important because it makes it possible to combine with accuracy in a circuit 13 (FIG. 1c) the signals coming from two elementary circuits 7 and 11 when the inputs have been inverted. In practice this question of delay T i changed to T i + 1 does not pose a problem since the delay imposed by the delay line is variable. We can therefore easily make it equal to T i + 1 - T i + 3 instead of T i + 2 ―T i . A control signal M, in all respects comparable to the multiplexing signal of the prior art cited, controls the delay lines of the invention. Only the values that are displayed for the different delay lines change between the invention and the state of the art.

La figure 2b permet d'appréhender le gain technologique du cumul des retards obtenus avec les moyens de retard de l'invention. L'organisation hiérarchique comporte plusieurs étages. Un premier étage 30 combine dans des circuits élémentaires des signaux provenant à chaque fois de deux cellules adjacentes. Un deuxième étage 31 combine les signaux provenant de deux circuits adjacents de l'étage 30. Un troisième étage 32 combine les signaux provenant de deux circuits adjacents de l'étage 31. Le circuit de la figure 2b comporte pour chaque circuit élémentaire une ligne à retard 33 en parallèle avec une ligne directe 34, reliées toutes deux d'une part à un centralisateur 35 et à un circuit d'aiguillage 36. Ce qui diffère d'un étage à l'autre c'est que les retards différentiels maximum des lignes à retard des étages ne sont pas égaux entre eux. En effet, le retard maximum d'une ligne à retard 33 est imposé par le retard relatif pouvant exister, lorsque la sonde est au dépointage maximum, entre deux cellules adjacentes (c'est-à-dire des cellules dont l'indice n'est différent que d'une unité). Soit ΔT ce retard maximum. Le retard maximum des lignes à retard 37 du deuxième étage est le retard qui doit exister entre deux cellules dont l'indice présente une différence de deux unités : par exemple entre Ci et Ci+2. En conséquence, le retard maximum des lignes 37 est égal à deux fois ΔT. Par extrapolation le retard maximum de la ligne à retard 38 du troisième étage est de 4ΔT. Dans l'exemple représenté pour pouvoir atteindre toutes les configurations de dépointage voulues, il est nécessaire de réaliser 4 lignes à retard avec un retard variable dont la valeur maximum est ΔT, deux lignes à retard variable dont le retard maximum vaut 2AT, et une ligne à retard variable dont le retard maximum vaut 4ΔT. Au total, il faut donc réaliser 12AT. Par contre dans l'état de la technique cité, le retard pouvant exister entre la cellule d'indice 1 et la cellule d'indice 8 pouvant être égal à 7AT il aurait fallu construire 8 lignes à retard variable avec un retard maximum de 7ΔT chacune : c'est-à-dire 56ΔT au total. On constate donc que l'invention amène une réduction quantitative des retards à réaliser. On peut montrer par calcul que cette réduction est égale à 1/2 log2(n). Dans cette expression n est le nombre des cellules. Par ailleurs qualitativement on se rend compte que le retard variable maximum pour une ligne à retard est de 4AT dans l'invention. Par contre qu'il était de 7ΔT dans l'état de la technique cité. Or, la confection des lignes à retard est d'autant plus difficile techniquement que le retard à mettre en oeuvre est plus important. Donc à la réduction quantitative l'invention apporte également une amélioration qualitative. On pourrait montrer que c'est la présence des aiguillages 36, 39 et 40 devant chaque circuit élémentaire qui est à l'origine de cette amélioration qualitative.FIG. 2b makes it possible to grasp the technological gain of the accumulation of delays obtained with the delay means of the invention. The hierarchical organization has several floors. A first stage 30 combines in elementary circuits signals originating in each case from two adjacent cells. A second stage 31 combines the signals coming from two adjacent circuits of the stage 30. A third stage 32 combines the signals coming from two adjacent circuits of the stage 31. The circuit of FIG. 2b comprises for each elementary circuit a line with delay 33 in parallel with a direct line 34, both connected on the one hand to a centralizer 35 and to a routing circuit 36. What differs from one stage to another is that the maximum differential delays of delay lines of the floors are not equal to each other. Indeed, the maximum delay of a delay line 33 is imposed by the relative delay that may exist, when the probe is at the maximum depointing, between two adjacent cells (that is to say cells whose index n ' is different than one unit). Let ΔT be this maximum delay. The maximum delay of the delay lines 37 of the second stage is the delay which must exist between two cells whose index has a difference of two units: for example between Ci and C i + 2 . Consequently, the maximum delay of lines 37 is equal to twice ΔT. By extrapolation, the maximum delay of the delay line 38 of the third stage is 4ΔT. In the example shown to be able to reach all the desired depointing configurations, it is necessary to make 4 delay lines with a variable delay whose maximum value is ΔT, two variable delay lines whose maximum delay is 2AT, and one line with variable delay whose maximum delay is 4ΔT. In total, therefore, 12AT must be achieved. On the other hand, in the cited state of the art, the delay which may exist between the cell of index 1 and the cell of index 8 may be equal to 7AT, it would have been necessary to construct 8 variable delay lines with a maximum delay of 7ΔT each. : that is to say 56ΔT in total. It can therefore be seen that the invention brings about a quantitative reduction in the delays to be achieved. We can show by calculation that this reduction is equal to 1/2 log 2 (n). In this expression n is the number of cells. Furthermore qualitatively we realize that the maximum variable delay for a delay line is 4AT in the invention. By cons it was 7ΔT in the state of the art cited. However, the making of delay lines is all the more difficult technically as the delay to be implemented is greater. So the quantitative reduction the invention also brings a qualitative improvement. We could show that it is the presence of switches 36, 39 and 40 in front of each elementary circuit which is at the origin of this qualitative improvement.

La figure 3a représente une réalisation analogique d'un circuit élémentaire 41 selon l'invention. Ce circuit 41 comporte deux entrées 42 et 43 reliées aux entrées d'un aiguilleur 44 dont les sorties sont reliées à une ligne à retard analogique 45 d'une part et à une ligne directe 46 d'autre part. La ligne à retard 45 est par exemple d'un type à constantes localisées. Un additionneur 47 centralise les signaux en provenance de ces deux lignes. La sortie 48 délivre le signal combiné. La ligne à retard 45 est munie de p prises intermédiaires permettant d'obtenir qu'un signal introduit à l'entrée soit retardé jusqu'à p fois un retard minimal. Une prise directe 27 permet par ailleurs de prélever le signal introduit dans la ligne à retard 45 quand celui-ci présente un retard relatif nul par rapport au signal sur la ligne 46. Si l'on appelle 8T ce retard minimal le produit p fois 8T vaut ΔT qui est le retard maximum de la ligne 45 et donc du circuit 41. Un multiplexeur 49 reçoit un ordre de multiplexage M et sélectionne une prise particulière de la ligne à retard 45 pour la raccorder à l'entrée de l'additionneur 47. Ce multiplexeur 49 joue ici le même rôle que dans l'état de la technique cité. Sa complexité est cependant moins grande dans l'invention puisque le retard des lignes à retard y étant moins grand le nombre de prises intermédiaires à sélectionner y est inférieur.FIG. 3a represents an analog embodiment of an elementary circuit 41 according to the invention. This circuit 41 has two inputs 42 and 43 connected to the inputs of a switcher 44 whose outputs are connected to an analog delay line 45 on the one hand and to a direct line 46 on the other hand. The delay line 45 is for example of a type with localized constants. An adder 47 centralizes the signals from these two lines. The output 48 delivers the combined signal. The delay line 45 is provided with p intermediate sockets making it possible to obtain that a signal introduced at the input is delayed up to p times a minimum delay. A direct tap 27 also makes it possible to take the signal introduced into the delay line 45 when the latter presents a zero relative delay with respect to the signal on the line 46. If one calls 8T this minimum delay the product p times 8T equals ΔT which is the maximum delay of line 45 and therefore of circuit 41. A multiplexer 49 receives a multiplexing order M and selects a particular tap on delay line 45 to connect it at the input of the adder 47. This multiplexer 49 here plays the same role as in the state of the art cited. Its complexity is however less in the invention since the delay of the delay lines being less there the number of intermediate taps to be selected is less.

Les instructions M de l'invention sont bien entendu différentes de celle de l'état de la technique cité. On remarque cependant que le nombre des ordres de multiplexage contenus dans une instruction de multiplexage M pour une focalisation donnée, est sensiblement égal au nombre des ordres de multiplexage qu'il fallait donner dans l'état de la technique. En effet, en se référant à la figure 2b, on constate que pour 8 cellules il y a 7 lignes à retard à programmer : donc à chaque instruction de multiplexage il y a sept ordres de multiplexage à adresser aux lignes à retard. Dans une configuration classique pour les mêmes 8 cellules, il y aurait 8 lignes à retard donc 8 ordres à adresser. Dans l'invention, il y a donc autant d'ordres à adresser qu'il y a de cellules moins une unité. Pour le reste, la programmation des ordres M est faite comme dans l'état de la technique cité. Elle consiste, pour un point donné de l'espace sur lequel on veut focaliser les ondes, à calculer pour chaque cellule Ci le retard T; correspondant, et à déduire, selon l'organisation hiérarchique définie plus haut, quel retard Ti+1―Ti, Ti+2 ―Ti etc... il y a lieu de réaliser pour chacun des circuits élémentaires. Puis on établit l'instruction de multiplexage relative à cette position qui contient tous les ordres de multiplexage. On établit de même les ordres d'aiguillage A à adresser aux différents aiguillages. Tous ces ordres sont mémorisés. On recommence cette opération autant de fois qu'il y a de points différents à explorer dans le milieu. Les séquences d'ordres relatives à chaque point sont ensuite adressées aux moyens de retard en temps utiles au moment de l'expérimentation.The instructions M of the invention are of course different from that of the state of the art cited. Note, however, that the number of multiplexing orders contained in a multiplexing instruction M for a given focus is substantially equal to the number of multiplexing orders that had to be given in the prior art. Indeed, with reference to FIG. 2b, it can be seen that for 8 cells there are 7 delay lines to be programmed: therefore at each multiplexing instruction there are seven multiplexing orders to be addressed to the delay lines. In a conventional configuration for the same 8 cells, there would be 8 delay lines, therefore 8 orders to be addressed. In the invention, there are therefore as many orders to be addressed as there are cells minus one unit. For the rest, the programming of the M orders is done as in the cited state of the art. It consists, for a given point in space on which we want to focus the waves, to calculate for each cell Ci the delay T ; corresponding, and to deduce, according to the hierarchical organization defined above, what delay T i + 1 ―T i , T i + 2 ―T i etc ... it is necessary to carry out for each of the elementary circuits. Then the multiplexing instruction relating to this position is established which contains all the multiplexing orders. Likewise, the switching orders A are established to be addressed to the different switches. All these orders are memorized. We repeat this operation as many times as there are different points to explore in the middle. The sequences of orders relating to each point are then sent to the delay means in good time at the time of the experiment.

La figure 3b représente une réalisation numérique d'un circuit élémentaire 50 de l'invention. Avant ce circuit 50, des signaux Si(t) et Si+1(t) émanant de cellules Ci et Ci+1 sont envoyés chacun sur un convertisseur analogique-numérique respectivement 51 et 52. Ces convertisseurs sont en relation avec des registres intermédiaires 53 et 54 contenus dans le circuit 50. Un aiguillage 55 oriente sélectivement les contenus de ces registres vers une ligne directe 56 ou vers un ensemble 57 de registres à décalage. L'ensemble 57 contient autant de registres qu'il y a de bits de codage des valeurs échantillonnées des signaux Si(t). Si ces signaux sont codés sur q bits il y a q registres à décalage. Chacun de ces registres à décalage comporte p cases et l'ensemble 57 est synchronisé avec la fréquence d'échantillonnage fech qui pilote les convertisseurs 51 et 52. Une prise directe 28 permet de prélever sans retard le signal introduit dans la ligne à retard 57 quand le retard relatif de ce signal par rapport au signal dans la ligne directe est nul. A chaque impulsion d'échantillonnage le contenu d'une case donnée d'un registre est transmis à la case suivante de ce registre (de Rj à Rj+1). Un multiplexeur 58, recevant un ordre de multiplexage M correspondant à un point P du milieu, extrait les contenus des cases correspondantes des registres. Le sommateur 59 reçoit des signaux quantifiés depuis la ligne directe 56 et depuis la ligne à retard 57. La sortie numérique du sommateur 59 est codée sur q + 1 bits. Quand le circuit 50 est placé dans un étage plus élevé de la hiérarchie il reçoit des signaux quantifiés émanant des circuits élémentaires précédents : il n'est plus raccordé en aval de convertisseur analogique-numérique.FIG. 3b represents a digital embodiment of an elementary circuit 50 of the invention. Before this circuit 50, signals S i (t) and S i + 1 (t) emanating from cells Ci and C i + 1 are each sent to an analog-digital converter 51 and 52 respectively. These converters are related to intermediate registers 53 and 54 contained in circuit 50. A switch 55 selectively directs the contents of these registers to a direct line 56 or to a set 57 of shift registers. The set 57 contains as many registers as there are bits for coding the sampled values of the signals S i (t). If these signals are coded on q bits there are q shift registers. Each of these shift registers has p boxes and the set 57 is synchronized with the sampling frequency f ech which drives the converters 51 and 52. A direct tap 28 allows the signal introduced into the delay line 57 to be taken without delay when the relative delay of this signal compared to the signal in the direct line is zero. At each sampling pulse the content of a given cell of a register is transmitted to the next cell of this register (from R j to R j + 1 ). A multiplexer 58, receiving a multiplexing order M corresponding to a point P in the middle, extracts the contents of the corresponding boxes from the registers. The summer 59 receives quantized signals from the direct line 56 and from the delay line 57. The digital output of the summer 59 is coded on q + 1 bits. When the circuit 50 is placed in a higher stage of the hierarchy it receives quantized signals emanating from the preceding elementary circuits: it is no longer connected downstream of analog-digital converter.

Il est des cas d'utilisation des dispositifs à ultrasons où l'on réalise une antenne ultrasonore sous la forme d'une barrette linéaire de cellules. Sur une antenne de n cellules (par exemple n = 100) on peut sélectionner un groupe restreint de cellules contiguës (par exemple de 8 à 16) avec lesquelles on forme un faisceau ultrasonore dans une direction sensiblement perpendiculaire à l'antenne, ou éventuellement très légèrement incliné par rapport à la normale. Avec de telles sondes on ne cherche pas des dépointages importants. Au contraire on s'arrange pour ne focaliser que des points dont la projection sur la barrette est toujours contenue dans le segment comportant les cellules centrales du groupe des cellules contiguës. On constate, dans ce mode d'exploration, que deux cellules, symétriques par rapport au centre du groupe de cellules choisies, doivent être affectées de retards presque égaux. Donc en définitive leur retard relatif est le plus faible qui soit. Les considérations qui ont prévalu jusqu'ici pour les cellules adjacentes enseignent qu'il y a lieu d'associer des cellules symétriques les unes des autres par rapport aux centre du groupe.There are cases of use of ultrasonic devices where an ultrasound antenna is produced in the form of a linear array of cells. On an antenna of n cells (for example n = 100) one can select a restricted group of contiguous cells (for example from 8 to 16) with which an ultrasonic beam is formed in a direction substantially perpendicular to the antenna, or possibly very slightly tilted from normal. With such probes we are not looking for significant depointing. On the contrary, we manage to focus only on points whose projection on the bar is always contained in the segment comprising the central cells of the group of contiguous cells. In this mode of exploration, it can be seen that two cells, symmetrical with respect to the center of the group of selected cells, must be affected by almost equal delays. So ultimately their relative delay is the lowest there is. The considerations which have prevailed so far for the adjacent cells teach that it is necessary to associate cells symmetrical with each other with respect to the center of the group.

La figure 4 représente une telle architecture pour 8 cellules. Un circuit élémentaire 60 reçoit des signaux en provenance de deux cellules CB1 et CB8 d'une barrette 61. Un deuxième circuit 62 reçoit des signaux en provenance des cellules CB2 et CB7, un troisième circuit 63 en reçoit en provenance des cellules CB3 et CB6, et le quatrième circuit 64 en reçoit en provenance de CB4 et CBS. Les retards T1-8, T2-7, T3.6 et T4.5 des lignes à retard de ces circuits élémentaires sont donc des retards minimum. En effet, le point P ne s'éloigne que de très peu de la médiatrice 65 du groupe des cellules. En définitive la ligne à retard dont le retard maximum est le plus élevé est la ligne à retard produisant le retard T1-8. Ce retard T1-8 correspond à la différence de marche de l'onde quand elle se propage depuis le point P vers la cellule CB1 d'une part et la cellule CB8 d'autre part. Pour toutes les autres lignes à retard les retards relatifs sont inférieurs. On constate ici encore, que ce retard T1-8 qui est le plus grand, est bien inférieur au retard T4-8 qui dans l'exemple serait le plus important. Ce dernier lui est plus de cinq fois supérieur.FIG. 4 represents such an architecture for 8 cells. An elementary circuit 60 receives signals from two cells CB 1 and CB 8 of a strip 61. A second circuit 62 receives signals from cells CB 2 and CB 7 , a third circuit 63 receives signals from cells CB 3 and CB 6 , and the fourth circuit 64 receives it from CB 4 and CB S. Delays T 1-8 , T 2-7 , T 3 . 6 and T 4 . 5 of the delay lines of these elementary circuits are therefore minimum delays. In fact, the point P only moves very slightly away from the perpendicular bisector 65 of the group of cells. Ultimately, the delay line with the highest maximum delay is the delay line producing the delay T 1-8 . This delay T 1-8 corresponds to the difference in path of the wave when it propagates from point P towards the cell CB 1 on the one hand and the cell CB 8 on the other hand. For all other delay lines the relative delays are lower. Here again, it is noted that this delay T 1-8 which is the greatest, is much less than the delay T 4-8 which in the example would be the greatest. The latter is more than five times higher.

Les circuits 60 et 62 à 64 sont reliés à deux circuits élémentaires 66 et 67. Ces deux derniers sont eux-mêmes reliés à un dernier circuit élémentaire 68. Compte tenu des faibles dépointages Omis en oeuvre on pourrait se dispenser de la présence des circuits d'aiguillage (AIG) contenus dans chacun des circuits élémentaires. La présence de ces circuits d'aiguillage réside dans l'aptitude au balayage de la sonde utilisée. En effet les microangulations 8 désignent des points P dont la projection sur la barrette 61 ne peut se trouver au-delà de l'une des cellules centrales (C4, C5). Dès que le milieu 3 a été exploré entre + 0 et ―θ, on fait appel à une autre cellule, d'un côté adéquat, en éliminant du groupe des cellules choisies celle qui se trouve de l'autre côté. De proche en proche on se rend compte que le retard entre deux cellules est ainsi amené à changer de signe. Ceci justifie la présence des circuits d'aiguillage.The circuits 60 and 62 to 64 are connected to two elementary circuits 66 and 67. The latter two are themselves connected to a last elementary circuit 68. In view of the small deviations Omitted in use, one could dispense with the presence of the circuits d 'switch (AIG) contained in each of the elementary circuits. The presence of these routing circuits lies in the scanning ability of the probe used. Indeed, the microangulations 8 designate points P, the projection of which on the bar 61 cannot be beyond one of the central cells (C 4 , C 5 ). As soon as the medium 3 has been explored between + 0 and ―θ, use is made of another cell, on an adequate side, by eliminating from the group of selected cells that which is on the other side. Step by step we realize that the delay between two cells is thus brought to change sign. This justifies the presence of the switching circuits.

Dans cette application le balayage du milieu à étudier a pour conséquence une sélection des cellules CB; utilisées. Le multiplexeur qui effectue cette fonction est d'un type connu. Si l'on veut réaliser l'invention dans cette application sans modifier ce multiplexeur on peut choisir d'effectuer les optimisations des retards relatifs en sortie du premier étage. Les circuits élémentaires du premier étage reçoivent alors des signaux de cellules CB, géographiquement adjacentes (CBi―CBi+1). Dans un deuxième étage (66-67) sont introduits des signaux émanant de circuits élémentaires, 60-62 et 63-64, qui reçoivent eux-mêmes des signaux en provenance de cellules géographiquement symétriques l'une de l'autre par rapport au centre du groupe des cellules contiguës choisies.In this application, the scanning of the medium to be studied results in a selection of the CB cells ; used. The multiplexer which performs this function is of a known type. If one wishes to carry out the invention in this application without modifying this multiplexer, one can choose to carry out the optimizations of the relative delays at the output of the first stage. The elementary circuits of the first stage then receive signals from geographically adjacent cells CB (CB i ―CB i + 1 ). In a second stage (66-67) are introduced signals from elementary circuits, 60-62 and 63-64, which themselves receive signals from cells geographically symmetrical to each other with respect to the center from the group of selected contiguous cells.

La transformation des circuits d'aiguillages pour le passage d'un dispositif d'une fonction réception à une fonction émission ne présente pas de difficulté. Elle impose seulement la réalisation d'un deuxième jeu d'aiguillages interposés entre les différents circuits ou entre les circuits et les cellules. Ce deuxième jeu reçoit les signaux des lignes à retard et les applique aux cellules piézoélectriques. Il est orienté en sens inverse de celui décrit. Il est conforme par sa conception.The transformation of the switching circuits for the passage of a device from a reception function to a transmission function does not present any difficulty. It only requires the production of a second set of switches interposed between the different circuits or between the circuits and the cells. This second set receives the signals from the delay lines and applies them to the piezoelectric cells. It is oriented in the opposite direction to that described. It conforms by design.

Claims (10)

1. A device for the electronic focussing of ultrasonic waves wherein an ultrasonic wave (2) is propagated in one and/or the other direction, between a network (4) of piezoelectric cells (5) and a focal point (P) situated in the interior of a medium (3), wherein the electric signal Si(t) corresponding to this wave is transmitted with different delays (T;) for each cell (Ci), such delays being dependent for each cell on the relative positions of the focal point and the cell in question, and wherein the means for creating the delays comprise delay circuits connected with the cells, such means for the creation of delays comprising a hierarchical system (figure 1c) of elementary circuits (7, 11 and 13) each furnished with a delay line (8) connected, in parallel with a direct line (9) to a centralizer (10) and in that the delay (Ti+1 -T;) of the delay line in a circuit is a function of the relative delay having to obtain between two cells (C; and Ci+1) or two circuits (7 and 11) connected with this circuit, characterized in that each elementary circuit (7) comprises a pointer (16 to 26) in order to invert the relative delay between the two cells or between the two circuits connected with such elementary circuit.
2. The device as claimed in claim 1, characterized in that the two cells or the two circuits connected with a circuit are mutually adjacent to each other (i and i+1).
3. The device as claimed in any one of the claims 1 and 2, characterized in that it comprises means in order to ensure that an ultrasonic wave is propagated from the cells towards the emitting focal point.
4. The device as claimed in any one of the claims 1 and 2, characterized in that it comprises means (10) in order to ensure that the wave is propagated from the focal point towards the receiving cells.
5. The device as claimed in claim 3 and in claim 4, characterized in that the cells are piezoelectric reversible cells.
6. The device as claimed in claim 3, characterized in that the centralizer is a point of electrical connection.
7. The device as claimed in claim 4, characterized in that the centralizer is an adder (10).
8. The device as claimed in any one of the claims 1 through 7, characterized in that the number of stages of the hierarchy of circuits is equal to the logarithm to the base 2 of the number of cells.
9. The device as claimed in claim 1, characterized in that two cells (CB1 and CB8) connected with a common elementary circuit (60) are placed symmetrically in relation to the center (65) of a group (CB1 to CB8) of cells of which they form a part.
10. The device as claimed in claim 1, characterized in that the two circuits (66 and 67) connected with a common elementary circuit (68) receive signals originating from the cells (CB1, CB2, CB7 and CB8) placed symmetrically in relation to the center (65) of a group of cells of which they form a part.
EP85401266A 1984-07-10 1985-06-25 Electronic focusing device for ultrasonic waves Expired EP0169123B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85401266T ATE41543T1 (en) 1984-07-10 1985-06-25 ELECTRONIC FOCUSING DEVICE FOR ULTRASOUND WAVES.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8410942A FR2567670B1 (en) 1984-07-10 1984-07-10 ELECTRONIC FOCUSING DEVICE OF ULTRASONIC WAVES
FR8410942 1984-07-10

Publications (2)

Publication Number Publication Date
EP0169123A1 EP0169123A1 (en) 1986-01-22
EP0169123B1 true EP0169123B1 (en) 1989-03-15

Family

ID=9305971

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85401266A Expired EP0169123B1 (en) 1984-07-10 1985-06-25 Electronic focusing device for ultrasonic waves

Country Status (6)

Country Link
US (1) US4779242A (en)
EP (1) EP0169123B1 (en)
JP (1) JPH0656381B2 (en)
AT (1) ATE41543T1 (en)
DE (1) DE3568886D1 (en)
FR (1) FR2567670B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959998A (en) * 1986-04-11 1990-10-02 Kabushiki Kaisha Toshiba Ultrasonic imaging apparatus
FR2652654A1 (en) * 1989-09-29 1991-04-05 Philips Electronique Lab ULTRASONIC ECHOGRAPHER USING A DIGITAL RECEIVE WAY FORMATION DEVICE.
US5271276A (en) * 1990-11-28 1993-12-21 Hitachi, Ltd. Phase regulating apparatus of ultrasonic measuring devices
US6504505B1 (en) * 2000-10-30 2003-01-07 Hughes Electronics Corporation Phase control network for active phased array antennas

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE376596C (en) * 1919-06-25 1923-05-31 Steward Davit & Equipment Corp Device to send sound in a certain direction, especially for underwater sound purposes
NL154011B (en) * 1967-04-15 1977-07-15 Philips Nv LISTENING SYSTEM.
US3560985A (en) * 1967-08-04 1971-02-02 Itt Compact steerable antenna array
US3821740A (en) * 1972-07-03 1974-06-28 Raytheon Co Super directive system
GB1604159A (en) * 1977-06-15 1981-12-02 Svejsecentralen Apparatus for providing an ultrasonic sectional view
FR2399661A1 (en) * 1977-08-05 1979-03-02 Anvar Ultrasonic picture scanning equipment - uses grouped receive elements with phase shift and multiplexing to produce picture without shadow (NL 7.2.79)
JPS5584154A (en) * 1978-12-19 1980-06-25 Matsushita Electric Ind Co Ltd Ultrasoniccwave diagnosis device
JPS6019220B2 (en) * 1980-08-13 1985-05-15 松下電工株式会社 charging device
JPS5889007U (en) * 1981-12-11 1983-06-16 株式会社日立メデイコ Ultrasonic receiver

Also Published As

Publication number Publication date
FR2567670B1 (en) 1988-01-22
DE3568886D1 (en) 1989-04-20
JPH0656381B2 (en) 1994-07-27
ATE41543T1 (en) 1989-04-15
FR2567670A1 (en) 1986-01-17
EP0169123A1 (en) 1986-01-22
JPS6135350A (en) 1986-02-19
US4779242A (en) 1988-10-18

Similar Documents

Publication Publication Date Title
EP0415818B1 (en) Control of beam direction for antenna system with electronic scanning and beamforming by computation
EP0735696B1 (en) Iterative decoding method, decoding module and decoder therefor
EP0176155A1 (en) Apparatus with angular focussing for the ultrasonic echographic examination of media
FR2461265A1 (en) ULTRASOUND IMAGE FORMATION DEVICE WITH DIGITAL CONTROL, IN PARTICULAR FOR MEDICAL DIAGNOSIS
FR2617647A1 (en) BEAMFORMING CONTROL DEVICE FOR MULTI-TRANSDUCER NETWORK ANTENNA
FR2485738A1 (en) TRANSDUCER ARRAY FOR ARC SCANNING COMPRISING A DIVERGING LENS
EP0069628A2 (en) Method of and apparatus for rapid imagery using microwaves
EP0169123B1 (en) Electronic focusing device for ultrasonic waves
EP0420346B1 (en) Ultrasonic echograph with digital reception beam former
EP2385625B1 (en) Combiner having acoustic transducers
EP0285481B1 (en) Surface wave device correcting method, especially for a dispersing filter
FR2471093A1 (en) CIRCUIT AND METHOD FOR GAIN CONTROL FOR DIGITAL SIGNAL OF THE TYPE USED IN TELEPHONE DIGITAL SWITCHING SYSTEMS AND LINE JETER EQUIPPED WITH SUCH CIRCUIT
CA2077147C (en) Method and device for controlling an optical wavelength converter
EP0463964B2 (en) System for emission and reception of ultrasound
FR2557306A1 (en) DEVICE FOR DISCRIMINATION OF ECHO RADAR
EP1135855B1 (en) Digital filter with parallel architecture and spread-spectrum signal receiver using same
EP0424240B1 (en) Unidirectional surface wave transducer
FR2596156A1 (en) Ultrasonic echograph made of an electrostrictive material in near Fresnel arrays
FR2525781A1 (en) Ultrasonic sounding device with electronic sweeping - has network distributed transductors with digitally controlled switching networks and digital addressing circuits
FR2593919A1 (en) MEDIUM EXAMINATION APPARATUS BY ULTRASOUND ULTRASONOGRAPHY
FR2509475A2 (en) Radar angular tracking system - uses sum of radar position signal and aerial position signals to determine absolute position
EP0376769B1 (en) Apparatus for line-column matrix transposition using shift registers and permutation operators
EP0250474A1 (en) Method for fabricating a surface wave dispersive filter and filter fabricated according to said method.
FR2635198A1 (en) Integrated light-beam switching device
FR2561403A1 (en) OPTICAL SWITCH

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE GB IT NL

17P Request for examination filed

Effective date: 19860224

17Q First examination report despatched

Effective date: 19880129

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE GB IT NL

REF Corresponds to:

Ref document number: 41543

Country of ref document: AT

Date of ref document: 19890415

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3568886

Country of ref document: DE

Date of ref document: 19890420

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19891215

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIEMENS AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900629

Year of fee payment: 6

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19910625

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19920206

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950522

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950526

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950530

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970101