EP0158746B1 - Visualization method for the direct or indirect detection of the reaction between a specific binding agent and the corresponding acceptor substance in blot overlay assays - Google Patents
Visualization method for the direct or indirect detection of the reaction between a specific binding agent and the corresponding acceptor substance in blot overlay assays Download PDFInfo
- Publication number
- EP0158746B1 EP0158746B1 EP84201559A EP84201559A EP0158746B1 EP 0158746 B1 EP0158746 B1 EP 0158746B1 EP 84201559 A EP84201559 A EP 84201559A EP 84201559 A EP84201559 A EP 84201559A EP 0158746 B1 EP0158746 B1 EP 0158746B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- specific binding
- reaction
- colloidal metal
- binding agent
- acceptor substance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000009870 specific binding Effects 0.000 title claims abstract description 39
- 239000000126 substance Substances 0.000 title claims abstract description 34
- 239000011230 binding agent Substances 0.000 title claims abstract description 33
- 238000003556 assay Methods 0.000 title claims abstract description 28
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 27
- 238000001514 detection method Methods 0.000 title claims description 22
- 238000007794 visualization technique Methods 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract description 57
- 239000002923 metal particle Substances 0.000 claims abstract description 45
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 30
- 239000002609 medium Substances 0.000 claims description 25
- 108090000623 proteins and genes Proteins 0.000 claims description 24
- 229910052737 gold Inorganic materials 0.000 claims description 23
- 239000010931 gold Substances 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 22
- 102000004169 proteins and genes Human genes 0.000 claims description 21
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 20
- 239000002245 particle Substances 0.000 claims description 20
- 239000004332 silver Substances 0.000 claims description 18
- 229910052709 silver Inorganic materials 0.000 claims description 17
- 238000012360 testing method Methods 0.000 claims description 17
- 230000027455 binding Effects 0.000 claims description 16
- 230000003100 immobilizing effect Effects 0.000 claims description 15
- 239000000872 buffer Substances 0.000 claims description 13
- 239000011159 matrix material Substances 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 12
- 238000012546 transfer Methods 0.000 claims description 8
- 102000014914 Carrier Proteins Human genes 0.000 claims description 6
- 108091008324 binding proteins Proteins 0.000 claims description 5
- 239000003153 chemical reaction reagent Substances 0.000 claims description 5
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 150000002739 metals Chemical class 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 238000010791 quenching Methods 0.000 claims description 3
- 230000000171 quenching effect Effects 0.000 claims description 3
- 238000001179 sorption measurement Methods 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 2
- 239000005749 Copper compound Substances 0.000 claims 1
- 239000012911 assay medium Substances 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 150000001880 copper compounds Chemical class 0.000 claims 1
- 238000007429 general method Methods 0.000 claims 1
- 238000000326 densiometry Methods 0.000 abstract description 3
- 239000000427 antigen Substances 0.000 description 26
- 102000036639 antigens Human genes 0.000 description 26
- 108091007433 antigens Proteins 0.000 description 26
- 239000007983 Tris buffer Substances 0.000 description 21
- 239000000499 gel Substances 0.000 description 15
- 239000000020 Nitrocellulose Substances 0.000 description 13
- 241000283973 Oryctolagus cuniculus Species 0.000 description 13
- 229920001220 nitrocellulos Polymers 0.000 description 13
- 210000004027 cell Anatomy 0.000 description 12
- 150000002736 metal compounds Chemical class 0.000 description 12
- 238000003018 immunoassay Methods 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- 230000035945 sensitivity Effects 0.000 description 10
- 210000002966 serum Anatomy 0.000 description 10
- 102000007469 Actins Human genes 0.000 description 9
- 108010085238 Actins Proteins 0.000 description 9
- 238000011534 incubation Methods 0.000 description 9
- 239000008279 sol Substances 0.000 description 9
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 8
- 102000000584 Calmodulin Human genes 0.000 description 8
- 241000699666 Mus <mouse, genus> Species 0.000 description 8
- 102000004243 Tubulin Human genes 0.000 description 8
- 108090000704 Tubulin Proteins 0.000 description 8
- 108010041952 Calmodulin Proteins 0.000 description 7
- 241000283707 Capra Species 0.000 description 7
- 230000004520 agglutination Effects 0.000 description 7
- 229940098773 bovine serum albumin Drugs 0.000 description 7
- 210000004408 hybridoma Anatomy 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000003656 tris buffered saline Substances 0.000 description 6
- 241000287828 Gallus gallus Species 0.000 description 5
- 210000004556 brain Anatomy 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 229920000159 gelatin Polymers 0.000 description 5
- 235000019322 gelatine Nutrition 0.000 description 5
- 210000004072 lung Anatomy 0.000 description 5
- 239000006166 lysate Substances 0.000 description 5
- 229920002521 macromolecule Polymers 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 108090001008 Avidin Proteins 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- -1 diazobenzyl oxymethyl Chemical group 0.000 description 4
- 210000002919 epithelial cell Anatomy 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000012228 culture supernatant Substances 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 238000001502 gel electrophoresis Methods 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 102000013415 peroxidase activity proteins Human genes 0.000 description 3
- 108040007629 peroxidase activity proteins Proteins 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- LMEWRZSPCQHBOB-UHFFFAOYSA-M silver;2-hydroxypropanoate Chemical compound [Ag+].CC(O)C([O-])=O LMEWRZSPCQHBOB-UHFFFAOYSA-M 0.000 description 3
- 210000004989 spleen cell Anatomy 0.000 description 3
- 238000012800 visualization Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- WJWMRPDAOIYYRX-UHFFFAOYSA-N 4-(4-diazoniophenyl)sulfanylbenzenediazonium Chemical compound C1=CC([N+]#N)=CC=C1SC1=CC=C([N+]#N)C=C1 WJWMRPDAOIYYRX-UHFFFAOYSA-N 0.000 description 2
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000001828 Gelatine Substances 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 244000118681 Iresine herbstii Species 0.000 description 2
- 108090001090 Lectins Proteins 0.000 description 2
- 102000004856 Lectins Human genes 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 102000029749 Microtubule Human genes 0.000 description 2
- 108091022875 Microtubule Proteins 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 230000035508 accumulation Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 238000004737 colorimetric analysis Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000093 cytochemical effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 239000002523 lectin Substances 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 229910052976 metal sulfide Inorganic materials 0.000 description 2
- 201000000050 myeloid neoplasm Diseases 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000012723 sample buffer Substances 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 238000013207 serial dilution Methods 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000007447 staining method Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000012085 test solution Substances 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- IHPYMWDTONKSCO-UHFFFAOYSA-N 2,2'-piperazine-1,4-diylbisethanesulfonic acid Chemical compound OS(=O)(=O)CCN1CCN(CCS(O)(=O)=O)CC1 IHPYMWDTONKSCO-UHFFFAOYSA-N 0.000 description 1
- JKFYKCYQEWQPTM-UHFFFAOYSA-N 2-azaniumyl-2-(4-fluorophenyl)acetate Chemical compound OC(=O)C(N)C1=CC=C(F)C=C1 JKFYKCYQEWQPTM-UHFFFAOYSA-N 0.000 description 1
- HKJKONMZMPUGHJ-UHFFFAOYSA-N 4-amino-5-hydroxy-3-[(4-nitrophenyl)diazenyl]-6-phenyldiazenylnaphthalene-2,7-disulfonic acid Chemical compound OS(=O)(=O)C1=CC2=CC(S(O)(=O)=O)=C(N=NC=3C=CC=CC=3)C(O)=C2C(N)=C1N=NC1=CC=C([N+]([O-])=O)C=C1 HKJKONMZMPUGHJ-UHFFFAOYSA-N 0.000 description 1
- 102000010825 Actinin Human genes 0.000 description 1
- 108010063503 Actinin Proteins 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 208000002109 Argyria Diseases 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 238000011537 Coomassie blue staining Methods 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 239000006145 Eagle's minimal essential medium Substances 0.000 description 1
- 102000013366 Filamin Human genes 0.000 description 1
- 108060002900 Filamin Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 101000585553 Homo sapiens Glycodelin Proteins 0.000 description 1
- 108091077621 MAPRE family Proteins 0.000 description 1
- 102000002151 Microfilament Proteins Human genes 0.000 description 1
- 102000009664 Microtubule-Associated Proteins Human genes 0.000 description 1
- 102000003505 Myosin Human genes 0.000 description 1
- 108060008487 Myosin Proteins 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000007990 PIPES buffer Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 239000012722 SDS sample buffer Substances 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 229910021612 Silver iodide Inorganic materials 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 102000005937 Tropomyosin Human genes 0.000 description 1
- 108010030743 Tropomyosin Proteins 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 108091000387 actin binding proteins Proteins 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 1
- 230000001745 anti-biotin effect Effects 0.000 description 1
- 230000002767 anti-calmodulin effect Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- CUGMJFZCCDSABL-UHFFFAOYSA-N arsenic(3+);trisulfide Chemical compound [S-2].[S-2].[S-2].[As+3].[As+3] CUGMJFZCCDSABL-UHFFFAOYSA-N 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 108091000084 calmodulin binding Proteins 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- VQWFNAGFNGABOH-UHFFFAOYSA-K chromium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Cr+3] VQWFNAGFNGABOH-UHFFFAOYSA-K 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- 230000003297 denaturating effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000007973 glycine-HCl buffer Substances 0.000 description 1
- 239000011544 gradient gel Substances 0.000 description 1
- 230000035931 haemagglutination Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 238000012760 immunocytochemical staining Methods 0.000 description 1
- 238000010324 immunological assay Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- 238000001155 isoelectric focusing Methods 0.000 description 1
- 229910052981 lead sulfide Inorganic materials 0.000 description 1
- 229940056932 lead sulfide Drugs 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- IPJKJLXEVHOKSE-UHFFFAOYSA-L manganese dihydroxide Chemical compound [OH-].[OH-].[Mn+2] IPJKJLXEVHOKSE-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000005497 microtitration Methods 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000003118 sandwich ELISA Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 150000003378 silver Chemical class 0.000 description 1
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 1
- 229940045105 silver iodide Drugs 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- QXKXDIKCIPXUPL-UHFFFAOYSA-N sulfanylidenemercury Chemical compound [Hg]=S QXKXDIKCIPXUPL-UHFFFAOYSA-N 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/531—Production of immunochemical test materials
- G01N33/532—Production of labelled immunochemicals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/558—Immunoassay; Biospecific binding assay; Materials therefor using diffusion or migration of antigen or antibody
- G01N33/559—Immunoassay; Biospecific binding assay; Materials therefor using diffusion or migration of antigen or antibody through a gel, e.g. Ouchterlony technique
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S436/00—Chemistry: analytical and immunological testing
- Y10S436/805—Optical property
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S436/00—Chemistry: analytical and immunological testing
- Y10S436/807—Apparatus included in process claim, e.g. physical support structures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S436/00—Chemistry: analytical and immunological testing
- Y10S436/824—Immunological separation techniques
Definitions
- the present invention relates to a method for the detection and/or determination in blot overlay assays of an agglomerate formed by a binding agent and the corresponding acceptor substance.
- the latter substance is usually contained in an aqueous test sample and becomes at a later stage of the assay adsorbed and/or covalently linked to an immobilizing matrix.
- immobilizing matrices are nitrocellulose (NC) film (thin sheets of nitric acid-esterified cellulose of known porosity), diazobenzyl oxymethyl (DBM)- and diazophenylthioether (DPT) modified cellulose paper, paper or cellulose acetate activated with cyanogen bromide, and Nylon based membranes such as Gene Screen and Zetabind.
- NC nitrocellulose
- DBM diazobenzyl oxymethyl
- DPT diazophenylthioether
- the latter is a nylon matrix (a polyhexamethylene adipamine, referred to as Nylon 66) modified by the introduction of numerous tertiary amino groups during manufacturing. Said immobilizing matrices are commonly referred to as blotting media . (See for example J.M. Gershoni and G.E. Pallade, Analytical Biochemistry 131 , 1-15, (1983)). Blot overlay assay methods may generally be divided in two different techniques:
- Lectins are used to detect glycoproteins.
- Blot overlay assays are already widely used for testing the specificity of antibodies and for screening of the production of monoclonal antibodies.
- protein-protein e.g. calmodulin or actin binding proteins
- protein-ligand e.g. avidin-biotin
- An essential part of the blot overlay assays is the method used for visualizing the immobilized acceptor substance.
- Direct and indirect techniques exist. The visualization principles make use of markers: radioactive isotopes (3H, 14C, 32P, 35S or 125I), followed by autoradiographic development; enzymes which can form insoluble coloured products, or fluorochromes.
- the marker is linked to the specific binding agent.
- the indirect method it is linked to a macromolecule that can specifically bind to the first specific binding agent. If the latter is an antibody, the macromolecule can be protein A or a secondary antibody. More step techniques like the avidin biotinylated horseradish peroxidase complex (ABC) and unlabelled peroxidase anti-peroxidase (PAP) methods can also be used for antibodies.
- ABS avidin biotinylated horseradish peroxidase complex
- PAP peroxidase anti-peroxidase
- the essential point of the present invention is the use of a dispersion of a metal or metal compound or nuclei coated with a metal or metal compound as the visualization and/or detection principle in blot overlay techniques.
- the term "colloidal metal particles" used in the text is meant to include dispersions of particles, optionally a sol, consisting of a metal, a metal compound or nuclei coated with a metal or metal compound.
- Colloidal metal particles can be prepared following art-known procedures, such as, for preparing colloidal gold, silver or iron oxide. Colloidal metal particles can be attached directly or indirectly to the specific binding protein or the acceptor substance, or to a macromolecule that binds specifically to the first specific binding agent, for example protein A, secondary antibody (in case of a primary antibody), or streptavidin and avidin (in case one of the components is biotinylated), with retention of most of the original binding activities, following art-known procedures. Under attaching is understood any chemical or physical binding, such as binding via covalent bonds, via hydrogen bridges, polar attraction and adsorption.
- the particle size of the colloidal metal particles are preferably between 3 nm to 100 nm and more preferably between 5 nm and 50 nm.
- colloidal metal particles that can be attached to specific binding agents, the metals platinum, gold, silver and copper, and the metal compounds, silver iodide, silver bromide, copper hydrous oxide, iron oxide, iron hydroxide or hydrous oxide, aluminium hydroxide or hydrous oxide, chromium hydroxide or hydrous oxide, vanadium oxide, arsenic sulfide, manganese hydroxide, lead sulfide, mercury sulfide, barium sulfate and titanium dioxide have been described. It is also known that colloids consisting of nuclei, coated with the above mentioned metals or metal compounds can be used. These particles have similar properties as the metal or metal compound colloids but size, density and metal content can be optimally combined.
- colloidal metal particles or metal compounds which can be linked to specific binding agents without destroying their binding activity, and which give a colour intensity in blot overlay assays sufficient to be seen by the naked eye can be used.
- the sensitivities are equal or superior to those obtained with gold or silver.
- colloidal metal particles in particular those of gold sols, which are covered on the surface with specific binding agents such as antibodies, lectins, protein A, avidin, and many others, or even acceptor proteins such as antigens is now well established in many cytochemical marking techniques in transmission and scanning electron microscopy.
- An example of the use of a colloidal metal particle consisting of a polymer coated with a metal is dextran coated iron which, when attached to antibodies, provides a very useful marker for transmission electron microscopy. These uses, however, exploit the typical electron opacity of these markers (transmission EM) or their potential to emit secondary electrons or backscatter primary electrons (scanning EM).
- Colloidal metal particles are also used as markers for light microscopic cytochemical marking techniques after it was shown that accumulations of such colloidal metal particles at binding sites in tissue slides or at cell surfaces could be seen provided that a light microscope was used to look at the preparation.
- Colloidal metal particles are also used for certain in vitro qualitative and quantitative determinations of immunological components, such as haptens, antigens and antibodies in an aqueous medium. These techniques have been called sol particle immunoassays, and passive gold agglutination (Geoghegan).
- the passive gold agglutination technique is based on the agglutination of a gold labelled antigen (gold particles 18-20 nm) by unlabelled antibody, and involves the use of a standard microtiter set, wherein non-aggregated gold flows down the sides of the wells making a red streak.
- This technique is analogous to classical passive hemagglutination and is equally sensitive and has been claimed to have potential for reverse agglutination in which it is the antibody which is labelled with gold.
- Sol particle immunoassays fall into two categories. The first is called homogeneous sol particle Immunoassay and is based on the agglutination of antibody labelled colloidal particles by immunochemically bi- or multivalent antigens or by haptens coupled to a carrier protein. The agglutination results in colour reduction as measured by colorimetry with buffer as blank. The agglutination of the colloidal metal particles may then be inhibited by free hapten molecules from the sample. Such methods are described in European Patent No. 0007654.
- the second type of sol particle immunoassay is based on bound/free colloidal metal particle conjugate separation methods analogous to radioimmunoassay and enzyme-immunoassay. Such methods are described in European Patent No. 0007654.
- One such method is called Sandwich Sol Particle Immunoassay (SSPIA) and is analogous to a sandwich ELISA or solid phase sandwich radioimmunoassay.
- SSPIA Sandwich Sol Particle Immunoassay
- a SSPIA typically an antibody against the antigen to be determined is first adsorbed on the surface of a microtitration plate (e.g. made of polystyrene). A sample (antigen standard or blank), dissolved in an appropriate buffer system is pipetted into the wells coated with antibody and incubated appropriately.
- Gold-labelled antibody is added and the reaction mixture further incubated. The wells are aspirated and washed to remove the unbound conjugate. Finally, the bound immune complex together with the homogenized colloidal metal particles are disengaged. Either the colour intensity of the dispersion obtained is inspected visually or the metal concentration is measured by means of a colorimeter. The visual inspection method (e.g. the colour of the dispersed gold) could only be used at higher antigen concentrations.
- sol particle assays have also been descibed to be useful for non-immunological assays, in general "for the detection and/or determination of one or more components of the reaction between a specific binding protein and the corresponding bindable substance in an aqueous test sample, whilst applying the known binding affinity of such components for one another, wherein one or more labelled components are used obtained by coupling directly or indirectly the desired component of said reaction to particles of an aqueous dispersion of a metal, metal compound or polymer nuclei coated with a metal or metal compound, having a particle size of at least 5 nm, whereby during the reaction or after an adequate reaction time, optionally after separation of the bound and free labelled components, the physical properties and/or the amount of the metal and/or the formed metal containing agglomerate is/are determined in the test sample or one of the derived fractions, following art-known procedures, which determination provides a qualitative and/or quantitative indication of the component or components to be detected and/or determined".
- the present invention is concerned with the use of colloidal metal particles as markers in blot overlay assay methods which use is entirely novel and has surprisingly proved to be possible.
- Colloidal metal particles are meant to include a dispersion of a metal, metal compound or nuclei coated with a metal or metal compound.
- colloidal metal particles as markers applies to all forms of blot overlay assays and introduces the advantage that colloidal metal particles accumulating at the binding sites at the surface of the blotting medium become directly visible by the naked eye with a sensitivity at least comparable with the very high sensitivity of existing techniques such as enzyme based blot overlay assays. It is stressed that the invention would not have practical value if the last point could not be included. It has the important advantage that the assay can be read without the need for a secondary enzymatic reaction, autoradiography or viewing system for fluorescent dyes, or for a disengagement of the bound colloidal metal particles for subsequent measurement with the naked eye (low sensitivity), colorimetry or CRAAS (higher sensitivity) like in the sandwich sol particle immunoassays. Its major advantage is its simplicity, because the colour develops during the reaction. This makes it possible to stop the reaction when the desired signal is produced, or to calibrate the system in order to obtain a predetermined result within a fixed time limit.
- the use of gold labelled antibodies is much simpler than and as sensitive as a reputedly very sensitive immunoperoxidase method.
- This simple assay can be used for a test kit to indirectly detect the presence of specific binding agents to an acceptor substance which is attached to the blotting medium, and a colloidal metal particle labelled specific binding agent for the first specific binding agent. If the specific binding agent is an antibody, this can be colloidal metal particle labelled secondary antibody or protein A.
- the process comprises the steps of:
- This invention is also related to test kits to be used for the direct or indirect determination of one of the components of the reaction between a specific binding agent and the corresponding acceptor substance in a blot overlay assay containing: a colloidal metal particle labelled component which has been obtained by coupling a component of said reaction or a component that can be used to detect this reaction indirectly to colloidal metal particles as defined above and other reagents.
- the reaction is of the immunological type
- the test kit can be used for sandwich blot overlay assays (see example III) and for the determination of the presence of antibodies in serum against selected antigens (see example I).
- An optional feature of the present invention makes use of the fact that the detection of the colloidal metal particles bound at the surface of the blotting medium, as the result of a blot overlay assay, can also be visualized indirectly and/or enhanced by applying a physical developer which can be reduced to the corresponding metals.
- Suitable physical developers are, for example, silver lactate and silver nitrate.
- silver lactate and silver nitrate are, for example, silver lactate and silver nitrate.
- the reaction initially takes place at the surface of the metal particles which catalyse the reduction, and becomes subsequently auto-catalytic on these seeds. It results in the formation of a black, highly contrasting signal, provided by the accumulation of metallic silver. This provides a considerable increase in sensitivity.
- the blots have to be fixed with a fixative used for micrograph prints.
- the major advantage of the optional feature of this invention lies in its enormous sensitivity which exceeds that of any other existing detection method for blot overlay assays. It can be used when the user wants to economise on the quantity of reagents used, or when extremely low amounts of acceptor substance and/or specific binding agent are available.
- An additional optional feature of the present invention is the use of a photographic fixer, decreasing the background and improving the stability of the reaction product of the physical developer.
- a sandwich immuno-blot overlay assay for the detection of antigens in an aqueous test sample the detection of IgG's in an aqueous test sample.
- Direct detection of an antigen attached to NC paper with colloidal silver labelled primary antibody detection of spots of mouse IgG's with colloidal silver labelled goat antibodies to mouse IgG.
Landscapes
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Cell Biology (AREA)
- General Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Dispersion Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Communication Control (AREA)
- Details Of Television Scanning (AREA)
- Conductive Materials (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
- The present invention relates to a method for the detection and/or determination in blot overlay assays of an agglomerate formed by a binding agent and the corresponding acceptor substance. The latter substance is usually contained in an aqueous test sample and becomes at a later stage of the assay adsorbed and/or covalently linked to an immobilizing matrix. Examples of immobilizing matrices are nitrocellulose (NC) film (thin sheets of nitric acid-esterified cellulose of known porosity), diazobenzyl oxymethyl (DBM)- and diazophenylthioether (DPT) modified cellulose paper, paper or cellulose acetate activated with cyanogen bromide, and Nylon based membranes such as Gene Screen and Zetabind. The latter is a nylon matrix (a polyhexamethylene adipamine, referred to as Nylon 66) modified by the introduction of numerous tertiary amino groups during manufacturing. Said immobilizing matrices are commonly referred to as blotting media. (See for example J.M. Gershoni and G.E. Pallade, Analytical Biochemistry 131, 1-15, (1983)). Blot overlay assay methods may generally be divided in two different techniques:
- A. In the sandwich overlay assay, the purified or enriched specific binding agent is attached to the immobilizing matrix according to B (see below), preferably as a small spot, and the acceptor substance is allowed to bind to it, resulting in immobilization on the matrix of the acceptor substance which can subsequently be detected. Due to the specificity of the specific binding agent, this will allow one to isolate the acceptor substance out of a complex test sample such as urine, plasma, serum, other body fluids, cell free translation systems, cell and tissue lysates, and to use this approach for semi-quantitative and/or qualitative (diagnostic) assays: the so-called sandwich blot overlay assay (SBOA). Until now, the practical value of SBOA's is negligible because only relatively complex detection methods are available today. Due to the embodiment of this invention detection is made very simple and the interest in SBOA for diagnostic use may be increased.
- B. In the direct blot overlay assay, the acceptor substance is directly attached to a blotting medium by a procedure known as "transferring" or "blotting". Different ways well-known from the literature of achieving this exist. For example, small drops containing a known or unknown amount of acceptor substance (purified or not) in an aqueous solution, of the order of 1 µl (but other volumes apply as well) are spotted on the blotting medium in order to allow the acceptor substance to become attached to the blotting medium. Such dot-blots can potentially be used for the diagnostic detection of the presence of specific binding agents to the immobilized acceptor substance in various body fluids. If the acceptor substance is part of a complex mixture, the latter can first be separated by a variety of chromatographic techniques such as, thin layer chromatography or electrophoretic techniques, for example in polyacrylamide gels, such as sodium dodecyl sulfate (SDS) electrophoresis, iso-electric focusing, 2-D gel electrophoresis, gradient gel and acid-urea gel electrophoresis and non-denaturating gel electrophoresis, in order to facilitate identification of the acceptor substance. In some cases, like for nucleic acids, agar gels can also be used. The electrophoretically resolved components (such as proteins, peptides and nucleic acids) are then transferred to the immobilizing matrix by procedures known as capillary-, vacuum- or electro-transfer (or-blotting). The components are then immobilized on the blotting medium while largely retaining the original electrophoretic pattern. This complete pattern can be visualized with known staining techniques such as amido black and Coomassie blue and the component under investigation (the acceptor substance) can be detected (see further), and its location be related to the whole electrophoretic pattern.
- So far, most of the specific binding agents used have been proteins which bind to well-defined domains of the acceptor substance. Lectins are used to detect glycoproteins. Polyclonal and monoclonal antibodies to detect their corresponding antigens or haptens, (e.g. biotin or biotinylated DNA probes with anti-biotin, DNP on dinitrophenylated proteins with anti-DNP). Blot overlay assays are already widely used for testing the specificity of antibodies and for screening of the production of monoclonal antibodies. Besides these widely used systems, many other protein-protein (e.g. calmodulin or actin binding proteins), or protein-ligand (e.g. avidin-biotin) interactions in which one of the components is immobilized can be analyzed. These include DNA-protein and RNA-protein interactions, receptor-ligand interactions, and in general any other macromolecule-macromolecule interactions of sufficient specificity and affinity.
- An essential part of the blot overlay assays is the method used for visualizing the immobilized acceptor substance. Direct and indirect techniques exist. The visualization principles make use of markers: radioactive isotopes (³H, ¹⁴C, ³²P, ³⁵S or ¹²⁵I), followed by autoradiographic development; enzymes which can form insoluble coloured products, or fluorochromes. In direct methods, the marker is linked to the specific binding agent. In the indirect method, it is linked to a macromolecule that can specifically bind to the first specific binding agent. If the latter is an antibody, the macromolecule can be protein A or a secondary antibody. More step techniques like the avidin biotinylated horseradish peroxidase complex (ABC) and unlabelled peroxidase anti-peroxidase (PAP) methods can also be used for antibodies.
- The essential point of the present invention is the use of a dispersion of a metal or metal compound or nuclei coated with a metal or metal compound as the visualization and/or detection principle in blot overlay techniques. The term "colloidal metal particles" used in the text is meant to include dispersions of particles, optionally a sol, consisting of a metal, a metal compound or nuclei coated with a metal or metal compound.
- Colloidal metal particles can be prepared following art-known procedures, such as, for preparing colloidal gold, silver or iron oxide. Colloidal metal particles can be attached directly or indirectly to the specific binding protein or the acceptor substance, or to a macromolecule that binds specifically to the first specific binding agent, for example protein A, secondary antibody (in case of a primary antibody), or streptavidin and avidin (in case one of the components is biotinylated), with retention of most of the original binding activities, following art-known procedures. Under attaching is understood any chemical or physical binding, such as binding via covalent bonds, via hydrogen bridges, polar attraction and adsorption.
- It has now been found that when a blotting medium with an acceptor substance attached to it, either indirectly (see A) or directly (see B) is incubated with the appropriate concentration of colloidal metal particle labelled specific binding agent (direct detection method) or first with unlabelled specific binding agent and then with a colloidal metal particle labelled macromolecule that can specifically bind to the first specific binding agent (indirect detection method), colloidal metal particles will accumulate at the specific binding sites and surprisingly become visible as the colour characteristic for the colloidal metal particles used. For example, a pink to dark red colour is obtained when a metal such as gold is used and yellow to brown/black when silver is used. This colour forms a signal that can be qualitatively read with the naked eye or optionally measured with art-known spectrophotometric procedures such as densitometry.
- The particle size of the colloidal metal particles are preferably between 3 nm to 100 nm and more preferably between 5 nm and 50 nm.
- As examples of colloidal metal particles that can be attached to specific binding agents, the metals platinum, gold, silver and copper, and the metal compounds, silver iodide, silver bromide, copper hydrous oxide, iron oxide, iron hydroxide or hydrous oxide, aluminium hydroxide or hydrous oxide, chromium hydroxide or hydrous oxide, vanadium oxide, arsenic sulfide, manganese hydroxide, lead sulfide, mercury sulfide, barium sulfate and titanium dioxide have been described. It is also known that colloids consisting of nuclei, coated with the above mentioned metals or metal compounds can be used. These particles have similar properties as the metal or metal compound colloids but size, density and metal content can be optimally combined. In general, all colloidal metal particles or metal compounds which can be linked to specific binding agents without destroying their binding activity, and which give a colour intensity in blot overlay assays sufficient to be seen by the naked eye can be used. Preferably the sensitivities are equal or superior to those obtained with gold or silver.
- The use of colloidal metal particles, in particular those of gold sols, which are covered on the surface with specific binding agents such as antibodies, lectins, protein A, avidin, and many others, or even acceptor proteins such as antigens is now well established in many cytochemical marking techniques in transmission and scanning electron microscopy. An example of the use of a colloidal metal particle consisting of a polymer coated with a metal is dextran coated iron which, when attached to antibodies, provides a very useful marker for transmission electron microscopy. These uses, however, exploit the typical electron opacity of these markers (transmission EM) or their potential to emit secondary electrons or backscatter primary electrons (scanning EM).
- Colloidal metal particles, particularly those made of gold and silver, are also used as markers for light microscopic cytochemical marking techniques after it was shown that accumulations of such colloidal metal particles at binding sites in tissue slides or at cell surfaces could be seen provided that a light microscope was used to look at the preparation.
- Colloidal metal particles are also used for certain in vitro qualitative and quantitative determinations of immunological components, such as haptens, antigens and antibodies in an aqueous medium. These techniques have been called sol particle immunoassays, and passive gold agglutination (Geoghegan).
- The passive gold agglutination technique is based on the agglutination of a gold labelled antigen (gold particles 18-20 nm) by unlabelled antibody, and involves the use of a standard microtiter set, wherein non-aggregated gold flows down the sides of the wells making a red streak. This technique is analogous to classical passive hemagglutination and is equally sensitive and has been claimed to have potential for reverse agglutination in which it is the antibody which is labelled with gold.
- Sol particle immunoassays fall into two categories. The first is called homogeneous sol particle Immunoassay and is based on the agglutination of antibody labelled colloidal particles by immunochemically bi- or multivalent antigens or by haptens coupled to a carrier protein. The agglutination results in colour reduction as measured by colorimetry with buffer as blank. The agglutination of the colloidal metal particles may then be inhibited by free hapten molecules from the sample. Such methods are described in European Patent No. 0007654.
- The second type of sol particle immunoassay is based on bound/free colloidal metal particle conjugate separation methods analogous to radioimmunoassay and enzyme-immunoassay. Such methods are described in European Patent No. 0007654. One such method is called Sandwich Sol Particle Immunoassay (SSPIA) and is analogous to a sandwich ELISA or solid phase sandwich radioimmunoassay. In a SSPIA typically an antibody against the antigen to be determined is first adsorbed on the surface of a microtitration plate (e.g. made of polystyrene). A sample (antigen standard or blank), dissolved in an appropriate buffer system is pipetted into the wells coated with antibody and incubated appropriately. Gold-labelled antibody is added and the reaction mixture further incubated. The wells are aspirated and washed to remove the unbound conjugate. Finally, the bound immune complex together with the homogenized colloidal metal particles are disengaged. Either the colour intensity of the dispersion obtained is inspected visually or the metal concentration is measured by means of a colorimeter. The visual inspection method (e.g. the colour of the dispersed gold) could only be used at higher antigen concentrations.
- It should be noted that sol particle assays have also been descibed to be useful for non-immunological assays, in general "for the detection and/or determination of one or more components of the reaction between a specific binding protein and the corresponding bindable substance in an aqueous test sample, whilst applying the known binding affinity of such components for one another, wherein one or more labelled components are used obtained by coupling directly or indirectly the desired component of said reaction to particles of an aqueous dispersion of a metal, metal compound or polymer nuclei coated with a metal or metal compound, having a particle size of at least 5 nm, whereby during the reaction or after an adequate reaction time, optionally after separation of the bound and free labelled components, the physical properties and/or the amount of the metal and/or the formed metal containing agglomerate is/are determined in the test sample or one of the derived fractions, following art-known procedures, which determination provides a qualitative and/or quantitative indication of the component or components to be detected and/or determined".
- The present invention is concerned with the use of colloidal metal particles as markers in blot overlay assay methods which use is entirely novel and has surprisingly proved to be possible.
- Colloidal metal particles are meant to include a dispersion of a metal, metal compound or nuclei coated with a metal or metal compound.
- The use of colloidal metal particles as markers applies to all forms of blot overlay assays and introduces the advantage that colloidal metal particles accumulating at the binding sites at the surface of the blotting medium become directly visible by the naked eye with a sensitivity at least comparable with the very high sensitivity of existing techniques such as enzyme based blot overlay assays. It is stressed that the invention would not have practical value if the last point could not be included. It has the important advantage that the assay can be read without the need for a secondary enzymatic reaction, autoradiography or viewing system for fluorescent dyes, or for a disengagement of the bound colloidal metal particles for subsequent measurement with the naked eye (low sensitivity), colorimetry or CRAAS (higher sensitivity) like in the sandwich sol particle immunoassays. Its major advantage is its simplicity, because the colour develops during the reaction. This makes it possible to stop the reaction when the desired signal is produced, or to calibrate the system in order to obtain a predetermined result within a fixed time limit.
- The use of gold labelled antibodies is much simpler than and as sensitive as a reputedly very sensitive immunoperoxidase method. This simple assay can be used for a test kit to indirectly detect the presence of specific binding agents to an acceptor substance which is attached to the blotting medium, and a colloidal metal particle labelled specific binding agent for the first specific binding agent. If the specific binding agent is an antibody, this can be colloidal metal particle labelled secondary antibody or protein A. This could be a very simple dip stick test, for example a spot blot overlay immunoassay for the rapid screening of the presence of antibodies to a selected antigen in an aqueous test sample such as serum.
-
- i. Immobilizing the acceptor substance to an immobilizing matrix, known as blotting medium.
- i.i. Either by direct adsorption and/or covalent binding generally called blotting, optionally after applying a procedure of electrophoretic separation and applying a procedure of transfer or blotting from the electrophoretic medium to the blotting medium and subsequently quenching remaining protein binding sites following art-known procedures such as use of BSA, gelatin, PEG or Tween®20.
- i.ii. Or by allowing the acceptor substance to become bound by a specific binding agent which has become immobilized to the blotting medium by contacting said blotting medium with an aqueous solution which contains the acceptor substance.
- ii. Contacting the blotting medium of i) for a given time, after which it is washed and air-dried, with:
- ii.i. Either colloidal metal particle labelled specific binding agents, at an appropriate concentration .
- ii.ii. Or first unlabelled specific binding agent at an appropriate concentration and then a colloidal metal labelled protein specific for the unlabelled specific binding agent.
- iii. Reading the coloured signal produced by and characteristic for the bound colloidal metal particles at the surface of the blotting medium with the naked eye or using art-known spectrophotometric techniques such as densitometry.
- This invention is also related to test kits to be used for the direct or indirect determination of one of the components of the reaction between a specific binding agent and the corresponding acceptor substance in a blot overlay assay containing: a colloidal metal particle labelled component which has been obtained by coupling a component of said reaction or a component that can be used to detect this reaction indirectly to colloidal metal particles as defined above and other reagents. If the reaction is of the immunological type, the test kit can be used for sandwich blot overlay assays (see example III) and for the determination of the presence of antibodies in serum against selected antigens (see example I).
- An optional feature of the present invention makes use of the fact that the detection of the colloidal metal particles bound at the surface of the blotting medium, as the result of a blot overlay assay, can also be visualized indirectly and/or enhanced by applying a physical developer which can be reduced to the corresponding metals. Suitable physical developers are, for example, silver lactate and silver nitrate. For example, when silver is used as physical developer, the reaction initially takes place at the surface of the metal particles which catalyse the reduction, and becomes subsequently auto-catalytic on these seeds. It results in the formation of a black, highly contrasting signal, provided by the accumulation of metallic silver. This provides a considerable increase in sensitivity. In order to obtain light-insensitive silver precipitates, we have also discovered that the blots have to be fixed with a fixative used for micrograph prints.
- Physical developers have been used for many years for the visualization of water insoluble metals, especially metal sulfides in tissues (see Danscher, Histochemistry 71, 1-16, 1981). The metal sulfides and metallic silver have a catalytic effect on the reduction of silver ions. Colloidal gold metal in tissue can also be demonstrated with a physical developer and this has been exploited by Holgate et al. (J. Histochem. Cytochem. 31, 938-944, (1983)) for the introduction of the immunogold/silver staining method, which results in a sensitivity much superior to the original immunogold staining method.
- The major advantage of the optional feature of this invention lies in its enormous sensitivity which exceeds that of any other existing detection method for blot overlay assays. It can be used when the user wants to economise on the quantity of reagents used, or when extremely low amounts of acceptor substance and/or specific binding agent are available.
- An additional optional feature of the present invention is the use of a photographic fixer, decreasing the background and improving the stability of the reaction product of the physical developer.
- A simple spot blot overlay immunoassay for the indirect demonstration of antibodies to dog brain tubulin and calmodulin with gold labelled secondary antibodies in serum of immunized rabbits.
-
- 1.1 Raising of antisera
One mg dog brain tubulin (extracted from SDS-polyacrylamide gels) in 1.0 ml buffer (0.1 M Pipes, pH 6.9) or one mg of electrophoretically pure dog brain calmodulin (in H₂O) was mixed with 1,0 ml complete Freund's adjuvant(DIFCO). After homogenization the antigen was injected intradermally at five sites along the spine of white rabbits. Booster injections were given every four weeks. Antigen was prepared in the same way except that incomplete Freund's adjuvant was used. One week, after each booster, rabbits were bled (± 60 ml blood was taken), serum was prepared and stored in aliquots at -20° C until use. - 1.2 Colloidal gold labelled secondary antibodies
These were purchased from Janssen Life Sciences Products, 2340 Beerse, Belgium. Code: GAR G20. These are affinity-purified goat antibodies to rabbit IgG, labelled with 20 nm colloidal gold particles.
Preparation of nitrocellulose paper strips with antigen containing spots
Ten 1 ul drops of 4-fold serial dilutions (starting at 250 ng/ µl) of pure tubulin in 0.1 M PIPES, 1 mM EGTA, 1 mM MgCl₂, pH 6.75 or pure calmodulin in H₂O, were spotted as a row on dry nitrocellulose strips (6 cm x 0.6 cm). When the spots were dried (approximately 5 minutes) remaining protein binding sites on the strips were quenched by incubating them with a solution of 5 % bovine serum albumin (BSA) in 20 mM Tris buffered saline, pH 8.2 for 30 min at 37° C. - 1.3 Test protocol for the detection of tubulin and calmodulin antibodies. Comparison of the use of gold labelled antibodies with the ABC-peroxidase detection method
The buffer used throughout the procedure was 0.1 % BSA Tris (0.1 % BSA in 20 mM Tris-HCl, 0.9 % NaCl pH 8.2, 20 mM NaN₃), unless otherwise stated.- a. Incubation_with primary antiserum
- 2 strips were incubated in stoppered 5 ml plastic tubes with 1 ml rabbit anti-tubulin serum, 1:1000 diluted in 0.1 % BSA-Tris for 2 hours at room temperature.
- 2 strips were incubated as above with the same antiserum absorbed on tubulin covalently linked to Sepharose-4B to serve as a control for antigen specificity.
- 2 strips were incubated as above with 1 ml rabbit anti-calmodulin serum, 1:1000 diluted in 0.1 % BSA-Tris, for 2 hours at room temperature.
- 2 strips were incubated as above with the same absorbed on calmodulin, covalently linked Sepharose®4B. After incubation with the absorbed and non-absorbed primary antisera the strips were washed 3 x 10 minutes in 0.1 % BSA-Tris. One strip of each couple was further incubated with GAR G20, (see 1.3.b).
The other was incubated with the very sensitive Vectastain ABC immunoperoxidase kit, purchased from Vector Laboratories and used according to the instructions of the manufacturer, (see 1.3.c).
- b. Incubation with gold labelled secondary antibody: GAR G20
The washed strips (see 1.3.a) were incubated with GAR G20, diluted at - c. Incubation with the Vectastain kit
The washed strips (see 1.3.a) were incubated with secondary biotinylated antibody solution (1:200 in 0.1 % BSA-Tris) for 1 hour. The strips were washed in an excess 0.1 % BSA-Tris for 3 x 10 minutes and then incubated in the avidin-biotinyl peroxidase complex for 1 hour. The complex was prepared according to the instructions of the manufacturer: 100 ul of reagent A (avidin DH) was added to 10 ml PBS (Dulbecco's, without Mg²⁺ and Ca²⁺). 100 µl of reagent B (biotinylated horseradish peroxidase) was added while continuously stirring. The complex was used after five minutes. The strips were washed in 0.1 % BSA-Tris (2 x 10 minutes) and subsequently in 100 mM Tris-HCl buffer, pH 7.6. The immobilized peroxidase was then visualized with 4-chloro-1-naphtol as the substrate: 20 mg 4-chloro-1-naphtol was dissolved in l ml ethanol and further diluted with 20 ml 100 mM Tris-HCl buffer pH 7.6, warmed to approximately 50° C. 200 µl H₂O₂ 1 % was added, and the substrate solution added with a syringe to the strips through a microfilter (0.2 µm, Millipore) mounted on the syringe. The reaction was allowed to proceed for 5 minutes and the reaction stopped by washing the strips with H₂O and air-drying.
- a. Incubation_with primary antiserum
- 1.4 Evaluation
In the ABC-procedure, positivity is detected as a blue colour. When colloidal gold is used, the positivity is pink-reddish, for the size of gold used (larger gold particles, e.g. 40 nm give a purplish colour). The sensitivity for both methods is entirely comparable and is of the order of 5 ng/µl for tubulin and 30 ng/µl for calmodulin, under the conditions used. The specificity is shown by the negative reaction when the antisera are adsorbed with their respective antigen. - Screening for the presence of monoclonal mouse antibodies to microtubule associated proteins in culture supernatants of growing hybridomas, using gold labelled goat antibodies to mouse IgG.
- 2.1 Immunization of mice
Mice (Balb/C) were injected with a homogenized mixture (see example 1.1.) of rat brain microtubule proteins (100 µg/mouse) (prepared by two cycles of temperature-dependent polymerization-depolymerization) and complete Freund's adjuvans. Injections were given subcutaneously at five sites on the back. Booster injections of antigen (100 µg) prepared with incomplete Freund's adjuvans were given 3 times fortnightly. Three days before fusion of the spleen cells with the myeloma cell line, mice were boosted by intravenous injection of 50 µg antigen/mouse in 100 µl PBS-buffer. - 2.2 Fusion of spleen cells with NS-1 myeloma cells
NS-1 cells were fused with spleen cells of two immunized mice according to art-known procedures and the resulting hybridomas were cultured in five 96-well plates (Nunc) at 37° C in a water saturated atmosphere containing 7 % CO₂. After about 2 weeks of growth, 100 µl of the culture supernatant of wells containing growing hybridomas was taken and tested for the presence of secreted monoclonal antibodies (see 2.4). - 2.3 Preparation of nitrocellulose paper strips onto which a pattern of proteins from an SDS-polyacrylamide gel has been electroblotted
SDS-polyacrylamide gel electrophoresis of the antigen (2 x polymerized microtubule proteins) was carried out according to Laemmli, on a 7.5 % gel. The antigen dissolved and boiled in sample buffer was loaded on top of the stacking gel as a continuous layer, 300 µg per gel. When the dye front had migrated 3 cm into the separating gel, electrophoresis was stopped. A small vertical strip of the gel was cut off for Coomassie blue staining and the remainder was used for electroblotting on nitrocellulose paper. The gel was equilibrated in transfer buffer [25 mM Tris-192 mM glycine/20 % (Vol/Vol) methanol at pH 8.3], for 30 minutes at room temperature. The gel was put on a nitrocellulose sheet (presoaked in buffer) and care was taken to avoid or remove all trapped air bubbles. This was sandwiched between two presoaked filter papers and two nylon screen cushions. This resulted in a tight fit in a closed electrode grid of an EC-electroblot apparatus in which electroblotting was carried out overnight at 400 mA at room temperature. After electrophoretic transfer remaining protein binding sites on the nitrocellulose paper sheet were quenched by incubating the sheets in 5 % BSA in 20 mM Tris buffered saline, pH 8.2, for 30 minutes at 37° C. The nitrocellulose sheet was subsequently cut into 3 mm wide strips, parallel to the direction of electrophoresis. These strips were used for screening the supernatants of hybridoma cells. - 2.4 Detection of monoclonal antibodies
100 ul of each hybridoma culture supernatant was transferred into 3.5 cm long 0.5 ml Eppendorf tips and diluted 1:5 with 0.4 ml 0.1 % BSA-Tris. The tips and strips were provided with a code nr. Each tip received one strip and these were incubated for 2 hours. The strips were washed batch-wise in an excess 0.1 % BSA-Tris and also incubated batch-wise with GAM G20 (goat anti-mouse IgG, labelled with 20 nm colloidal gold particles) purchased from Janssen Life Sciences Products, 2340 Beerse, Belgium. The GAM G20 was diluted with 0.1 % BSA-Tris + 0.4 % gelatin to an
Positivity was clearly visible as pink to reddish bands corresponding to protein bands with a given molecular mass. This very simple screening procedure not only identifies antibody secreting hybridomas, but gives immediate information on the specificity of the concerned antibody and is therefore of great help for selection of interesting antibody secreting hybridomas. - A sandwich immuno-blot overlay assay for the detection of antigens in an aqueous test sample: the detection of IgG's in an aqueous test sample.
- 3.1 Principle of the assay
A small drop (± 1 µl) of a purified or enriched antibody monospecific for the antigen to be determined is blotted on a strip of nitrocellulose paper (or any convenient blotting medium) dried, and free protein binding sites quenched (see example 1.3.). Optionally these antibody containing, quenched strips can be washed in water, air-dried and stored. This strip is then incubated with a volume of antigen containing test solution, during a fixed time. After washing off non-bound substances the strips are further incubated with appropriately diluted colloidal metal particle (for example a sol of gold or silver) labelled monospecific antibody, similar to the one adsorbed onto the blotting medium. Optionally, two monoclonal antibodies, each recognizing a different antigenic epitope can be used. One is attached to the blotting medium, the other is attached to colloidal metal particles. Under fixed conditions, the assay will be able to detect a predetermined minimal concentration of antigen and can be used as a qualitative diagnostic test, provided it can detect a minimally required concentration in a given test solution. - 3.2 Example of the principle: the detection of rabbit IgG's in a buffered solution of rabbit IgG of known concentration
To test the feasibility of the principle of this new sandwich assay, the following experiment was done:- 6 strips of 6 x 0.6 cm of nitrocellulose paper were blotted with drops (1 µl) containing decreasing amounts (1/2 dilution series starting at 125 ng/µl) of affinity purified goat antibodies to rabbit IgG (CAR IgG) as described in example 1.2.
- Remaining protein binding sites were quenched as described in example 1.2. 1 strip (No. 6) was washed in 20 mM Tris-buffer saline, blotted dry on filter paper, air-dried and used after dry overnight storage at room temperature.
- The remaining five strips were incubated in stoppered plastic tubes for 30 minutes at room temperature as follows:
No. 1: with RIgG, 1 ml, 1 µg/ml
No. 2: with RIgG, 1 ml, 0.25 µg/ml
No. 3: with RIgG, 1 ml, 0.063 µg/ml
No. 4: with RIgG, 1 ml, 0.015 µg/ml
No. 5: with RIgG, 1 ml, 0 µg/ml
The rabbit IgG was diluted in 0.1 % BSA-Tris. The strip No. 6 was incubated with 0.25 µg/ml RIgG. - The strips were washed 2 x 10 minutes in 0.1 % BSA-Tris.
- All the strips were incubated for exactly 1 hour at room temperature in GAR G20 (goat antibodies to rabbit IgG, labelled with colloidal gold particles of 20 nm diameter) purchased from Janssen Life Sciences Products, B-2340 Beerse, Belgium. The GAR G20 was diluted at an
- The strips were washed with 0.1 % BSA-Tris, then with water and air-dried.
- 3.3 Evaluation
Spots containing as little as 15 ng adsorbed GAR IgG, become visible as pink dots after incubation for only 30 minutes in 1 ml of a solution containing 15 ng/ml RIgG followed by incubation with 1 ml of GAR G20, 0.0520 nm = 0.2 for one hour. Solutions containing at least this amount of RIgG would have been quoted positive. The result of strip No. 6 is identical with that of strip No. 2, indicating that the strips can be dried after the quenching step, with retention of antibody activity. - Direct detection of an antigen attached to NC paper with colloidal silver labelled primary antibody: detection of spots of mouse IgG's with colloidal silver labelled goat antibodies to mouse IgG.
- NC paper strips (6 cm x 0.6 cm) were blotted with spots of mouse IgG (1 µl) containing a two-fold serial dilution from 250-0.4 ng/µl, as described in example 1.2.
- The remaining protein binding sites were quenched as in example 1.2.
- The strips were incubated with colloidal silver labelled goat antibodies to mouse IgG (purchased from E.Y. Laboratories, SP-0011), diluted 1:100 in 0.1 % BSA-Tris, for 1 h 30 min, at room temperature.
- The strips were washed 2 x 10 minutes with 0.1 % BSA-Tris H₂O and air-dried.
- Positive spots were characterized by a yellow colour. Under these conditions, ± 30 ng in 1 µl spot could be detected.
- Testing the specificity of an affinity-purified rabbit antibody to chicken gizzard actin for actin occurring in a total cell lysate of secondary cultures of chicken embryonic lung epithelial cells, using a blot overlay immunoassay and gold labelled secondary antibody followed by silver enhancement.
- 5.1 Preparation of anti-actin antiserum
Electrophoretically pure chicken gizzard actin was homogenized and injected in rabbits as described for tubulin and calmodulin in example 1.1. Serum was prepared and stored as described in example 1.1. - 5.2 Affinity purification of the antibody to actin
Actin was coupled to Sepharose-4-B-CNBr (Pharmacia) according to the instructions of the manufacturer. The antibody was purified directly from serum. The latter was incubated with the antigen containing gel. 20 ml serum for 10 mg coupled antigen was used. After two hours of incubation, the gel was poured into a column and washed with 10 mM Tris-buffered saline (TBS) until the O.D. at 280 nm was almost zero. Non-specifically adsorbing material was eluted with TBS containing 1 M NaCl, followed by washing with TBS. The specific antibody was eluted with 0.1 M glycine-HCl buffer at pH 2.8. One ml fractions were immediately neutralized with 100 µl 1 M Tris-HCl buffer, pH 8.5. Antibody concentration was measured at 280 nm using an E₁ %=14.3. Aliquots of the eluted antibodies were stored at -20° C, without further treatment. - 5.3 Culture of embryonic chicken lung epithelial cells
Embryonic chicken lung epithelial cells were isolated from 14-day old chicken embryo lungs. The tissue was chopped by hand and trypsinized in 0.25 % trypsin in Ca²⁺ and Mg²⁺ free Hanks balanced salt solution at 37° C for 20 minutes. The reaction was stopped with medium and 10 % FCS. After centrifugation and resuspension the cells were transferred into a 75 cm² T-flask and allowed to attach for 12-24 hours before the medium was changed. After 3-5 days in culture, the cells were briefly (2-3 minutes) trypsinized (in 0.25 % trypsin solution) and plated on 9 cm ⌀ petri dishes and used after 3-5 days in culture when the cells were confluent. The cells were grown in Eagle's minimum essential medium supplemented with non-essential amino acids and 10 % fetal calf serum, and in a humidified 5 % CO₂/air athmosphere at 37° C. - 5.4 Preparation of total cell SDS-lysate of embryonic chicken lung epithelial cells
Cells grown in 9 cm ⌀ petri dishes were washed in Ca²⁺, Mg²⁺ free PBS (Dulbecco's) and collected with a rubber police-man, and immersed in absolute acetone at -20° C, in Eppendorf tip (1.5 ml). The acetone was evaporated and the dry cell residue dissolved in boiling SDS-sample buffer, containing 1 mM TAME (a protease inhibitor). Insoluble residues after centrifugation were discarded. SDS gels (according to Laemmli) were run of this lysate serially diluted with sample buffer and stained with coomassie blue, to estimate the most appropriate dilution of the sample. 1:16 was used for the subsequent electrophoretic transfer to a Gene screen membrane (purchased from NEN). One transfer unit was formed by one lane of such a diluted lysate and one lane of a mixture of purified reference proteins: Ch.g. filamin, Ch.g. myosin (H + L chain), Ch.g. α-actinin, BSA, rat brain tubulin, pig stomach tropomyosin, each at 0.06 µg per lane.
The buffer front was now allowed to reach the bottom of the gel and electrophoretic transfer to the gene screen membrane was performed exactly as in example 2.3. The blot unit was cut out and the remaining protein binding sites were quenched as described in example 1.2 and 2.3. Incubation with antibody to actin (0.5 µg/ml) and GAR G20 (O.D. 520 nm = 0.2) and dilution of GAR G20 with 0.1 % BSA-Tris + 0.4 % gelatine was carried out in sealed plastic bags of about the same size as the sheet, for 2 hours each, in the same way as described in example 2.4.
After 2 hours incubation with GAR G20, the sheets were washed with 0.1 % BSA-Tris and prepared for silver enhancement. At this time a pink-reddish band with the mobility of actin, in the lysate, and corresponding with actin in the protein mixture was already visible. - 5.5 Silver enhancement
- The sheets were washed for 2 minutes in 1:10 diluted citrate stock buffer. This buffer contains for 100 ml 25.5 g trisodium citrate and 23.5 g citric acid for a pH of 4.
- The sheets were then incubated for 15 minutes, carefully protected from light in physical developer containing:
- . 60 ml deionized H₂O
- . 0.85 g hydroquinone in 15.0 ml deionized H₂O
- . 10 ml citrate buffer pH 4
- . 0.11 g silver lactate in 15.0 ml deionized H₂O
- After the reaction time the sheets are washed in excess H₂O and treated with Agefix (1:4 in H₂O), a photographic fixer.
- The sheets were again washed in excess H₂O and air-dried.
- 5.6 Result
The band that was previously visible as pink-reddish coloured bands are now deeply black. The antibody to actin can be considered as extremely specific and has given satisfactory results for immunocytochemical staining of actin containing structures in the cultured cells. - 5.7 Conclusion
This silver enhancement strongly increases the contrast and sensitivity of the detection method. For instance the example IV, stained with colloidal silver labelled antibodies was further developed and after only five minutes of reaction, the detection limit was 3 instead of 30 ng/spot.
Claims (14)
- A process for detecting and/or determining an agglomerate formed by the reaction between a specific binding agent and the corresponding acceptor substance according to the general methodology of blot overlay assays by using labelled components characterized in that said labelled components, obtained by coupling the desired component of said reaction to colloidal metal particles or by coupling a specific binding agent for the said component of said reaction to colloidal metal particles, are visualized as a coloured signal localized at the reaction site at the surface of the blotting medium or quantitatively determined at this site following art-known spectrophotometric procedures.
- A process according to claim 1 wherein the specific binding agent is a specific binding protein.
- A process according to claims 1 and 2, comprising the steps ofi) immobilizing the acceptor substance to an immobilizing matrix;ii) contacting said immobilizing matrix with colloidal metal particle labelled specific binding agent; andiii) detecting the coloured signal at the reaction site at the surface of the immobilizing matrix.
- A process according to claims 1 and 2, comprising the steps ofi) immobilizing the acceptor substance to an immobilizing matrix;ii) contacting said immobilizing matrix with an unlabelled specific binding agent and, subsequently, with colloidal metal particle labelled protein specific for the unlabelled specific binding protein; andiii) detecting the coloured signal at the reaction site at the surface of the immobilizing matrix.
- A process according to claims 3 and 4 wherein the immobilization-step is effected by direct adsorption and/or covalent binding, optionally after applying a procedure of electrophoretic separation and applying a procedure of transfer or blotting from the electrophoretic medium to the blotting medium and subsequently quenching remaining agent specific binding sites by art-known procedures.
- A process according to claim 3 and 4 wherein the immobilization-step is effected by allowing the acceptor substance to become bound by a specific binding protein which has become immobilized to the blotting medium, by contacting said blotting medium with an aqueous solution which contains the acceptor substance.
- A process according to claims 1-6 wherein the colloidal metal particles consist of gold, silver, platinum or compounds of these metals or iron or copper compounds having a particle size between 3 nm and 100 nm.
- A process according to claims 1-7 wherein the colloidal metal particles consist of gold and/or silver having a particle size between 3 nm and 100 nm.
- A process according to claims 1-8 wherein the final detection of the colloidal metal particles is effected after applying a physical developer.
- A process according to claim 9 wherein the physical developer is a silver-containing compound.
- A test kit to be used for the direct or indirect determination of one of the components of the reaction between a specific binding agent and the corresponding acceptor substance according to general methods of blot overlay assay as described in any of claims 1 to 10 containing a colloidal metal particle labelled component obtained by coupling a component of the said reaction or a component that can be used to detect this reaction indirectly to colloidal metal particles.
- A test kit according to claim 11 which contains the comments of a physical developer.
- A test kit according to claim 11 further containing one or more reagents which are selected fromi) a buffer;ii) an unlabeled binding agent.
- A blot overlay assay medium on which an agglomerate formed by the reaction between a specific binding and the corresponding acceptor substance has been visualized colloidal metal particles according to any of the processes claimed in claims 1-10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT84201559T ATE64468T1 (en) | 1983-11-25 | 1984-10-31 | METHODS FOR VISUAL INDICATION OF THE DIRECT OR INDIRECT DETERMINATION OF THE REACTION BETWEEN A SPECIFIC BINDING AGENT AND THE CORRESPONDING ACCEPTOR SUBSTANCE IN ''BLOT OVERLAY'' ASSAY METHODS. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB838331514A GB8331514D0 (en) | 1983-11-25 | 1983-11-25 | Visualization method |
GB8331514 | 1983-11-25 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0158746A2 EP0158746A2 (en) | 1985-10-23 |
EP0158746A3 EP0158746A3 (en) | 1987-09-23 |
EP0158746B1 true EP0158746B1 (en) | 1991-06-12 |
Family
ID=10552346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP84201559A Expired - Lifetime EP0158746B1 (en) | 1983-11-25 | 1984-10-31 | Visualization method for the direct or indirect detection of the reaction between a specific binding agent and the corresponding acceptor substance in blot overlay assays |
Country Status (19)
Country | Link |
---|---|
US (1) | US4775636A (en) |
EP (1) | EP0158746B1 (en) |
JP (2) | JPH0643998B2 (en) |
KR (1) | KR890001131B1 (en) |
AT (1) | ATE64468T1 (en) |
AU (1) | AU583484B2 (en) |
CA (1) | CA1253422A (en) |
CY (1) | CY1759A (en) |
DE (1) | DE3484710D1 (en) |
DK (1) | DK160108C (en) |
ES (1) | ES537926A0 (en) |
FI (1) | FI80345C (en) |
GB (1) | GB8331514D0 (en) |
HK (1) | HK14894A (en) |
IL (1) | IL73607A (en) |
NO (1) | NO163754C (en) |
NZ (1) | NZ210309A (en) |
PT (1) | PT79533A (en) |
ZA (1) | ZA849182B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5656503A (en) | 1987-04-27 | 1997-08-12 | Unilever Patent Holdings B.V. | Test device for detecting analytes in biological samples |
US5714389A (en) | 1988-06-27 | 1998-02-03 | Carter-Wallace, Inc. | Test device and method for colored particle immunoassay |
Families Citing this family (114)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8415998D0 (en) * | 1984-06-22 | 1984-07-25 | Janssen Pharmaceutica Nv | Staining method |
US5958790A (en) * | 1984-12-20 | 1999-09-28 | Nycomed Imaging As | Solid phase transverse diffusion assay |
US5512332A (en) * | 1985-10-04 | 1996-04-30 | Immunivest Corporation | Process of making resuspendable coated magnetic particles |
US5137827A (en) * | 1986-03-25 | 1992-08-11 | Midwest Research Technologies, Inc. | Diagnostic element for electrical detection of a binding reaction |
AU7385387A (en) * | 1986-06-09 | 1987-12-10 | Ortho Diagnostic Systems Inc. | Immunoassay using detection of colloidal gold |
US5514602A (en) * | 1986-06-09 | 1996-05-07 | Ortho Diagnostic Systems, Inc. | Method of producing a metal sol reagent containing colloidal metal particles |
AU602694B2 (en) * | 1986-06-09 | 1990-10-25 | Ortho Diagnostic Systems Inc. | Improved colloidal gold membrane assay |
US4837145A (en) * | 1986-06-09 | 1989-06-06 | Liotta Lance A | Layered immunoassay using antibodies bound to transport particles to determine the presence of an antigen |
JPS63127160A (en) * | 1986-06-30 | 1988-05-31 | Sukeyasu Yoneda | Detection of specific protein |
US5491098A (en) * | 1987-03-09 | 1996-02-13 | Janssen Pharmaceutica N.V. | Method for depositing metal particles on a marker |
CA1340803C (en) * | 1987-03-09 | 1999-10-26 | Janssen Pharmaceutica N.V. | Method for depositing metal particles on a marker |
USRE38430E1 (en) | 1987-03-27 | 2004-02-17 | Becton, Dickinson And Company | Solid phase chromatographic immunoassay |
DE291194T1 (en) * | 1987-04-27 | 1992-03-19 | Unilever N.V., Rotterdam | IMMUNOASSAYS AND DEVICES FOR THIS. |
US4962023A (en) * | 1987-06-22 | 1990-10-09 | Louisiana State University, Agricultural And Mechanical College | Single incubation immuno sorbent assay method using particle labels to detect test antigen specific antibodies in presence of other antibodies |
US5120643A (en) | 1987-07-13 | 1992-06-09 | Abbott Laboratories | Process for immunochromatography with colloidal particles |
JP2581566B2 (en) * | 1987-09-30 | 1997-02-12 | 和光純薬工業株式会社 | Iron colloid-labeled antibody, method for producing the same, and histocytochemical detection method using the same |
US5571667A (en) * | 1987-10-01 | 1996-11-05 | Chu; Albert E. | Elongated membrane flow-through diagnostic device and method |
US5006464A (en) * | 1987-10-01 | 1991-04-09 | E-Y Laboratories, Inc. | Directed flow diagnostic device and method |
ES2039025T3 (en) * | 1987-11-16 | 1993-08-16 | Janssen Pharmaceutica N.V. | AN ADDED TO DETERMINE COMBINABLE SUBSTANCES. |
NL8702769A (en) * | 1987-11-19 | 1989-06-16 | Holland Biotechnology | METHOD FOR DETERMINING A TEST SAMPLE OF COMPONENTS OF THE REACTION BETWEEN A SPECIFIC BINDING PROTEIN AND THE ACCOMPANYING BINDABLE SUBSTANCE USING AT LEAST ONE BRANDED COMPONENT, METHOD FOR PREPARING THE MARKED COMPONENT, AND TESTING COMPONENT |
GB8800702D0 (en) * | 1988-01-13 | 1988-02-10 | Nycomed As | Test method & reagent kit therefor |
US4952517A (en) * | 1988-02-08 | 1990-08-28 | Hygeia Sciences, Inc. | Positive step immunoassay |
US5202267A (en) * | 1988-04-04 | 1993-04-13 | Hygeia Sciences, Inc. | Sol capture immunoassay kit and procedure |
EP0378621A4 (en) * | 1988-05-23 | 1991-08-28 | Steffen Gay | Diagnostics and therapy for rheumatoid arthritis |
US5079172A (en) | 1988-11-04 | 1992-01-07 | Board Of Trustees Operating Michigan State University | Method for detecting the presence of antibodies using gold-labeled antibodies and test kit |
WO1990005300A1 (en) * | 1988-11-10 | 1990-05-17 | Midwest Research Technologies, Inc. | Method for electrical detection of a binding reaction |
US5202268A (en) * | 1988-12-30 | 1993-04-13 | Environmental Diagnostics, Inc. | Multi-layered test card for the determination of substances in liquids |
US5028535A (en) * | 1989-01-10 | 1991-07-02 | Biosite Diagnostics, Inc. | Threshold ligand-receptor assay |
EP0401913B1 (en) * | 1989-06-05 | 1995-01-25 | Janssen Pharmaceutica N.V. | A solid phase assay for use with a physical developer |
GB8915512D0 (en) | 1989-07-06 | 1989-08-23 | Sec Dep For Health | Silver enhanced gold-labelled immuno assay method |
US5698271A (en) * | 1989-08-22 | 1997-12-16 | Immunivest Corporation | Methods for the manufacture of magnetically responsive particles |
US6352863B1 (en) | 1990-01-19 | 2002-03-05 | La Mina, Inc. | Assay device |
US5143852A (en) * | 1990-09-14 | 1992-09-01 | Biosite Diagnostics, Inc. | Antibodies to ligand analogues and their utility in ligand-receptor assays |
EP0566695B1 (en) * | 1991-01-11 | 1999-06-02 | Quidel Corporation | A one-step lateral flow assay and nonbibulous support used therein |
US5869345A (en) * | 1991-05-29 | 1999-02-09 | Smithkline Diagnostics, Inc. | Opposable-element assay device employing conductive barrier |
US5607863A (en) * | 1991-05-29 | 1997-03-04 | Smithkline Diagnostics, Inc. | Barrier-controlled assay device |
US5877028A (en) | 1991-05-29 | 1999-03-02 | Smithkline Diagnostics, Inc. | Immunochromatographic assay device |
US6168956B1 (en) | 1991-05-29 | 2001-01-02 | Beckman Coulter, Inc. | Multiple component chromatographic assay device |
US5998220A (en) | 1991-05-29 | 1999-12-07 | Beckman Coulter, Inc. | Opposable-element assay devices, kits, and methods employing them |
US5468648A (en) * | 1991-05-29 | 1995-11-21 | Smithkline Diagnostics, Inc. | Interrupted-flow assay device |
WO1993016788A1 (en) * | 1992-02-25 | 1993-09-02 | Peter Andersen | Process for electroelution of a gel containing separated charged macromolecules, such as proteins or dna/rna, and an apparatus and means for use in the process |
US5395754A (en) * | 1992-07-31 | 1995-03-07 | Hybritech Incorporated | Membrane-based immunoassay method |
US5340746A (en) * | 1993-01-08 | 1994-08-23 | Minnesota Mining And Manufacturing Company | Composite reactive articles for the determination of cyanide |
CA2105515A1 (en) * | 1993-09-03 | 1995-03-04 | Carlos A. Santizo Lescaille | Visual immunoassay method for the detection of ligands, based on the use of opaque plastic supports |
US5712172A (en) | 1995-05-18 | 1998-01-27 | Wyntek Diagnostics, Inc. | One step immunochromatographic device and method of use |
US20010051350A1 (en) | 1995-05-02 | 2001-12-13 | Albert Nazareth | Diagnostic detection device and method |
US6551794B1 (en) | 1995-11-09 | 2003-04-22 | E. R. Squibb & Sons, Inc. | Stable biotinylated biomolecule composition |
US5691152A (en) * | 1995-11-09 | 1997-11-25 | E. R. Squibb & Sons, Inc. | Stable avidin composition |
US5856194A (en) | 1996-09-19 | 1999-01-05 | Abbott Laboratories | Method for determination of item of interest in a sample |
US5795784A (en) | 1996-09-19 | 1998-08-18 | Abbott Laboratories | Method of performing a process for determining an item of interest in a sample |
JP4025833B2 (en) * | 1996-10-25 | 2007-12-26 | アークレイ株式会社 | Gene analysis method, gene analysis kit and gene analysis apparatus used therefor |
JP4068677B2 (en) * | 1996-10-25 | 2008-03-26 | アークレイ株式会社 | Gene analysis method and gene analysis kit used therefor |
US7153651B1 (en) | 1996-10-31 | 2006-12-26 | Inverness Medical - Biostar, Inc. | Flow-through optical assay devices providing laminar flow of fluid samples, and methods of construction thereof |
US5879951A (en) | 1997-01-29 | 1999-03-09 | Smithkline Diagnostics, Inc. | Opposable-element assay device employing unidirectional flow |
US6103536A (en) | 1997-05-02 | 2000-08-15 | Silver Lake Research Corporation | Internally referenced competitive assays |
US5939252A (en) | 1997-05-09 | 1999-08-17 | Lennon; Donald J. | Detachable-element assay device |
EP1121198A1 (en) * | 1998-10-14 | 2001-08-08 | Arizona Board of Regents | Immobilized silver immunoassay system |
IL126776A (en) * | 1998-10-27 | 2001-04-30 | Technion Res & Dev Foundation | Method for gold depositions |
US6136610A (en) | 1998-11-23 | 2000-10-24 | Praxsys Biosystems, Inc. | Method and apparatus for performing a lateral flow assay |
US6136044A (en) * | 1999-02-03 | 2000-10-24 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Stable coloring by in situ formation of micro-particles |
JP2003527584A (en) * | 2000-03-09 | 2003-09-16 | ヘスカ コーポレイション | Use of recombinant antigens to determine the immune status of animals |
US6699722B2 (en) | 2000-04-14 | 2004-03-02 | A-Fem Medical Corporation | Positive detection lateral-flow apparatus and method for small and large analytes |
DE10108359B4 (en) * | 2001-02-21 | 2008-03-27 | Enßlin, Walther, Dr. | Detection method for reducing substances |
WO2002100444A1 (en) * | 2001-06-08 | 2002-12-19 | Biosphere Medical Inc. | Colloidal metal labelled microparticles, their production and use |
US20030013084A1 (en) * | 2001-07-12 | 2003-01-16 | Berlock Aps | Organometallic probe |
AU2003213729A1 (en) * | 2002-03-05 | 2003-09-22 | Board Of Regents, The University Of Texas System | Biospecific contrast agents |
US7138468B2 (en) | 2002-03-27 | 2006-11-21 | University Of Southern Mississippi | Preparation of transition metal nanoparticles and surfaces modified with (CO)polymers synthesized by RAFT |
ES2525318T3 (en) * | 2002-10-11 | 2014-12-22 | Zbx Corporation | Diagnostic devices |
US7736890B2 (en) * | 2003-12-31 | 2010-06-15 | President And Fellows Of Harvard College | Assay device and method |
US7638093B2 (en) * | 2004-01-28 | 2009-12-29 | Dnt Scientific Research, Llc | Interrupted flow rapid confirmatory immunological testing device and method |
US7465587B2 (en) | 2004-12-03 | 2008-12-16 | Genzyme Corporation | Diagnostic assay device |
US20060292700A1 (en) * | 2005-06-22 | 2006-12-28 | Naishu Wang | Diffused interrupted lateral flow immunoassay device and method |
EP1891447B1 (en) * | 2005-05-23 | 2011-07-06 | Phadia AB | Two step lateral flow assay methods and devices |
US20070015166A1 (en) * | 2005-07-14 | 2007-01-18 | Nilsen Thor W | Lateral flow methods and devices for detection of nucleic acid binding proteins |
US8110406B2 (en) | 2005-11-25 | 2012-02-07 | Japan Advanced Institute Of Science And Technology | Analytical method and analytical apparatus |
US11906512B2 (en) | 2006-03-31 | 2024-02-20 | Zeus Diagnostics, LLC | Integrated device for analyte testing, confirmation, and donor identity verification |
US8940527B2 (en) * | 2006-03-31 | 2015-01-27 | Lamina Equities Corp. | Integrated device for analyte testing, confirmation, and donor identity verification |
US7879623B2 (en) * | 2006-03-31 | 2011-02-01 | Guirguis Raouf A | Integrated device for analyte, testing, confirmation, and donor identity verification |
US7741103B2 (en) * | 2006-03-31 | 2010-06-22 | Guirguis Raouf A | Integrated screening and confirmation device |
US7569396B1 (en) | 2006-09-08 | 2009-08-04 | Purplecow Llc | Caffeine detection using internally referenced competitive assays |
US7919331B2 (en) * | 2006-12-21 | 2011-04-05 | Silver Lake Research Corporation | Chromatographic test strips for one or more analytes |
JP4870695B2 (en) * | 2008-02-12 | 2012-02-08 | 富士フイルム株式会社 | How to wash, amplify and stop labels in the membrane |
JP4980946B2 (en) * | 2008-02-12 | 2012-07-18 | 富士フイルム株式会社 | Blotting detection method |
US8673644B2 (en) | 2008-05-13 | 2014-03-18 | Battelle Memorial Institute | Serum markers for type II diabetes mellitus |
US8476008B2 (en) * | 2008-07-23 | 2013-07-02 | Diabetomics, Llc | Methods for detecting pre-diabetes and diabetes |
US20100047913A1 (en) * | 2008-08-19 | 2010-02-25 | The Trustees Of The University Of Pennsylvania | Colloidal Gold Single Reagent Quantitative Protein Assay |
EP2391891A1 (en) | 2009-01-27 | 2011-12-07 | Proteogenix, Inc. | Biomarkers for detection of neonatal sepsis in biological fluid |
US20110275536A1 (en) | 2009-01-30 | 2011-11-10 | Pronota N.V. | Biomarker for diagnosis, prediction and/or prognosis of acute heart failure and uses thereof |
WO2010132447A2 (en) | 2009-05-11 | 2010-11-18 | Diabetomics, Llc | Methods for detecting pre-diabetes and diabetes using differential protein glycosylation |
EP2491401B1 (en) | 2009-10-21 | 2018-06-06 | Mycartis N.V. | Mcam as a biomarker for fluid homeostasis |
ES2677944T3 (en) | 2009-11-25 | 2018-08-07 | Hologic Inc. | Detection of intraamniotic infection |
US20130040881A1 (en) | 2010-03-26 | 2013-02-14 | Pronota N.V. | Ltbp2 as a biomarker for renal dysfunction |
WO2011128357A2 (en) | 2010-04-13 | 2011-10-20 | Pronota N.V. | Biomarkers for hypertensive disorders of pregnancy |
US10670586B2 (en) * | 2010-04-14 | 2020-06-02 | Nitto Boseki Co., Ltd. | Test instrument for measuring analyte in sample by an aggregation assay using a metal colloid and using a reagent attached in a dry state in a reaction chamber, and method for measuring analyte using same |
CA2800257C (en) | 2010-05-26 | 2019-03-05 | The Board Of Trustees Of The University Of Illinois | Personal glucose meters for detection and quantification of a broad range of analytes |
EP2591366A2 (en) | 2010-07-08 | 2013-05-15 | Pronota NV | Quiescin q6 as biomarker for hypertensive disorders of pregnancy |
US8956859B1 (en) | 2010-08-13 | 2015-02-17 | Aviex Technologies Llc | Compositions and methods for determining successful immunization by one or more vaccines |
US20120142559A1 (en) | 2010-12-06 | 2012-06-07 | Pronota N.V. | Biomarkers and parameters for hypertensive disorders of pregnancy |
EP2788371A2 (en) | 2011-12-08 | 2014-10-15 | Biocartis NV | Biomarkers and test panels useful in systemic inflammatory conditions |
IN2014CN04326A (en) | 2011-12-15 | 2015-09-04 | Pronota Nv | |
EP2807271B1 (en) | 2012-01-24 | 2018-08-22 | CD Diagnostics, Inc. | System for detecting infection in synovial fluid |
US20140248629A1 (en) * | 2013-03-03 | 2014-09-04 | Morteza Mahmoudi | Gold nanoparticle based dipstick nano-biosensor for detecting plasmodium falciparum and plasmodium vivax and mehtod of synthesizing the same |
US9383352B2 (en) | 2014-03-26 | 2016-07-05 | Diabetomics, Inc. | Salivary protein glycosylation test for diagnosis and monitoring of diabetes |
GB2552427A (en) | 2015-01-29 | 2018-01-24 | Neogen Corp | Methods for immuno chromatographic assay desensitization |
EP3286216B1 (en) | 2015-04-23 | 2022-06-08 | Nevada Research & Innovation Corporation | Fungal detection using mannan epitope |
CN108136051A (en) | 2015-08-04 | 2018-06-08 | Cd诊断股份有限公司 | The method for detecting bad local organization reaction (ALTR) necrosis |
US10151749B2 (en) * | 2015-08-05 | 2018-12-11 | Alfaisal University | Method and kit for the detection of microorganisms |
WO2017147186A1 (en) | 2016-02-22 | 2017-08-31 | Ursure, Inc. | System and method for detecting therapeutic agents to monitor adherence to a treatment regimen |
ES2866880T3 (en) | 2016-04-13 | 2021-10-20 | Inst Nat Sante Rech Med | Methods and kits for the rapid detection of Escherichia Coli clone O25B-ST131 |
US10564155B2 (en) | 2017-01-27 | 2020-02-18 | Raouf A Guirguis | Dual swab fluid sample collection for split sample testing and fingerprint identification device |
US11061026B2 (en) | 2017-02-17 | 2021-07-13 | MFB Fertility, Inc. | System of evaluating corpus luteum function by recurrently evaluating progesterone non-serum bodily fluids on multiple days |
EP3574326A1 (en) | 2017-05-19 | 2019-12-04 | Philip Morris Products S.a.s. | Diagnostic test for distinguishing the smoking status of a subject |
WO2019152657A1 (en) | 2018-02-03 | 2019-08-08 | Simple Healthkit, Inc. | Reliable, comprehensive, and rapid sexual health assessment |
US11300576B2 (en) | 2019-01-29 | 2022-04-12 | Arizona Board Of Regents On Behalf Of Arizona State University | DARPin reagents that distinguish Alzheimer's disease and Parkinson's disease samples |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4115198A (en) * | 1974-02-11 | 1978-09-19 | Coughlin Robert W | Method of immobilization of biologically active organic substances including enzymes |
IL49685A (en) * | 1976-05-31 | 1978-10-31 | Technion Res & Dev Foundation | Specific binding assay method for determining the concentration of materials and reagent means therefor |
US4208185A (en) * | 1976-08-16 | 1980-06-17 | Mitsubishi Chemical Industries Limited | Method and apparatus for the measurement of antigens and antibodies |
US4203724A (en) * | 1976-08-16 | 1980-05-20 | Mitsubishi Chemical Industries Limited | Method and apparatus for the measurement of antigens and antibodies |
SE431257B (en) * | 1977-11-03 | 1984-01-23 | Du Pont | SET AND DEVICE FOR IMMUNAL ANALYSIS WITH MAGNETIC METAL OR METAL OXIDE AS A BRAND |
NL7807532A (en) * | 1978-07-13 | 1980-01-15 | Akzo Nv | METAL IMMUNO TEST. |
US4420558A (en) * | 1981-02-12 | 1983-12-13 | Janssen Pharmaceutica N.V. | Bright field light microscopic method of enumerating and characterizing subtypes of white blood cells and their precursors |
US4487839A (en) * | 1983-01-05 | 1984-12-11 | Ortho Diagnostic Systems Inc. | Immunoassay methods employing patterns for the detection of soluble and cell surface antigens |
CA1260827A (en) * | 1984-08-31 | 1989-09-26 | Richard C. Siegel | Antibody-metal ion complexes |
-
1983
- 1983-11-25 GB GB838331514A patent/GB8331514D0/en active Pending
-
1984
- 1984-10-31 EP EP84201559A patent/EP0158746B1/en not_active Expired - Lifetime
- 1984-10-31 AT AT84201559T patent/ATE64468T1/en not_active IP Right Cessation
- 1984-10-31 DE DE8484201559T patent/DE3484710D1/en not_active Expired - Lifetime
- 1984-11-07 CA CA000467203A patent/CA1253422A/en not_active Expired
- 1984-11-15 KR KR1019840007168A patent/KR890001131B1/en not_active IP Right Cessation
- 1984-11-16 FI FI844508A patent/FI80345C/en active IP Right Grant
- 1984-11-21 JP JP59244692A patent/JPH0643998B2/en not_active Expired - Lifetime
- 1984-11-22 PT PT79533A patent/PT79533A/en unknown
- 1984-11-23 ZA ZA849182A patent/ZA849182B/en unknown
- 1984-11-23 DK DK557684A patent/DK160108C/en not_active IP Right Cessation
- 1984-11-23 AU AU35825/84A patent/AU583484B2/en not_active Expired
- 1984-11-23 IL IL73607A patent/IL73607A/en not_active IP Right Cessation
- 1984-11-23 NO NO844672A patent/NO163754C/en not_active IP Right Cessation
- 1984-11-23 ES ES537926A patent/ES537926A0/en active Granted
- 1984-11-23 NZ NZ210309A patent/NZ210309A/en unknown
-
1987
- 1987-10-27 US US07/115,652 patent/US4775636A/en not_active Expired - Lifetime
-
1993
- 1993-03-17 JP JP5081149A patent/JP2601616B2/en not_active Expired - Lifetime
-
1994
- 1994-02-24 HK HK148/94A patent/HK14894A/en not_active IP Right Cessation
- 1994-07-15 CY CY175994A patent/CY1759A/en unknown
Non-Patent Citations (2)
Title |
---|
ANALYTICAL BIOCHEMISTRY, vol. 124, 1982; p. 396 * |
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES USA, vol. 76, no. 9, 1979; p. 4350 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5656503A (en) | 1987-04-27 | 1997-08-12 | Unilever Patent Holdings B.V. | Test device for detecting analytes in biological samples |
US5714389A (en) | 1988-06-27 | 1998-02-03 | Carter-Wallace, Inc. | Test device and method for colored particle immunoassay |
US5989921A (en) | 1988-06-27 | 1999-11-23 | Carter Wallace, Inc. | Test device and method for colored particle immunoassay |
US6485982B1 (en) | 1988-06-27 | 2002-11-26 | Armkel, Llc | Test device and method for colored particle immunoassay |
Also Published As
Publication number | Publication date |
---|---|
DK160108C (en) | 1995-07-24 |
NZ210309A (en) | 1987-04-30 |
DK557684D0 (en) | 1984-11-23 |
CA1253422A (en) | 1989-05-02 |
FI80345B (en) | 1990-01-31 |
JPH0643998B2 (en) | 1994-06-08 |
KR890001131B1 (en) | 1989-04-24 |
EP0158746A2 (en) | 1985-10-23 |
DK557684A (en) | 1985-05-26 |
FI844508L (en) | 1985-05-26 |
NO163754C (en) | 1993-01-12 |
PT79533A (en) | 1984-12-01 |
JPS60185160A (en) | 1985-09-20 |
ATE64468T1 (en) | 1991-06-15 |
AU3582584A (en) | 1985-05-30 |
ZA849182B (en) | 1986-06-25 |
HK14894A (en) | 1994-03-04 |
IL73607A0 (en) | 1985-02-28 |
GB8331514D0 (en) | 1984-01-04 |
NO163754B (en) | 1990-04-02 |
DE3484710D1 (en) | 1991-07-18 |
EP0158746A3 (en) | 1987-09-23 |
NO844672L (en) | 1985-05-28 |
US4775636A (en) | 1988-10-04 |
ES8602255A1 (en) | 1985-11-01 |
DK160108B (en) | 1991-01-28 |
FI80345C (en) | 1992-11-16 |
CY1759A (en) | 1994-07-15 |
FI844508A0 (en) | 1984-11-16 |
ES537926A0 (en) | 1985-11-01 |
KR850003728A (en) | 1985-06-26 |
JPH0643162A (en) | 1994-02-18 |
IL73607A (en) | 1988-12-30 |
JP2601616B2 (en) | 1997-04-16 |
AU583484B2 (en) | 1989-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0158746B1 (en) | Visualization method for the direct or indirect detection of the reaction between a specific binding agent and the corresponding acceptor substance in blot overlay assays | |
CA1334278C (en) | Determination of ambient concentrations of several analytes | |
JPH07504498A (en) | Assays with improved dose-response curves | |
DE3586951T2 (en) | SOLID PHASE DIFFUSION TEXT METHOD. | |
JPH07120470A (en) | Visual immunoassay for detecting ligand based on use of opaque plastic carrier | |
JP2517187B2 (en) | Analyte variant analysis | |
JPS62100660A (en) | Immunoassay method of high molecule | |
US20040023309A1 (en) | Immunoassay and kit for an early and simultaneous detection of biochemical markers in a patient's sample | |
JPS6110772A (en) | Analysis of biological component | |
JPH05223820A (en) | Kit and method for detecting microorganism accompanied by periodontal disease using surfactant mixture as extraction composition | |
US5583003A (en) | Agglutination assay | |
US5641689A (en) | Stable aqueous carbon sol composition for determining analyte | |
DE69229960T2 (en) | AGGLUTATION ASSAYS AND COLLOID DYES TESTS USING | |
AP156A (en) | Agglutination assay. | |
KR940008091B1 (en) | Method for the immunological determination of ligands | |
JPH11118801A (en) | Immuno-analytical device | |
AU2002346529B2 (en) | Immunoassay and kit for an early and simulataneous detection of biochemical markers in a patient's sample | |
CN118515772A (en) | Anti-biotin monoclonal antibody, preparation method and application thereof | |
JPS63209600A (en) | Measurement by peroxidase label | |
KR930000951A (en) | Diagnostic method | |
KR20030094547A (en) | A monoclonal antibody screening method for selection of hybridoma cell line producing monoclonal antibodies and kit for selection of hybridoma cell | |
Avrameas | Qualitative and Quantitative Immunoenzymatic Techniques | |
WO2003080676A1 (en) | Antibody against transferrin-containing immune complex, process for producing the antibody, hybridoma and immunoassay method | |
AU6445090A (en) | Agglutination assay |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19860320 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
RHK1 | Main classification (correction) |
Ipc: G01N 33/58 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19890616 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 64468 Country of ref document: AT Date of ref document: 19910615 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3484710 Country of ref document: DE Date of ref document: 19910718 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EPTA | Lu: last paid annual fee | ||
EAL | Se: european patent in force in sweden |
Ref document number: 84201559.6 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20030814 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20031003 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20031007 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20031008 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20031013 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20031027 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20031029 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20031030 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20031113 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20041030 Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20041030 Ref country code: CH Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20041030 |
|
BE20 | Be: patent expired |
Owner name: *JANSSEN PHARMACEUTICA N.V. Effective date: 20041031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20041031 Ref country code: LU Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20041031 Ref country code: AT Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20041031 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed | ||
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20041031 |