EP0150256A2 - Method for producing crystalline ZSM-5- or ZSM-11-zeolites - Google Patents
Method for producing crystalline ZSM-5- or ZSM-11-zeolites Download PDFInfo
- Publication number
- EP0150256A2 EP0150256A2 EP84108958A EP84108958A EP0150256A2 EP 0150256 A2 EP0150256 A2 EP 0150256A2 EP 84108958 A EP84108958 A EP 84108958A EP 84108958 A EP84108958 A EP 84108958A EP 0150256 A2 EP0150256 A2 EP 0150256A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- sio
- aged
- crystallization
- nucleation gel
- gel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/26—Aluminium-containing silicates, i.e. silico-aluminates
- C01B33/28—Base exchange silicates, e.g. zeolites
- C01B33/2807—Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures
- C01B33/2876—Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures from a reacting mixture containing an amine or an organic cation, e.g. a quaternary onium cation-ammonium, phosphonium, stibonium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
- C01B33/181—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process
- C01B33/185—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process of crystalline silica-polymorphs having molecular sieve properties, e.g. silicalites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/36—Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
- C01B39/38—Type ZSM-5
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/02—Amorphous compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S423/00—Chemistry of inorganic compounds
- Y10S423/22—MFI, e.g. ZSM-5. silicalite, LZ-241
Definitions
- the invention relates to a method for producing crystalline zeolitic aluminosilicates, in particular of the ZSM-5 or ZSM-11 structure type.
- the Si / A1 atomic ratio is generally * 10, and in extreme cases the aluminum content can go to zero.
- the "aluminosilicates" without aluminum or with a low aluminum content are referred to as "silicalites”.
- the crystalline zeolitic aluminosilicates of the structure types ZSM-5 or ZSM-11 are becoming increasingly important as catalysts and catalyst supports.
- Zeolithic aluminosilicates of the structure type ZSM-5 can be produced, for example, according to US Pat. No. 3,702,866 from mixtures of reactive Si0 2 and A1 2 0 3 by hydrothermal crystallization in the presence of sodium ions and quaternary ammonium compounds, such as tetrapropylammonium salts.
- a disadvantage of this and similar processes is that the crystallization times are very long at economically interesting concentrations of the tetrapropylammonium ion.
- ZSM-5 crystals of different sizes are formed in these processes, which is disadvantageous for use as catalysts.
- the object of the invention is to provide a process for the production of crystalline zeolitic aluminosilicates which is free from the disadvantages of the prior art.
- the rate of hydrothermal crystallization should be increased considerably and at the same time the crystal size of the end product, which is in the range from 0.1 to 100 ⁇ m, should be influenced.
- the invention thus relates to a process for the production of crystalline zeolitic aluminosilicates with a Si / Al atomic ratio of * 10 by hydrothermal crystallization from a reaction mixture which contains Si0 2 and Al 2 O 3 or their hydrated derivatives or alkali silicates and aluminates as well as crystallization accelerators and optionally quaternary ammonium compounds in aqueous alkaline medium; the process is characterized in that an aged but still X-ray amorphous aluminosilicate nucleation gel with an Si / Al atomic ratio of ⁇ 10 is added to the reaction batch as a crystallization accelerator.
- the Si / A1 atomic ratio in the nucleation gel need not necessarily match that in the crystalline end product. Furthermore, the Al content in the nucleation gel can go towards 0, as in the crystalline end product.
- the rate of crystallization can be increased considerably by adding the nucleation gel; At the same time, the amount of the nucleation gel added can influence the crystal size of the crystalline end product.
- the increase in the rate of crystallization also allows the synthesis to be carried out at low temperatures and, instead of the relatively expensive tetrapropylammonium salt, to use cheaper and more easily accessible organic nitrogen compounds or to dispense with the organic substances entirely.
- An increase in the rate of crystallization can generally be achieved by increasing the rate of nucleation and / or the rate of growth of the crystals.
- the addition of crystalline nuclei for the synthesis of ZSM-5 is known per se (cf. e.g.
- the present invention is based on the use of an aged, but not yet crystalline, X-ray amorphous nucleation gel with the Si / Al atomic ratio given above.
- the quaternary ammonium compound is preferably a tetrapropylammonium salt (TPA + ), in particular the bromide, or the tetrahydropropylammonium hydroxide (TPAOH).
- aluminosilicate crystals of different sizes are obtained.
- nucleation gel 4 to 20 wt .-%, based on the Si0 2 content of the finished reaction mixture
- crystals are obtained in the range of 10 to 100 microns; with larger amounts of nucleation gel (20 to 40% by weight), smaller crystals in the range from 0.5 to 10 ⁇ m are obtained.
- the crystallite sizes obtained are between about 0.1 and 100 ⁇ m
- the aged nucleation gel usually in amounts of 4 to 40% by weight, preferably in amounts of 15 to 25% by weight, based on the SiO 2 content of the finished reaction mixture is added.
- the addition of an old nucleation gel has a decisive advantage over vaccination by crystalline germs, which results from kinetic studies and
- the aged nucleation gel used according to the invention increases the rate of crystallization and shortens the induction period depending on the aging time.
- the aging of the nucleation gels can be carried out at room temperature or at a slightly elevated temperature at atmospheric pressure and does not require any additional energy expenditure.
- the nucleation gel is aged at atmospheric pressure at 15 to 100 ° C, preferably at 20 to 60 ° C, for 2 hours to 100 days, preferably for 10 to 50 days.
- the crystallization times are reduced by 40 to 90%.
- the greatly shortened crystallization times have the advantage that larger throughputs can be achieved in a given system and thus economical production is possible.
- the content of the tetrapropylammonium salts usually used in the reaction mixture can be reduced if nucleating gels aged according to the invention are added.
- the use of the aged nucleation gels also has the advantage that the sharp shortening of the crystallization times means that the kri can be produced continuously and thus also more economically stallinen alumosilicate is reached.
- the crystallization time at a reaction temperature of 150 ° C is only 6 hours. In general, temperatures between 40 and 200 ° C can be used.
- an alkali metal fluoride preferably sodium fluoride or ammonium fluoride, can also be added to the reaction batch, the molar ratio F - / SiO 2 being 0.4 to 1.5.
- silicalite with a relative degree of crystallization of 100% was obtained after 140 hours.
- this nucleation gel with a solids content of 32% by weight are added, its amount, based on the total solids in the batch, is 5.7% by weight. Based on SiO 2 in the batch, the proportion of the nucleation gel is 24% by weight.
- amorphous silica of composition 1 SiO 2 .0.5 H 2 0 were mixed with 0.7 g of aluminate solution (1000 g of solution contained 100 g of NaOH, 205 g of NaAlO 2 and 695 g of water), 0.83 g of NaOH, 3.4 g of TPA-Br, 42.2 g of water and 3.6 g of the nucleation gel according to Example 1 were mixed.
- the nucleation gel had aged for 77 hours at room temperature.
- an aluminosilicate of the ZSM-5 type with the same degree of crystallization as the sample according to comparative example B was obtained after a crystallization time of 70 hours. This means a time saving of around 41%.
- amorphous silica of composition 1 SiO 2 .0.5 H 2 0 were mixed with 0.7 g of aluminate solution (1000 g of the solution contained 100 g of NaOH, 205 g of NaAlO 2 and 695 g of water), 0.83 g of NaOH, 3.4 g of TPA-Br, 42.2 g of water and 3.6 g of nucleation gel according to Example 1 were mixed.
- the nucleation gel had been aged for 1200 hours at room temperature.
- amorphous silica of composition 1 SiO 2 0.1 H 2 0 were mixed with 1.0 g of aluminate solution (1000 g of the solution contained 100 g of NaOH, 205 g of NaAlO 2 and 695 g of water), 2.6 g of NaOH, 15 , 0 g of ethylenediamine, 206.5 g of water and 5.0 g of the nucleation gel according to Example 1 were mixed.
- the nucleation gel had been aged for 54 days at room temperature.
- the entire reaction mixture thus had the composition: 1 SiO 2 .0.01 AlO - 2. 0.3 NaOH. 1 Eda. 47 H 2 O
- amorphous silica of composition 1 SiO 2 .0.1 H 2 0 were mixed with 1.0 g of aluminate solution (1000 g of solution contained 100 g of NaOH, 205 g of NaAlO 2 and 695 g of water), 2.1 g of NaOH, 11.5 g n-butanol, 2.9 g ammonia solution (min. 25%), 90.5 g of water and 5.0 g of the nucleation gel from Example 1 were mixed. The nucleation gel had been aged at room temperature for 60 days.
- amorphous silica of composition 1 SiO 2 .0.1 H 2 0 were mixed with 1.0 g of aluminate solution (1000 g of solution contained 100 g of NaOH, 205 g of NaAlO 2 and 695 g of water), 1.2 g of NaOH, 166.8 g of water and 5.0 g of the nucleation gel of Example 1 were mixed.
- the nucleation gel had aged at room temperature for 67 days.
- amorphous silica of composition 1 SiO 2 .0.1 H 2 0 were mixed with 0.8 g of NaOH, 4.6 g of TBA-J, 43.4 g of water and 5.0 g of the nucleation gel from Example.
- the nucleation gel had aged at room temperature for 14 days.
- the entire reaction mixture thus had the composition: 1 SiO 2 .0.11 NaOH. 0.05 TBA-J. 10.5 H 2 0 (.0.0009 TPA-Br) (Note: the TPA-Br came from the Nucleation gel)
- amorphous silica of composition 1 SiO 2 .0.5 H 2 0 were mixed with 0.9 g of NaOH, 3.2 g of TPA-Br, 4.6 g of ammonium fluoride (NH 4 F), 42.7 g of water and 3.6 g of the nucleation gel according to Example 1 were mixed.
- the nucleation gel had been aged for 4 days at room temperature.
- the entire reaction mixture thus had the composition: 1 SiO 2 .0.11 NaOH. 0.05 TPA-Br. 0.5 NH 4 F.10.5 H 2 O
- the relative crystallinity was determined by comparison with a reference substance which had been prepared according to US Pat. No. 3,702,886 and was characterized by X-ray analysis.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Verfahren zur Herstellung von kristallinen zeolithischen Alumosilicaten mit einem Si/Al-Atomverhältnis von >= 10 durch hydrothermale Kristallisation aus einem Reaktionsansatz, der in wäßrig-alkalischem Medium SiO2 und Al2O3 bzw. Derivate dieser Verbindungen, Kristallisationsbeschleuniger und gegebenenfalls quaternäre Ammoniumverbindungen enthält. Dem Reaktionsgemisch wird als Kristallisationsbeschleuniger ein gealtertes, aber noch nicht kristallines, röntgenamorphes Alumosilicat-Keimbildungsgel zugesetzt.Process for the preparation of crystalline zeolitic aluminosilicates with an Si / Al atomic ratio of> = 10 by hydrothermal crystallization from a reaction mixture which contains SiO2 and Al2O3 or derivatives of these compounds, crystallization accelerators and optionally quaternary ammonium compounds in aqueous alkaline medium. An aged, but not yet crystalline, X-ray amorphous aluminosilicate nucleation gel is added to the reaction mixture as a crystallization accelerator.
Description
Die Erfindung betrifft ein Verfahren zur Herstellung von kristallinen zeolithischen Alumosilicaten, insbesondere vom Strukturtyp ZSM-5 oder ZSM-11. Bei diesen Alumosilicaten ist das Si/A1-Atomverhältnis im allgemeinen * 10, wobei im Extremfall der Aluminiumgehalt gegen Null gehen kann. Die "Alumosilicate" ohne Aluminium bzw. mit einem geringen Aluminiumgehalt werden als "Silikalite" bezeichnet.The invention relates to a method for producing crystalline zeolitic aluminosilicates, in particular of the ZSM-5 or ZSM-11 structure type. With these aluminosilicates, the Si / A1 atomic ratio is generally * 10, and in extreme cases the aluminum content can go to zero. The "aluminosilicates" without aluminum or with a low aluminum content are referred to as "silicalites".
Die kristallinen zeolithischen Alumosilicate der Strukturtypen ZSM-5 oder ZSM-11 gewinnen in zunehmendem Maße an Bedeutung als Katalysatoren und Katalysatorträger.The crystalline zeolitic aluminosilicates of the structure types ZSM-5 or ZSM-11 are becoming increasingly important as catalysts and catalyst supports.
Zeolithische Alumosilicate vom Strukturtyp ZSM-5 können beispielsweise nach der US-PS 3 702 866 aus Mischungen von reaktivem Si02 und A1203 durch hydrothermale Kristallisation in Gegenwart von Natriumionen und quaternären Ammoniumverbindungen, wie Tetrapropylammoniumsalzen, hergestellt werden. Ein Nachteil dieses und ähnlicher Verfahren besteht darin, daß die Kristallisationszeiten bei wirtschaftliche interessanten Konzentrationen des Tetrapropylammonium-Ions sehr lang sind. Weiterhin entstehen bei diesen Verfahren ZSM-5-Kristalle mit unterschiedlicher Größe, was für die Anwendung als Katalysatoren nachteilig ist.Zeolithic aluminosilicates of the structure type ZSM-5 can be produced, for example, according to US Pat. No. 3,702,866 from mixtures of reactive Si0 2 and A1 2 0 3 by hydrothermal crystallization in the presence of sodium ions and quaternary ammonium compounds, such as tetrapropylammonium salts. A disadvantage of this and similar processes is that the crystallization times are very long at economically interesting concentrations of the tetrapropylammonium ion. Furthermore, ZSM-5 crystals of different sizes are formed in these processes, which is disadvantageous for use as catalysts.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von kristallinen zeolithischen Alumosilikaten zur Verfügung zu stellen, das frei von den Nachteilen des Standes der Technik ist. Insbesondere soll die Geschwindigkeit der hydrothermalen Kristallisation erheblich gesteigert und gleichzeitig Einfluß auf die Kristallgröße des Endproduktes, die im Bereich von 0,1 bis 100 µm liegt, genommen werden.The object of the invention is to provide a process for the production of crystalline zeolitic aluminosilicates which is free from the disadvantages of the prior art. In particular, the rate of hydrothermal crystallization should be increased considerably and at the same time the crystal size of the end product, which is in the range from 0.1 to 100 μm, should be influenced.
Die Erfindung betrifft somit ein Verfahren zur Herstellung von kristallinen zeolithischen Alumosilicaten mit einem Si/Al-Atomverhältnis von * 10 durch hydrothermale Kristallisation aus einem Reaktionsansatz, der in wäßrig-alkalischem Medium Si02 und Al2O3 bzw. deren hydratisierte Derivate oder Alkalisilicate und -aluminate sowie Kristallisationsbeschleuniger und gegebenenfalls quaternäre Ammoniumverbindungen enthält; das Verfahren ist dadurch gekennzeichnet, daß man dem Reaktionsansatz als Kristallisationsbeschleuniger ein gealtertes, aber noch roentgenamorphes Alumosilicat-Keimbildungsgel mit einem Si/Al-Atomverhältnis von ≥ 10 zusetzt.The invention thus relates to a process for the production of crystalline zeolitic aluminosilicates with a Si / Al atomic ratio of * 10 by hydrothermal crystallization from a reaction mixture which contains Si0 2 and Al 2 O 3 or their hydrated derivatives or alkali silicates and aluminates as well as crystallization accelerators and optionally quaternary ammonium compounds in aqueous alkaline medium; the process is characterized in that an aged but still X-ray amorphous aluminosilicate nucleation gel with an Si / Al atomic ratio of ≥ 10 is added to the reaction batch as a crystallization accelerator.
Hierbei braucht das Si/A1-Atomverhältnis im Keimbildungsgel nicht unbedingt mit dem im kristallinen Endprodukt übereinzustimmen. Ferner kann der Al-Gehalt im Keimbildungsgel wie im kristallinen Endprodukt gegen 0 gehen.Here, the Si / A1 atomic ratio in the nucleation gel need not necessarily match that in the crystalline end product. Furthermore, the Al content in the nucleation gel can go towards 0, as in the crystalline end product.
Durch den Zusatz des Keimbildungsgels kann die Geschwindigkeit der Kristallisation erheblich gesteigert werden; gleichzeitig kann über die Menge des zugesetzten Keimbildungsgels Einfluß auf die Kristallgröße des kristallinen Endproduktes genommen werden. Die Erhöhung der Kristallisationsgeschwindigkeit erlaubt es weiterhin, die Synthese bei niedrigen Temperaturen ablaufen zu lassen und statt des verhältnismäßig kostspieligen Tetrapropylammoniumsalzes billigere und leichter zugängliche organische Stickstoffverbindungen zu verwenden oder auf die organischen Substanzen ganz zu verzichten.The rate of crystallization can be increased considerably by adding the nucleation gel; At the same time, the amount of the nucleation gel added can influence the crystal size of the crystalline end product. The increase in the rate of crystallization also allows the synthesis to be carried out at low temperatures and, instead of the relatively expensive tetrapropylammonium salt, to use cheaper and more easily accessible organic nitrogen compounds or to dispense with the organic substances entirely.
Eine Erhöhung der Kristallisationsgeschwindigkeit ist im allgemeinen durch eine Erhöhung der Keimbildungsgeschwindigkeit und/oder der Wachstumsgeschwindigkeit der Kristalle zu erreichen. Der Zusatz von kristallinen Keimen zur Synthese von ZSM-5 ist an sich bekannt (vgl. z.B.An increase in the rate of crystallization can generally be achieved by increasing the rate of nucleation and / or the rate of growth of the crystals. The addition of crystalline nuclei for the synthesis of ZSM-5 is known per se (cf. e.g.
US-PS 4 175 114, DE-OS 29 35 123). Die vorliegende Erfindung beruht im Gegensatz dazu auf der Anwendung eines gealterten, aber noch nicht kristallinen, roentgenamorphen Keimbildungsgels mit dem vorstehend angegebenen Si/Al-Atomverhältnis.US-PS 4 175 114, DE-OS 29 35 123). In contrast, the present invention is based on the use of an aged, but not yet crystalline, X-ray amorphous nucleation gel with the Si / Al atomic ratio given above.
Vorzugsweise verwendet man ein gealtertes Keimbildungsgel der Zusammensetzung (auf molarer Basis) SiO2/AlO- 2 ≥ 20, HO /Si02 = 0,05 bis 1,0, quaternäre Ammoniumverbindung/ Si02 = 0,0 bis 2,0, vorzugsweise 0,01 bis 2,0, H20/Si02 = 10 bis 1000. Hierbei stellt die quaternäre Ammoniumverbindung vorzugsweise ein Tetrapropylammoniumsalz (TPA+), insbesondere das Bromid, oder das Tetrahydropropylammoniumhydroxid (TPAOH) dar. Nach einer Anwandlung des vorstehend beschriebenen Verfahrens kann man statt der quaternären Ammoniumverbindungen billigere und leichter zugängliche Stickstoffverbindungen, z.B. Amine, vorzugsweise ein Alkylendiamin, oder Gemische aus Alkoholen mit Ammoniak, verwenden. Es können ein- oder mehrwertige Alkohole verwendet werden.It is preferred to use an aged nucleating gel of the composition (on a molar basis) SiO 2 /
Je nach der dem Reaktionsansatz zugesetzten Menge an Keimbildungsgel werden Alumosilicat-Kristalle unterschiedlicher Größe erhalten. Mit kleinen Mengen an Keimbildungsgel (4 bis 20 Gew.-%, bezogen auf den Si02-Gehalt des fertigen Reaktionsansatzes) erhält man Kristalle im Bereich von 10 bis 100 µm; mit größeren Mengen Keimbildungsgel (20 bis 40 Gew.-%) erhält man kleinere Kristalle im Bereich von 0,5 bis 10 µm. Im allgemeinen liegen die erhaltenen Kristallitgrößen zwischen etwa 0,1 und 100 µm, wobei das gealterte Keimbildungsgel üblicherweise in Mengen von 4 bis 40 Gew.-%, vorzugsweise in Mengen von 15 bis 25 Gew.-%, bezogen auf den Si02-Gehalt des fertigen Reaktionsansatzes zugesetzt wird. Der Zusatz eines alterten Keimbildungsgels hat gegenüber der Impfung durch kristalline Keime einen entscheidenden Vorteil, der sich aus kinetischen Untersuchungen ergibt undDepending on the amount of nucleation gel added to the reaction mixture, aluminosilicate crystals of different sizes are obtained. With small amounts of nucleation gel (4 to 20 wt .-%, based on the Si0 2 content of the finished reaction mixture) crystals are obtained in the range of 10 to 100 microns; with larger amounts of nucleation gel (20 to 40% by weight), smaller crystals in the range from 0.5 to 10 µm are obtained. In general, the crystallite sizes obtained are between about 0.1 and 100 μm, the aged nucleation gel usually in amounts of 4 to 40% by weight, preferably in amounts of 15 to 25% by weight, based on the SiO 2 content of the finished reaction mixture is added. The addition of an old nucleation gel has a decisive advantage over vaccination by crystalline germs, which results from kinetic studies and
in der beigefügten Zeichnung dargestellt ist. Für einen Ansatz ohne Keime beobachtet man eine Induktionsperiode, die ie nach den Bedingungen 10 bis 60 Stunden betragen kann. Nach dieser Induktionsperiode erfolgt ein relativ schnelles Kristallwachstum. Bei Zusatz von kristallinen Keimen beginnt das Kristallwachstum sofort, setzt sich dann aber mit einer geringeren Wachstumsgeschwindigkeit fort. Zur Erzielung einer möglichst großen Wachstumsgeschwindigkeit sind sehr kleine Keime erforderlich. Das erfindungsgemäß verwendete, gealterte Keimbildungsgel erhöht die Kristallisationsgeschwindigkeit und verkürzt die Induktionsperiode je nach Alterungszeit. Das Altern der Keimbildungsgele kann bei Raumtemperatur oder bei leicht erhöhter Temperatur bei atmosphärischem Druck durchgeführt werden und erfordert keinen zusätzlichen Energieaufwand. Üblicherweise wird das Keimbildungsgel bei atmosphärischem Druck bei 15 bis 100°C vorzugsweise bei 20 bis 60°C, über 2 Stunden bis 100 Tage, vorzugsweise über 10 bis 50 Tage, gealtert.is shown in the accompanying drawing. For an approach without germs, an induction period is observed, which can be 10 to 60 hours under the conditions. After this induction period, crystal growth is relatively rapid. When crystalline seeds are added, crystal growth begins immediately, but then continues at a slower growth rate. Very small germs are required to achieve the highest possible growth rate. The aged nucleation gel used according to the invention increases the rate of crystallization and shortens the induction period depending on the aging time. The aging of the nucleation gels can be carried out at room temperature or at a slightly elevated temperature at atmospheric pressure and does not require any additional energy expenditure. Usually the nucleation gel is aged at atmospheric pressure at 15 to 100 ° C, preferably at 20 to 60 ° C, for 2 hours to 100 days, preferably for 10 to 50 days.
Bei der Anwendung der erfindungsgemäßen Keimbildungsgele verkürzen sich die Kristallisationszeiten um 40 bis 90 %. Die stark verkürzten Kristallisationszeiten haben den Vorteil, daß bei einer gegebenen Anlage größere Durchsätze erzielt werden können und somit eine wirtschaftliche Herstellung möglich ist.When using the nucleation gels according to the invention, the crystallization times are reduced by 40 to 90%. The greatly shortened crystallization times have the advantage that larger throughputs can be achieved in a given system and thus economical production is possible.
Weiterhin läßt sich der Gehalt an den üblicherweise verwendeten Tetrapropylammoniumsalzen im Reaktionsansatz senken, wenn erfindungsgemäß gealterte Keimbildungsgele zugesetzt werden. Die Anwendung der gealterten Keimbildungsgele bringt außerdem den Vorteil, daß durch die starke Verkürzung der Kristallisationszeiten eine kontinuierliche und damit auch eine wesentlich wirtschaftlichere Herstellung der kristallinen Alumosilicate erreicht wird. So beträgt z.B. die Kristallisationszeit bei einer Reaktionstemperatur von 150°C nur noch 6 Stunden. Im allgemeinen kann bei Temperaturen zwischen 40 und 200°C gearbeitet werden.Furthermore, the content of the tetrapropylammonium salts usually used in the reaction mixture can be reduced if nucleating gels aged according to the invention are added. The use of the aged nucleation gels also has the advantage that the sharp shortening of the crystallization times means that the kri can be produced continuously and thus also more economically stallinen alumosilicate is reached. For example, the crystallization time at a reaction temperature of 150 ° C is only 6 hours. In general, temperatures between 40 and 200 ° C can be used.
Ein bevorzugt verwendetes gealtertes Keimbildungsgel hat folgende Zusammensetzung (auf molarer Basis) : SiO2/Al2O3 ≥ 5, HO-/SiO2 = 10-10 bis 1,0, quaternäre Ammoniumverbindung/ SiO2 = 0,01 bis 2,0, H2O/SiO2 = 0,7 bis 3000, Me/SiO2 = 0,3 bis 3,0, wobei Me ein Alkali- oder Erdalkalimetall-Kation darstellt. Ferner kann man dem Reaktionsansatz zusätzlich zu dem gealterten Keimbildungsgel ein Alkalifluorid, vorzugsweise Natriumfluorid oder Ammoniumfluorid, zusetzen, wobei das Molverhältnis F-/SiO2 0,4 bis 1,5 betragen kann.A preferred used nucleation gel has the following composition (on a molar basis): SiO 2 / Al 2 O 3 ≥ 5, HO - / SiO 2 = 10 -10 to 1.0, quaternary ammonium compound / SiO 2 = 0.01 to 2, 0, H 2 O / SiO 2 = 0.7 to 3000, Me / SiO 2 = 0.3 to 3.0, where Me is an alkali or alkaline earth metal cation. In addition to the aged nucleation gel, an alkali metal fluoride, preferably sodium fluoride or ammonium fluoride, can also be added to the reaction batch, the molar ratio F - / SiO 2 being 0.4 to 1.5.
Die Erfindung ist durch die nachstehenden Beispiele in nicht einschränkender Weise erläutert.The invention is illustrated in a non-limiting manner by the examples below.
17,2 g amorphe Kieselsäure der Zusammensetzung 1 Si02. 0,5 H20 wurden mit 1,1 g NaOH, 3,36 g TPA-Br und 45 g Wasser vermengt. Der Reaktionsansatz hatte die molare Zusammensetzung:
- 1 SiO2. 0,11 NaOH. 0,05 TPA-Br. 10,5 H20
- 1 SiO 2 . 0.11 NaOH. 0.05 TPA Br. 10.5 H 2 0
Bei einer Kristallisationstemperatur von 85°C wurde nach 140 Std. Silikalit mit einem relativen Kristallisationsgrad von 100 % (ermittelt aus dem Röntgendiagramm) erhalten.At a crystallization temperature of 85 ° C., silicalite with a relative degree of crystallization of 100% (determined from the X-ray diagram) was obtained after 140 hours.
16,3 g amorphe Kieselsäure der Zusammensetzung 1 SiO2. 0,5 H2O wurden mit 0,9 g NaOH, 3,2 g TPA-Br, 42,7 g Wasser und 3,6 g Keimbildungsgel vermengt. Zur Herstellung des Keimbildungsgels wurden 6,9 g amorphe Kieselsäure der Zusammensetzung 1 SiO2· 0,5 H20 mit 1,6 g NaCH, 1,3 g TPA-Br und 18 g H20 unter Rühren bei Raumtemperatur vereinigt und 46 Std. gealtert. Das Keimbildungsgel hat die nachstehende molare Zusammensetzung:
- 1 SiO2· 0,39 NaOH· 0,05 TPA-Br 10,5 H20
- 1 SiO 2 · 0.39 NaOH · 0.05 TPA-Br 10.5 H 2 0
Der gesamte Reaktionsansatz hatte somit die Zusammensetzung:
- 1 SiO2 · 0,11 NaOH· 0,05 TPA-Br · 10,5 H20.
- 1 SiO 2 · 0.11 NaOH · 0.05 TPA-Br · 10.5 H 2 0.
Bei einem Zusatz von 3,6 g dieses Keimbildungsgels mit einem Feststoffgehalt von 32 Gew.% beträgt seine Menge, bezogen auf den gesamten Feststoff im Ansatz, 5,7 Gew.%. Bezogen auf SiO2 im Ansatz, liegt der Anteil des Keimbildungsgels bei 24 Gew.%.If 3.6 g of this nucleation gel with a solids content of 32% by weight are added, its amount, based on the total solids in the batch, is 5.7% by weight. Based on SiO 2 in the batch, the proportion of the nucleation gel is 24% by weight.
Bei einer Kristallisationstemperatur von 85°C wurde nach 70 Std. ein kristallines Alumosilicat vom Silikalittyp mit dem gleiche Kristallisationsgrad wie im Vergleichsbeispiel A erhalten. Dies bedeutet eine Zeitersparnis von 50 %.At a crystallization temperature of 85 ° C., a crystalline aluminosilicate of the silicalite type with the same degree of crystallization as in Comparative Example A was obtained after 70 hours. This means a time saving of 50%.
16,3 g amorphe Kieselsäure der Zusammensetzung 1 SiO2· 0,5 H20 wurden mit 0,9 g NaOH, 3,2 g TPA-Br, 42,7 g Wasser und 3,6 g des in Beispiel 1 beschriebenen Keimbildungsgels vermengt. Das Keimbildungsgel war 1200 Std. bei Raumtemperatur gealtert worden.16.3 g of amorphous silica of
Der gesamte Reaktionsansatz besaß somit die Zusammensetzung: 1 SiO2 · 0,11 NaOH · 0,05 TPA-Br. 10,5 H20The entire reaction mixture thus had the composition: 1 SiO 2 .0.11 NaOH. 0.05 TPA-Br. 10.5 H 2 0
Bei einer Kirstallisationstemperatur von 85°C wurde nach einer Kristallisationszeit von 25 Std. ein Silicat des ZSM-5-Typs (Silikalit) mit dem gleichen Kristallisationsgrad wie im Vergleichsbeispiel A erhalten. Dies bedeutet eine Zeitersparnis von etwa 82 %.At a crystallization temperature of 85 ° C., a silicate of the ZSM-5 type (silicalite) with the same degree of crystallization as in Comparative Example A was obtained after a crystallization time of 25 hours. This means a time saving of around 82%.
17,2 amorphe Kieselsäure der Zusammensetzung 1 SiO2 · 0,5 H2O wurden mit 0,71 g Aluminatlösung (1000 g Lösung enthalten 100 g NaOH, 205 g NaAlO2 und 695 g Wasser), 1,03 g NaOH, 3,4 g TPA-Br und 44,5 g Wasser vermengt. Der Reaktionsansatz hatte die Zusammensetzung:
- 1 SiO2 0,007 AlO- 2· 0,11 NaOH · 0,05 TPA-Br . 10,5 H2O
- 1 SiO 2 0.007 AlO - 2 · 0.11 NaOH · 0.05 TPA-Br. 10.5 H 2 O
Bei einer Kristallisationstemperatur von 90°C wurde nach 130 Std. ZSM-5 mit einem relativen Kristallisationsgrad von 100 % (ermittelt ausRöntgenbeugungsdiagrammen) erhalten.At a crystallization temperature of 90 ° C ZSM-5 with a relative degree of crystallization of 100% (determined from X-ray diffraction patterns) was obtained after 130 hours.
16,3 g amorphe Kieselsäure der Zusammensetzung 1 SiO2 · 0,5 H20 wurden mit 0,7 g Aluminatlösung (1000 g Lösung enthielten 100 g NaOH, 205 g NaAlO2 und 695 g Wasser), 0,83 g NaOH, 3,4 g TPA-Br, 42,2 g Wasser und 3,6 g des Keimbildungsgels nach Beispiel 1 vermengt. Das Keimbildungsgel war 77 Std. bei Raumtemperatur gealtert worden.16.3 g of amorphous silica of
Der gesamte Reaktionsansatz hatte somit die Zusammensetzung; 1 SiO2 0,007 AlO- 2 · 0,11 NaOH · 0,05 TPA-Br . 10,5 H2OThe entire reaction batch thus had the composition; 1 SiO2 0.007 AlO - 2 · 0.11 NaOH · 0.05 TPA-Br. 10.5 H 2 O
Bei einer Kristallisationstemperatur von 90°C wurde nach einer Kristallisationszeit von 70 Std. ein Alumosilicat des ZSM-5-Typs mit dem gleichen Kristallisationsgrad wie die Probe nach dem Vergleichsbeispiel B erhalten. Dies bedeutet eine Zeitersparnis von etwa 41 %.At a crystallization temperature of 90 ° C., an aluminosilicate of the ZSM-5 type with the same degree of crystallization as the sample according to comparative example B was obtained after a crystallization time of 70 hours. This means a time saving of around 41%.
16,3 amorphe Kieselsäure der Zusammensetzung 1 SiO2 · 0,5 H20 wurden mit 0,7 g Aluminatlösung (1000 g der Lösung enthielten 100 g NaOH, 205 g NaAlO2 und 695 g Wasser), 0,83 g NaOH, 3,4 g TPA-Br, 42,2 g Wasser und 3,6 g Keimbildungsgel nach Beispiel 1 vermengt. Das Keimbildungsgel war 1200 Std. bei Raumtemperatur gealtert worden.16.3 amorphous silica of
Bei einer Kristallisationstemperatur von 90°C wurde nach einer Kristallisationszeit von 20 Std. ein Alumosilicat des ZSM-5-Typs mit dem gleichen Kristallisationsgrad das Produkt nach Vergleichsbeispiel B erhalten. Dies bedeutet eine Zeitersparnis von etwa 85 %.At a crystallization temperature of 90 ° C., after a crystallization time of 20 hours, an aluminosilicate of the ZSM-5 type with the same degree of crystallization was obtained the product according to comparative example B. This means a time saving of around 85%.
15,5 g amorphe Kieselsäure der Zusammensetzung 1 SiO2 · 0,1 H20 wurden mit 1,0 g Aluminatlösung (1000 g Lösung enthielten 100 g NaOH, 205 g NaAl02 ind 695 g Wasser), 2,9 g NaOn, 15,0 g Ethylendiamin und 210 g Wasser vermengt. Der Reaktionsansatz hatte die Zusammensetzung: 1 SiO2 · 0,01 AlO- 2 · 0,3 NaOH · 1 Eda · 47 H2O15.5 g of amorphous silica of the
Nach 140 Std. bei einer Kristallisationstemperatur von 150°C wurde ein Alumosilicat des ZSM-5-Typs mit einem relativen Kristallisationsgrad von 60 % erhalten.After 140 hours at a crystallization temperature of 150 ° C., an aluminosilicate of the ZSM-5 type was obtained with a relative degree of crystallization of 60%.
14,4 g amorphe Kieselsäure der Zusammensetzung 1 Si02 0,1 H20 wurden mit 1,0 g Aluminatlösung (1000 g der Lösung enthielten 100 g NaOH, 205 g NaAl02 und 695 g Wasser), 2,6 g NaOH, 15,0 g Ethylendiamin, 206,5 g Wasser und 5,0 g des Keimbildungsgels nach Beispiel 1 vermengt. Das Keimbildungsgel war 54 Tage bei Raumtemperatur gealtert worden. Der gesamte Reaktionsansatz hatte somit die Zusammensetzung: 1 SiO2 · 0,01 AlO- 2 · 0,3 NaOH · 1 Eda · 47 H2O14.4 g of amorphous silica of
Nach 140 Std. bei einer Kristallisationstemperatur von 150°C wurde ein Alumosilicat des ZSM-5-Typs mit einem relativen Kristallisationsgrad von 80 % erhalten.After 140 hours at a crystallization temperature of 150 ° C., an aluminosilicate of the ZSM-5 type with a relative degree of crystallization of 80% was obtained.
15,5 g amorphe Kieselsäure der Zusammensetzung 1 Si02 0,1 H20 wurden mit 1,0 g Aluminatlösung (1000 g Lösung enthielten 100 g NaOH, 205 g NaAlO2 und 695 g Wasser), 2,4 g NaOH, 11,5 g n-Butanol, 2,9 g Ammoniak-Lösung (min. 25%ig) und 94 g Wasser vermengt. Der Reaktionsansatz hatte die Zusammensetzung:
- 1 SiO · 0,01 AlO- 2 · 0,25 NaOH · 0,62 C4H9OH · 0,17 NH3 · 21 H2O
- 1 SiO. 0.01 AlO - 2. 0.25 NaOH. 0.62 C 4 H 9 OH. 0.17 NH 3. 21 H 2 O
Nach 72 Std. bei einer Kristallisationstemperatur von 150°C wurde ein Alumosilicat des ZSM-5-Typs mit einem relativen Kristallisationsgrad von 60 % erhalten.After 72 hours at a crystallization temperature of 150 ° C., an aluminosilicate of the ZSM-5 type with a relative degree of crystallization of 60% was obtained.
14,4 g amorphe Kieselsäure der Zusammensetzung 1 SiO2 · 0,1 H20 wurden mit 1,0 g Aluminatlösung (1000 g Lösung enthielten 100 g NaOH, 205 g NaAlO2 und 695 g Wasser), 2,1 g NaOH, 11,5 g n-Butanol, 2,9 g Ammoniak-Lösung (min. 25%ig), 90,5 g Wasser und 5,0 g des Keimbildungsgels vom Beispiel 1 vermengt. Das Keimbildungsgel war 60 Tage bei Raumtemperatur gealtert worden.14.4 g of amorphous silica of
Der gesamte Raktionsansatz hatte somit die Zusammensetzung:
- 1 SiO2 · 0,01 AlO- 2 · 0,25 NaOH ' 0,62 C4H9OH · 0,17 NH3 · 21 H2O
- 1 SiO 2 .01 AlO - 2 .0.25 NaOH ' 0.62 C 4 H 9 OH. 0.17 NH 3 .21 H 2 O
Nach 20 Std. bei einer Kristallisationstemperatur von 150°C wurde ein Alumosilicat vom ZSM-5-Typ mit dem relativen Kristallisationsgrad des Produkts nach dem Vergleichsbeispiel B erhalten. Dies bedeutet eine Erhöhung der Kristallinität und zusätzlich eine Verkürzung der Kristallisationszeit.After 20 hours at a crystallization temperature of 150 ° C., a ZSM-5 type aluminosilicate with the relative degree of crystallization of the product according to Comparative Example B was obtained. This means an increase in the crystallinity and additionally a shortening of the crystallization time.
15,5 g amorphe Kieselsäure der Zusammensetzung 1 SiO2 · 0,1 H20 wurden mit 1,0 g Aluminatlösung (1000 g Lösung enthielten 100 g NaOH, 205 g NaAl02 und 695 g Wasser), 1,5 g NaOH und 170,3 g Wasser vermengt. Der Reaktionsansatz hatte die Zusammensetzung:
- 1 SiO2 · 0,01 AlO- 2 · 0,16 NaOH · 40 H2O
- 1 SiO 2 .01 AlO - 2. 0.16 NaOH. 40 H 2 O
Nach 72 Std. bei einer Kristallisationstemperatur von 200°C wurde ein Alumosilicat des ZSM-5-Typs mit einem relativen Kristallisationsgrad von 5 - 10 % erhalten.After 72 hours at a crystallization temperature of 200 ° C., an aluminosilicate of the ZSM-5 type with a relative degree of crystallization of 5-10% was obtained.
14,4 g amorphe Kieselsäure der Zusammensetzung 1 SiO2 · 0,1 H20 wurden mit 1,0 g Aluminatlösung (1000 g Lösung enthielten 100 g NaOH, 205 g NaAlO2 und 695 g Wasser), 1,2 g NaOH, 166,8 g Wasser und 5,0 g des Keimbildungsgels von Beispiel 1 vermengt. Das Keimbildungsgel war 67 Tage bei Raumtemperatur gealtert worden.14.4 g of amorphous silica of
Der gesamte Reaktionsansatz hatte somit die Zusammensetzung: 1 SiO2 · 0,01 AlO- 2 · 0,16 NaOH · 40 H20 (· 0,0009 TPA-Br) (Anm.: Das TPA-Br stammt aus dem Keimbildungsgel nach Beispiel 1).The entire reaction mixture thus the composition: - 2 · 0, 1 × 40 6 NaOH H20 (0.0009 · TPA - B r) 1 SiO 2 · 0.01 AlO (note .: The TPA-Br comes after out of the nucleating gel Example 1).
Nach 72 Std. bei einer Kristallisationstemperatur von 200°C wurde ein Alumosilicat des ZSM-5-Typs mit einem relativen Kristallisationsgrad von 15 - 20 % erhalten.After 72 hours at a crystallization temperature of 200 ° C., an aluminosilicate of the ZSM-5 type with a relative degree of crystallization of 15-20% was obtained.
15,5 g amorphe Kieselsäure der Zusammensetzung 1 SiO2 · 0,1 H20 wurden mit 1,1 g NaOH, 4,6 g Tetrabutylammoniumjodid (TBA-J) und 46,9 g Wasser vermengt. Der Reaktionsansatz hatte die Zusammensetzung:
- 1 SiO2 · 0,11 NaOH · 0,05 TBA-J . 10,5 H20
- 1 SiO 2 · 0.11 NaOH · 0.05 TBA-J. 10.5 H 2 0
Nach 240 Std. bei einer Kristallisationstemperatur von 90°C wurde ein ZSM-11 mit einem relativen Kristallisationsgrad von 100 % (ermittelt aus Röntgenbeugungsdiagrammen) erhalten.After 240 hours at a crystallization temperature of 90 ° C., a ZSM-11 with a relative degree of crystallization of 100% (determined from X-ray diffraction diagrams) was obtained.
14,4 g amorphe Kieselsäure der Zusammensetzung 1 SiO2 · 0,1 H20 wurden mit 0,8 g NaOH, 4,6 g TBA-J, 43,4 g Wasser und 5,0 g des Keimbildungsgels von Beispiel vermengt. Das Keimbildungsgel war 14 Tage bei Raumtemperatur gealtert worden.14.4 g of amorphous silica of
Der gesamte Reaktionsansatz hatte somit die Zusammensetzung: 1 SiO2 · 0,11 NaOH · 0,05 TBA-J · 10,5 H20 (· 0,0009 TPA-Br) (Anm.: das TPA-Br stammte aus dem Keimbildungsgel)The entire reaction mixture thus had the composition: 1 SiO 2 .0.11 NaOH. 0.05 TBA-J. 10.5 H 2 0 (.0.0009 TPA-Br) (Note: the TPA-Br came from the Nucleation gel)
Nach 115 Std. bei einer Kristallisationstemperatur von 90°C wurde ein Alumosilicat des ZSM-11-Typs mit dem gleichen Kristallisationsgrad wie das Produkt nach Vergleichsbeispiel F erhalten. Dies bedeutet eine Zeitersparnis von etwa 52 %.After 115 hours at a crystallization temperature of 90 ° C., an aluminosilicate of the ZSM-11 type was obtained with the same degree of crystallization as the product according to Comparative Example F. This means a time saving of around 52%.
16,3 g amorphe Kieselsäure der Zusammensetzung 1 SiO2 · 0,5 H20 wurden mit 0,9 g NaOH, 3,2 g TPA-Br, 4,6 g Ammoniumfluorid (NH4F), 42, 7 g Wasser und 3,6 g des Keimbildungsgels nach Beispiel 1 vermengt. Das Keimbildungsgel war 4 Tage bei Raumtemperatur gealtert worden.16.3 g of amorphous silica of
Der gesamte Reaktionsansatz hatte somit die Zusammensetzung: 1 SiO2 · 0,11 NaOH · 0,05 TPA-Br . 0,5 NH4F · 10,5 H2OThe entire reaction mixture thus had the composition: 1 SiO 2 .0.11 NaOH. 0.05 TPA-Br. 0.5 NH 4 F.10.5 H 2 O
Nach 50 Std. bei einer Kristallisationstemperatur von 90°C wurde ein grobkristallines Alumosilicat des Silikalittyps (Teilchengröße etwa 40 bis 60 µm) mit einem relativen Kristallisationsgrad von 100 % erhalten.After 50 hours at a crystallization temperature of 90 ° C., a coarsely crystalline aluminosilicate of the silicalite type (particle size about 40 to 60 μm) with a relative degree of crystallization of 100% was obtained.
Die relative Kristallinität wurde durch Vergleich mit einer Referenzsubstanz, die nach der US-PS 3 702 886 hergestellt und röntgenographisch charakterisiert worden war, bestimmt.The relative crystallinity was determined by comparison with a reference substance which had been prepared according to US Pat. No. 3,702,886 and was characterized by X-ray analysis.
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3402842 | 1984-01-27 | ||
DE19843402842 DE3402842A1 (en) | 1984-01-27 | 1984-01-27 | METHOD FOR PRODUCING CRYSTALLINE ZEOLITHIC ALUMOSILICATES |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0150256A2 true EP0150256A2 (en) | 1985-08-07 |
EP0150256A3 EP0150256A3 (en) | 1988-08-03 |
EP0150256B1 EP0150256B1 (en) | 1992-03-18 |
Family
ID=6226094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP84108958A Expired - Lifetime EP0150256B1 (en) | 1984-01-27 | 1984-07-28 | Method for producing crystalline zsm-5- or zsm-11-zeolites |
Country Status (6)
Country | Link |
---|---|
US (1) | US4606900A (en) |
EP (1) | EP0150256B1 (en) |
JP (1) | JPS60176917A (en) |
DE (2) | DE3402842A1 (en) |
DK (1) | DK34285A (en) |
ZA (1) | ZA85618B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0402801A2 (en) * | 1989-06-14 | 1990-12-19 | VAW Aluminium AG | Method for the preparation of crystalline and zeolitic aluminosilicates |
EP0402639A2 (en) * | 1989-06-10 | 1990-12-19 | VAW Aluminium AG | Method for the preparation of crystalline and zeolitic aluminosilicates |
EP0466012A2 (en) * | 1990-07-03 | 1992-01-15 | VAW Aluminium AG | Method for preparation of crystalline zeolite like gallosilicates and their use for the preparation of catalysts and adsorbents |
EP0520334A1 (en) * | 1991-06-25 | 1992-12-30 | AlSi-PENTA Zeolithe GmbH | Crystalline zeolite-like gallosilicate and process for its preparation |
US5330736A (en) * | 1992-12-07 | 1994-07-19 | W. R. Grace & Co.-Conn. | Zeolite L synthesis and resulting product |
US5407654A (en) * | 1990-07-06 | 1995-04-18 | Vaw Aluminium Ag | Synthetic crystalline aluminosilicate for the catalytic conversion of hydrocarbons in petrochemical processes |
WO1997025272A1 (en) * | 1996-01-04 | 1997-07-17 | Exxon Chemical Patents Inc. | Molecular sieves and process for their manufacture |
WO1998038131A1 (en) * | 1997-02-27 | 1998-09-03 | Süd-Chemie AG | PROCESS FOR PRODUCING ZEOLITES WITH A HIGH Si/Al ATOMIC RATIO |
WO2004020337A1 (en) * | 2002-08-28 | 2004-03-11 | Albemarle Netherlands B.V. | Process for the preparation of doped pentasil-type zeolite using doped seeds |
CZ299372B6 (en) * | 2005-09-23 | 2008-07-09 | Výzkumný ústav anorganické chemie, a. s. | Process for producing ZSM-5 zeolite with controlled crystal size |
CZ306416B6 (en) * | 2015-09-03 | 2017-01-11 | Unipetrol Výzkumně Vzdělávací Centrum, A. S. | A method of producing hollow spherical particles of zeolite ZSM-5 |
CZ306852B6 (en) * | 2016-03-15 | 2017-08-09 | Unipetrol výzkumně vzdělávací centrum, a.s. | A method of production of the ZSM-5 zeolite with a high proportion of pairs of aluminium atoms |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3661989D1 (en) * | 1985-06-19 | 1989-03-09 | Inst Francais Du Petrole | STABILIZED AND DEALUMINATED ZEOLITE OMEGA |
CA2075194A1 (en) * | 1990-01-31 | 1991-08-01 | Adam F. Kaliski | Functional complex microgels with rapid formation kinetics |
US5599520A (en) * | 1994-11-03 | 1997-02-04 | Garces; Juan M. | Synthesis of crystalline porous solids in ammonia |
US6277355B1 (en) * | 1999-07-13 | 2001-08-21 | Exxonmobil Chemical Patents Inc. | Synthesis of ZSM-5 and ZSM-11 |
US6667023B2 (en) * | 2002-03-01 | 2003-12-23 | Akzo Nobel N.V. | Preparation of MFI type crystalline zeolitic aluminosilicate |
US6800272B2 (en) * | 2002-03-13 | 2004-10-05 | Council Of Scientific And Industrial Research | Process for the preparation of ZSM-5 catalyst |
US6964934B2 (en) | 2002-08-28 | 2005-11-15 | Albemarle Netherlands B.V. | Process for the preparation of doped pentasil-type zeolite using doped seeds |
US6936239B2 (en) * | 2002-08-28 | 2005-08-30 | Akzo Novel Nv | Process for the preparation of doped pentasil-type zeolites using doped faujasite seeds |
EP1707533A1 (en) * | 2005-04-01 | 2006-10-04 | Petroleo Brasileiro S.A. - Petrobras | Nucleating gel, process for its preparation, and its use in the synthesis of MFI-type zeolite |
WO2006087337A1 (en) * | 2005-02-15 | 2006-08-24 | Albemarle Netherlands Bv | Nucleating gel, process for its preparation, and its use in the synthesis of mfi-type zeolite |
JP5131718B2 (en) * | 2005-03-23 | 2013-01-30 | 独立行政法人産業技術総合研究所 | Hollow silica microcapsule having zeolite wall material and method for producing the same |
DE102005049362A1 (en) * | 2005-10-12 | 2007-04-19 | Basf Ag | Process for the preparation of a silicate |
KR101614544B1 (en) * | 2009-10-20 | 2016-04-22 | 에스케이이노베이션 주식회사 | Method of Preparation Using Crystalline Nano-sized Seed |
CN101898767B (en) * | 2010-07-20 | 2011-12-28 | 华东师范大学 | Synthetic method of high silica ZSM-5 zeolite |
KR101662912B1 (en) * | 2014-12-30 | 2016-10-06 | 주식회사 효성 | Norbornene optical film, and method for manufacturing the same |
JP7085948B2 (en) * | 2018-08-31 | 2022-06-17 | 水澤化学工業株式会社 | MFI-type zeolite with excellent o-xylene adsorption and its manufacturing method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2017807A1 (en) * | 1969-05-01 | 1970-11-12 | W.R. Grace & Co., New York, N.Y. (V.St.A.) | Synthetic aluminosilicate zeolite and process for its production |
DE2147067A1 (en) * | 1970-09-24 | 1972-03-30 | Grace W R & Co | Process for the production of abrasion-resistant zeolite particles |
US3886094A (en) * | 1972-12-22 | 1975-05-27 | Grace W R & Co | Preparation of hydrocarbon conversion catalysts |
DE2511975A1 (en) * | 1974-03-20 | 1975-09-25 | Grace W R & Co | PROCESS FOR MANUFACTURING ZEOLIGHEN WITH OPEN LATTICE STRUCTURE |
DE3004060A1 (en) * | 1979-02-07 | 1980-08-21 | Toyo Soda Mfg Co Ltd | METHOD FOR PRODUCING Y ZEOLITE |
EP0142347A2 (en) * | 1983-11-10 | 1985-05-22 | Exxon Research And Engineering Company | Process for preparing type L zeolites by nucleating technique |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3709979A (en) * | 1970-04-23 | 1973-01-09 | Mobil Oil Corp | Crystalline zeolite zsm-11 |
US4175114A (en) * | 1973-12-13 | 1979-11-20 | Mobil Oil Corporation | Method for producing zeolites |
US4073865A (en) * | 1976-09-27 | 1978-02-14 | Union Carbide Corporation | Silica polymorph and process for preparing same |
US4146584A (en) * | 1977-04-22 | 1979-03-27 | Mobil Oil Corporation | Catalytic conversion with zsm-35 |
US4526879A (en) * | 1978-11-13 | 1985-07-02 | Mobil Oil Corporation | Synthesis of zeolite ZSM-5 |
DE2935123A1 (en) * | 1979-08-30 | 1981-04-09 | Mobil Oil Corp., 10017 New York, N.Y. | Synthesis of ZSM-5 zeolite with low nitrogen content - by adding ZSM-5 seed crystals and opt. alcohol and/or ammonium hydroxide to the reaction mixt. |
US4309313A (en) * | 1980-05-23 | 1982-01-05 | W. R. Grace & Co. | Synthesis of cesium-containing zeolite, CSZ-1 |
US4333859A (en) * | 1980-10-27 | 1982-06-08 | W. R. Grace & Co. | High silica faujasite polymorph - CSZ-3 and method of synthesizing |
JPS593932B2 (en) * | 1980-12-03 | 1984-01-26 | 三菱瓦斯化学株式会社 | Method for producing crystalline aluminosilicate |
JPS6035284B2 (en) * | 1981-01-27 | 1985-08-14 | 東レ株式会社 | Manufacturing method of pentasil type zeolite |
SU1066940A1 (en) * | 1982-05-13 | 1984-01-15 | Грозненский Ордена Трудового Красного Знамени Нефтяной Институт Им.Акад.М.Д.Миллионщикова | Cesite production method |
-
1984
- 1984-01-27 DE DE19843402842 patent/DE3402842A1/en not_active Withdrawn
- 1984-07-28 DE DE8484108958T patent/DE3485597D1/en not_active Expired - Lifetime
- 1984-07-28 EP EP84108958A patent/EP0150256B1/en not_active Expired - Lifetime
-
1985
- 1985-01-24 US US06/694,536 patent/US4606900A/en not_active Expired - Lifetime
- 1985-01-25 DK DK34285A patent/DK34285A/en not_active Application Discontinuation
- 1985-01-25 ZA ZA85618A patent/ZA85618B/en unknown
- 1985-01-26 JP JP60011807A patent/JPS60176917A/en active Granted
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2017807A1 (en) * | 1969-05-01 | 1970-11-12 | W.R. Grace & Co., New York, N.Y. (V.St.A.) | Synthetic aluminosilicate zeolite and process for its production |
DE2147067A1 (en) * | 1970-09-24 | 1972-03-30 | Grace W R & Co | Process for the production of abrasion-resistant zeolite particles |
US3886094A (en) * | 1972-12-22 | 1975-05-27 | Grace W R & Co | Preparation of hydrocarbon conversion catalysts |
DE2511975A1 (en) * | 1974-03-20 | 1975-09-25 | Grace W R & Co | PROCESS FOR MANUFACTURING ZEOLIGHEN WITH OPEN LATTICE STRUCTURE |
DE3004060A1 (en) * | 1979-02-07 | 1980-08-21 | Toyo Soda Mfg Co Ltd | METHOD FOR PRODUCING Y ZEOLITE |
EP0142347A2 (en) * | 1983-11-10 | 1985-05-22 | Exxon Research And Engineering Company | Process for preparing type L zeolites by nucleating technique |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0402639A2 (en) * | 1989-06-10 | 1990-12-19 | VAW Aluminium AG | Method for the preparation of crystalline and zeolitic aluminosilicates |
EP0402639A3 (en) * | 1989-06-10 | 1991-02-06 | VAW Aluminium AG | Method for the preparation of crystalline and zeolitic aluminosilicates |
US5089243A (en) * | 1989-06-10 | 1992-02-18 | Vereinigte Aluminium-Werke A.G. | Method for the preparation of crystalline and zeolitic aluminosilicates |
EP0402801A3 (en) * | 1989-06-14 | 1991-02-06 | VAW Aluminium AG | Method for the preparation of crystalline and zeolitic aluminosilicates |
US5100636A (en) * | 1989-06-14 | 1992-03-31 | Vereinigte Aluminium-Werke A.G. | Method for the preparation of crystalline and zeolitic aluminosilicates |
EP0402801A2 (en) * | 1989-06-14 | 1990-12-19 | VAW Aluminium AG | Method for the preparation of crystalline and zeolitic aluminosilicates |
US5273737A (en) * | 1990-07-03 | 1993-12-28 | Vaw Aluminum Ag | Method for the preparation of crystalline gallosilicates, and their use for the preparation of catalysts and adsorbents |
EP0466012A2 (en) * | 1990-07-03 | 1992-01-15 | VAW Aluminium AG | Method for preparation of crystalline zeolite like gallosilicates and their use for the preparation of catalysts and adsorbents |
EP0466012A3 (en) * | 1990-07-03 | 1992-11-25 | Vereinigte Aluminium-Werke Aktiengesellschaft | Method for preparation of crystalline zeolite like gallosilicates and their use for the preparation of catalysts and adsorbents |
US5407654A (en) * | 1990-07-06 | 1995-04-18 | Vaw Aluminium Ag | Synthetic crystalline aluminosilicate for the catalytic conversion of hydrocarbons in petrochemical processes |
US5578195A (en) * | 1990-07-06 | 1996-11-26 | Ecolith - Zeolithe Gmbh | Synthetic crystalline aluminosilicate for the catalytic conversion of hydrocarbons in petrochemical processes |
US5711869A (en) * | 1990-07-06 | 1998-01-27 | Ecolith--Zeolithe GmbH | Synthetic crystalline aluminosilicate for the catalytic conversion of hydrocarbons in petrochemical processes |
US5696043A (en) * | 1990-07-06 | 1997-12-09 | Ecolith-Zeolithe Gmbh I.G. | Synthetic crystalline aluminosilicate for the catalytic conversion of hydrocarbons in petrochemical processes |
US5466432A (en) * | 1991-06-25 | 1995-11-14 | Vaw Aluminium Ag | Crystalline zeolite-like gallosilicate, and method for its synthesis |
EP0520334A1 (en) * | 1991-06-25 | 1992-12-30 | AlSi-PENTA Zeolithe GmbH | Crystalline zeolite-like gallosilicate and process for its preparation |
US5365002A (en) * | 1991-06-25 | 1994-11-15 | Vaw Aluminium Ag | Crystalline zeolite-like gallosilicate, and method for its synthesis |
US5330736A (en) * | 1992-12-07 | 1994-07-19 | W. R. Grace & Co.-Conn. | Zeolite L synthesis and resulting product |
WO1997025272A1 (en) * | 1996-01-04 | 1997-07-17 | Exxon Chemical Patents Inc. | Molecular sieves and process for their manufacture |
US6190638B1 (en) | 1996-01-04 | 2001-02-20 | Exxon Chemical Patents Inc. | Molecular sieves and process for their manufacture |
WO1998038131A1 (en) * | 1997-02-27 | 1998-09-03 | Süd-Chemie AG | PROCESS FOR PRODUCING ZEOLITES WITH A HIGH Si/Al ATOMIC RATIO |
WO2004020337A1 (en) * | 2002-08-28 | 2004-03-11 | Albemarle Netherlands B.V. | Process for the preparation of doped pentasil-type zeolite using doped seeds |
CZ299372B6 (en) * | 2005-09-23 | 2008-07-09 | Výzkumný ústav anorganické chemie, a. s. | Process for producing ZSM-5 zeolite with controlled crystal size |
CZ306416B6 (en) * | 2015-09-03 | 2017-01-11 | Unipetrol Výzkumně Vzdělávací Centrum, A. S. | A method of producing hollow spherical particles of zeolite ZSM-5 |
CZ306852B6 (en) * | 2016-03-15 | 2017-08-09 | Unipetrol výzkumně vzdělávací centrum, a.s. | A method of production of the ZSM-5 zeolite with a high proportion of pairs of aluminium atoms |
Also Published As
Publication number | Publication date |
---|---|
JPH0583483B2 (en) | 1993-11-26 |
DK34285D0 (en) | 1985-01-25 |
US4606900A (en) | 1986-08-19 |
DE3485597D1 (en) | 1992-04-23 |
EP0150256B1 (en) | 1992-03-18 |
EP0150256A3 (en) | 1988-08-03 |
DK34285A (en) | 1985-07-28 |
DE3402842A1 (en) | 1985-08-08 |
JPS60176917A (en) | 1985-09-11 |
ZA85618B (en) | 1985-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0150256B1 (en) | Method for producing crystalline zsm-5- or zsm-11-zeolites | |
DE2140481C3 (en) | Process for the production of crystalline aluminosilicates with a faujasite structure | |
DE2442240C2 (en) | Process for the preparation of a crystalline aluminosilicate zeolite | |
DE68924640T2 (en) | Zeolites. | |
DE69221885T2 (en) | MOLECULAR SCREEN CRYSTALS OR AGGLOMERATE WITH NANOMETER DIMENSIONS AND METHOD FOR THE PRODUCTION THEREOF | |
DE69320190T2 (en) | ZSM-5 ZEOLITHE | |
DE2643929C2 (en) | Process for the production of zeolite | |
DE102014222042A1 (en) | Titanium silicalite molecular sieve and its synthesis | |
DE3382652T2 (en) | METHOD FOR PRODUCING MORDENITE. | |
DE1951907B2 (en) | Process for the production of a zeolitic aluminosilicate with a faujasite structure | |
EP0017027B1 (en) | Process for producing a boron containing zeolite with the structure of zsm-5 and its use as a catalyst | |
DE69713697T2 (en) | Synthesis of triethylenediamine with base treated zeolites | |
DE69223680T2 (en) | Process for producing a particulate zeolite | |
DE69005707T2 (en) | Process for the production of crystalline and zeolitic aluminosilicates. | |
DE69203776T2 (en) | Process for the preparation of a crystalline zeolite. | |
DE68904216T2 (en) | CRYSTALLINE, SILICONES (METALLO), SODALITE TYPE SILICATES AND METHOD FOR THE PRODUCTION THEREOF. | |
DE3586143T2 (en) | SYNTHESIS OF ZEOLITHIC MATERIAL. | |
DE4131448A1 (en) | METHOD FOR THE PRODUCTION OF ESSENTIALLY ALKALIFE BORSILICATE CRYSTALS WITH ZEOLITE STRUCTURE | |
DE2935123C2 (en) | ||
EP0423530B1 (en) | Process for the preparation of a metal-containing synthetic crystalline borosilicate | |
DE68904939T2 (en) | CRYSTALLINE (METALLO) SILICATES AND METHOD FOR THE PRODUCTION THEREOF. | |
DE451112T1 (en) | METHOD FOR PRODUCING ZEOLITES. | |
DE4407872C2 (en) | Process for the preparation of high silicon zeolites | |
DE69202562T2 (en) | SILICONE OFFRETIT. | |
DE2028163A1 (en) | Process for the production of zeolites with a faujasite structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB NL |
|
17P | Request for examination filed |
Effective date: 19880905 |
|
17Q | First examination report despatched |
Effective date: 19890417 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB NL |
|
REF | Corresponds to: |
Ref document number: 3485597 Country of ref document: DE Date of ref document: 19920423 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20000530 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20000721 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010728 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20010728 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020329 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20030405 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20030731 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20040728 |
|
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |