EP0148542B1 - Gaz de synthèse à partir de boues de combustibles carbonacés solides - Google Patents

Gaz de synthèse à partir de boues de combustibles carbonacés solides Download PDF

Info

Publication number
EP0148542B1
EP0148542B1 EP19840300138 EP84300138A EP0148542B1 EP 0148542 B1 EP0148542 B1 EP 0148542B1 EP 19840300138 EP19840300138 EP 19840300138 EP 84300138 A EP84300138 A EP 84300138A EP 0148542 B1 EP0148542 B1 EP 0148542B1
Authority
EP
European Patent Office
Prior art keywords
gas
gas stream
water
cooling zone
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19840300138
Other languages
German (de)
English (en)
Other versions
EP0148542A1 (fr
Inventor
Lawrence E. Estabrook
Robert Murray Suggitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texaco Development Corp
Original Assignee
Texaco Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Development Corp filed Critical Texaco Development Corp
Priority to EP19840300138 priority Critical patent/EP0148542B1/fr
Priority to DE8484300138T priority patent/DE3469912D1/de
Publication of EP0148542A1 publication Critical patent/EP0148542A1/fr
Application granted granted Critical
Publication of EP0148542B1 publication Critical patent/EP0148542B1/fr
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/86Other features combined with waste-heat boilers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/52Ash-removing devices
    • C10J3/526Ash-removing devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • C10J3/845Quench rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/001Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
    • C10K3/003Reducing the tar content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0943Coke
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0986Catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0996Calcium-containing inorganic materials, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • C10J2300/1823Recycle loops, e.g. gas, solids, heating medium, water for synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1846Partial oxidation, i.e. injection of air or oxygen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1892Heat exchange between at least two process streams with one stream being water/steam

Definitions

  • This invention relates to the gasification of slurries of ash-containing solid carb6naceous fuel. More specifically, it relates to the catalytic gasification of the particulate carbon and the carbon in the unconverted portion of ash-containing solid carbonaceous fuel entrained in the raw effluent synthesis gas stream leaving a refractory lined free-flow gas generator for the noncatalytic partial oxidation of slurries of ash-containing solid carbonaceous fuel, such as slurries of coal dispersed in a liquid medium i.e., water, liquid hydrocarbonaceous fuel, and mixtures thereof.
  • a liquid medium i.e., water, liquid hydrocarbonaceous fuel, and mixtures thereof.
  • coal which is America's most abundant form of fossil fuel will play an increasingly major role in providing for the nation's energy requirements.
  • One ton of coal contains the same amount of energy as three to four barrels of crude oil. Accordingly, in the future it will become necessary to produce an increasing fraction of liquid and gaseous fuels from coal.
  • the gas produced by this invention may be used with or without further processing and/or purification as a gaseous fuel or as feedstock for the catalytic synthesis of liquid fuels.
  • Synthesis gas, fuel gas, and reducing gas may .be produced from coal by well known gasification processes.
  • coassigned U.S. Patents 3,544,291 and 4,289,502 respectively relate to a process for the partial oxidation of slurries of coal, and to an apparatus for producing cleaned and cooled synthesis gas by the partial oxidation of solid carbonaceous fuel.
  • No catalysts or slurries of solid carbonaceous fuels are used in the processes described in U.S. Patent Numbers 3,988,123 and 4,060,397.
  • U.S. Patent 4,094,650 pertains to a process for producing a CH 4 -containing gas in a fluidized bed of catalyst comprising a carbon-alkali metal reaction product.
  • the catalytic material is transported into an uncooled reaction vessel where it is maintained in a fluidized bed by means of an upflowing mixture of steam and a portion of recycle product gas.
  • the normal residence time in a conventional free-flow refractory lined partial oxidation gas generator is in the range of about 1-5 seconds.
  • a small amount of the solid fuel particles may pass unreacted through the reaction zone of the gas generator.
  • Such short dwell times may be insufficient to allow the envelope of liquid carrier surrounding each solid fuel particle to vaporize, and for the gases to then contact and react with the carbon in the solid fuel particle.
  • the combustion efficiency of the process is reduced; and, the cost of cleaning the raw synthesis gas to remove the unconverted particles of solid fuel is increased.
  • This problem is reduced or eliminated by the subject process in which substantially all of the carbon in the ash-containing solid carbonaceous fuel may be converted into carbon oxides.
  • This a continuous process for producing a stream of synthesis gas, fuel gas or reducing gas by the non-catalytic partial oxidation of a slurry of ash-containing solid carbonaceous fuel with a free-oxygen containing gas is selected from the group consisting of water, liquid hydrocarbon fuel, and mixtures thereof.
  • An effluent gas stream is first produced by the partial oxidation of the slurry of ash-containing solid carbonaceous fuel in a free-flow noncatalytic refractory lined gas generator at a temperature in the range of 1288°C to 1593°C (2350°F. to 2900°F.) and a pressure in the range of 1 to 20 MPa (10 to 200 atmospheres).
  • a temperature moderator such as H 2 0 may be employed when the liquid carrier is a liquid hydrocarbon fuel.
  • the partial oxidation gas generator is operated so as to convert from 75 to 95 wt.% of the carbon in the fuel feed to the reaction zone into carbon oxides.
  • the hot effluent gas stream leaving the gas generator comprises H 2 , CO, CO 2 and at least one gas from the group H 2 0, N 2 , H 2 S, COS, CH 4 , NH 3 , Ar, HCI, and HCN. Further, entrained in the hot effluent gas stream leaving the reaction zone is the remaining unconverted portion of the ash-containing solid carbonaceous fuel, particulate carbon i.e. soot, and the non-combustible inorganic ash portion i.e. molten slag from the reacted portion of the solid carbonaceous fuel.
  • the hot effluent gas stream leaving the reaction zone of the gas generator, with or without removal of a portion of the entrained particulate matter and/or slag, is passed through the unobstructed vertical central passage of a free-flow radiant cooler where it is contacted by and provides the heat to vaporize a solution of catalyst consisting of alkali metal and/or alkaline earth metal compound in water.
  • the yield of alkali metal and/or alkaline earth metal constituent (basis weight of entrained carbon) is in the range of 5-50 wt.%.
  • the mole ratio of H 2 0/C in the reactant stream is in the range of 0.7 to 25.0, or more; such as 1.0 to 20.0; say 1.5 to 6.0.
  • a tube-wall comprising pipes or coils through which cooling water is passed line the inside walls of the radiant cooler for use in controlling the reduction of the temperature of the stream of hot effluent gas passing therethrough.
  • the hot effluent gas stream enters the radiant cooler at a temperature in the range of 1260°C to 1538°C (2300°F. to 2800°F.) and leaves at a temperature in the range of 732°C to 871°C. (1350°F. to 1600°F.), such as 816°C (1500°F.).
  • the present invention pertains to a continuous process for the production of a stream of synthesis gas, fuel gas, or reducing gas from slurries of ash-containing solid carbonaceous fuels in a liquid carrier.
  • the product gas may be used with or without further processing and/or purification by conventional methods, depending on the composition of the ash-containing solid carbonaceous fuel feed.
  • a hot effluent gas stream is made by the partial oxidation of the slurry of ash-containing solid carbonaceous fuel in a liquid carrier with a free-oxygen containing gas and in the presence of a temperature moderator.
  • a typical partial oxidation synthesis gas generator is shown in co-assigned U.S. Pat. No. 2,818,326.
  • a burner is located in the top of the gas generator along the central vertical axis for introducing the feed streams.
  • a suitable annulus-type burner is shown in co-assigned U.S. Pat. No. 2,928,460.
  • the gas generator is a vertical cylindrical steel pressure vessel lined on the inside with a thermal refractory material.
  • ash-containing solid carbonaceous fuel includes coal, such as anthracite, bituminous, subbituminous; coke from coal; lignite; residue derived from coal liquefaction; oil shale; tar sands; petroleum coke; asphalt; pitch; particulate carbon (soot); concentrated sewer sludge; and mixtures thereof.
  • the solid carbonaceous fuel may be ground to a particle size so that 100% passes through an ASTM E11-70 Sieve Designation Standard (SDS) 1.40 mm Alternative No. 14.
  • Pumpable slurries of solid carbonaceous fuels may have a solids content in the range of about 25-70 wt.% such as 45--68 wt.%, depending on the characteristics of the fuel and the slurrying medium.
  • the slurrying medium may be water, liquid hydrocarbon, or both.
  • liquid hydrocarbon is intended to include various materials, such as liquified petroleum gas, petroleum distillates and residues, gasoline, naphtha, kerosene, crude petroleum asphalt, gas oil, residual oil, tar-sand and shale oil, oil derived from coal, aromatic hydrocarbons (such as benzene, toluene, and xylene fractions), coal tar, cycle gas oil from fluid- catalytic-cracking operation, furfural extract of coker gas oil, and mixtures thereof.
  • materials such as liquified petroleum gas, petroleum distillates and residues, gasoline, naphtha, kerosene, crude petroleum asphalt, gas oil, residual oil, tar-sand and shale oil, oil derived from coal, aromatic hydrocarbons (such as benzene, toluene, and xylene fractions), coal tar, cycle gas oil from fluid- catalytic-cracking operation, furfural extract of coker gas oil, and mixtures thereof.
  • liquid hydrocarbons include oxygenated hydrocarbonaceous organic materials including carbohydrates, cellulosic materials, aldehydes, organic acids, alcohols, ketones, oxygenated fuel oil, waste liquid and byproducts from chemical processes containing oxygenated hydrocarbonaceous organic materials, and mixtures thereof.
  • a temperature moderator to moderate the temperature in the reaction zone of the gas generator depends in general on the carbon to hydrogen ratio of the feed stock and the oxygen content of the oxidant stream.
  • Suitable temperature moderators include steam, water, C0 2 -rich gas, liquid CO 2 , recycle synthesis gas, a portion of the cooled clean exhaust gas from a gas turbine employed downstream in the process with or without admixture with air, by-product nitrogen from the air separation unit used to produce substantially pure oxygen, and mixtures of the aforesaid temperature moderators.
  • Water serves as the carrier and the temperature moderator with feed slurries of water and solid carbonaceous fuel.
  • steam may be the temperature moderator with slurries of liquid hydrocarbon fuels and solid carbonaceous fuel.
  • a temperature moderator is used with liquid hydrocarbon fuels and with substantially pure oxygen.
  • the temperature moderator may be introduced into the gas generator in admixture with either the solid carbonaceous fuel feed, the free-oxygen containing stream, or both.
  • the temperature moderator may be introduced into the reaction zone of the gas generator by way of a separate conduit in the fuel burner.
  • Whe H 2 0 is introduced into the gas generator either as a temperature moderator, a slurrying medium or both, the weight ratio of water to the solid carbon in the solid carbonaceous fuel plus liquid hydrocarbon fuel if any, is in the range of 0.3 to 2.0 and preferably in the range of 0.5 to 1.0.
  • free-oxygen containing gas is intended to include air, oxygen-enriched air, i.e., greater than 21 mole % oxygen, and substantially pure oxygen, i.e., greater than 95 mole % oxygen, (the remainder comprising N 2 and rare gases).
  • Free-oxygen containing gas may be introduced into the burner at a temperature in the range of ambient to 649°C (1200°F.).
  • the atomic ratio of free-oxygen in the oxidant to carbon in the feed stock (O/C, atom/atom) is preferably in the range of 0.7 to 1.5, such as 0.80 to 1.2.
  • the relative proportions of solid carbonaceous . fuel, liquid hydrocarbon fuel if any, water or other temperature moderator, and oxygen in the feed streams to the gas generator are carefully regulated to convert a substantial portion of the carbon in the fuel feed to the partial oxidation gas generator e.g. 75 to 95 wt.%, such as 80 to 90 wt.% of the carbon to carbon oxides e.g. CO and CO 2 and to maintain an autogenous reaction zone temperature in the range of 1288°C. to 1593°C. (2350° to 2900°F.).
  • the ash in the solid carbonaceous fuel forms molten slag at such reaction temperatures.
  • Molten slag is much easier to separate from the hot effluent gas than fly-ash. Further, the hot effluent gas leaves the reaction zone at the proper temperature and pressure for the next step in the process.
  • the pressure in the reaction zone is in the range of 1 to 20 MPa (10 to 200 atmospheres).
  • the time in the reaction zone of the partial oxidation gas generator in seconds is in the range of 0.5 to 10, such as normally 1.0 to 5.
  • the effluent gas stream leaving the partial oxidation gas generator has the following composition in mole % depending on the amount and composition of the feedstreams: H 2 8.0 to 60.0, CO 8.0 to 70.0, CO 2 1.0 to 50.0, H 2 0 2.0 to 50.0, CH 4 0.0 to 2.0, H 2 S 0.0 to 2.0, COS 0.0 to 1.0, N 2 0.0 to 80.0, and Ar 0.0 to 2.0.
  • Trace amounts of the following gaseous impurities may be also present in the effluent gas stream in parts per million (ppm): HCN 0 to 100, such as 2 to 20; HCI 0 to 20,000, such as 200 to 2,000; and NH 3 0 to 10,000, such as 100 to 1000.
  • Entrained in the effluent gas stream is 0.5 to 20 wt.%, such as 1 to 4 wt.% of particulate carbon (basis weight of carbon in the feed to the gas generator) and the remaining portion of the unconverted ash-containing solid carbonaceous fuel feed. Molten slag resulting from the fusion of the ash content of the coal is also entrained in the gas stream leaving the generator.
  • the effluent gas stream leaving the reaction zone of the partial oxidation gas generator at a temperature in the range of 1288°C to 1593°C (2350°F. to 2900°F.) is passed through a radiant cooler where it is contacted with a spray of catalyst solution consisting of alkali metal and/or alkaline earth metal compound in water.
  • the radiant cooler is preferably connected directly in succession to the discharge outlet of the reaction zone of the gas generator, such as shown and described in coassigned U.S. Patent No. 3,551,347, and in U.S. Patent No. 4,309,196. This sequence is also shown in German Patent No. 2,650,512.
  • the effluent gas stream from the gas generator may be passed in a downward or upward direction through the radiant cooler.
  • a portion of the combustion residue entrained in the effluent gas stream leaving the reaction zone may be removed prior to the radiant cooler. This may be done with substantially no reduction in temperature of the effluent gas stream by gravity and/or gas-solids separation means, such as cyclone or impingement separators.
  • Refractory-lined first and/or second slag and residue separation chambers may be connected in between the discharge outlet of the reaction zone of the gas generator and the inlet to the radiation cooler for separation of a portion of the entrained matter by gravity. This mode is shown and described in coassigned U.S. Patent No. 4,251,228.
  • the radiant cooler essentially comprises an elongated cylindrically shaped vertical pressure vessel.
  • the steel walls of the vessel are lined on the inside with a tube-wall which extends through the full length of the vessel.
  • a coolant such as cooling water or water and steam flows through the individual tubes of the tube-wall.
  • the tube-wall comprises a plurality of adjacent contacting rows of vertical tubes or coils in a concentric ring that is radially spaced from the central longitudinal axis of the vessel.
  • a plurality of thin-walled vertical tubes with or without side fins line the inside walls of the radiant cooler.
  • the adjacent rows of tubes are longitudinally welded together to make an annular gas-tight wall of tubes.
  • the lower and upper ends of each said tubes may be respectively connected to lower and upper annular shaped headers.
  • the coolant in the tube-wall is water or a mixture of water and steam
  • the highest temperature that the pressure shell can reach is the temperature of the saturated steam within the radiant cooler.
  • Boiler feed water is introduced into the bottom header and then passes up through the plurality of separate upright tubes into the top header.
  • the mixture of steam and water is removed from the top header and introduced into an external steam drum where separation takes place.
  • the saturated steam removed from the steam drum may be used elsewhere in the process to provide heat or power.
  • the saturated steam may be superheated.
  • the hot water separated in the steam drum may be returned to . the bottom header of the radiant cooler.
  • a plurality of nozzles may be secured on the outside of the tube-wall.
  • a stream of water, steam or air may be directed against the tube-wall.
  • the tube-wall may be washed down with water, and any alkali metal and/or alkaline . earth metal compound deposited thereon may be removed by the wash water and recovered for reuse in a tank below.
  • the hot effluent gas stream may enter through either end of the vertical radiant cooler and freely flow through the unobstructed central core.
  • the temperature of the hot effluent gas stream is steadily reduced as it flows through the radiant cooler.
  • a portion of the sensible heat in the hot effluent gas stream is absorbed by indirect heat exchange with the cooling water and steam flowing inside of the tube-wall.
  • the temperature of the gas stream is primarily controlled by this means.
  • the aqueous solution of catalyst is sprayed into the effluent gas stream in the radiant cooler by means of spray nozzles or atomizers.
  • spray nozzles or atomizers Any suitable number and arrangement of spray nozzles, atomizers, or other suitable mixing means may be employed which provide intimate contacting and mixing of the aqueous catalyst solution with the hot effluent gas stream within the radiation cooler.
  • at least one spray nozzle may be located within the radiant cooler and downstream from the entrance so that the entering hot effluent gas stream may be immediately contacted by the atomized spray of aqueous solution of catalyst.
  • additional spray nozzles for spraying catalyst solution may be longitudinally spaced along the central passageway or central longitudinal axis of the radiant cooler.
  • the preferred aqueous solution of catalyst is prepared by dissolving at least one water-soluble alkali metal salt or hydroxide in water to produce a solution containing alkali metal compound in the amount of 10 wt.% to saturation.
  • the aqueous solution of catalyst may contain at least one water-soluble alkaline earth metal salt or hydroxide in the amount of 10 wt.% to saturation.
  • the aqueous solution of catalyst may contain mixtures of at least one water-soluble alkali metal salt or hydroxide and at least one alkaline earth metal salt or hydroxide in the amount of 10 wt.% to saturation.
  • Alkali metal constituents from Group IA of the Periodic Table of Elements such caesium, potassium, sodium and lithium in that order are generally most effective.
  • Potassium and sodium compounds such as K 2 CO 3 and Na 2 C0 3 or mixtures thereof are most effective for their cost.
  • CaC0 3 is most effective for its cost.
  • Water soluble compounds of Groups IA and/or Group IIA which are suitable for practicing the subject invention include the carbonates, bicarbonates, hydroxides, silicates, sulfates, sulfites, aluminates, and borates. Hydrates of said compounds, and suitable waste products rich in aforesaid compounds may also be used.
  • the alkali metal and/or alkaline earth metal halides are less preferred and generally should be avoided to avoid halide corrosion of stainless steel or other ferro-alloys in subsequent processing equipment, e.g., in the quench and purification systems.
  • the aqueous solution of alkali metal and/or alkaline earth metal compound at a temperature in the range of ambient to 93°C (200°F.) is introduced into the radiant cooler at a rate and concentration so that after the water solvent vaporizes the yield of the alkali metal and/or alkaline earth metal constituent that becomes intimately associated with the particulate carbon and the carbon in the unconverted solid carbonaceoous fuel entrained in the effluent gas passing through the radiant cooler is in the range of 5-50 wt.%, such as 10-20 wt.% (basis wt. of entrained carbon).
  • the mole ratio H 2 0/C in the hot gas stream is in the range of 0.7 to 25.0, or more; such as in the range of 1.0 to 20.0; say 1.5 to 6.0.
  • the dwell time of the hot gas stream passing through the radiant cooler is in the range of 5 to 50 seconds, such as 15 to 40 seconds.
  • the gas stream enters the radiant cooler at substantially the same temperature as that which it had when it left the reaction zone of the partial oxidation gas generator i.e. 1288°C to 1593°C (2350°F. to 2900°F.), less any ordinary drop in the lines i.e. 10°C-38°C (50°-100°F.) temperature drop.
  • the partially cooled gas stream leaves at the opposite end of the radiant cooler after its temperature has been steadily reduced to a temperature in the range of 732°C to 871°C (1350°F.-1600°F.), such as 816°C (1500°F.).
  • the pressure of the gas stream in the radiant cooler is substantially the same as that in the gas generator, less ordinary pressure drop in the lines i.e.
  • the methane concentration of the gas stream is increased to a range of 3 to 15 mole percent by first converting only a portion of the available carbon entrained in the effluent gas stream by the catalytic steam-carbon reaction, followed by the conversion of the remainder of the unconverted carbon by a catalytic methanation reaction at a lower temperature.
  • the catalytic steam-carbon reaction takes place in the front section of the radiant cooler at comparatively high temperatures and under the conditions described previously for the preferred embodiment.
  • the catalytic methanation reaction follows at the cooler end of the radiant cooler at comparatively lower temperatures in the range of 704-482°C (1300°F. to 900°F.). Such lower temperatures favor the formation of methane.
  • the effluent gas stream from the reaction zone of the partial oxidation gasifier enters the radiant cooler at a temperature in the range of 1260°C to 1538°C (2300°F. to 2800°F.).
  • Different reactions take place in two consecutive stages or sections of the radiant cooler in tandem.
  • the addition of catalyst and the H 2 0/C mole ratio are substantially the same as described previously for the preferred embodiment.
  • the temperature of the gas stream passing through the first section of the radiant cooler is primarily controlled by indirect heat exchange with cooling water or water and steam in the tube-wall.
  • the temperature of the gas stream has been simultaneously and steadily reduced to a value in the range of 704 ⁇ 732°C (1300°F.-1350°F.).
  • additional catalyst solution consisting of alkali metal and/or alkaline earth metal compound in water may be optionally introduced into the radiant cooler in the manner previously described, and may contact the effluent gas stream at said reduced temperature.
  • useful thermal energy may be recovered from the exothermic catalytic methanation reaction by indirect heat exchange between the gas stream flowing down the central passageway of the radiant cooler and the cooling water flowing through the tube-wall.
  • by-product steam may be produced.
  • At least a portion of the molten slag entrained in the hot gas stream in the radiant cooler is fluxed with the alkali metal and/or alkaline earth metal compound. A material with greater fluidity and having a lower melting point is thereby produced.
  • the temperature of the gas stream departing from the radiant cooler is lower than the melting point of the fluxed slag.
  • the molten fluxed slag is thereby converted into granules which drop by gravity into a water bath contained in a slag chamber below.
  • a suitable apparatus for doing this is shown in Fig. 1 of the drawing for coassigned U.S. Patent 4,251,228.
  • the comparatively clean and partially cooled gas stream leaves the downstream end of the radiant cooler at a temperature below the maximum safe operating temperature for downstream devices used to recover energy from the hot gas stream such as a conventional convection type gas cooler, an expansion turbine for the production of mechanical or electrical energy, or both.
  • the gas stream may leave a downstream convection-type gas cooler or exit from some other energy utilizing means at a temperature in the range of 66°C to 316°C (150° to 600°F.).
  • the gas stream may be then optionally subjected to additional process steps including gas scrubbing, water-gas shift or methanation reactions, and purification, depending on its intended use as a synthesis gas, reducing gas, or fuel gas.
  • the partially cooled gas stream discharged from the radiant cooler may be passed through a convection-type cooler and cooled to a temperature in the range of 66°C to 316°C (150 to 600°F.) by indirect heat exchange with boiler feed water (BFW).
  • BFW boiler feed water
  • a portion of the steam may be recycled to the gas generator for use as the temperature moderator.
  • the remainder of the steam may be exported.
  • the partially cooled gas stream from the radiant cooler may be passed through an expansion turbine.
  • the gas stream leaving the convection-type gas cooler or that which is discharged from said expansion turbine may be then cleaned substantially free of any remaining entrained particulate matter.
  • any carbon soot, slag and catalyst in the gas stream may be removed by scrubbing the gas stream with water in a gas scrubber.
  • all the remaining water soluble catalyst dissolves in the stream of scrubbing water.
  • substantially all of the remaining water insoluble particulate matter which is scrubbed from the gas stream is also contained in said stream of scrubbing water.
  • the clean gas stream may be separated from the stream of scrubbing water in a conventional separating vessel.
  • a portion of the catalyst may be recovered from the scrubbing water by conventional procedures and recycled to the radiant cooler in admixture with a solution of make-up catalyst.
  • An added benefit of the subject process is the simultaneous removal of all of unwanted free gaseous impurities selected from the group consisting of HCN, HCI, COS and mixtures thereof in the catalyzed gas stream while the gas stream is passing through the radiant cooler.
  • HCN hydrogen cyanide
  • ammonia and a water-soluble alkali metal and/or an alkaline earth metal formate may be formed.
  • carbonyl sulfide in the presence of the catalyst, carbon dioxide and hydrogen sulfide may be produced.
  • any free hydrogen chloride in the gas stream may be neutralized by reaction with a portion of the base catalyst to produce a water-soluble salt.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Claims (10)

1. Procédé continu pour la production de gaz de synthèse, de gaz combustible ou de gaz réducteur à partir d'une bouillie d'un combustible carboné solide contenant des cendres, consistant:
(1) à faire réagir 75 à 95% en poids du carbone présent dans cette bouillie de combustible carboné solide contenant des cendres, par oxydation partielle non catalytique avec un gaz contenant de l'oxygène libre et en présence d'un modérateur de température dans une zone de réaction revêtue de réfractaire, à écoulement libre, d'un générateur de gaz à la température spontanée, dans l'intervalle de 1288°C à 1593°C (2250 à 2900°F) et sous une pression dans l'intervalle de 1 à 20 MPa (10 à 200 atmosphères) pour produire un courant chaud de gaz contenant H2, CO, C02, et au moins une matière choisie dans le groupe constitué de H20, N2, H2S, COS, CH4, NH3, Ar, HCI, HCN et contenant une matière entraînée contenant du carbone particulaire, le reste du combustible carboné solide contenant des cendres non transformé, et un laitier fondu;
(2) à faire passer le courant de gaz chaud dans une zone de refroidissement à écoulement libre dans laquelle par radiation et convection, une partie de la chaleur sensible du courant gazeux d'effluent chaud est absorbée par échange de chaleur indirect avec un produit réfrigérant; à mettre en contact ce courant de gaz chaud dans cette zone de refroidissement avec une solution aqueuse d'un catalyseur constitué d'un composé de métal alcalin et/ou d'un composé de métal alcalino-terreux solubles dans l'eau et d'eau, dans laquelle les constituants métal alcalin et/ou métal alcalino-terreux du composé sont choisis parmi les métaux des groupes IA et/ou IIA de la Classification Périodique des Eléments; et à mélanger intimement cette solution de catalyseur avec cette matière entraînée et à vaporiser l'eau;
(3) à faire réagir dans cette zone de refroidissement des gaz, en présence de ce catalyseur H20 et au moins une partie du carbone particulaire et du carbone présent dans le reste du combustible carboné solide contenant des cendres non transformées entraîné dans ce courant de gaz; et à réduire simultanément la température de ce courant gazeux d'une température d'entrée dans l'intervalle de 1260°C à 1538°C (2300 à 2800°F) à une température d'évacuation dans l'intervalle de 732°C à 871°C (1350°F-1600°F) per échange de chaleur indirect avec un produit réfrigérant; et
(4) à évacuer de cette zone de refroidissement des gaz un courant gazeux partiellement refroidi contenant une quantité accrue de H2+COx,
2. Procédé continu pour la production de gaz de synthèse, de gaz combustible ou de gaz réducteur à partir d'une bouillie d'un combustible carboné solide contenant des cendres, consistant:
(1) à faire réagire 75 à 95% en poids du carbone présent dans cette bouillie de combustible carboné solide contenant des cendres par oxydation partielle non catalytique, avec un gaz contenant de l'oxygène libre et en présence d'un modérateur de température, dans une zone de réaction revêtue de réfractaire à écoulement libre d'un générateur de gaz, à une température spontanée dans l'intervalle de 1288°C à 1593°C (2350 à 2900°F) et sous une pression dans l'intervalle de 1 à 10 MPa (10 à 200 atmosphères) pour produire un courant chaud de gaz contenant H2, CO, CO2 et au moins une matière choisie dans le groupe constitué de H20, N2, H2S, COS, CH4, NH3, Ar, HCI, HCN, et contenant une matière entraînée comprenant du carbone particulaire, le reste du combustible carboné solide contenant des cendres non transformé et un laitier fondu;
(2) à faire passer le courant de gaz chaud dans une zone de refroidissement des gaz à écoulement libre dans laquelle, par radiation et convection, une partie de la chaleur sensible présente dans le courant gazeux effluent chaud est absorbée par échange de chaleur indirect avec un produit réfrigérant, cette zone de refroidissement des gaz comprenant deux sections consécutives en ligne; à mettre en contact ce courant de gaz chaud dans la première section de cette zone de refroidissement avec une solution aqueuse d'un catalyseur constitué d'un composé de métal alcalin et/ou d'un composé de métal alcalino-terreux solubles dans l'eau et d'eau, dans laquelle les constituants métal alcalin et/ou métal alcalino-terreux du composé sont choisis parmi les métaux des éléments des groups IA et/ou IIA de la Classification Périodique des Eléments; et à mélanger intimement cette solution de catalyseur avec cette matière entraînée et à vaporiser l'eau;
(3) à faire réagir dans la première section de cette zone de refroidissement des gaz, en présence de ce catalyseur H20 et une partie du carbone particulaire et le carbone présent dans le reste du combustible carboné solide contenant des cendres non transformé entraîné dans ce courant de gaz; et à réduire simultanément la température de ce courant de gaz en passant à travers cette première section de la zone de refroidissement des gaz d'une température d'entrée dans l'intervalle de 1260°C à 1538°C (2300-2800°F) à une température dans l'intervalle de 732°C à 871°C (1300 à 1350°F) par échange de chaleur indirect avec un produit réfrigérant; dans laquelle la teneur en H2+COx du courant gazeux est augmentée;
(4) à faire passer le courant gazeux provenant de (3) dans la seconde section de cette zone de refroidissement des gaz, et avec ou sans mise en contact du courant de gaz avec une solution aqueuse supplémentaire de ce catalyseur, à faire réagir H20, CO, C02, H2 et les parties restantes du carbone particulaire non transformé et du carbone présente dans le combustible carboné solide contenant des cendres entraîné dans le courant de gaz catalytique, et à abaisser simultanément la température du courant gazeux traversant cette seconde section de la zone de refroidissement des gaz d'une température dans l'intervalle de 732°C à 871°C (1300-1350°F) à une température d'évacuation dans l'intervalle de 482°C à 538°C (900 à 1000°F) par échange de chaleur indirect avec un produit réfrigérant; et
(5) à évacuer le courant gazeux partiellement refroidi de la seconde section de cette zone de refroidissement des gaz contenant une quantité accrue de CH4.
3. Procédé suivant la revendication 1 ou 2, dans lequel cette solution aqueuse de catalyseur se compose de 10% en poids jusqu'à la saturation d'un composé de métal alcalin et/ou de métal alcalino-terreux soluble dans l'eau choisi dans le groupe de composés constitués des carbonates, bicarbonates, hydroxides, silicates, sulfate, sulfites, aluminates et borates et de mélanges de ceux-ci; et dans lequel ces métaux alcalins constitutifs sont choisis dans le groupe constitué de K, Na, Li et de mélanges de ceux-ci, et/ou ces métaux alcalino-térreux constitutifs sont choisis dans le groupe constitué de Ba, Ca, Mg et de mélange de ceux-ci.
4. Procédé suivant la revendication 1 ou 2, dans - lequel cette solution aqueuse de catalyseur se compose des sels ou d'hydroxydes d'un métal choisi dans le groupe des métaux constitués de K, Na, Ca et de mélanges de ceux-ci, dans de l'eau.
5. Procédé suivant la revendication 1 ou 2, dans lequel, aussitôt après la mise en contact avec la solution aqueuse de catalyseur dans cette zone de refroidissement des gaz, le rapport molaire H20/C du courant de gaz chaud est dans l'intervalle de 0,7 à 25,0 ou davantage.
6. Procédé selon la revendication 1 ou 2, dans lequel au moins une partie de la matière entraînée dans le courant de gaz chaud quittant le générateur de gaz en (1) est éliminée par gravite et/ou par séparation gaz/solide avant l'introduction du courant de gaz chaud dans la zone de refroidissement des gaz en (2).
7. Procédé selon la revendication 1 ou 2, dans lequel la zone de refroidissement des gaz comprend un réfrigérant radiant comportant un passage central non obstrué à travers lequel on fait passer le courant de gaz chaud, et une paroi tubulaire qui l'entoure, à travers laquelle on fait passe de l'eau de refroidissement pour réaliser ce refroidissement du courant gazeux chaud le traversant, et la mise en contact en (2) s'effectue en mettant en contact le courant de gaz chaud traversant le passage central de ce réfrigérant radiant avec une pulvérisation atomisée de cette solution aqueuse de catalyseur.
8. Procédé selon la revendication 1 ou 2, comportant les stades de fluidification d'au moins une partie de ce laitier fondu dans le courant gazeux traversant cette zone de refroidissement des gaz avec une partie de ce composé de métal alcalin et/ ou de ce composé de métal alcalino-terreux pour produire une matière ayant une fluidité supérieure et ayant un point de fusion plus bas, le refroidissement de cette matière au-dessous de son point de fusion pour former des granules, et de séparation de ces granules du courant gazeux par gravité.
9. Procédé suivant la revendication 1 ou 2, comportant les stades consistant à faire réagir la quasi-totalité du HCI libre dans le courant de gaz chaud traversant la zone de refroidissement des gaz avec une partie du catalyseur soluble dans l'eau constituée d'un composé de métal alcalin et/ ou d'un composé de métal alcalino-terreux pour produire un sel soluble dans l'eau; à faire passer le courant gazeux partiellement refroidi évacué de la zone de refroidissement à travers un réfrigérant de gaz de type à convection en échange de chaleur indirect avec de l'eau de refroidissement ou à travers une turbine à expansion; puis à laver le courant gazeux avec de l'eau dans une zone de lavage des gaz et à produire un courant de gaz propre et le courant séparé d'eau de lavage dans lequel la quasi-totalité du sel soluble dans l'eau et du catalyseur soluble dans l'eau restant éventuellement, extraits par lavage de ce courant gazeux, sont dissous, et qui contient la quasi-totalité de la matière particulaire insoluble dans l'eau restante extraite par lavage de ce courant gazeux, comportant les stades consistant à faire réagir ensemble H20 et la quasi-totalité du COS présents dans le courant de gaz chaud passant à travers la zone de refroidissement des gaz en présence de ce composé de catalyseur pour produire C02 et H2S; à faire passer le courant gazeux partiellement refroidi évacué de la zone de refroidissement à travers un réfrigérant à gaz du type à convection en échange de chaleur indirect avec de l'eau de refroidissement ou à travers une turbine à expansion; puis à laver le courant gazeux avec de l'eau dans une zone de lavage des gaz et à produire un courant de gaz propre et un courant séparé d'eau de lavage dans lequel la quasi-totalité du catalyseur soluble dans l'eau restant éventuellement, extrait par lavage de ce courant gazeux, est dissoute, et qui contient la quasi-totalite de la matière particulaire insoluble dans l'eau restante, extraite par lavage de ce courant gazeux.
10. Procédé selon la revendication 1 ou 2, comportant les stades consistant à faire réagir entre eux H20 et la quasi-totalité du HCN libre présents dans le courant de gaz chaud traversant la zone de refroidissement des gaz en présence de ce composé catalyseur pour produire de l'ammoniac et un ou plusieurs formiates de métaux alcalins et/ou alcalino-terreux solubles dans l'eau; à faire passer le courant de gaz partiellement refroidi évacué de la zone de refroidissement à travers un réfrigérant à gaz du type à convection en échange de chaleur indirect avec de l'eau de refroidissement ou à travers une turbine à expansion; puis à laver le courant gazeux avec de l'eau dans une zone de lavage des gaz et à produire un courant gazeux propre et un courant séparé d'eau de lavage dans lequel la quasi-totalité de ce ou ces formiates solubles dans l'eau et le catalyseur soluble dans l'eau restant éventuellement extraits par lavage de ce courant gazeux sont dissous, et qui contient la quasi-totalité de la matière particulaire insoluble dans l'eau restante extraite par lavage de ce courant gazeux.
EP19840300138 1984-01-10 1984-01-10 Gaz de synthèse à partir de boues de combustibles carbonacés solides Expired EP0148542B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19840300138 EP0148542B1 (fr) 1984-01-10 1984-01-10 Gaz de synthèse à partir de boues de combustibles carbonacés solides
DE8484300138T DE3469912D1 (en) 1984-01-10 1984-01-10 Synthesis gas from slurries of solid, carbonaceous fuels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19840300138 EP0148542B1 (fr) 1984-01-10 1984-01-10 Gaz de synthèse à partir de boues de combustibles carbonacés solides

Publications (2)

Publication Number Publication Date
EP0148542A1 EP0148542A1 (fr) 1985-07-17
EP0148542B1 true EP0148542B1 (fr) 1988-03-16

Family

ID=8192521

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19840300138 Expired EP0148542B1 (fr) 1984-01-10 1984-01-10 Gaz de synthèse à partir de boues de combustibles carbonacés solides

Country Status (2)

Country Link
EP (1) EP0148542B1 (fr)
DE (1) DE3469912D1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0305047B1 (fr) * 1987-08-28 1993-02-17 Texaco Development Corporation Désulfuration de gaz de synthèse à haute température
US4875906A (en) * 1988-11-10 1989-10-24 Texaco Inc. Partial oxidation of low heating value hazardous waste petroleum products
US11447576B2 (en) 2019-02-04 2022-09-20 Eastman Chemical Company Cellulose ester compositions derived from recycled plastic content syngas
US11370983B2 (en) 2019-02-04 2022-06-28 Eastman Chemical Company Gasification of plastics and solid fossil fuels
WO2021211530A1 (fr) * 2020-04-13 2021-10-21 Eastman Chemical Company Compositions de gaz de synthèse

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1001034A (fr) * 1948-12-07 1952-02-19 Koppers Co Inc Procédé et installation pour la production de gaz combustibles contenant du méthane en partant de combustibles solides finement divisés
US2652319A (en) * 1949-01-03 1953-09-15 Standard Oil Dev Co Process for water-gas generation
FR1045563A (fr) * 1949-03-14 1953-11-30 Gaz De France Procédé et installation pour la production de gaz
US4094650A (en) * 1972-09-08 1978-06-13 Exxon Research & Engineering Co. Integrated catalytic gasification process
BE875256A (fr) * 1978-04-03 1979-10-02 Basf Ag Procede de production de gaz contenant de l'hydrogene et de l'oxyde de carbone
DE2817835C2 (de) * 1978-04-24 1984-04-05 Kraftwerk Union AG, 4330 Mülheim Verfahren zur katalytischen Druckvergasung fester Brennstoffe mit Wasserdampf
DE2852710A1 (de) * 1978-12-06 1980-06-12 Didier Eng Verfahren zur katalytischen vergasung von kunststoff in form von kohle oder koks
US4289502A (en) * 1979-05-30 1981-09-15 Texaco Development Corporation Apparatus for the production of cleaned and cooled synthesis gas
DE2951153C2 (de) * 1979-12-19 1981-11-12 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Vorrichtung zum Reinigen und durch Kohlevergasung erzeugtem Synthesegas

Also Published As

Publication number Publication date
DE3469912D1 (en) 1988-04-21
EP0148542A1 (fr) 1985-07-17

Similar Documents

Publication Publication Date Title
US4436531A (en) Synthesis gas from slurries of solid carbonaceous fuels
EP0423401B1 (fr) Procédé de gazéification de charbon à deux étages
US4328008A (en) Method for the production of cleaned and cooled synthesis gas
US5441990A (en) Cleaned, H2 -enriched syngas made using water-gas shift reaction
US6033456A (en) Integration of partial oxidation process and direct reduction reaction process
US4251228A (en) Production of cleaned and cooled synthesis gas
US4328006A (en) Apparatus for the production of cleaned and cooled synthesis gas
US20090206007A1 (en) Process and apparatus for upgrading coal using supercritical water
AU2006201144A1 (en) Method and device for producing synthesis gases by partial oxidation of slurries made from fuels containing ash with partial quenching and waste heat recovery
WO1995015290A1 (fr) Production d'un gaz riche en h¿2?
GB2024244A (en) Production of clean hcn-free synthesis gas
EP2013317A1 (fr) Système de gazéification et son utilisation
WO2007125047A1 (fr) Réacteur de gazéification et son utilisation
US4776860A (en) High temperature desulfurization of synthesis gas
US4289502A (en) Apparatus for the production of cleaned and cooled synthesis gas
US4778485A (en) POX process with high temperature desulfurization of syngas
US4692172A (en) Coal gasification process
US4880439A (en) High temperature desulfurization of synthesis gas
EP0148542B1 (fr) Gaz de synthèse à partir de boues de combustibles carbonacés solides
US4778484A (en) Partial oxidation process with second stage addition of iron containing additive
EP0305047B1 (fr) Désulfuration de gaz de synthèse à haute température
JP4085239B2 (ja) ガス化方法、及びガス化装置
JPH0473472B2 (fr)
JPS5851987B2 (ja) ほとんど粒子を含まない合成ガスの製造方法
US4946476A (en) Partial oxidation of bituminous coal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19850119

AK Designated contracting states

Designated state(s): DE FR GB NL SE

17Q First examination report despatched

Effective date: 19861010

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL SE

REF Corresponds to:

Ref document number: 3469912

Country of ref document: DE

Date of ref document: 19880421

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19891222

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19891231

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900105

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900131

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900330

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910801

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19911001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84300138.9

Effective date: 19910910