EP0147240A2 - Fuel compositions and additive concentrates, and their use in inhibiting engine coking - Google Patents
Fuel compositions and additive concentrates, and their use in inhibiting engine coking Download PDFInfo
- Publication number
- EP0147240A2 EP0147240A2 EP84309143A EP84309143A EP0147240A2 EP 0147240 A2 EP0147240 A2 EP 0147240A2 EP 84309143 A EP84309143 A EP 84309143A EP 84309143 A EP84309143 A EP 84309143A EP 0147240 A2 EP0147240 A2 EP 0147240A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- hydrocarbyl
- fuel
- coking
- amine
- combination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 104
- 238000004939 coking Methods 0.000 title claims abstract description 55
- 239000000654 additive Substances 0.000 title claims abstract description 26
- 230000000996 additive effect Effects 0.000 title claims abstract description 17
- 239000000203 mixture Substances 0.000 title claims description 64
- 230000002401 inhibitory effect Effects 0.000 title claims description 16
- 239000012141 concentrate Substances 0.000 title claims description 4
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical class O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 claims abstract description 64
- -1 hydrocarbyl amine Chemical class 0.000 claims abstract description 50
- 229910002651 NO3 Inorganic materials 0.000 claims abstract description 34
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims abstract description 34
- 230000006835 compression Effects 0.000 claims abstract description 31
- 238000007906 compression Methods 0.000 claims abstract description 31
- 229960002317 succinimide Drugs 0.000 claims abstract description 30
- 238000002347 injection Methods 0.000 claims abstract description 29
- 239000007924 injection Substances 0.000 claims abstract description 29
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims abstract description 17
- SNCZNSNPXMPCGN-UHFFFAOYSA-N butanediamide Chemical class NC(=O)CCC(N)=O SNCZNSNPXMPCGN-UHFFFAOYSA-N 0.000 claims abstract description 12
- RURPJGZXBHYNEM-UHFFFAOYSA-N 2-[2-[(2-hydroxyphenyl)methylideneamino]propyliminomethyl]phenol Chemical compound C=1C=CC=C(O)C=1C=NC(C)CN=CC1=CC=CC=C1O RURPJGZXBHYNEM-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000012530 fluid Substances 0.000 claims description 21
- 150000001412 amines Chemical class 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims description 15
- ZNZJJSYHZBXQSM-UHFFFAOYSA-N propane-2,2-diamine Chemical compound CC(C)(N)N ZNZJJSYHZBXQSM-UHFFFAOYSA-N 0.000 claims description 14
- 125000001931 aliphatic group Chemical group 0.000 claims description 10
- TXQBMQNFXYOIPT-UHFFFAOYSA-N octyl nitrate Chemical class CCCCCCCCO[N+]([O-])=O TXQBMQNFXYOIPT-UHFFFAOYSA-N 0.000 claims description 6
- 229920002873 Polyethylenimine Polymers 0.000 claims description 5
- 125000004432 carbon atom Chemical group C* 0.000 claims description 5
- 229920001281 polyalkylene Polymers 0.000 claims description 4
- UYMKPFRHYYNDTL-UHFFFAOYSA-N ethenamine Chemical group NC=C UYMKPFRHYYNDTL-UHFFFAOYSA-N 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 229920000098 polyolefin Polymers 0.000 claims 6
- 125000001424 substituent group Chemical group 0.000 claims 6
- 229920002367 Polyisobutene Polymers 0.000 claims 2
- 238000004519 manufacturing process Methods 0.000 claims 2
- 239000006078 metal deactivator Substances 0.000 description 14
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 12
- 239000000047 product Substances 0.000 description 11
- GLOMEHVOOBAHKR-UHFFFAOYSA-N butanediamide;pyrrolidine-2,5-dione Chemical compound O=C1CCC(=O)N1.NC(=O)CCC(N)=O GLOMEHVOOBAHKR-UHFFFAOYSA-N 0.000 description 10
- 229930195733 hydrocarbon Natural products 0.000 description 10
- 150000002430 hydrocarbons Chemical class 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000004215 Carbon black (E152) Substances 0.000 description 7
- AAIUWVOMXTVLRG-UHFFFAOYSA-N 8,8-dimethylnonan-1-amine Chemical compound CC(C)(C)CCCCCCCN AAIUWVOMXTVLRG-UHFFFAOYSA-N 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical class ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 5
- 150000001336 alkenes Chemical class 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 229940014800 succinic anhydride Drugs 0.000 description 5
- 229920001897 terpolymer Polymers 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- PDEDQSAFHNADLV-UHFFFAOYSA-M potassium;disodium;dinitrate;nitrite Chemical compound [Na+].[Na+].[K+].[O-]N=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PDEDQSAFHNADLV-UHFFFAOYSA-M 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000002816 fuel additive Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 150000003139 primary aliphatic amines Chemical class 0.000 description 3
- 150000003141 primary amines Chemical group 0.000 description 3
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- UVLSCMIEPPWCHZ-UHFFFAOYSA-N 3-piperazin-1-ylpropan-1-amine Chemical compound NCCCN1CCNCC1 UVLSCMIEPPWCHZ-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000013065 commercial product Substances 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- PSTVZBXGCKLSQA-UHFFFAOYSA-N (1-methylcyclohexyl) nitrate Chemical compound [O-][N+](=O)OC1(C)CCCCC1 PSTVZBXGCKLSQA-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- OZUCSFZQPDHULO-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl nitrate Chemical compound CCOCCOCCO[N+]([O-])=O OZUCSFZQPDHULO-UHFFFAOYSA-N 0.000 description 1
- RYPKRALMXUUNKS-UHFFFAOYSA-N 2-Hexene Natural products CCCC=CC RYPKRALMXUUNKS-UHFFFAOYSA-N 0.000 description 1
- CHBGIQHEGBKNGA-UHFFFAOYSA-N 2-[(2-hydroxyphenyl)iminomethyl]phenol Chemical compound OC1=CC=CC=C1C=NC1=CC=CC=C1O CHBGIQHEGBKNGA-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 229940093475 2-ethoxyethanol Drugs 0.000 description 1
- GDNQXPDYGNUKII-UHFFFAOYSA-N 2-ethoxyethyl nitrate Chemical compound CCOCCO[N+]([O-])=O GDNQXPDYGNUKII-UHFFFAOYSA-N 0.000 description 1
- NKRVGWFEFKCZAP-UHFFFAOYSA-N 2-ethylhexyl nitrate Chemical compound CCCCC(CC)CO[N+]([O-])=O NKRVGWFEFKCZAP-UHFFFAOYSA-N 0.000 description 1
- LNNXFUZKZLXPOF-UHFFFAOYSA-N 2-methylpropyl nitrate Chemical compound CC(C)CO[N+]([O-])=O LNNXFUZKZLXPOF-UHFFFAOYSA-N 0.000 description 1
- CJNRGSHEMCMUOE-UHFFFAOYSA-N 2-piperidin-1-ylethanamine Chemical compound NCCN1CCCCC1 CJNRGSHEMCMUOE-UHFFFAOYSA-N 0.000 description 1
- NNKQLUVBPJEUOR-UHFFFAOYSA-N 3-ethynylaniline Chemical compound NC1=CC=CC(C#C)=C1 NNKQLUVBPJEUOR-UHFFFAOYSA-N 0.000 description 1
- NTHGIYFSMNNHSC-UHFFFAOYSA-N 3-methylbutyl nitrate Chemical compound CC(C)CCO[N+]([O-])=O NTHGIYFSMNNHSC-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- SVYKKECYCPFKGB-UHFFFAOYSA-N N,N-dimethylcyclohexylamine Chemical compound CN(C)C1CCCCC1 SVYKKECYCPFKGB-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- HSNWZBCBUUSSQD-UHFFFAOYSA-N amyl nitrate Chemical compound CCCCCO[N+]([O-])=O HSNWZBCBUUSSQD-UHFFFAOYSA-N 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 1
- DYONNFFVDNILGI-UHFFFAOYSA-N butan-2-yl nitrate Chemical compound CCC(C)O[N+]([O-])=O DYONNFFVDNILGI-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- QQHZPQUHCAKSOL-UHFFFAOYSA-N butyl nitrate Chemical compound CCCCO[N+]([O-])=O QQHZPQUHCAKSOL-UHFFFAOYSA-N 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- JYKKNPZBKRPDDP-UHFFFAOYSA-N cyclododecyl nitrate Chemical compound [O-][N+](=O)OC1CCCCCCCCCCC1 JYKKNPZBKRPDDP-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- DDBCVXXAMXPHKF-UHFFFAOYSA-N cyclopentyl nitrate Chemical compound [O-][N+](=O)OC1CCCC1 DDBCVXXAMXPHKF-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- UEFBRXQBUTYIJI-UHFFFAOYSA-N decyl nitrate Chemical compound CCCCCCCCCCO[N+]([O-])=O UEFBRXQBUTYIJI-UHFFFAOYSA-N 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- PAWHIGFHUHHWLN-UHFFFAOYSA-N dodecyl nitrate Chemical compound CCCCCCCCCCCCO[N+]([O-])=O PAWHIGFHUHHWLN-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 229940031098 ethanolamine Drugs 0.000 description 1
- IDNUEBSJWINEMI-UHFFFAOYSA-N ethyl nitrate Chemical compound CCO[N+]([O-])=O IDNUEBSJWINEMI-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- HHXLSUKHLTZWKR-UHFFFAOYSA-N heptan-2-yl nitrate Chemical compound CCCCCC(C)O[N+]([O-])=O HHXLSUKHLTZWKR-UHFFFAOYSA-N 0.000 description 1
- JYMDZTRYDIQILZ-UHFFFAOYSA-N heptyl nitrate Chemical compound CCCCCCCO[N+]([O-])=O JYMDZTRYDIQILZ-UHFFFAOYSA-N 0.000 description 1
- DPUXQWOMYBMHRN-UHFFFAOYSA-N hexa-2,3-diene Chemical compound CCC=C=CC DPUXQWOMYBMHRN-UHFFFAOYSA-N 0.000 description 1
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 1
- AGDYNDJUZRMYRG-UHFFFAOYSA-N hexyl nitrate Chemical compound CCCCCCO[N+]([O-])=O AGDYNDJUZRMYRG-UHFFFAOYSA-N 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- GAPFWGOSHOCNBM-UHFFFAOYSA-N isopropyl nitrate Chemical compound CC(C)O[N+]([O-])=O GAPFWGOSHOCNBM-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- LRMHVVPPGGOAJQ-UHFFFAOYSA-N methyl nitrate Chemical compound CO[N+]([O-])=O LRMHVVPPGGOAJQ-UHFFFAOYSA-N 0.000 description 1
- CMNNRVWVNGXINV-UHFFFAOYSA-N nonyl nitrate Chemical compound CCCCCCCCCO[N+]([O-])=O CMNNRVWVNGXINV-UHFFFAOYSA-N 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229940082615 organic nitrates used in cardiac disease Drugs 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- PQGDRERZAVMTJA-UHFFFAOYSA-N oxolan-2-yl nitrate Chemical compound [O-][N+](=O)OC1CCCO1 PQGDRERZAVMTJA-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- OTRMXXQNSIVZNR-UHFFFAOYSA-N prop-2-enyl nitrate Chemical compound [O-][N+](=O)OCC=C OTRMXXQNSIVZNR-UHFFFAOYSA-N 0.000 description 1
- JNTOKFNBDFMTIV-UHFFFAOYSA-N propyl nitrate Chemical compound CCCO[N+]([O-])=O JNTOKFNBDFMTIV-UHFFFAOYSA-N 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- AZAKMLHUDVIDFN-UHFFFAOYSA-N tert-butyl nitrate Chemical compound CC(C)(C)O[N+]([O-])=O AZAKMLHUDVIDFN-UHFFFAOYSA-N 0.000 description 1
- 229960001124 trientine Drugs 0.000 description 1
- VTALQOYOTZKULH-UHFFFAOYSA-N undecyl nitrate Chemical compound CCCCCCCCCCCO[N+]([O-])=O VTALQOYOTZKULH-UHFFFAOYSA-N 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/02—Use of additives to fuels or fires for particular purposes for reducing smoke development
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/04—Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
- C10L1/2222—(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/228—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen double bond, e.g. guanidines, hydrazones, semicarbazones, imines; containing at least one carbon-to-nitrogen triple bond, e.g. nitriles
- C10L1/2283—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen double bond, e.g. guanidines, hydrazones, semicarbazones, imines; containing at least one carbon-to-nitrogen triple bond, e.g. nitriles containing one or more carbon to nitrogen double bonds, e.g. guanidine, hydrazone, semi-carbazone, azomethine
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/23—Organic compounds containing nitrogen containing at least one nitrogen-to-oxygen bond, e.g. nitro-compounds, nitrates, nitrites
- C10L1/231—Organic compounds containing nitrogen containing at least one nitrogen-to-oxygen bond, e.g. nitro-compounds, nitrates, nitrites nitro compounds; nitrates; nitrites
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/2383—Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
Definitions
- the invention relates to compression ignition fuel compositions and additive mixtures of organic nitrate ignition accelerator and hydrocarbyl-substituted succinimide or succinamide, in amounts sufficient to resist the coking tendencies of compression ignition fuel compositions when used in the operation of indirect injection diesel engines.
- Throttling diesel nozzles have recently come into widespread use in indirect injection automotive and light-duty diesel truck engines, i.e., compression ignition engines in which the fuel is injected into and ignited in a prechamber or swirl chamber. In this way, the flame front proceeds from the prechamber into the larger compression chamber where the combustion is completed. Engines designed in this manner allow for quieter and smoother operation.
- the Figure of the Drawing illustrates the geometry of the typical throttling diesel nozzle (often referred to as the "pintle nozzle").
- the carbon tends to fill in all of the available corners and surfaces of the obturator 10 and the form 12"until a smooth profile is achieved.
- the carbon also tends to block the drilled orifice 14 in the injector body 16 and fill up to the seat 18.
- carbon builds up on the form 12 and the obturator 10 to such an extent that it interferes with the spray pattern of the fuel issuing from around the perimeter of orifice 14.
- Such carbon build up or coking often results in such undesirable consequences as delayed fuel injection, increased rate of fuel injection, increased rate of combustion chamber pressure rise, and increased engine noise, and can also result in an excessive increase in emission from the engine of unburned hydrocarbons.
- this invention provides distillate fuel for indirect injection compression ignition engines containing at least the combination of (a) organic nitrate ignition accelerator, and (b) hydrocarbyl-substituted succinimide, or the combination of (a) organic nitrate ignition accelerator, (c) hydrocarbyl amine having from 3 to 60 carbons and from 1 to 10 nitrogens and (d) N,N-disalicylidene-1,2-diaminopropane, or the combination of (b) hydrocarbyl-substituted succinimide, (c) hydrocarbyl amine having from 3 to 60 carbons and from 1 to 10 nitrogens and (d) N,N'-disalicylidene-1,2-diaminopropane, said combinations being separately present in an amount sufficient to minimize coking, especially throttling nozzle coking, in the prechambers or swirl chambers of indirect injection compression ignition engines operated on such fuel.
- Another embodiment of the present invention is a distillate fuel additive fluid composition
- a distillate fuel additive fluid composition comprising (a) organic nitrate ignition accelerator, and (b) hydrocarbyl-substituted succinimide, or (a) organic nitrate ignition accelerator, (c) hydrocarbyl amine having from 3 to 60 carbons and from 1 to 10 nitrogens and (d) N,N'-disalicylidene-l,2-diaminopropane or (b) hydrocarbyl-substituted succinimide, (c) hydrocarbyl amine having from 3 to 60 carbons and from 1 to 10 nitrogens and (d) N,N'-disalicyclidene-l,2-diaminopropane in an amount sufficient to minimize the coking characteristics of such fuel, especially throttling nozzle coking, in the prechambers or swirl chambers of indirect compression ignition engines operated on such fuel.
- a still further embodiment of the present invention is a method of inhibiting coking, especially throttling nozzle coking, in the prechambers or swirl chambers of an indirect injection compression ignition engine, which comprises supplying said engine with a distillate fuel containing at least the combination of (a) organic nitrate ignition accelerator, and (b) hydrocarbyl-substituted succinimide, or the combination of (a) organic nitrate ignition accelerator, (c) hydrocarbyl amine having from 3 to 60 carbons and from 1 to 10 nitrogens and (d) N,N'-disalicylidene-l,2-diaminopropane or the combination of (b) hydrocarbyl-substituted succinimide, (c) hydrocarbyl amine having from 3 to 60 carbons and from 1 to 10 nitrogens and (d) N,N'-disalicyclidene-l,2-d
- a feature of this invention is that the combination of additives utilized in its practice is capable of suppressing coking tendencies of fuels used to operate indirect injection compression ignition engines. Such behavior was exhibited in a series of standard engine dynamometer tests conducted as described in Examples I, II and III hereinafter.
- nitrate ignition accelerators component (a)
- Preferred nitrate esters are the aliphatic or cycloaliphatic nitrates in which the aliphatic or cycloaliphatic group is saturated, contains up to about 12 carbons and, optionally, may be substituted with one or more oxygen atoms.
- Typical organic nitrates that may be used are methyl nitrate, ethyl nitrate, propyl nitrate, isopropyl nitrate, allyl nitrate, butyl nitrate, isobutyl nitrate, sec-butyl nitrate, tert-butyl nitrate, amyl nitrate, isoamyl nitrate, 2-amyl nitrate, 3-amyl nitrate, hexyl nitrate, heptyl nitrate, 2-heptyl nitrate, octyl nitrate, isooctyl nitrate, 2-ethylhexyl nitrate, nonyl nitrate, decyl nitrate, undecyl nitrate, dodecyl nitrate, cyclopentyl nitrate, cyclohexyl.
- the preferred ignition accelerator for use in the fuels of this invention is a mixture of octyl nitrates available as an article of commerce from Ethyl Corporation under the designation DII-3 ignition improver.
- hydrocarbyl-substituted succinimides, component (b) of the fuels of this invention are well known. They are readily made by first reacting an olefinically unsaturated hydrocarbon of the desired molecular weight with maleic anhydride to form a hydrocarbyl-substituted succinic anhydride. Reaction temperatures of 100-250°C are used. With higher boiling olefinically-unsaturated hydrocarbons, good results are obtained at 200-250°C. This reaction can be promoted by the addition of chlorine.
- Typical olefins include cracked wax olefins, linear alpha olefins, branched chain alpha olefins, polymers and copolymers of lower olefins. These include polymers of ethylene, propylene, isobutylene, 1-hexene, 1-decene and the like.
- Useful copolymers are ethylene-propylene copolymers, ethylene-isobutylene copolymers, propylene-isobutylene copolymers, ethylene-l-decene copolymers and the like.
- Hydrocarbyl substituents have also been made from olefin terpolymers.
- Very useful products have been made from ethylene-C 3-12 alpha olefin - C 5-12 nonconjugated diene terpolymers; such as ethylene-propylene-l,4-hexadiene terpolymer; ethylene-propylene-1,5-cyclooctadiene terpolymer; ethylene-propylene- norbornene terpolymers and the like.
- hydrocarbyl substituents are derived from butene polymers, especially polymers of isobutylene.
- the molecular weight of the hydrocarbyl substituent can vary over a wide range. It is desirable that the hydrocarbyl group have a molecular weight of at least 500. Although there is no critical upper limit, a preferred range is 500-500,000 number average molecular weight. The more preferred average molecular weight is 700-5,000 and most preferably 900-3,000.
- Hydrocarbyl-substituted succinimides and succinamides are made by reaction of the desired hydrocarbyl-substituted succinic anhydride with an amine having at least one reactive hydrogen atom bonded to an amine nitrogen atom.
- amine having at least one reactive hydrogen atom bonded to an amine nitrogen atom.
- examples of these are methyl amine, dimethyl amine, n-butyl amine, di-(n-dodecyl) amine, N-(aminoethyl) piperidine, piperazine, N-(3-aminopropyl) piperazine, and the like.
- the amine has at least one reactive primary amine group capable of reacting to form the preferred succinimides.
- primary amines are n-octyl amine, N,N-dimethyl-l,3-propane diamine, N-(3-aminopropyl) piperazine, 1,6-hexane diamine, and the like.
- Hydroxyalkyl amines can also be used to make the succinimide-succinamide components of the invention which contain some ester groups. These amines include ethanol amine, diethanol amine, 2-hydroxypropyl amine, N-hydroxyethyl ethylenediamine and the like. Such hydroxyalkyl amines can be made by reacting a lower alkylene oxide, such as ethylene oxide, propylene oxide or butylene oxide with ammonia or a primary or secondary amine such as ethylene diamine, dethylene triamine, triethylene tetramine, tetraethylenepentamine and the like.
- a lower alkylene oxide such as ethylene oxide, propylene oxide or butylene oxide
- ammonia or a primary or secondary amine such as ethylene diamine, dethylene triamine, triethylene tetramine, tetraethylenepentamine and the like.
- a more preferred class of primary amines used to make the succinimide, succinamide or mixtures thereof are the polyalkylene amines. These are polyamines and mixtures of polyamines which have the general formula wherein R is a divalent aliphatic hydrocarbon group having 2-4 carbon atoms and n is an integer from 1-10 including mixtures of such polyalkylene amines.
- the polyalkylene amine is a polyethyleneamine containing 2-6 ethyleneamine units. These are represented by the above formula in which R is the group -CH 2 CH 2 - and n has a value of 2-6.
- the amine used to make the succinimide, succinamide or mixture thereof need not be all amine.
- a mono or poly-hydroxyalcohol may be included in the reaction.
- Such alcohols can be reacted concurrently with the amine or the two alcohol and amine may be reacted sequentially.
- Useful alcohols are methanol, ethanol, n-dodecanol, 2-ethyl hexanol, ethylene glycol, propylene glycol, diethylene glycol, 2-ethoxy ethanol, trimethylol propane, pentaerythritol, dipentaerythritol and the like.
- the reaction between the hydrocarbyl-substituted succinic anhydride and the amine can be carried out by mixing the components and heating the mixture to a temperature high enough to cause a reaction to occur but not so high as to cause decomposition of the reactants or products or the anhydride may be heated to reactibn temperature and the amine added over an extended period.
- a useful temperature is 100-250°C. Best results are obtained by conducting the reaction at a temperature high enough to distill out water formed in the reaction.
- a preferred succinimide-succinamide component is available as an article of commerce from the Edwin Cooper Company under the designation HITEC @ E-644.
- This product comprises a mixture of active ingredients and solvent.
- HITEC® E-644 is used as component (b) in formulating the fuels of this invention, the product as received should be used at a concentration of at least about 40 PTB (pounds per thousand barrels) - 0.11436 grams per liter - to insure that the finished blend contains an adequate quantity of the foregoing succinimide-succinamide ingredient although smaller amounts may be successfully employed.
- the nitrate ignition accelerator--component (a)-- should be present in an amount of at least 100 to 1000 PTB (pounds per thousand barrels) - 0.2859 to 2.859 grams per liter - of the base fuel.
- the concentration of the ignition accelerator is 400 to 600 PT B (1.1436 to 1.7154 grams per liter).
- the coking-inhibiting components (a) and (b) of the invention can be added to the fuels by any means known in the art for incorporating small quantities of additives into distillate fuels.
- Components (a) and (b) can be added separately or they can be combined and added together. It is convenient to utilize additive fluid mixtures which consist of organic nitrate ignition accelerator and hydrocarbyl-substituted succinimide-succinamide agents. These additive fluid mixtures are added to distillate fuels.
- part of the present invention are coking inhibiting fluids which comprise organic nitrate ignition accelerator and hydrocarbyl-substituted succinimide-succinamide.
- the amount of components (a) and (b) can vary widely.
- the fluid compositions contain 5 to 95% by weight of the organic nitrate ignition accelerator component and 5 to 95% by weight of the hydrocarbyl-substituted succinimide-succinamide component.
- a preferred distillate fuel composition contains from 0.1 to 0.5% by weight of the combination containing from 25% to 95% by weight of the organic nitrate ignition accelerator and from 75% to 5% by weight of the hydrocarbyl-substituted succinimide-succinamide component.
- the additive fluids, as well as the distillate fuel compositions of the present invention may also contain other additives such as, corrosion inhibitors, antioxidants, metal deactivators, detergents, cold flow improvers, inert solvents or diluents, and the like.
- a more preferred distillate fuel composition includes a hydrocarbyl amine in combination with the present additives.
- hydrocarbyl amines While a variety of hydrocarbyl amines may be used in the fuel compositions of this invention, a primary aliphatic amine, the aliphatic group of which is tertiary, e.g., an amine of the formula: wherein R is one or a mixture of tertiary aliphatic groups containing 8 to 18 or more (preferably 12-16) carbon atoms is preferred. Most preferably, these tertiary aliphatic groups are tertiary alkyl groups. It is also preferred that hydrocarbyl amine component (c) include in addition to the above-depicted amine one or more hydrocarbyl amines differing therefrom.
- U.S. Pat. No. 3,909,215 gives a description of the various hydrocarbyl amines having from 3 to 60 carbons and from 1 to 10 nitrogens which may be employed in the fuels of this invention.
- a few additional examples of desirable amines include 2,6-di-tert-butyl-a-dimethylamino-p-cresol, N-cyclohexyl-N,N-dimethylamine, and N-alkyl,N,N-dimethylamines in which the alkyl group is one or a combination of alkyl groups preferably having 8 to 18 or more carbon atoms.
- a particularly preferred hydrocarbyl amine is available commercially from the Rohm and Haas Company under the designation Primene 81R.
- the Primene 81R is believed to be a mixture of primary aliphatic amines in which the aliphatic groups are predominantly C 12 and C 14 tertiary alkyl groups.
- the fuels of this invention should contain at least 1.5 to 40 PTB (0.00429 to 0.1143 grams/liter of component (c), the hydrocarbyl amine.
- another embodiment of the present invention is distillate fuel for indirect injection compression ignition engines containing at least the combination of (a) organic nitrate ignition accelerator, (b) hydrocarbyl-substituted succinimide, and (c) hydrocarbyl amine, said combination being present in an amount sufficient to minimize coking, especially throttling nozzle coking in the prechambers or swirl chambers in indirect injection compression ignition engines operated on such fuel.
- distillate fuel additive composition comprising (a) organic nitrate ignition accelerator, (b) hydrocarbyl-substituted succinimide and (c) hydrocarbyl amine in an amount sufficient to minimize the coking characteristics of such fuel, especially throttling nozzle coking in the prechambers or swirl chambers in indirect injection compression ignition engines operated on such fuel.
- these-additive fuel compositions will contain as much as 50% by weight of the combination of organic nitrate ignition accelerator and hydrocarbyl-substituted succinimide and up to 50% of the hydrocarbyl amine or other additives when they are present.
- a method of inhibiting coking, especially throttling nozzle coking in the prechambers or swirl chambers of an indirect injection compression ignition engine which comprises supplying said engine with a distillate fuel containing at least the combination of (a) organic nitrate ignition accelerator, (b) hydrocarbyl-substituted succinimide and (c) hydrocarbyl amine, said combination being present in an amount sufficient to minimize such coking in an engine operated on such fuel.
- Another additive which can be used to advantage in the present invention is a metal deactivator.
- metal deactivator examples of these are salicylidene-o-aminophenol, disalicylidene ethylenediamine and disalicylidene propylenediamine.
- a particularly preferred metal deactivator is N,N'-disalicylidene-l,2-diaminopropane (80 weight percent active in 20 weight percent toluene solvent) which is available as an article of commerce from Ethyl Corporation under the designation "Ethyl" MDA.
- the fuels of this invention should contain at least 0.2 to 5 PTB (0.00572 to 0.012 grams per liter) of component (d), the metal deactivat q r, preferably N,N'- disalicylidene-l,2-diaminopropane.
- another embodiment of the present invention is distillate fuel for indirect injection compression ignition engines containing at least the combination of (a) organic nitrate ignition accelerator, (b) hydrocarbyl-substituted succinimide, (c) hydrocarbyl amine, and (d) N,N'-disalicylidene-l,2-diaminopropane, said combination being present in an amount sufficient to minimize coking, expecially throttling nozzle coking in the prechambers or swirl chambers in indirect injection compression ignition engines operated on such fuel.
- distillate fuel additive composition comprising (a) organic nitrate ignition accelerator, (b) hydrocarbyl-substituted succinimide, (c) hydrocarbyl amine, and (d) N,N'-disalicylidene-1,2-diaminopropane in an amount sufficient to minimize the coking characteristics of such fuel, especially throttling nozzle coking in the prechambers or swirl chambers of indirect injection compression ignition engines operated on such fuels.
- these additive fuel compositions will contain as much as 50% by weight of the combination of organic nitrate ignition accelerator and hydrocarbyl-substituted succinimide-succinamide and up to 50% of the combination of hydrocarbyl amine and N,N'-disalicylidene-1,2-diaminopropane or other additives when they are present.
- a method of inhibiting coking, especially throttling nozzle coking in the prechambers or swirl chambers in an indirect injection compression ignition engine which comprises supplying said engine with a distillate fuel containing at least the combination of (a) organic nitrate ignition accelerator, (b) hydrocarbyl-substituted succinimide, (c) hydrocarbyl amine and (d) N,N'-disalicylidene-l,2-diaminopropane, said combination being present in an amount to minimize such coking in an engine operated on such fuel.
- the coking-inhibiting components (a), (c) and (d) of the invention can be added to the fuels by any means known in the art for incorporating small quantities of additives into distillate fuels.
- Components (a), (c) and (d) can be added separately or they can be combined and added together. It is convenient to utilize additive fluid mixtures which consist of organic nitrate ignition accelerator, hydrocarbyl amine and metal deactivator agents. These additive fluid mixtures are added to distillate fuels.
- part' of the present invention are coking inhibiting fluids which comprise organic nitrate ignition accelerator, hydrocarbyl amine having from 3 to 60 carbons and from 1 to 10 nitrogens and metal deactivator, preferably N ,N'- disalicylidene-1,2-diaminopropane.
- the amount of components (a), (c) and (d) can vary widely.
- the fluid compositions contain 10 to 97.9% by weight of the organic nitrate ignition accelerator component, 2.0 to 75% by weight of the hydrocarbyl amine and 0.1 to 15% by weight metal deactivator.
- from 0.01% by weight up to 1.0% by weight of the combination of the components (a), (c) and a(d) will be sufficient to provide good coking-inhibiting properties to the distillate fuel.
- a preferred distillate fuel composition contains from 0.1 to 0.5% by weight of the combination containing from 50 to 97.9% by weight of the organic nitrate ignition accelerator, from 2.0 to 45% by weight of the hydrocarbyl amine and from 0.1 to 5.0% by weight of the metal deactivator component.
- the coking-inhibiting components (b), (c) and (d) of the invention can be added to the fuels by any means known in the art for incorporating small quantities of additives into distillate fuels.
- Components (b), (c) and (d) can be added separately or, they can be combined and added together. It is convenient to utilize additive fluid mixtures which consist of hydrocarbyl-substituted succinimid.e-succinamide agents, hydrocarbyl amine and N,N'-disalicylidene-1,2-diaminopropane. These additive fluid mixtures are added to distillate fuels.
- part of the present invention are coking inhibiting fluids which comprise hydrocarbyl-substituted succinimide-succinamide, hydrocarbyl amine having from 3 to 60 carbons and 1 to 10 nitrogens, and metal deactivator, preferably N,N'-disalicylidene-l,2-diaminopropane.
- the amount of components (b), (c) and (d) can vary widely.
- the fluid compositions contain 10 to 97.9% by weight of the hydrocarbyl-substituted succinimide-succinamide component, 20 to 75% by weight of the hydrocarbyl amine and 0.1 to 15% by weight metal deactivator.
- metal deactivator typically, from 0.01% by weight up to 1.0% by weight of the combination will be sufficient to provide good coking-inhibiting properties to the distillate fuel.
- a preferred distillate fuel composition contains from 0.1 to 0.5% by weight of the combination containing from 50% to 97.9% by weight of the hydrocarbyl succinimide-succinamide component and from 2.0% to 45 % by weight of the hydrocarbyl amine and from 0.1 to 5.0% by weight of the metal deactivator, preferably N,N'-disalicylidene-l,2-diaminopropane.
- the base fuel employed in these engine tests was a commercially-available diesel fuel having a nominal cetane rating of 42.
- FIA analysis indicated the fuel was composed by volume of 31.5% aromatics, 3.0% olefins and 65.5% saturates. Its distillation range (ASTM D-158) was as follows:
- Fuel A contained a combination of (i) 506 PTB (1.447 grams/liter) of mixed octyl nitrates (a commercial product available from Ethyl Corporation under the designation DII-3 Ignition Improver), (ii) 41 PTB (0.117 gram/liter) of HITEC® E-644, a product of Edwin Cooper, Inc., believed to be a hydrocarbyl succinimide-succinamide made.by reacting two moles of a polyisobutenyl succinic anhydride (PIBSA) with one mole of a polyethylene amine mixture having an average composition corresponding to tetraethylene pentamine, (iii) 14 PTB (0.04 grams/liter) of a hydrocarbyl amine available commercially from Rohm and Haas Company under the designation Primene 81R and (iv) 1.7 PTB (0.00486 grams/liter) of "Ethyl" Metal Deactiv
- PIBSA polyisobutenyl succin
- the Primene 81R is believed to be a mixture of primary aliphatic amines in which the aliphatic groups are predominantly C 12 and C 14 tertiary alkyl groups.
- Shell Rotella T an SAE 30, SF/CD oil was used as the crankcase lubricant.
- new Bosch DNOSD - 1510 nozzles were installed using new copper gaskets and flame rings.
- the fuel line was flushed with the new test fuel composition to be tested and the fuel filter bowl and fuel return reservoir were emptied to avoid additive carry-over from test-to-test.
- the engine was operated at 1000 rpm, light load for 15 minutes. After this warm-up, the engine was subjected to the following automatic cycle: The above 20-minute cycle was repeated 60 times and the test was completed by running the engine at idle for another 30 minutes. The total elapsed time was thus 20.5 hours per test.
- Hydrocarbon exhaust emissions were measured at the start of each test (after.the first 20-minute cycle), at the 6-hour test interval and at the end of the test. These measurements were made at 750, 1000, and 1400 rpm idle. Noise level readings were made at a location three feet from the engine exhaust side. The measurements were made at the start and at the end of the test while operating at three idle speeds, viz., 750, 1000 and 1400 rpm.
- a test blend was prepared from the base fuel of Example I (Fuel B).
- Fuel B contained a combination of (i) 506 PTB (1.447 grams per liter) of mixed octyl nitrates (a commercial product available from Ethyl Corporation under the designation DII-3 Ignition Improver), (ii) 13.2 PTB (0.0377 grams per liter) of a hydrocarbyl amine available commercially from Rohm and Haas Company under the designation Primene 81R and (iii) 1.7 PTB (0.00486 grams per liter) of "Ethyl" Metal Deactivator, a product of Ethyl Corporation, the active ingredient of which is N,N'-disalicylidene-l,2-diaminopropane.
- test engine was operated under the same conditions as those of Example I.
- a test blend was prepared from the base fuel of Example I (Fuel C).
- Fuel C contained a combination of (i) 41 PTB (0.117 grams per liter) of HITEC® E-644, a product of Edwin Cooper, Inc., believed to be a hydrocarbyl succinimide-succinamide made by reacting two moles of a polyisobutenyl succinic anhydride (PIBSA) with one mole of a polyethylene amine mixture having an average composition corresponding to tetraethylene pentamine, (ii) 14 PTB (0.04 grams per liter) of a hydrocarbyl amine available commercially from R ohm and H aas Company under the designation Primene 81R, and (iii) 1.7 PTB (0.00486 grams per liter) of "Ethyl" Metal Deactivator, a product of Ethyl Corporation, the active ingredient of which is N,N'-disalicylidene-1,2-diaminoprop
- Example III The test engine was operated unde the same conditions as those of Example I. The most significant test results are given in Table III, in which air flow is expressed as cc/min and hydrocarbon emissions as ppm.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
Abstract
- (a) organic nitrate ignition accelerator, and
- (b) hydrocarbyl-substituted succinimide or succinamide, or
- (a) organic nitrate ignition accelerator,
- (c) hydrocarbyl amine having from 3 to 60 carbons and from 1 to 10 nitrogens, and
- (d) N,N'-disalicylidene-1,2-diaminopropane, or
- (b) hydrocarbyl-substituted succinimide or succinamide,
- (c) hydrocarbyl amine having from 3 to 60 carbons and from 1 to 10 nitrogens, and
- (d) N,N'-disalicylidene-1,2-diaminopropane.
Description
- The invention relates to compression ignition fuel compositions and additive mixtures of organic nitrate ignition accelerator and hydrocarbyl-substituted succinimide or succinamide, in amounts sufficient to resist the coking tendencies of compression ignition fuel compositions when used in the operation of indirect injection diesel engines.
- Throttling diesel nozzles have recently come into widespread use in indirect injection automotive and light-duty diesel truck engines, i.e., compression ignition engines in which the fuel is injected into and ignited in a prechamber or swirl chamber. In this way, the flame front proceeds from the prechamber into the larger compression chamber where the combustion is completed. Engines designed in this manner allow for quieter and smoother operation. The Figure of the Drawing illustrates the geometry of the typical throttling diesel nozzle (often referred to as the "pintle nozzle").
- Unfortunately, the advent of such engines has given rise to a new problem, that of excessive coking on the critical surfaces of the injectors that inject fuel into the prechamber or swirl chamber of the engine. In particular, and with reference to the accompanying Figure, the carbon tends to fill in all of the available corners and surfaces of the obturator 10 and the
form 12"until a smooth profile is achieved. The carbon also tends to block the drilled orifice 14 in theinjector body 16 and fill up to theseat 18. In severe cases, carbon builds up on theform 12 and the obturator 10 to such an extent that it interferes with the spray pattern of the fuel issuing from around the perimeter of orifice 14. Such carbon build up or coking often results in such undesirable consequences as delayed fuel injection, increased rate of fuel injection, increased rate of combustion chamber pressure rise, and increased engine noise, and can also result in an excessive increase in emission from the engine of unburned hydrocarbons. - While low fuel cetane number is believed to be a major contributing factor to the coking problem, it is not the only relevant factor. Thermal and oxidative stability (lacquering tendencies), fuel aromaticity, and such fuel characteristics as viscosity, surface tension and relative density have also been indicated to play a role in the coking problem.
- An important contribution to the art would be a fuel composition which has enhanced resistance to coking tendencies when employed in the operation of indirect injection diesel engines.
- In accordance with one of its embodiments, this invention provides distillate fuel for indirect injection compression ignition engines containing at least the combination of (a) organic nitrate ignition accelerator, and (b) hydrocarbyl-substituted succinimide, or the combination of (a) organic nitrate ignition accelerator, (c) hydrocarbyl amine having from 3 to 60 carbons and from 1 to 10 nitrogens and (d) N,N-disalicylidene-1,2-diaminopropane, or the combination of (b) hydrocarbyl-substituted succinimide, (c) hydrocarbyl amine having from 3 to 60 carbons and from 1 to 10 nitrogens and (d) N,N'-disalicylidene-1,2-diaminopropane, said combinations being separately present in an amount sufficient to minimize coking, especially throttling nozzle coking, in the prechambers or swirl chambers of indirect injection compression ignition engines operated on such fuel.
- Another embodiment of the present invention is a distillate fuel additive fluid composition comprising (a) organic nitrate ignition accelerator, and (b) hydrocarbyl-substituted succinimide, or (a) organic nitrate ignition accelerator, (c) hydrocarbyl amine having from 3 to 60 carbons and from 1 to 10 nitrogens and (d) N,N'-disalicylidene-l,2-diaminopropane or (b) hydrocarbyl-substituted succinimide, (c) hydrocarbyl amine having from 3 to 60 carbons and from 1 to 10 nitrogens and (d) N,N'-disalicyclidene-l,2-diaminopropane in an amount sufficient to minimize the coking characteristics of such fuel, especially throttling nozzle coking, in the prechambers or swirl chambers of indirect compression ignition engines operated on such fuel.
- Since the invention also embodies the operation of an indirect injection compression ignition engine in a manner which results in reduced coking, a still further embodiment of the present invention is a method of inhibiting coking, especially throttling nozzle coking, in the prechambers or swirl chambers of an indirect injection compression ignition engine, which comprises supplying said engine with a distillate fuel containing at least the combination of (a) organic nitrate ignition accelerator, and (b) hydrocarbyl-substituted succinimide, or the combination of (a) organic nitrate ignition accelerator, (c) hydrocarbyl amine having from 3 to 60 carbons and from 1 to 10 nitrogens and (d) N,N'-disalicylidene-l,2-diaminopropane or the combination of (b) hydrocarbyl-substituted succinimide, (c) hydrocarbyl amine having from 3 to 60 carbons and from 1 to 10 nitrogens and (d) N,N'-disalicyclidene-l,2-diaminopropane, said combinations being separately present in an amount sufficient to minimize such coking in an engine operated on such fuel.
- A feature of this invention is that the combination of additives utilized in its practice is capable of suppressing coking tendencies of fuels used to operate indirect injection compression ignition engines. Such behavior was exhibited in a series of standard engine dynamometer tests conducted as described in Examples I, II and III hereinafter.
- A wide variety of organic nitrate ignition accelerators, component (a), may be employed in the fuels of this invention. Preferred nitrate esters are the aliphatic or cycloaliphatic nitrates in which the aliphatic or cycloaliphatic group is saturated, contains up to about 12 carbons and, optionally, may be substituted with one or more oxygen atoms.
- Typical organic nitrates that may be used are methyl nitrate, ethyl nitrate, propyl nitrate, isopropyl nitrate, allyl nitrate, butyl nitrate, isobutyl nitrate, sec-butyl nitrate, tert-butyl nitrate, amyl nitrate, isoamyl nitrate, 2-amyl nitrate, 3-amyl nitrate, hexyl nitrate, heptyl nitrate, 2-heptyl nitrate, octyl nitrate, isooctyl nitrate, 2-ethylhexyl nitrate, nonyl nitrate, decyl nitrate, undecyl nitrate, dodecyl nitrate, cyclopentyl nitrate, cyclohexyl. nitrate, methylcyclohexyl nitrate, cyclododecyl nitrate, 2-ethoxyethyl nitrate, 2-(2-ethoxy-ethoxy)ethyl nitrate, tetrahydrofuranyl nitrate, and the like. Mixtures of such materials may also be used. The preferred ignition accelerator for use in the fuels of this invention is a mixture of octyl nitrates available as an article of commerce from Ethyl Corporation under the designation DII-3 ignition improver.
- The hydrocarbyl-substituted succinimides, component (b) of the fuels of this invention, are well known. They are readily made by first reacting an olefinically unsaturated hydrocarbon of the desired molecular weight with maleic anhydride to form a hydrocarbyl-substituted succinic anhydride. Reaction temperatures of 100-250°C are used. With higher boiling olefinically-unsaturated hydrocarbons, good results are obtained at 200-250°C. This reaction can be promoted by the addition of chlorine. Typical olefins include cracked wax olefins, linear alpha olefins, branched chain alpha olefins, polymers and copolymers of lower olefins. These include polymers of ethylene, propylene, isobutylene, 1-hexene, 1-decene and the like. Useful copolymers are ethylene-propylene copolymers, ethylene-isobutylene copolymers, propylene-isobutylene copolymers, ethylene-l-decene copolymers and the like.
- Hydrocarbyl substituents have also been made from olefin terpolymers. Very useful products have been made from ethylene-C 3-12 alpha olefin - C5-12 nonconjugated diene terpolymers; such as ethylene-propylene-l,4-hexadiene terpolymer; ethylene-propylene-1,5-cyclooctadiene terpolymer; ethylene-propylene- norbornene terpolymers and the like.
- Of the foregoing, by far the most useful hydrocarbyl substituents are derived from butene polymers, especially polymers of isobutylene.
- The molecular weight of the hydrocarbyl substituent can vary over a wide range. It is desirable that the hydrocarbyl group have a molecular weight of at least 500. Although there is no critical upper limit, a preferred range is 500-500,000 number average molecular weight. The more preferred average molecular weight is 700-5,000 and most preferably 900-3,000.
- Hydrocarbyl-substituted succinimides and succinamides are made by reaction of the desired hydrocarbyl-substituted succinic anhydride with an amine having at least one reactive hydrogen atom bonded to an amine nitrogen atom. Examples of these are methyl amine, dimethyl amine, n-butyl amine, di-(n-dodecyl) amine, N-(aminoethyl) piperidine, piperazine, N-(3-aminopropyl) piperazine, and the like.
- Preferably, the amine has at least one reactive primary amine group capable of reacting to form the preferred succinimides. Examples of such primary amines are n-octyl amine, N,N-dimethyl-l,3-propane diamine, N-(3-aminopropyl) piperazine, 1,6-hexane diamine, and the like.
- Hydroxyalkyl amines can also be used to make the succinimide-succinamide components of the invention which contain some ester groups. These amines include ethanol amine, diethanol amine, 2-hydroxypropyl amine, N-hydroxyethyl ethylenediamine and the like. Such hydroxyalkyl amines can be made by reacting a lower alkylene oxide, such as ethylene oxide, propylene oxide or butylene oxide with ammonia or a primary or secondary amine such as ethylene diamine, dethylene triamine, triethylene tetramine, tetraethylenepentamine and the like.
- A more preferred class of primary amines used to make the succinimide, succinamide or mixtures thereof are the polyalkylene amines. These are polyamines and mixtures of polyamines which have the general formula
- In a highly preferred embodiment, the polyalkylene amine is a polyethyleneamine containing 2-6 ethyleneamine units. These are represented by the above formula in which R is the group -CH2CH2- and n has a value of 2-6.
- The amine used to make the succinimide, succinamide or mixture thereof need not be all amine. A mono or poly-hydroxyalcohol may be included in the reaction. Such alcohols can be reacted concurrently with the amine or the two alcohol and amine may be reacted sequentially. Useful alcohols are methanol, ethanol, n-dodecanol, 2-ethyl hexanol, ethylene glycol, propylene glycol, diethylene glycol, 2-ethoxy ethanol, trimethylol propane, pentaerythritol, dipentaerythritol and the like.
- Useful amine-alcohol products are described in U.S. 3,184,474; U.S. 3,576,743; U.S. 3,632,511; U.S. 3,804,763; U.S. 3,836,471; U.S. 3,936,480; U.S. 3,948,800; U.S. 3,950,341; U.S. 3,957,854; U.S. 3,957,855; U.S. 3,991,098; U.S. 4,071,548 and U.S. 4,173,540.
- The reaction between the hydrocarbyl-substituted succinic anhydride and the amine can be carried out by mixing the components and heating the mixture to a temperature high enough to cause a reaction to occur but not so high as to cause decomposition of the reactants or products or the anhydride may be heated to reactibn temperature and the amine added over an extended period. A useful temperature is 100-250°C. Best results are obtained by conducting the reaction at a temperature high enough to distill out water formed in the reaction.
- A preferred succinimide-succinamide component is available as an article of commerce from the Edwin Cooper Company under the designation HITEC @ E-644. This product comprises a mixture of active ingredients and solvent. Thus, when HITEC® E-644 is used as component (b) in formulating the fuels of this invention, the product as received should be used at a concentration of at least about 40 PTB (pounds per thousand barrels) - 0.11436 grams per liter - to insure that the finished blend contains an adequate quantity of the foregoing succinimide-succinamide ingredient although smaller amounts may be successfully employed.
- The nitrate ignition accelerator--component (a)--should be present in an amount of at least 100 to 1000 PTB (pounds per thousand barrels) - 0.2859 to 2.859 grams per liter - of the base fuel. Preferably, the concentration of the ignition accelerator is 400 to 600 PTB (1.1436 to 1.7154 grams per liter).
- It is not believed that there is anything critical as regards the maximum amount of components (a) and (b) used in the fuel. Thus, the maximum amount of these components will probably be governed in any given situation by matters of choice and economics.
- The coking-inhibiting components (a) and (b) of the invention can be added to the fuels by any means known in the art for incorporating small quantities of additives into distillate fuels. Components (a) and (b) can be added separately or they can be combined and added together. It is convenient to utilize additive fluid mixtures which consist of organic nitrate ignition accelerator and hydrocarbyl-substituted succinimide-succinamide agents. These additive fluid mixtures are added to distillate fuels. In other words, part of the present invention are coking inhibiting fluids which comprise organic nitrate ignition accelerator and hydrocarbyl-substituted succinimide-succinamide.
- Use of such fluids in addition to resulting in great convenience in storage, handling, transportation, blending with fuels, and so forth, also are potent concentrates which serve the function of inhibiting or minimizing the coking characteristics of compression ignition distillate fuels used to operate indirect compression ignition engines..
- In these fluid compositions, the amount of components (a) and (b) can vary widely. In general, the fluid compositions contain 5 to 95% by weight of the organic nitrate ignition accelerator component and 5 to 95% by weight of the hydrocarbyl-substituted succinimide-succinamide component. Typically, from .01% by weight up to 1.0% by weight of the combination will be sufficient to provide good coking-inhibiting properties to the distillate fuel. A preferred distillate fuel composition contains from 0.1 to 0.5% by weight of the combination containing from 25% to 95% by weight of the organic nitrate ignition accelerator and from 75% to 5% by weight of the hydrocarbyl-substituted succinimide-succinamide component.
- The additive fluids, as well as the distillate fuel compositions of the present invention may also contain other additives such as, corrosion inhibitors, antioxidants, metal deactivators, detergents, cold flow improvers, inert solvents or diluents, and the like.
- Accordingly, a more preferred distillate fuel composition includes a hydrocarbyl amine in combination with the present additives.
- While a variety of hydrocarbyl amines may be used in the fuel compositions of this invention, a primary aliphatic amine, the aliphatic group of which is tertiary, e.g., an amine of the formula:
- U.S. Pat. No. 3,909,215 gives a description of the various hydrocarbyl amines having from 3 to 60 carbons and from 1 to 10 nitrogens which may be employed in the fuels of this invention. A few additional examples of desirable amines include 2,6-di-tert-butyl-a-dimethylamino-p-cresol, N-cyclohexyl-N,N-dimethylamine, and N-alkyl,N,N-dimethylamines in which the alkyl group is one or a combination of alkyl groups preferably having 8 to 18 or more carbon atoms.
- A particularly preferred hydrocarbyl amine is available commercially from the Rohm and Haas Company under the designation Primene 81R. The Primene 81R is believed to be a mixture of primary aliphatic amines in which the aliphatic groups are predominantly C12 and C 14 tertiary alkyl groups.
- The fuels of this invention should contain at least 1.5 to 40 PTB (0.00429 to 0.1143 grams/liter of component (c), the hydrocarbyl amine.
- Accordingly, another embodiment of the present invention is distillate fuel for indirect injection compression ignition engines containing at least the combination of (a) organic nitrate ignition accelerator, (b) hydrocarbyl-substituted succinimide, and (c) hydrocarbyl amine, said combination being present in an amount sufficient to minimize coking, especially throttling nozzle coking in the prechambers or swirl chambers in indirect injection compression ignition engines operated on such fuel.
- Also included as a further embodiment of the invention is a distillate fuel additive composition comprising (a) organic nitrate ignition accelerator, (b) hydrocarbyl-substituted succinimide and (c) hydrocarbyl amine in an amount sufficient to minimize the coking characteristics of such fuel, especially throttling nozzle coking in the prechambers or swirl chambers in indirect injection compression ignition engines operated on such fuel.
- In general, these-additive fuel compositions will contain as much as 50% by weight of the combination of organic nitrate ignition accelerator and hydrocarbyl-substituted succinimide and up to 50% of the hydrocarbyl amine or other additives when they are present.
- In a still further embodiment of the invention there is provided a method of inhibiting coking, especially throttling nozzle coking in the prechambers or swirl chambers of an indirect injection compression ignition engine which comprises supplying said engine with a distillate fuel containing at least the combination of (a) organic nitrate ignition accelerator, (b) hydrocarbyl-substituted succinimide and (c) hydrocarbyl amine, said combination being present in an amount sufficient to minimize such coking in an engine operated on such fuel.
- Another additive which can be used to advantage in the present invention is a metal deactivator. Examples of these are salicylidene-o-aminophenol, disalicylidene ethylenediamine and disalicylidene propylenediamine. A particularly preferred metal deactivator is N,N'-disalicylidene-l,2-diaminopropane (80 weight percent active in 20 weight percent toluene solvent) which is available as an article of commerce from Ethyl Corporation under the designation "Ethyl" MDA.
- The fuels of this invention should contain at least 0.2 to 5 PTB (0.00572 to 0.012 grams per liter) of component (d), the metal deactivatqr, preferably N,N'- disalicylidene-l,2-diaminopropane.
- Accordingly, another embodiment of the present invention is distillate fuel for indirect injection compression ignition engines containing at least the combination of (a) organic nitrate ignition accelerator, (b) hydrocarbyl-substituted succinimide, (c) hydrocarbyl amine, and (d) N,N'-disalicylidene-l,2-diaminopropane, said combination being present in an amount sufficient to minimize coking, expecially throttling nozzle coking in the prechambers or swirl chambers in indirect injection compression ignition engines operated on such fuel.
- Also included as a further embodiment of the invention is a distillate fuel additive composition comprising (a) organic nitrate ignition accelerator, (b) hydrocarbyl-substituted succinimide, (c) hydrocarbyl amine, and (d) N,N'-disalicylidene-1,2-diaminopropane in an amount sufficient to minimize the coking characteristics of such fuel, especially throttling nozzle coking in the prechambers or swirl chambers of indirect injection compression ignition engines operated on such fuels.
- In general, these additive fuel compositions will contain as much as 50% by weight of the combination of organic nitrate ignition accelerator and hydrocarbyl-substituted succinimide-succinamide and up to 50% of the combination of hydrocarbyl amine and N,N'-disalicylidene-1,2-diaminopropane or other additives when they are present.
- In a still further embodiment of the invention there is provided a method of inhibiting coking, especially throttling nozzle coking in the prechambers or swirl chambers in an indirect injection compression ignition engine which comprises supplying said engine with a distillate fuel containing at least the combination of (a) organic nitrate ignition accelerator, (b) hydrocarbyl-substituted succinimide, (c) hydrocarbyl amine and (d) N,N'-disalicylidene-l,2-diaminopropane, said combination being present in an amount to minimize such coking in an engine operated on such fuel.
- In another embodiment of this invention, the coking-inhibiting components (a), (c) and (d) of the invention can be added to the fuels by any means known in the art for incorporating small quantities of additives into distillate fuels. Components (a), (c) and (d) can be added separately or they can be combined and added together. It is convenient to utilize additive fluid mixtures which consist of organic nitrate ignition accelerator, hydrocarbyl amine and metal deactivator agents. These additive fluid mixtures are added to distillate fuels. In other words, part' of the present invention are coking inhibiting fluids which comprise organic nitrate ignition accelerator, hydrocarbyl amine having from 3 to 60 carbons and from 1 to 10 nitrogens and metal deactivator, preferably N,N'- disalicylidene-1,2-diaminopropane.
- In these fluid compositions, the amount of components (a), (c) and (d) can vary widely. In general, the fluid compositions contain 10 to 97.9% by weight of the organic nitrate ignition accelerator component, 2.0 to 75% by weight of the hydrocarbyl amine and 0.1 to 15% by weight metal deactivator. Typically, from 0.01% by weight up to 1.0% by weight of the combination of the components (a), (c) and a(d) will be sufficient to provide good coking-inhibiting properties to the distillate fuel. A preferred distillate fuel composition contains from 0.1 to 0.5% by weight of the combination containing from 50 to 97.9% by weight of the organic nitrate ignition accelerator, from 2.0 to 45% by weight of the hydrocarbyl amine and from 0.1 to 5.0% by weight of the metal deactivator component.
- In another embodiment of this invention, the coking-inhibiting components (b), (c) and (d) of the invention can be added to the fuels by any means known in the art for incorporating small quantities of additives into distillate fuels. Components (b), (c) and (d) can be added separately or, they can be combined and added together. It is convenient to utilize additive fluid mixtures which consist of hydrocarbyl-substituted succinimid.e-succinamide agents, hydrocarbyl amine and N,N'-disalicylidene-1,2-diaminopropane. These additive fluid mixtures are added to distillate fuels. In other words, part of the present invention are coking inhibiting fluids which comprise hydrocarbyl-substituted succinimide-succinamide, hydrocarbyl amine having from 3 to 60 carbons and 1 to 10 nitrogens, and metal deactivator, preferably N,N'-disalicylidene-l,2-diaminopropane.
- In these fluid compositions, the amount of components (b), (c) and (d) can vary widely. In general, the fluid compositions contain 10 to 97.9% by weight of the hydrocarbyl-substituted succinimide-succinamide component, 20 to 75% by weight of the hydrocarbyl amine and 0.1 to 15% by weight metal deactivator. Typically, from 0.01% by weight up to 1.0% by weight of the combination will be sufficient to provide good coking-inhibiting properties to the distillate fuel. A preferred distillate fuel composition contains from 0.1 to 0.5% by weight of the combination containing from 50% to 97.9% by weight of the hydrocarbyl succinimide-succinamide component and from 2.0% to 45% by weight of the hydrocarbyl amine and from 0.1 to 5.0% by weight of the metal deactivator, preferably N,N'-disalicylidene-l,2-diaminopropane.
- The practice and advantages of this invention will become still further apparent from the following illustrative Examples.
- In order to determine the effect of the fuel compositions of the present invention on the coking tendency of diesel injectors in indirect injection compression ignition engines, use was made of a commercial diesel engine operated on a coking test cycle developed by Institute Francais Petrole and as practiced by Peugeot S. A. The amount of coking together with a quantitative indication of the adverse consequences of such coking was determined by means of (i) injector air flow performance, (ii) emission of unburned hydrocarbons, (iii) engine noise, and (iv) injector deposit ratings. The engine employed in the tests was a 1982 Peugeot 2.3 liter, 4-cylinder, turbo-charged XD2S diesel engine connected to a Midwest dynamometer through an engine clutch. This engine is equipped with Bosch injectors positioned within prechambers, and is deemed representative of the indirect injection compression ignition engines widely used in automobiles and light-duty trucks.
-
-
- A test blend was prepared from this base fuel (Fuel A). Fuel A contained a combination of (i) 506 PTB (1.447 grams/liter) of mixed octyl nitrates (a commercial product available from Ethyl Corporation under the designation DII-3 Ignition Improver), (ii) 41 PTB (0.117 gram/liter) of HITEC® E-644, a product of Edwin Cooper, Inc., believed to be a hydrocarbyl succinimide-succinamide made.by reacting two moles of a polyisobutenyl succinic anhydride (PIBSA) with one mole of a polyethylene amine mixture having an average composition corresponding to tetraethylene pentamine, (iii) 14 PTB (0.04 grams/liter) of a hydrocarbyl amine available commercially from Rohm and Haas Company under the designation Primene 81R and (iv) 1.7 PTB (0.00486 grams/liter) of "Ethyl" Metal Deactivator, a product of Ethyl Corporation, the active ingredient of which is N,N'-disalicylidene-l,2-diaminopropane. The manufacturer gives the following typical properties for its HITEC® E-644 product:
- The Primene 81R is believed to be a mixture of primary aliphatic amines in which the aliphatic groups are predominantly C12 and C14 tertiary alkyl groups.
-
- Shell Rotella T, an SAE 30, SF/CD oil was used as the crankcase lubricant.
- Before starting each test, new Bosch DNOSD - 1510 nozzles were installed using new copper gaskets and flame rings. The fuel line was flushed with the new test fuel composition to be tested and the fuel filter bowl and fuel return reservoir were emptied to avoid additive carry-over from test-to-test.
- At the start of each test, the engine was operated at 1000 rpm, light load for 15 minutes. After this warm-up, the engine was subjected to the following automatic cycle:
- When passing from one event to the next event in the above cycle, some time, of course, was required to enable the engine to accelerate or decelerate from one speed to the next. Thus, more specifically, the above cycle was programmed as follows:
- Hydrocarbon exhaust emissions were measured at the start of each test (after.the first 20-minute cycle), at the 6-hour test interval and at the end of the test. These measurements were made at 750, 1000, and 1400 rpm idle. Noise level readings were made at a location three feet from the engine exhaust side. The measurements were made at the start and at the end of the test while operating at three idle speeds, viz., 750, 1000 and 1400 rpm.
- After the test operation, the injectors were carefully removed from the engine so as not to disturb the deposits formed thereon. Measurements were made of air flow through each nozzle at different pintle lifts, and pintle deposits were rated using the CRC deposit rating system.
-
- The results presented in Table I show that there were less coking deposits (higher air flow rate and fewer deposits), less engine noise and less hydrocarbon emissions with Fuel A, the.fuel of the invention, as compared to the Base Fuel.
- A test blend was prepared from the base fuel of Example I (Fuel B). Fuel B contained a combination of (i) 506 PTB (1.447 grams per liter) of mixed octyl nitrates (a commercial product available from Ethyl Corporation under the designation DII-3 Ignition Improver), (ii) 13.2 PTB (0.0377 grams per liter) of a hydrocarbyl amine available commercially from Rohm and Haas Company under the designation Primene 81R and (iii) 1.7 PTB (0.00486 grams per liter) of "Ethyl" Metal Deactivator, a product of Ethyl Corporation, the active ingredient of which is N,N'-disalicylidene-l,2-diaminopropane.
- The test engine was operated under the same conditions as those of Example I.
-
- The results presented in Table II show that there were less coking deposits (higher air flow rate and fewer deposits), less engine noise and less hydrocarbon emissions with Fuel B, the fuel of the invention, as compared to the Base Fuel.
- A test blend was prepared from the base fuel of Example I (Fuel C). Fuel C contained a combination of (i) 41 PTB (0.117 grams per liter) of HITEC® E-644, a product of Edwin Cooper, Inc., believed to be a hydrocarbyl succinimide-succinamide made by reacting two moles of a polyisobutenyl succinic anhydride (PIBSA) with one mole of a polyethylene amine mixture having an average composition corresponding to tetraethylene pentamine, (ii) 14 PTB (0.04 grams per liter) of a hydrocarbyl amine available commercially from Rohm and Haas Company under the designation Primene 81R, and (iii) 1.7 PTB (0.00486 grams per liter) of "Ethyl" Metal Deactivator, a product of Ethyl Corporation, the active ingredient of which is N,N'-disalicylidene-1,2-diaminopropane.
-
- The results presented in Table III show that there were less coking deposits (higher air flow rate and fewer deposits), less engine noise and less hydrocarbon emissions with Fuel C, the fuel of the invention, as compared to the Base Fuel.
Claims (20)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT87201461T ATE43626T1 (en) | 1983-12-30 | 1984-12-28 | FUEL COMPOSITION AND ADDITIVE CONCENTRATES AND THEIR USE FOR ENGINE SLUDGE INHIBITION. |
AT87201460T ATE44042T1 (en) | 1983-12-30 | 1984-12-28 | FUEL COMPOSITION AND ADDITIVE CONCENTRATES AND THEIR USE FOR ENGINE SLUDGE INHIBITION. |
AT84309143T ATE41951T1 (en) | 1983-12-30 | 1984-12-28 | FUEL COMPOSITIONS AND ADDITIVE CONCENTRATES AND THEIR USE FOR SLUDGE INHIBITION. |
DE8484309143T DE3477580D1 (en) | 1983-12-30 | 1984-12-28 | Fuel compositions and additive concentrates, and their use in inhibiting engine coking |
DE8787201461T DE3478466D1 (en) | 1983-12-30 | 1984-12-28 | Fuel composition and additive concentrates, and their use in inhibiting engine coking |
DE8787201460T DE3478695D1 (en) | 1983-12-30 | 1984-12-28 | Fuel composition and additive concentrates, and their use in inhibiting engine coking |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/567,071 US4482355A (en) | 1983-12-30 | 1983-12-30 | Diesel fuel compositions |
US567089 | 1983-12-30 | ||
US06/567,089 US4482356A (en) | 1983-12-30 | 1983-12-30 | Diesel fuel containing alkenyl succinimide |
US06/567,090 US4482357A (en) | 1983-12-30 | 1983-12-30 | Fuel Compositions |
US567090 | 1983-12-30 | ||
US567071 | 1983-12-30 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87201461.8 Division-Into | 1987-07-31 | ||
EP87201460.0 Division-Into | 1987-07-31 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0147240A2 true EP0147240A2 (en) | 1985-07-03 |
EP0147240A3 EP0147240A3 (en) | 1986-04-02 |
EP0147240B1 EP0147240B1 (en) | 1989-04-05 |
Family
ID=27416008
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87201461A Expired EP0251419B1 (en) | 1983-12-30 | 1984-12-28 | Fuel composition and additive concentrates, and their use in inhibiting engine coking |
EP84309143A Expired EP0147240B1 (en) | 1983-12-30 | 1984-12-28 | Fuel compositions and additive concentrates, and their use in inhibiting engine coking |
EP87201460A Expired EP0247706B1 (en) | 1983-12-30 | 1984-12-28 | Fuel composition and additive concentrates, and their use in inhibiting engine coking |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87201461A Expired EP0251419B1 (en) | 1983-12-30 | 1984-12-28 | Fuel composition and additive concentrates, and their use in inhibiting engine coking |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87201460A Expired EP0247706B1 (en) | 1983-12-30 | 1984-12-28 | Fuel composition and additive concentrates, and their use in inhibiting engine coking |
Country Status (2)
Country | Link |
---|---|
EP (3) | EP0251419B1 (en) |
CA (3) | CA1270642A (en) |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2172012A (en) * | 1985-01-17 | 1986-09-10 | Elf France | Asphaltenic liquid hydrocarbon additives |
WO1993001260A1 (en) * | 1991-07-02 | 1993-01-21 | Exxon Chemical Patents, Inc. | Fuel oil treatment |
US5340488A (en) * | 1989-11-15 | 1994-08-23 | Petro Chemical Products, Inc. | Composition for cleaning an internal combustion engine |
US6200359B1 (en) | 1998-12-23 | 2001-03-13 | Shell Oil Company | Fuel oil composition |
WO2003044134A2 (en) * | 2001-11-21 | 2003-05-30 | Shell Internationale Research Maatschappij B.V. | Diesel fuel compositions |
US6719814B1 (en) * | 1998-11-10 | 2004-04-13 | Infineum International Ltd | Lubricity additive, process for preparing lubricity additives, and middle distillate fuel compositions containing the same |
US7189269B2 (en) | 2002-10-18 | 2007-03-13 | Shell Oil Company | Fuel composition comprising a base fuel, a fischer tropsch derived gas oil, and an oxygenate |
US7229481B2 (en) | 2002-11-13 | 2007-06-12 | Shell Oil Company | Diesel fuel compositions |
EP2055762A2 (en) | 2007-10-26 | 2009-05-06 | Chevron Oronite Company LLC | Lubricating oil compositions comprising a biodiesel fuel and an antioxidant |
EP2055761A2 (en) | 2007-10-31 | 2009-05-06 | Chevron Oronite Company LLC | Lubricating oil compositions comprising a biodiesel fuel and a detergent |
EP2065367A1 (en) | 2007-11-29 | 2009-06-03 | Chevron Oronite Company LLC | Sulfurized metal alkyl phenate compositions having a low alkyl phenol content |
EP2077315A1 (en) | 2007-12-20 | 2009-07-08 | Chevron Oronite Company LLC | Lubricating oil compositions containing a tetraalkyl-napthalene-1,8 diamine antioxidant |
EP2078744A1 (en) | 2008-01-10 | 2009-07-15 | Shell Internationale Researchmaatschappij B.V. | Fuel compositions |
EP2078743A1 (en) | 2008-01-10 | 2009-07-15 | Shell Internationale Researchmaatschappij B.V. | Fuel composition |
US7638661B2 (en) | 2003-12-01 | 2009-12-29 | Shell Oil Company | Power increase and increase in acceleration performance of diesel fuel compositions |
US7737311B2 (en) | 2003-09-03 | 2010-06-15 | Shell Oil Company | Fuel compositions |
WO2010076304A1 (en) | 2008-12-29 | 2010-07-08 | Shell Internationale Research Maatschappij B.V. | Fuel compositions |
WO2010076303A1 (en) | 2008-12-29 | 2010-07-08 | Shell Internationale Research Maatschappij B.V. | Fuel compositions |
WO2011076948A1 (en) | 2009-12-24 | 2011-06-30 | Shell Internationale Research Maatschappij B.V. | Liquid fuel compositions |
WO2011080250A1 (en) | 2009-12-29 | 2011-07-07 | Shell Internationale Research Maatschappij B.V. | Liquid fuel compositions |
EP2371931A1 (en) | 2010-03-23 | 2011-10-05 | Shell Internationale Research Maatschappij B.V. | Fuel compositions |
US8152869B2 (en) | 2007-12-20 | 2012-04-10 | Shell Oil Company | Fuel compositions |
US8152868B2 (en) | 2007-12-20 | 2012-04-10 | Shell Oil Company | Fuel compositions |
WO2012098258A1 (en) | 2011-01-21 | 2012-07-26 | Shell Internationale Research Maatschappij B.V. | Test kit and method for detection of additives in fuel compositions |
WO2012162403A1 (en) | 2011-05-23 | 2012-11-29 | Virent, Inc. | Production of chemicals and fuels from biomass |
WO2012163935A2 (en) | 2011-05-30 | 2012-12-06 | Shell Internationale Research Maatschappij B.V. | Liquid fuel compositions |
WO2013034617A1 (en) | 2011-09-06 | 2013-03-14 | Shell Internationale Research Maatschappij B.V. | Liquid fuel compositions |
WO2013086138A1 (en) | 2011-12-07 | 2013-06-13 | Igp Energy, Inc. | Fuels and fuel additives comprising butanol and pentanol |
US8475647B2 (en) | 2005-08-22 | 2013-07-02 | Shell Oil Company | Diesel fuel and a method of operating a diesel engine |
US8541635B2 (en) | 2006-03-10 | 2013-09-24 | Shell Oil Company | Diesel fuel compositions |
DE102013112821A1 (en) | 2012-11-30 | 2014-06-05 | Shell Internationale Research Maatschappij B.V. | Fuel Compositions |
WO2014096234A1 (en) | 2012-12-21 | 2014-06-26 | Shell Internationale Research Maatschappij B.V. | Liquid diesel fuel compositions containing organic sunscreen compounds |
US8987537B1 (en) | 2014-05-22 | 2015-03-24 | Shell Oil Company | Fuel compositions |
US9057035B1 (en) | 2014-02-17 | 2015-06-16 | Shell Oil Company | Fuel compositions |
WO2015091458A1 (en) | 2013-12-16 | 2015-06-25 | Shell Internationale Research Maatschappij B.V. | Liquid fuel compositions |
EP2889361A1 (en) | 2013-12-31 | 2015-07-01 | Shell Internationale Research Maatschappij B.V. | Diesel fuel formulation and use thereof |
EP2907867A1 (en) | 2014-02-17 | 2015-08-19 | Shell International Research Maatschappij B.V. | Fuel compositions |
EP2949732A1 (en) | 2014-05-28 | 2015-12-02 | Shell Internationale Research Maatschappij B.V. | Use of an oxanilide compound in a diesel fuel composition for the purpose of modifying the ignition delay and/or the burn period |
WO2016188858A1 (en) | 2015-05-22 | 2016-12-01 | Shell Internationale Research Maatschappij B.V. | Fuel composition |
WO2016188850A1 (en) | 2015-05-22 | 2016-12-01 | Shell Internationale Research Maatschappij B.V. | Fuel composition |
WO2017081199A1 (en) | 2015-11-11 | 2017-05-18 | Shell Internationale Research Maatschappij B.V. | Process for preparing a diesel fuel composition |
US9663735B2 (en) | 2013-10-24 | 2017-05-30 | Shell Oil Company | Liquid fuel compositions |
EP3184612A1 (en) | 2015-12-21 | 2017-06-28 | Shell Internationale Research Maatschappij B.V. | Process for preparing a diesel fuel composition |
WO2017134251A1 (en) | 2016-02-05 | 2017-08-10 | Shell Internationale Research Maatschappij B.V. | Fuel composition |
US9752092B2 (en) | 2015-10-30 | 2017-09-05 | Chevron Oronite Company Llc | Lubricating oil compositions containing amidine antioxidants |
WO2017202735A1 (en) | 2016-05-23 | 2017-11-30 | Shell Internationale Research Maatschappij B.V. | Use of a wax anti-settling additive in automotive fuel compositions |
WO2018077976A1 (en) | 2016-10-27 | 2018-05-03 | Shell Internationale Research Maatschappij B.V. | Process for preparing an automotive gasoil |
WO2018206729A1 (en) | 2017-05-11 | 2018-11-15 | Shell Internationale Research Maatschappij B.V. | Process for preparing an automotive gas oil fraction |
WO2020070246A1 (en) | 2018-10-05 | 2020-04-09 | Shell Internationale Research Maatschappij B.V. | Fuel compositions |
WO2020109184A1 (en) | 2018-11-26 | 2020-06-04 | Shell Internationale Research Maatschappij B.V. | Fuel compositions |
WO2020120416A1 (en) | 2018-12-11 | 2020-06-18 | Shell Internationale Research Maatschappij B.V. | Use and method to reduce deposits in compression ignition internal combustion engines |
WO2021018895A1 (en) | 2019-07-30 | 2021-02-04 | Shell Internationale Research Maatschappij B.V. | Fuel compositions with enhanced stability and methods of making same |
WO2022228989A1 (en) | 2021-04-26 | 2022-11-03 | Shell Internationale Research Maatschappij B.V. | Fuel compositions |
WO2022228990A1 (en) | 2021-04-26 | 2022-11-03 | Shell Internationale Research Maatschappij B.V. | Fuel compositions |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2239258A (en) * | 1989-12-22 | 1991-06-26 | Ethyl Petroleum Additives Ltd | Diesel fuel compositions containing a manganese tricarbonyl |
GB9008346D0 (en) * | 1990-04-12 | 1990-06-13 | Exxon Chemical Patents Inc | Fuel oil treatment |
US5944858A (en) * | 1990-09-20 | 1999-08-31 | Ethyl Petroleum Additives, Ltd. | Hydrocarbonaceous fuel compositions and additives therefor |
EP0482253A1 (en) * | 1990-10-23 | 1992-04-29 | Ethyl Petroleum Additives Limited | Environmentally friendly fuel compositions and additives therefor |
US6733550B1 (en) | 1997-03-21 | 2004-05-11 | Shell Oil Company | Fuel oil composition |
US6319294B1 (en) | 2000-07-28 | 2001-11-20 | Magnum Environmental Technologies, Inc. | Fuel additive formulation and method of using same |
AU2006228038A1 (en) * | 2000-07-28 | 2006-11-02 | Mazoil Technologies Limited | Improved fuel additive formulation and method of using same |
WO2017203003A1 (en) * | 2016-05-26 | 2017-11-30 | Shell Internationale Research Maatschappij B.V. | Fuel compositions |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2768884A (en) * | 1952-11-12 | 1956-10-30 | Sun Oil Co | Corrosion prevention |
DE1232392B (en) * | 1960-12-16 | 1967-01-12 | California Research Corp | Fuel mixtures |
US3701641A (en) * | 1969-08-29 | 1972-10-31 | Cities Service Oil Co | Stabilized distillate hydrocarbon fuel oil compositions and additives therefor |
US4208190A (en) * | 1979-02-09 | 1980-06-17 | Ethyl Corporation | Diesel fuels having anti-wear properties |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2945749A (en) * | 1956-04-18 | 1960-07-19 | Socony Mobil Oil Co Inc | Stabilized fuel oil containing tertiary alkyl primary amines |
US3490882A (en) * | 1966-08-11 | 1970-01-20 | Du Pont | Stabilized distillate fuel oils and additive compositions therefor |
US3717446A (en) * | 1970-12-31 | 1973-02-20 | Union Oil Co | Gasoline anti-icing additives (a) |
US3709668A (en) * | 1971-06-30 | 1973-01-09 | Exxon Research Engineering Co | Gasoline composition providing enhanced engine operation |
-
1984
- 1984-12-13 CA CA000470058A patent/CA1270642A/en not_active Expired - Fee Related
- 1984-12-28 EP EP87201461A patent/EP0251419B1/en not_active Expired
- 1984-12-28 EP EP84309143A patent/EP0147240B1/en not_active Expired
- 1984-12-28 EP EP87201460A patent/EP0247706B1/en not_active Expired
-
1990
- 1990-01-19 CA CA000615608A patent/CA1284583C/en not_active Expired - Fee Related
- 1990-01-19 CA CA000615609A patent/CA1284883C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2768884A (en) * | 1952-11-12 | 1956-10-30 | Sun Oil Co | Corrosion prevention |
DE1232392B (en) * | 1960-12-16 | 1967-01-12 | California Research Corp | Fuel mixtures |
US3701641A (en) * | 1969-08-29 | 1972-10-31 | Cities Service Oil Co | Stabilized distillate hydrocarbon fuel oil compositions and additives therefor |
US4208190A (en) * | 1979-02-09 | 1980-06-17 | Ethyl Corporation | Diesel fuels having anti-wear properties |
Cited By (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2172012A (en) * | 1985-01-17 | 1986-09-10 | Elf France | Asphaltenic liquid hydrocarbon additives |
US5340488A (en) * | 1989-11-15 | 1994-08-23 | Petro Chemical Products, Inc. | Composition for cleaning an internal combustion engine |
WO1993001260A1 (en) * | 1991-07-02 | 1993-01-21 | Exxon Chemical Patents, Inc. | Fuel oil treatment |
US5460634A (en) * | 1991-07-02 | 1995-10-24 | Exxon Chemical Patents Inc. | Fuel oil treatment |
US6719814B1 (en) * | 1998-11-10 | 2004-04-13 | Infineum International Ltd | Lubricity additive, process for preparing lubricity additives, and middle distillate fuel compositions containing the same |
US6200359B1 (en) | 1998-12-23 | 2001-03-13 | Shell Oil Company | Fuel oil composition |
WO2003044134A2 (en) * | 2001-11-21 | 2003-05-30 | Shell Internationale Research Maatschappij B.V. | Diesel fuel compositions |
WO2003044134A3 (en) * | 2001-11-21 | 2003-08-07 | Shell Int Research | Diesel fuel compositions |
US7189269B2 (en) | 2002-10-18 | 2007-03-13 | Shell Oil Company | Fuel composition comprising a base fuel, a fischer tropsch derived gas oil, and an oxygenate |
US7229481B2 (en) | 2002-11-13 | 2007-06-12 | Shell Oil Company | Diesel fuel compositions |
US7737311B2 (en) | 2003-09-03 | 2010-06-15 | Shell Oil Company | Fuel compositions |
US7638661B2 (en) | 2003-12-01 | 2009-12-29 | Shell Oil Company | Power increase and increase in acceleration performance of diesel fuel compositions |
US8475647B2 (en) | 2005-08-22 | 2013-07-02 | Shell Oil Company | Diesel fuel and a method of operating a diesel engine |
US8541635B2 (en) | 2006-03-10 | 2013-09-24 | Shell Oil Company | Diesel fuel compositions |
EP2055762A2 (en) | 2007-10-26 | 2009-05-06 | Chevron Oronite Company LLC | Lubricating oil compositions comprising a biodiesel fuel and an antioxidant |
EP2055761A2 (en) | 2007-10-31 | 2009-05-06 | Chevron Oronite Company LLC | Lubricating oil compositions comprising a biodiesel fuel and a detergent |
EP2065367A1 (en) | 2007-11-29 | 2009-06-03 | Chevron Oronite Company LLC | Sulfurized metal alkyl phenate compositions having a low alkyl phenol content |
US8152869B2 (en) | 2007-12-20 | 2012-04-10 | Shell Oil Company | Fuel compositions |
US8152868B2 (en) | 2007-12-20 | 2012-04-10 | Shell Oil Company | Fuel compositions |
EP2077315A1 (en) | 2007-12-20 | 2009-07-08 | Chevron Oronite Company LLC | Lubricating oil compositions containing a tetraalkyl-napthalene-1,8 diamine antioxidant |
EP2078743A1 (en) | 2008-01-10 | 2009-07-15 | Shell Internationale Researchmaatschappij B.V. | Fuel composition |
EP2078744A1 (en) | 2008-01-10 | 2009-07-15 | Shell Internationale Researchmaatschappij B.V. | Fuel compositions |
US8273137B2 (en) | 2008-01-10 | 2012-09-25 | Shell Oil Company | Fuel composition |
WO2010076304A1 (en) | 2008-12-29 | 2010-07-08 | Shell Internationale Research Maatschappij B.V. | Fuel compositions |
WO2010076303A1 (en) | 2008-12-29 | 2010-07-08 | Shell Internationale Research Maatschappij B.V. | Fuel compositions |
US9017429B2 (en) | 2008-12-29 | 2015-04-28 | Shell Oil Company | Fuel compositions |
US8771385B2 (en) | 2008-12-29 | 2014-07-08 | Shell Oil Company | Fuel compositions |
WO2011076948A1 (en) | 2009-12-24 | 2011-06-30 | Shell Internationale Research Maatschappij B.V. | Liquid fuel compositions |
WO2011080250A1 (en) | 2009-12-29 | 2011-07-07 | Shell Internationale Research Maatschappij B.V. | Liquid fuel compositions |
EP2371931A1 (en) | 2010-03-23 | 2011-10-05 | Shell Internationale Research Maatschappij B.V. | Fuel compositions |
US8876923B2 (en) | 2010-03-23 | 2014-11-04 | Shell Oil Company | Fuel compositions |
WO2012098258A1 (en) | 2011-01-21 | 2012-07-26 | Shell Internationale Research Maatschappij B.V. | Test kit and method for detection of additives in fuel compositions |
WO2012162403A1 (en) | 2011-05-23 | 2012-11-29 | Virent, Inc. | Production of chemicals and fuels from biomass |
WO2012163935A2 (en) | 2011-05-30 | 2012-12-06 | Shell Internationale Research Maatschappij B.V. | Liquid fuel compositions |
WO2013034617A1 (en) | 2011-09-06 | 2013-03-14 | Shell Internationale Research Maatschappij B.V. | Liquid fuel compositions |
WO2013086138A1 (en) | 2011-12-07 | 2013-06-13 | Igp Energy, Inc. | Fuels and fuel additives comprising butanol and pentanol |
DE102013112821A1 (en) | 2012-11-30 | 2014-06-05 | Shell Internationale Research Maatschappij B.V. | Fuel Compositions |
WO2014096234A1 (en) | 2012-12-21 | 2014-06-26 | Shell Internationale Research Maatschappij B.V. | Liquid diesel fuel compositions containing organic sunscreen compounds |
US9222047B2 (en) | 2012-12-21 | 2015-12-29 | Shell Oil Company | Liquid fuel compositions |
US9663735B2 (en) | 2013-10-24 | 2017-05-30 | Shell Oil Company | Liquid fuel compositions |
WO2015091458A1 (en) | 2013-12-16 | 2015-06-25 | Shell Internationale Research Maatschappij B.V. | Liquid fuel compositions |
US9587195B2 (en) | 2013-12-16 | 2017-03-07 | Shell Oil Company | Liquid composition |
EP2889361A1 (en) | 2013-12-31 | 2015-07-01 | Shell Internationale Research Maatschappij B.V. | Diesel fuel formulation and use thereof |
US9057035B1 (en) | 2014-02-17 | 2015-06-16 | Shell Oil Company | Fuel compositions |
US9487718B2 (en) | 2014-02-17 | 2016-11-08 | Shell Oil Company | Fuel compositions |
US10577551B2 (en) | 2014-02-17 | 2020-03-03 | Shell Oil Company | Fuel compositions |
EP2907867A1 (en) | 2014-02-17 | 2015-08-19 | Shell International Research Maatschappij B.V. | Fuel compositions |
EP3581637A1 (en) | 2014-02-17 | 2019-12-18 | Shell Internationale Research Maatschappij B.V. | Fuel compositions |
US10457881B2 (en) | 2014-05-22 | 2019-10-29 | Shell Oil Company | Fuel compositions |
EP2947135A1 (en) | 2014-05-22 | 2015-11-25 | Shell Internationale Research Maatschappij B.V. | Fuel compositions |
EP2990465A1 (en) | 2014-05-22 | 2016-03-02 | Shell Internationale Research Maatschappij B.V. | Fuel compositions |
US9499758B2 (en) | 2014-05-22 | 2016-11-22 | Shell Oil Company | Fuel compositions |
WO2015179017A2 (en) | 2014-05-22 | 2015-11-26 | Shell Oil Company | Fuel compositions |
US8987537B1 (en) | 2014-05-22 | 2015-03-24 | Shell Oil Company | Fuel compositions |
EP2949732A1 (en) | 2014-05-28 | 2015-12-02 | Shell Internationale Research Maatschappij B.V. | Use of an oxanilide compound in a diesel fuel composition for the purpose of modifying the ignition delay and/or the burn period |
US11001775B2 (en) | 2015-05-22 | 2021-05-11 | Shell Oil Company | Fuel composition |
WO2016188858A1 (en) | 2015-05-22 | 2016-12-01 | Shell Internationale Research Maatschappij B.V. | Fuel composition |
US11104857B2 (en) | 2015-05-22 | 2021-08-31 | Shell Oil Company | Fuel composition |
WO2016188850A1 (en) | 2015-05-22 | 2016-12-01 | Shell Internationale Research Maatschappij B.V. | Fuel composition |
US9752092B2 (en) | 2015-10-30 | 2017-09-05 | Chevron Oronite Company Llc | Lubricating oil compositions containing amidine antioxidants |
WO2017081199A1 (en) | 2015-11-11 | 2017-05-18 | Shell Internationale Research Maatschappij B.V. | Process for preparing a diesel fuel composition |
EP3184612A1 (en) | 2015-12-21 | 2017-06-28 | Shell Internationale Research Maatschappij B.V. | Process for preparing a diesel fuel composition |
WO2017134251A1 (en) | 2016-02-05 | 2017-08-10 | Shell Internationale Research Maatschappij B.V. | Fuel composition |
US11254885B2 (en) | 2016-02-05 | 2022-02-22 | Shell Oil Company | Fuel composition |
US11359155B2 (en) | 2016-05-23 | 2022-06-14 | Shell Usa, Inc. | Use of a wax anti-settling additive in automotive fuel compositions |
WO2017202735A1 (en) | 2016-05-23 | 2017-11-30 | Shell Internationale Research Maatschappij B.V. | Use of a wax anti-settling additive in automotive fuel compositions |
WO2018077976A1 (en) | 2016-10-27 | 2018-05-03 | Shell Internationale Research Maatschappij B.V. | Process for preparing an automotive gasoil |
WO2018206729A1 (en) | 2017-05-11 | 2018-11-15 | Shell Internationale Research Maatschappij B.V. | Process for preparing an automotive gas oil fraction |
WO2020070246A1 (en) | 2018-10-05 | 2020-04-09 | Shell Internationale Research Maatschappij B.V. | Fuel compositions |
WO2020109184A1 (en) | 2018-11-26 | 2020-06-04 | Shell Internationale Research Maatschappij B.V. | Fuel compositions |
US11499106B2 (en) | 2018-11-26 | 2022-11-15 | Shell Usa, Inc. | Fuel compositions |
WO2020120416A1 (en) | 2018-12-11 | 2020-06-18 | Shell Internationale Research Maatschappij B.V. | Use and method to reduce deposits in compression ignition internal combustion engines |
US11867117B2 (en) | 2018-12-11 | 2024-01-09 | Shell Usa, Inc. | Use and method to reduce deposits in compression ignition internal combustion engines |
WO2021018895A1 (en) | 2019-07-30 | 2021-02-04 | Shell Internationale Research Maatschappij B.V. | Fuel compositions with enhanced stability and methods of making same |
WO2022228989A1 (en) | 2021-04-26 | 2022-11-03 | Shell Internationale Research Maatschappij B.V. | Fuel compositions |
WO2022228990A1 (en) | 2021-04-26 | 2022-11-03 | Shell Internationale Research Maatschappij B.V. | Fuel compositions |
Also Published As
Publication number | Publication date |
---|---|
EP0251419A1 (en) | 1988-01-07 |
EP0247706A3 (en) | 1988-01-13 |
CA1270642A (en) | 1990-06-26 |
EP0147240A3 (en) | 1986-04-02 |
EP0251419B1 (en) | 1989-05-31 |
EP0247706A2 (en) | 1987-12-02 |
CA1284883C (en) | 1991-06-18 |
CA1284583C (en) | 1991-06-04 |
EP0247706B1 (en) | 1989-06-14 |
EP0147240B1 (en) | 1989-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0147240B1 (en) | Fuel compositions and additive concentrates, and their use in inhibiting engine coking | |
US4482356A (en) | Diesel fuel containing alkenyl succinimide | |
US4482357A (en) | Fuel Compositions | |
US4613341A (en) | Fuel compositions | |
JP3796355B2 (en) | Gasoline composition containing an ignition modifier | |
JPS6220590A (en) | Maleic anhydride/polyether/polyamide reaction product and composition for car fuel containing the same | |
US20080141580A1 (en) | Fuel Oil Compositions | |
CN102649916A (en) | Fuel additives to maintain optimum injector performance | |
EP1935968B1 (en) | Improvements in Fuel Oil Compositions | |
JPH0154398B2 (en) | ||
US4155718A (en) | Method and composition for inhibition or prevention of octane requirement increase | |
US5460633A (en) | Fuel oil treatment | |
US5433755A (en) | Additive formulation for fuels incorporating ester function products and a detergent-dispersant | |
US4549885A (en) | Fuel compositions | |
US4623363A (en) | Fuel compositions | |
EP0178960B1 (en) | Diesel fuel compositions | |
US4588417A (en) | Fuel compositions | |
EP0133375B1 (en) | Compression ignition fuels, compositions and additive packages for the production thereof and the use thereof | |
EP0217611B1 (en) | Fuel compositions | |
EP0225076B1 (en) | Fuel compositions | |
US4623361A (en) | Fuel compositions | |
EP1947161A1 (en) | Fuel oil compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HANLON, JOHN VINCENT |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19860425 |
|
17Q | First examination report despatched |
Effective date: 19861128 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 41951 Country of ref document: AT Date of ref document: 19890415 Kind code of ref document: T |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3477580 Country of ref document: DE Date of ref document: 19890511 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: EXXON CHEMICAL PATENTS INC. Effective date: 19900105 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: EXXON CHEMICAL PATENTS INC. |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19921110 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19921116 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19921117 Year of fee payment: 9 Ref country code: AT Payment date: 19921117 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19921119 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19921120 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19921123 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19921127 Year of fee payment: 9 |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19921231 Year of fee payment: 9 |
|
EPTA | Lu: last paid annual fee | ||
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 19921204 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Free format text: 921204 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLR2 | Nl: decision of opposition | ||
EUG | Se: european patent has lapsed |
Ref document number: 84309143.0 Effective date: 19930428 |