EP0145515B1 - Fluid heating installation comprising an absorption heat pump associated cycle - Google Patents

Fluid heating installation comprising an absorption heat pump associated cycle Download PDF

Info

Publication number
EP0145515B1
EP0145515B1 EP84401790A EP84401790A EP0145515B1 EP 0145515 B1 EP0145515 B1 EP 0145515B1 EP 84401790 A EP84401790 A EP 84401790A EP 84401790 A EP84401790 A EP 84401790A EP 0145515 B1 EP0145515 B1 EP 0145515B1
Authority
EP
European Patent Office
Prior art keywords
heat
installation
column
installation according
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84401790A
Other languages
German (de)
French (fr)
Other versions
EP0145515A1 (en
Inventor
Christian Aime
Bernard Genest
Claude Junet
Paul Moffroid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engie SA
Original Assignee
Gaz de France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaz de France SA filed Critical Gaz de France SA
Priority to AT84401790T priority Critical patent/ATE27654T1/en
Publication of EP0145515A1 publication Critical patent/EP0145515A1/en
Application granted granted Critical
Publication of EP0145515B1 publication Critical patent/EP0145515B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B33/00Boilers; Analysers; Rectifiers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type

Definitions

  • the present invention relates to improvements in a heating installation equipped with an absorption heat pump.
  • an absorption heat pump is sometimes used to improve the thermal efficiency of the heating.
  • the burner is used to boil the absorption solution used in the absorption cycle of the heat pump so as to separate the constituents of the solution and regenerate the absorption fluid used in the cycle.
  • the efficiency is poor because, taking into account the conditions of the heat exchange, the smoke leaves the installation at a generally high temperature above 200 ° C causing large amounts of energy to be lost through the chimney.
  • the heat exchanger comprises two stages arranged in series, the first forming a heat pump boiler serving to bring the absorption solution to the appropriate temperature, the second forming a recuperator serving to heat the fluid of heating in the vicinity of its entry into the installation.
  • the two exchangers are constituted in an original way by two twin tubes arranged in series, the inner tube of the two twin tubes serving as an outlet passage for the fumes produced in the combustion chamber of the installation.
  • a connection is provided at the level of the first exchanger at the place where the solution to be regenerated leaves this exchanger after heating, this connection opening into a separator flask in which the separation of the volatile enriched solution and the depleted solution takes place. heavier for the use of these two separate solutions in the absorption cycle of the installation.
  • the present invention uses the general principles of this earlier application to which it provides specific improvements, more particularly in terms of the heating device for the boiler of the heat pump and for the recovery of the heating fluid while ensuring much more implementation. "Efficient" and greater flexibility of use.
  • distillate designates the more volatile part or “enriched” solution of the absorption solution after its regeneration and the term “residue” the heavier part constituting the solution “Depleted” of the absorption solution after its regeneration.
  • document US-A-2290532 describes an installation with a burner heating two chambers arranged one behind the other annularly to a combustion chamber, these chambers communicating respectively with the hot departures and the cold returns of a refrigeration cycle.
  • this installation which does not relate to a heating installation, neither shows nor suggests the particular compact, partly nested, arrangement of the chambers according to the invention, nor the circulation in thermosyphon with the boiler-separator of the heat pump and n ' the advantages of it.
  • a somewhat comparable arrangement is also found in document US-A-2479062 in which the boiler of the refrigeration installation is formed annularly around a long tube of fumes.
  • FIG. 1 illustrating the overall diagram of an installation designed according to the invention.
  • the installation essentially comprises the cycle of the absorption pump comprising the boiler-regenerator 1, the condenser 2, the holder 3, the evaporator 4, the absorber 5, a circulation pump 6 for the solution, a heat exchanger 7 and an additional exchanger 8.
  • the regenerator boiler 1 consists essentially of a burner with its combustion chamber 9 comprising two heat exchangers 10 and 11 respectively, consisting of two bitubes mounted in series, the inner tube 12 common to the two exchangers being traversed by the fumes produced in the combustion chamber 9 and which escape at 13 to the chimney (not shown).
  • the regenerative boiler 1 further comprises a separation column 14 which receives after their heating, in particular in the heat exchanger 10 and at the level of the part 20 of the lining 15 surrounding the combustion chamber 9, returns of the solution to be regenerated from the absorber 5.
  • the regenerative boiler 1 also comprises a so-called de-phlegmator apparatus 16 which receives the distillates produced at the head of the separation column 14 with a view to their drying in order to improve the efficiency of the absorption cycle.
  • FIGS. 2, 3 and 4 The installation being thus described as a whole, reference will now be made to FIGS. 2, 3 and 4 with the help of which some specific apparatus used in the installation will be described in more detail.
  • the burner (not shown), the flame of which has only been shown diagrammatically at 16 ′, comprises a combustion chamber 17 surrounded by a liner 15.
  • the liner 15 is divided by a partition 18 into two chambers respectively 19 and 20.
  • the chamber 19 is in communication by two pipes of relatively large section 21, 22 with the base of the column 14. In this way it is established under the effect of the heating which takes place in the combustion chamber 17 efficient circulation in thermosyphon of the solution to be regenerated present up to the level marked 23 in column 14. This gives good homogenization of the temperature of the solution to be regenerated in column 14.
  • the conduit 24 opens through its upper orifice 25 at substantially mid-height of the column 14, which comprises a number of baffles 26, 27, 28 forming simplified distillation plates in this column.
  • the column 14 comprises a number of baffles 26, 27, 28 forming simplified distillation plates in this column.
  • the liquid residue leaves the separation column through line 29 at the base of the column, while the distillate leaves at the top of the column through line 30.
  • FIGS. 3 and 4 describe the construction of the "de-phlegmator".
  • the distillates leaving the column 14 through the conduit 30 enter the deflegmator 16 at the upper part of a volume 31 formed between the vertical circular cylindrical wall 32 of the dephlegmator 16, and a more internal concentric wall 33. Inside the volume 31 is also arranged a tubular helix 34 in which circulates as indicated by the arrows the fluid to be heated penetrating into the de-phlegmator via the conduit 35 and leaving it through the conduit 36 which forms the heating start of the installation .
  • the distillates introduced at 30 into the de-phlegmator are therefore channeled along a peripheral helical path descending against the current with the fluid to be heated traversing the propeller 34 and open towards the base of the apparatus in the volume marked 37.
  • the distillates are thus subjected both a centrifugation effect and a refrigeration effect which tend to condense the entrained residue parts with the distillates and to separate them from the lighter distillates.
  • the condensed residues escape from the de-phlegmator through the conduit 38 located at the base of the apparatus while the distillates in gaseous form escape from the apparatus through the conduit 39, the outlet of which is placed at 40 in upper part of the appliance.
  • the separated residues collected at 38 in the de-phlegmator are returned to the separation column 14 towards the upper part of this column. In this way, the separation of the absorption solution into its light distillates and heavy residues is very markedly improved, which improves the functioning of the absorption cycle.
  • the separation column 14, the de-phlegmator 16, the heat exchangers 7 and 8 have all been housed inside the two twin-tube propellers constituting the heat exchanger 10 for the heat pump boiler and the heat exchanger 11 forming a heat recovery unit for the fluid to be heated.
  • the heat exchanges in the installation are improved, all the “hot” exchangers being placed inside the two hot exchangers 10, 11.
  • the absorber 5 and the condenser 2 find their place outside the exchangers 10, 11, the entire installation, excluding the evaporator 4, which can thus be housed in an envelope forming an outer casing (not shown).
  • FIGS. 1 and 5 the operation of the installation and the various circulation circuits will be described.
  • the distillates are produced as mentioned above in the separation column 14 from the absorption solution coming from the absorption column 5.
  • the distillates escape at the top of the column 14 through the conduit 30 entering the de-phlegmator 16.
  • the distillates rid of their "humidity" (the heavy parts of "residue” entrained being returned to column 14 through the conduit 38) are brought by the conduit 39 inside the condenser 2 cooled against the current by the fluid circuit to be heated in which the condensation takes place.
  • the condensed distillates are then admitted via line 41 into the pressure reducer 3 in which their expansion and subsequent cooling takes place.
  • the evaporator 4 which can be an air exchanger exchanging heat with the ambient medium or for example water exchanging heat with waste water. It is at this device, as it is known that the heat is borrowed from the outside environment.
  • the distilled distilled thus warmed at the outlet of the evaporator 4 penetrate through the conduit 43 at the top of the absorption column. In this column, the distillates are absorbed by the heavy residues brought by line 44 into the absorber and with which they mix, releasing heat, which is partly exchanged with the fluid to be heated as will be described below in relationship with this circuit.
  • the mixing solution leaves the absorber via the conduit 45 from where it is taken up by the pump 6 to be brought back after crossing the heat exchanger 7 in counter current with the hot residues coming from the column 14, before entering in the exchanger 10 then the chamber 20 formed around the combustion chamber 17 before being introduced into the separation column 14 through the conduit 24.
  • the cold inlet of the fluid to be heated which can constitute, for example, the cold returns of a central heating takes place at 48 at the end of the exchanger 11 by which the fumes 13 from the installation are evacuated.
  • the evacuation of condensates from the fumes the temperature of the cold returns generally making it possible to recover at least a large part of the heat of condensation of the fumes.
  • the heating fluid gains via a conduit 49 the absorber 5, which allows optimal cooling of the condensates improving the working conditions of the absorption cycle.
  • the heating fluid is brought through a conduit 50 into the heat exchanger 8, which in the normal operating position of the installation hitherto described makes it possible to recover extract some of the heat from the residues before entering the absorption column 5.
  • the fluid to be heated gains via a conduit 51 the condenser 2 in which most of the the heat supplied by the absorption circuit.
  • the fluid to be heated gains via a conduit 52 the de-phlegmator 16 in which a final heating operation takes place, which allows, as described above, to improve the purification and the separation into light distillate. and heavy residue of the absorption solution at the outlet of the absorption column 5.
  • absorption that is to say the operation of the de-phlegmator 16, the condenser 2, the regulator 3 and the evaporator 4, as well as the operation of the exchanger 7 which is short-circuited by a conduit 53 arranged in parallel on the exchanger 7 and controlled by a valve 54.
  • the fluid to be heated is heated essentially in the exchanger 11 then in the exchanger 8, which is heated by the circuit of the solution passing through the exchanger 10, the base of the column 141e conduit 29, the bypass 53, the exchanger 8 and returning to the exchanger 10 after passing through the absorber 5 (which no longer functions as an absorber) and the return conduit 45 via the circulation pump 6.
  • the installation designed according to the invention and using few and simple apparatuses has very great flexibility of use, allows great compactness of construction, and allows the operation of the installation with switching off or on according to the most favorable conditions of the absorption cycle forming the heat pump.
  • the installation makes it possible to obtain improved yields compared to known installations, thanks to better separation of the distillates and residues produced in the absorption cycle, allowing better yields of this cycle and at the same time better recovery of the latent heat and condensation of the fumes and also latent and of condensation at the level of the absorption cycle and in particular of the distillates in the separation column 14 and in the de-phlegmator 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Central Heating Systems (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)

Abstract

The invention pertains to improvements brought to a heating facility which includes an associated absorbing heat pump cycle. The facility is designed for direct thermosiphon heating of the absorption solution to be regenerated upon contact with a panelling (15) which surrounds the combustion chamber (9). The separation of the solution to be regenerated is performed inside a separation column (14) which is connected to a dephlegmator (16) which improves the yield of the separation, the yield of the absorbing cycle and the recovery yield of heat supplied by the burner. Furthermore a heat exchanger (8) enables the operation of the facility with a de-activation of the absorbing cycle. The invention applies especially to central heating and to the heating of hygienic water.

Description

La présente invention a pour objet des perfectionnements à une installation de chauffage équipée d'une pompe à chaleur à absorption.The present invention relates to improvements in a heating installation equipped with an absorption heat pump.

Dans certaines installations de chauffage d'un fluide, tel par exemple que de l'eau, en particulier pourle chauffage de bâtiments etla production d'eau chaude sanitaire, installations comprenant au moins un brûleur à combustible solide, liquide et/ou gazeux produisant des fumées à température relativement élevée, on utilise parfois une pompe à chaleur à absorption afin d'améliorer le rendement thermique du chauffage.In certain installations for heating a fluid, such as for example water, in particular for heating buildings and producing domestic hot water, installations comprising at least one solid, liquid and / or gaseous fuel burner producing smoke at a relatively high temperature, an absorption heat pump is sometimes used to improve the thermal efficiency of the heating.

Dans un tel cas habituellement, le brûleur sert à faire bouillir la solution d'absorption utilisée dans le cycle d'absorption de la pompe à chaleur de façon à séparer les constituants de la solution et régénérer le fluide d'absorption utilisé dans le cycle.In such a case usually, the burner is used to boil the absorption solution used in the absorption cycle of the heat pump so as to separate the constituents of the solution and regenerate the absorption fluid used in the cycle.

Au niveau de l'échange de chaleur fumées/solu- tion d'absorption à régénérer, le rendement est médiocre du fait que compte tenu des conditions de l'échange thermique les fumées quittent l'installation à une température généralement élevée supérieure à 200°C entraînant à la cheminée de grandes quantités d'énergie qui sont perdues.At the level of the heat exchange of smoke / absorption solution to be regenerated, the efficiency is poor because, taking into account the conditions of the heat exchange, the smoke leaves the installation at a generally high temperature above 200 ° C causing large amounts of energy to be lost through the chimney.

Dans la plupart des cas cette situation défavorable est tolérée car au niveau du cycle de la pompe à chaleur on récupère dans le milieu ambiant au niveau de l'évaporateur du cycle nettement plus d'énergie qu'on en a laissé échapper à la cheminée, de sorte que le rendement global de l'installation apparaît relativement bon. Ceci n'est cependant vrai que si les conditions de fonctionnement de l'évaporateur sont satisfaisantes, c'est-à-dire généralement si le niveau de la «source froide» dans laquelle est «pompée» la chaleur délivrée à l'installation est suffisamment élevé. Ce phénomène bien connu conduit du reste les installateurs à installer en parallèle sur l'installation de chauffage équipée d'une pompe à chaleur une chaudière de type classique qui chauffera directement le fluide à chauffer lorsque les conditions d'exploitation de la source froide seront défavorables (généralement par temps froid plus particulièrement si l'évaporateur emprunte sa chaleur à l'air ambiant).In most cases this unfavorable situation is tolerated because at the heat pump cycle, we recover in the ambient environment at the cycle evaporator much more energy than we let escape from the chimney, so that the overall performance of the installation appears relatively good. However, this is only true if the operating conditions of the evaporator are satisfactory, that is to say generally if the level of the "cold source" into which the heat delivered to the installation is "pumped" is high enough. This well-known phenomenon leads the installers to install in parallel on the heating installation equipped with a heat pump a boiler of conventional type which will directly heat the fluid to be heated when the operating conditions of the cold source are unfavorable. (generally in cold weather more particularly if the evaporator borrows its heat from the ambient air).

De façon à réduire les pertes de chaleur à la cheminée, il a également été proposé de disposer des échangeurs récupérateurs de chaleur sur le circuit des fumées, lesquels échangeurs récupérateurs seront en échange thermique avec le fluide à chauffer. En pratique, cependant ces échangeurs ne donnent pas satisfaction, essentiellement pour les deux raisons suivantes.

  • 1) Le surcoût de l'installation que leur utilisation entraîne n'est pas du point de vue économique rentable;
  • 2) l'aménagement de circuits d'échange, nécessitant de longues dimensions de canalisations fait qu'on reperd par pertes en ligne dans ces canalisations la plus grande partie de la chaleur que l'on a tenté de récupérer.
In order to reduce the heat losses to the chimney, it has also been proposed to have heat recovery exchangers on the smoke circuit, which recovery heat exchangers will be in heat exchange with the fluid to be heated. In practice, however, these exchangers are not satisfactory, essentially for the following two reasons.
  • 1) The additional cost of the installation that their use entails is not economically profitable;
  • 2) the arrangement of exchange circuits, requiring long dimensions of pipes, means that most of the heat that we have tried to recover is lost by losses in line in these pipes.

Dans la demande de brevet antérieure EP-A-0110 763 (publiée le 13.06.84) par le même demandeur, on a proposé une installation perfectionnée permettant de résoudre certaines des difficultés exposées.In the previous patent application EP-A-0110 763 (published on 13.06.84) by the same applicant, an improved installation has been proposed which makes it possible to solve some of the difficulties exposed.

A cet effet dans cette demande antérieure, l'échangeur de chaleur comprend deux étages disposés en série, le premier formant bouilleur de pompe à chaleur servant à porter à température adéquate la solution d'absorption, le second formant récupérateur servant à réchauffer le fluide de chauffage au voisinage de son entrée dans l'installation. Les deux échangeurs sont constitués de façon originale par deux bitubes disposés en série, le tube intérieur des deux bitubes servant de passage de sortie pour les fumées produites dans la chambre de combustion de l'installation. En outre une connexion est prévue au niveau du premier échangeur à l'endroit où la solution à régénérer quitte cet échangeur après chauffage, cette connexion débouchant dans un ballon séparateur dans lequel s'effectue la séparation de la solution enrichie volatile et de la solution appauvrie plus lourde en vue de l'utilisation de ces deux solutions séparées dans le cycle d'absorption de l'installation.To this end, in this previous application, the heat exchanger comprises two stages arranged in series, the first forming a heat pump boiler serving to bring the absorption solution to the appropriate temperature, the second forming a recuperator serving to heat the fluid of heating in the vicinity of its entry into the installation. The two exchangers are constituted in an original way by two twin tubes arranged in series, the inner tube of the two twin tubes serving as an outlet passage for the fumes produced in the combustion chamber of the installation. In addition, a connection is provided at the level of the first exchanger at the place where the solution to be regenerated leaves this exchanger after heating, this connection opening into a separator flask in which the separation of the volatile enriched solution and the depleted solution takes place. heavier for the use of these two separate solutions in the absorption cycle of the installation.

La présente invention utilise les principes généraux de cette demande antérieure à laquelle elle apporte des perfectionnements spécifiques au niveau plus particulièrement du dispositif de chauffage pour le bouilleur de la pompe à chaleur et pour la récupération du fluide de chauffage en assurant une mise en oeuvre bien plus «performante» et une plus grande souplesse d'emploi.The present invention uses the general principles of this earlier application to which it provides specific improvements, more particularly in terms of the heating device for the boiler of the heat pump and for the recovery of the heating fluid while ensuring much more implementation. "Efficient" and greater flexibility of use.

A cet effet, une installation de chauffage d'un fluide tel par exemple que de l'eau, en particulier pour le chauffage de bâtiments et la production d'eau chaude sanitaire conforme à l'invention, du type comprenant au moins un brûleur à combustible solide, liquide et/ou gazeux produisant des fumées à température relativement élevée et comprenant un premier échangeur de chaleur formant le bouilleur d'une pompe à chaleur et un deuxième échangeur récupérateur de chaleur placé en série avec le premier et servant à chauffer ledit fluide, ledit premier échangeur de chaleur communiquant avec un séparateur dans lequel s'effectue la séparation du «distillat» et du «résidu» de la solution d'absorption à régénérer se caractérisant en ce que ledit brûleur débouche dans une chambre de combustion centrale en contact de laquelle est disposé sensiblement annulairement un chemisage divisé par une paroi en deux chambres contiguës, la première chambre:

  • - recevant les retours de la solution d'absorption à régénérer avant leur introduction dans une colonne de séparation formant le séparateur précité et qui est disposée juste au-dessus dudit chemisage, et
  • - étant au moins partiellement encastrée dans la seconde chambre, laquelle communique directement avec le résidu présent à la base de ladite colonne par des conduits de large section favorisant une circulation fermée en échange thermique par thermosiphon dudit résidu autour de ladite chambre de combustion.
To this end, an installation for heating a fluid such as for example water, in particular for heating buildings and producing domestic hot water according to the invention, of the type comprising at least one burner with solid, liquid and / or gaseous fuel producing fumes at relatively high temperature and comprising a first heat exchanger forming the boiler of a heat pump and a second heat recovery exchanger placed in series with the first and serving to heat said fluid , said first heat exchanger communicating with a separator in which the separation of the "distillate" and the "residue" of the absorption solution to be regenerated is characterized in that said burner opens into a central combustion chamber in contact of which is disposed substantially annularly a liner divided by a wall into two contiguous chambers, the first chamber:
  • receiving the returns of the absorption solution to be regenerated before their introduction into a separation column forming the aforementioned separator and which is arranged just above said liner, and
  • - Being at least partially embedded in the second chamber, which communicates directly with the residue present at the base of said column by wide section conduits promoting closed circulation in heat exchange by thermosyphon of said residue around said combustion chamber.

Pour des facilités d'expression et de compréhension du texte, le terme «distillat» désigne la partie plus volatile ou solution «enrichie» de la solution d'absorption après sa régénération et le terme «résidu» la partie plus lourde constituant la solution «appauvrie» de la solution d'absorption après sa régénération.For ease of expression and understanding of the text, the term "distillate" designates the more volatile part or "enriched" solution of the absorption solution after its regeneration and the term "residue" the heavier part constituting the solution "Depleted" of the absorption solution after its regeneration.

En opérant de la façon ci-dessus indiquée on amé- . liore considérablement les conditions de fonctionnement de l'installation car cela permet non seulement d'améliorer la récupération de la chaleur au niveau du brûleur et au profit de l'installation, mais également d'élever la température de la solution d'absorption à régénérer et d'améliorer simultanément l'efficacité de la séparation, donc le rendement thermique du cycle d'absorption, une telle conception de la construction, de technique simple assurant naturellement et automatiquement un excellent chauffage homogène de la solution d'absorption à régénérer directement au niveau de la base de la colonne de séparation.By operating in the manner indicated above, it is improved. considerably reduces the operating conditions of the installation because this not only improves heat recovery at the burner and for the benefit of the installation, but also increases the temperature of the absorption solution to be regenerated and simultaneously improve the efficiency of the separation, therefore the thermal efficiency of the absorption cycle, such a construction design, of simple technique naturally and automatically ensuring excellent homogeneous heating of the absorption solution to be regenerated directly at the level of the base of the separation column.

Il est à noter que le document US-A-2290532 décrit une installation avec un brûleur chauffant deux chambres disposées l'une derrière l'autre annulairement à une chambre de combustion, ces chambres communiquant respectivement avec les départs chauds et les retours froids d'un cycle de réfrigération. Mais cette installation qui ne se rapporte pas à une installation de chauffage ne montre ni ne suggère la disposition particulière compacte en partie imbriquée des chambres selon l'invention, ni la circulation en thermosiphon avec le bouilleur-séparateur de la pompe à chaleur et n'en présente pas les avantages. Une disposition quelque peu comparable se retrouve également dans le document US-A-2479062 dans lequel le bouilleur de l'installation de réfrigération est formé annulairement autour d'un long tube de fumées.It should be noted that document US-A-2290532 describes an installation with a burner heating two chambers arranged one behind the other annularly to a combustion chamber, these chambers communicating respectively with the hot departures and the cold returns of a refrigeration cycle. However, this installation, which does not relate to a heating installation, neither shows nor suggests the particular compact, partly nested, arrangement of the chambers according to the invention, nor the circulation in thermosyphon with the boiler-separator of the heat pump and n ' the advantages of it. A somewhat comparable arrangement is also found in document US-A-2479062 in which the boiler of the refrigeration installation is formed annularly around a long tube of fumes.

D'autres caractéristiques objets et avantages de l'invention apparaîtront plus clairement à l'aide de la description qui va suivre faite en référence aux dessins annexés dans lesquels:

  • la figure 1 est un schéma d'ensemble d'une installation conçue selon l'invention,
  • la figure 2 montre de façon plus détaillée une partie de l'installation comprenant le brûleur et la colonne de séparation,
  • la figure 3 est une vue en coupe verticale montrant une des parties de l'installation constituant le «déflegmateur»,
  • la figure 4 est une vue par dessus faite selon la flèche IV de la figure 3,
  • la figure 5 montre de façon schématique en vue par devant avec arrachements partiels un mode de regroupement préféré des principaux organes de l'installation,
  • la figure 6 montre en vue par dessus et schématiquement l'implantation des différents organes de l'installation visibles à la figure 5.
Other features and advantages of the invention will appear more clearly with the aid of the description which follows, given with reference to the appended drawings in which:
  • FIG. 1 is an overall diagram of an installation designed according to the invention,
  • FIG. 2 shows in greater detail a part of the installation comprising the burner and the separation column,
  • FIG. 3 is a view in vertical section showing one of the parts of the installation constituting the "de-phlegmator",
  • FIG. 4 is a top view taken along arrow IV of FIG. 3,
  • FIG. 5 schematically shows in front view with partial cutaway a preferred method of grouping the main components of the installation,
  • FIG. 6 shows in top view and schematically the location of the various members of the installation visible in FIG. 5.

On se reportera tout d'abord à la figure 1 illustrant le schéma d'ensemble d'une installation conçue selon l'invention.Reference will first be made to FIG. 1 illustrating the overall diagram of an installation designed according to the invention.

Selon ce schéma l'installation comprend essentiellement le cycle de la pompe à absorption comprenant le bouilleur-régénérateur 1, le condenseur 2, le détenteur 3, l'évaporateur 4, l'absorbeur 5, une pompe de circulation 6 pour la solution, un échangeur de chaleur 7 et un échangeur supplémentaire 8.According to this diagram, the installation essentially comprises the cycle of the absorption pump comprising the boiler-regenerator 1, the condenser 2, the holder 3, the evaporator 4, the absorber 5, a circulation pump 6 for the solution, a heat exchanger 7 and an additional exchanger 8.

Le bouilleur régénérateur 1 se compose quant à lui essentiellement d'un brûleur avec sa chambre de combustion 9 comportant à sa suite deux échangeurs de chaleur respectivement 10 et 11 constitués par deux bitubes montés en série, le tube intérieur 12 commun au deux échangeurs étant parcouru par les fumées produites dans la chambre de combustion 9 et qui s'échappent en 13 à la cheminée (non représentée).The regenerator boiler 1 consists essentially of a burner with its combustion chamber 9 comprising two heat exchangers 10 and 11 respectively, consisting of two bitubes mounted in series, the inner tube 12 common to the two exchangers being traversed by the fumes produced in the combustion chamber 9 and which escape at 13 to the chimney (not shown).

Le bouilleur régénérateur 1 comprend en outre une colonne 14 de séparation qui reçoit après leur chauffage notamment dans l'échangeur de chaleur 10 et au niveau de la partie 20 du chemisage 15 entourant la chambre de combustion 9 des retours de la solution à régénérer provenant de l'absorbeur 5. Le bouilleur régénérateur 1 comprend encore un appareil dit déflegmateur 16 qui reçoit les distillats produits en tête de la colonne de séparation 14 en vue de leur assèchement afin d'améliorer le rendement du cycle d'absorption.The regenerative boiler 1 further comprises a separation column 14 which receives after their heating, in particular in the heat exchanger 10 and at the level of the part 20 of the lining 15 surrounding the combustion chamber 9, returns of the solution to be regenerated from the absorber 5. The regenerative boiler 1 also comprises a so-called de-phlegmator apparatus 16 which receives the distillates produced at the head of the separation column 14 with a view to their drying in order to improve the efficiency of the absorption cycle.

L'installation étant ainsi décrite dans son ensemble, on se reportera maintenant aux figures 2, 3 et 4 à l'aide desquelles on décrira plus en détail certains appareillages spécifiques utilisés dans l'installation.The installation being thus described as a whole, reference will now be made to FIGS. 2, 3 and 4 with the help of which some specific apparatus used in the installation will be described in more detail.

En se référant tout d'abord à la figure 2 on décrira la constitution du brûleur 9 entouré de son chemisage 15 en liaison avec la colonne 14 de séparation.Referring first to Figure 2 we will describe the constitution of the burner 9 surrounded by its liner 15 in connection with the separation column 14.

Le brûleur (non représenté) dont on a seulement schématisé la flamme en 16' comprend une chambre de combustion 17 entourée d'un chemisage 15. Dans l'exemple de réalisation illustré le chemisage 15 est divisé par une cloison 18 en deux chambres respectivement 19 et 20. La chambre 19 est en communication par deux conduites de section relativement importante 21, 22 avec la base de la colonne 14. De cette façon il s'établit sous l'effet du chauffage qui s'opère dans la chambre de combustion 17 une circulation efficace en thermosiphon de la solution à régénérer présente jusqu'au niveau repéré 23 à la colonne 14. On obtient ainsi une bonne homogénéisation de la température de la solution à régénérer dans la colonne 14.The burner (not shown), the flame of which has only been shown diagrammatically at 16 ′, comprises a combustion chamber 17 surrounded by a liner 15. In the illustrated embodiment, the liner 15 is divided by a partition 18 into two chambers respectively 19 and 20. The chamber 19 is in communication by two pipes of relatively large section 21, 22 with the base of the column 14. In this way it is established under the effect of the heating which takes place in the combustion chamber 17 efficient circulation in thermosyphon of the solution to be regenerated present up to the level marked 23 in column 14. This gives good homogenization of the temperature of the solution to be regenerated in column 14.

La plus grande partie du chemisage 20 entourant la chambre de combustion 17 reçoit, comme il apparaîtra plus clairement plus loin les retours de la solution d'absorption provenant de l'absorbeur 5 et après qu'ils auront traversé l'échangeur de chaleur 10 en vue de leur admission par le conduit 24 dans la colonne 14. De cette façon on obtient un chauffage plus efficace et à plus haute température de la solution d'absorption améliorant le processus de régénération de la qualité duquel dépend en grande partie le rendement du cycle d'absorption.Most of the lining 20 surrounding the combustion chamber 17 receives, as will appear more clearly below the returns of the absorption solution coming from the absorber 5 and after they have passed through the heat exchanger 10 in view of their admission via line 24 into column 14. In this way a more efficient and higher temperature heating of the absorption solution is obtained, improving the regeneration process of the quality on which the yield of the cycle largely depends. absorption.

Comme il apparaît à la figure 2 le conduit 24 débouche par son orifice supérieur en 25 sensiblement à mi-hauteur de la colonne 14, laquelle comporte un certain nombre de chicanes 26, 27, 28 formant plateaux simplifiés de distillation dans cette colonne. Ainsi est obtenue une séparation plus efficace entre le «distillat» et le «résidu» séparés dans cette colonne à partir de la solution d'absorption provenant de l'absorbeur 5. Ainsi est également réduit l'entraînement par le distillat de fractions de résidus liquides sous forme de fines gouttelettes.As it appears in FIG. 2, the conduit 24 opens through its upper orifice 25 at substantially mid-height of the column 14, which comprises a number of baffles 26, 27, 28 forming simplified distillation plates in this column. Thus a more efficient separation is obtained between the “distillate” and the “residue” separated in this column from the absorption solution coming from the absorber 5. Thus also the entrainment by the distillate of residue fractions liquids in the form of fine droplets.

Le résidu liquide sort de la colonne de séparation par le conduit 29 en base de colonne, tandis que le distillat sort en haut de colonne par le conduit 30.The liquid residue leaves the separation column through line 29 at the base of the column, while the distillate leaves at the top of the column through line 30.

On se référera maintenant aux figures 3 et 4 pour décrire la réalisation du «déflegmateur».Reference will now be made to FIGS. 3 and 4 to describe the construction of the "de-phlegmator".

Les distillats sortant de la colonne 14 par le conduit 30 entrent dans le déflegmateur 16 à la partie supérieure d'un volume 31 ménagé entre la paroi 32 cylindrique circulaire verticale du déflegmateur 16, et une paroi 33 concentrique plus interne. A l'intérieur du volume 31 est également disposée une hélice tubulaire 34 dans laquelle circule comme indiqué par les flèches le fluide à chauffer pénétrant dans le déflegmateur par le conduit 35 et en sortant par le conduit 36 qui forme le départ chauffage de l'installation.The distillates leaving the column 14 through the conduit 30 enter the deflegmator 16 at the upper part of a volume 31 formed between the vertical circular cylindrical wall 32 of the dephlegmator 16, and a more internal concentric wall 33. Inside the volume 31 is also arranged a tubular helix 34 in which circulates as indicated by the arrows the fluid to be heated penetrating into the de-phlegmator via the conduit 35 and leaving it through the conduit 36 which forms the heating start of the installation .

Les distillats introduits en 30 dans le déflegmateur sont donc canalisés selon un trajet hélicoïdal périphérique descendant à contre-courant avec le fluide à chauffer parcourant l'hélice 34 et débouchent vers la base de l'appareillage dans le volume repéré 37. Les distillats subissent ainsi à la fois un effet de centrifugation et un effet de réfrigération qui tendent à condenser les parties de résidu entraînées avec les distillats et à les séparer des distillats plus légers. Dans ces conditions, les résidus condensés s'échappent du déflegmateur par le conduit 38 situé à la base de l'appareil tandis que les distillats sous forme gazeuse s'échappent de l'appareil par le conduit 39 dont le débouché est placé en 40 en partie haute de l'appareil.The distillates introduced at 30 into the de-phlegmator are therefore channeled along a peripheral helical path descending against the current with the fluid to be heated traversing the propeller 34 and open towards the base of the apparatus in the volume marked 37. The distillates are thus subjected both a centrifugation effect and a refrigeration effect which tend to condense the entrained residue parts with the distillates and to separate them from the lighter distillates. Under these conditions, the condensed residues escape from the de-phlegmator through the conduit 38 located at the base of the apparatus while the distillates in gaseous form escape from the apparatus through the conduit 39, the outlet of which is placed at 40 in upper part of the appliance.

Comme il apparaît à la figure 1 les résidus séparés et recueillis en 38 dans le déflegmateur sont retournés à la colonne de séparation 14 vers la partie haute de cette colonne. De cette façon, on améliore très notablement la séparation de la solution d'absorption en ses distillats légers et résidus lourds, ce qui améliore le fonctionnement du cycle d'absorption.As it appears in FIG. 1, the separated residues collected at 38 in the de-phlegmator are returned to the separation column 14 towards the upper part of this column. In this way, the separation of the absorption solution into its light distillates and heavy residues is very markedly improved, which improves the functioning of the absorption cycle.

En faisant référence maintenant aux figures 5 et 6, on aperçoit une implantation particulièrement efficace sur le plan thermique et commode sur le plan de la compacité de l'installation.Referring now to Figures 5 and 6, we see a particularly efficient layout thermally and convenient in terms of compactness of the installation.

On voit que la colonne de séparation 14, le déflegmateur 16, les échangeurs de chaleur 7 et 8 ont tous été logés à l'intérieur des deux hélices bitubes constituant l'échangeur de chaleur 10 pour le bouilleur de la pompe à chaleur et l'échangeur de chaleur 11 formant récupérateur de chaleur pour le fluide à chauffer. De cette façon sont améliorés les échanges thermiques dans l'installation, tous les échangeurs «chauds» étant placés à l'intérieur des deux échangeurs chauds 10, 11.It can be seen that the separation column 14, the de-phlegmator 16, the heat exchangers 7 and 8 have all been housed inside the two twin-tube propellers constituting the heat exchanger 10 for the heat pump boiler and the heat exchanger 11 forming a heat recovery unit for the fluid to be heated. In this way, the heat exchanges in the installation are improved, all the “hot” exchangers being placed inside the two hot exchangers 10, 11.

L'absorbeur 5 et le condenseur 2 trouvent leur place à l'extérieur des échangeurs 10, 11, l'ensemble de l'installation, à l'exclusion de l'évaporateur 4 pouvant ainsi être logé dans une enveloppe formant habillage extérieur (non représentée).The absorber 5 and the condenser 2 find their place outside the exchangers 10, 11, the entire installation, excluding the evaporator 4, which can thus be housed in an envelope forming an outer casing (not shown).

En faisant maintenant référence plus particulièrement aux figures 1 et 5, on décrira le fonctionnement de l'installation et les différents circuits de circulation.Referring now more particularly to FIGS. 1 and 5, the operation of the installation and the various circulation circuits will be described.

1 ) Circulation des distillats formant fluide calo- gène.1) Circulation of distillates forming heat transfer fluid.

Les distillats sont produits comme mentionnés ci-dessus dans la colonne de séparation 14 à partir de la solution d'absorption provenant de la colonne d'absorption 5. Les distillats s'échappent en tête de la colonne 14 par le conduit 30 pénétrant dans le déflegmateur 16. Après passage dans le déflegmateur qui assure la centrifugation et un refroidissement à contre courant avec le fluide à chauffer, les distillats débarassés de leur «humidité» (les parties lourdes de «résidu» entraînées étant retournées à la colonne 14 par le conduit 38) sont amenés par le conduit 39 à l'intérieur du condenseur 2 refroidi à contre-courant par le circuit de fluide à chauffer dans lequel s'effectue la condensation. Les distillats condensés sont alors admis par le conduit 41 dans le détendeur 3 dans lequel s'effectue leur détente et refroidissement consécutif. Ils se réchauffent dans l'évaporateur 4 qui peut être un échangeur à air échangeant de la chaleur avec le milieu ambiant ou par exemple à eau échangeant de la chaleur avec une eau résiduaire. C'est au niveau de cet appareil, comme il est connu que s'effectue l'emprunt de la chaleur au milieu extérieur. Les distillats ainsi détendus réchauffés à la sortie de l'évaporateur 4 pénètrent par le conduit 43 en haut de la colonne d'absorption. Dans cette colonne, les distillats sont absorbés par les résidus lourds amenés par le conduit 44 dans l'absorbeur et auxquels ils se mélangent en libérant de la chaleur, laquelle est échangée en partie avec le fluide à chauffer comme il sera décrit ci-après en relation avec ce circuit. La solution de mélange quitte l'absorbeur par le conduit 45 d'où elle est reprise par la pompe 6 pour être ramenée après traversée de l'échangeur de chaleur 7 en contre courant avec les résidus chauds provenant de la colonne 14, avant de pénétrer dans l'échangeur 10 puis la chambre 20 formée autour de la chambre de combustion 17 avant d'être introduite dans la colonne de séparation 14 par le conduit 24.The distillates are produced as mentioned above in the separation column 14 from the absorption solution coming from the absorption column 5. The distillates escape at the top of the column 14 through the conduit 30 entering the de-phlegmator 16. After passing through the de-phlegmator which provides centrifugation and counter-current cooling with the fluid to be heated, the distillates rid of their "humidity" (the heavy parts of "residue" entrained being returned to column 14 through the conduit 38) are brought by the conduit 39 inside the condenser 2 cooled against the current by the fluid circuit to be heated in which the condensation takes place. The condensed distillates are then admitted via line 41 into the pressure reducer 3 in which their expansion and subsequent cooling takes place. They heat up in the evaporator 4 which can be an air exchanger exchanging heat with the ambient medium or for example water exchanging heat with waste water. It is at this device, as it is known that the heat is borrowed from the outside environment. The distilled distilled thus warmed at the outlet of the evaporator 4 penetrate through the conduit 43 at the top of the absorption column. In this column, the distillates are absorbed by the heavy residues brought by line 44 into the absorber and with which they mix, releasing heat, which is partly exchanged with the fluid to be heated as will be described below in relationship with this circuit. The mixing solution leaves the absorber via the conduit 45 from where it is taken up by the pump 6 to be brought back after crossing the heat exchanger 7 in counter current with the hot residues coming from the column 14, before entering in the exchanger 10 then the chamber 20 formed around the combustion chamber 17 before being introduced into the separation column 14 through the conduit 24.

2) Circulation des résidus.2) Circulation of residues.

Les résidus du cycle d'absorption quittant la base de la colonne 14 par le conduit 29 sont amenés par un circuit repéré 46 dans l'échangeur 7 en contre-courant avec la solution à régénérer qu'ils réchauffent. Ensuite de quoi les résidus passent par le conduit 47 dans l'échangeur de chaleur supplémentaire 8 lequel est refroidi à contre courant par le circuit du fluide à chauffer. A la sortie de l'échangeur 8 les résidus refroidis pénètrent par le conduit 44 en tête de la colonne d'absorption 5 pour s'y mélanger avec les distillats amenés à la colonne par le conduit 43.The residues of the absorption cycle leaving the base of the column 14 via the conduit 29 are brought by a circuit marked 46 in the exchanger 7 in counter-current with the solution to be regenerated which they heat. Then what residues pass through the conduit 47 in the additional heat exchanger 8 which is cooled against the current by the circuit of the fluid to be heated. At the outlet of the exchanger 8, the cooled residues penetrate via the conduit 44 at the head of the absorption column 5 to mix therewith the distillates brought to the column by the conduit 43.

3) Circulation du fluide à chauffer.3) Circulation of the fluid to be heated.

L'entrée froide du fluide à chauffer qui peut constituer par exemple les retours froids d'un chauffage central s'effectue en 48 à l'extrémité de l'échangeur 11 par lequel sont évacuées les fumées 13 de l'installation. En 49 est figurée l'évacuation des condensats provenant des fumées, la température des retours froids permettant généralement de récupérer au moins une grande partie de la chaleur de condensation des fumées.The cold inlet of the fluid to be heated which can constitute, for example, the cold returns of a central heating takes place at 48 at the end of the exchanger 11 by which the fumes 13 from the installation are evacuated. In 49 is shown the evacuation of condensates from the fumes, the temperature of the cold returns generally making it possible to recover at least a large part of the heat of condensation of the fumes.

A la sortie de l'échangeur 11 le fluide de chauffage gagne par un conduit 49 l'absorbeur 5, ce qui permet un refroidissement optimal des condensats améliorant les conditions de travail du cycle d'absorption. Après l'absorbeur 5 le fluide de chauffage est amené par un conduit 50 dans l'échangeur de chaleur 8, ce qui dans la position normale de fonctionnement de l'installation jusqu'à présent décrite permet de récupérer une partie de la chaleur des résidus avant leur entrée dans la colonne d'absorption 5. A la sortie de l'échangeur 8, le fluide à chauffer gagne par un conduit 51 le condenseur 2 dans lequel s'effectue la plus grande partie de l'apport de chaleur réalisé par le circuit d'absorption. A la sortie du condenseur 2 le fluide à chauffer gagne par un conduit 52 le déflegmateur 16 dans lequel s'effectue une dernière opération de chauffage, laquelle permet comme il a été décrit plus haut d'améliorer l'épuration et la séparation en distillat léger et résidu lourd de la solution d'absorption à la sortie de la colonne d'absorption 5.At the outlet of the exchanger 11, the heating fluid gains via a conduit 49 the absorber 5, which allows optimal cooling of the condensates improving the working conditions of the absorption cycle. After the absorber 5, the heating fluid is brought through a conduit 50 into the heat exchanger 8, which in the normal operating position of the installation hitherto described makes it possible to recover extract some of the heat from the residues before entering the absorption column 5. At the outlet of the exchanger 8, the fluid to be heated gains via a conduit 51 the condenser 2 in which most of the the heat supplied by the absorption circuit. At the outlet of the condenser 2, the fluid to be heated gains via a conduit 52 the de-phlegmator 16 in which a final heating operation takes place, which allows, as described above, to improve the purification and the separation into light distillate. and heavy residue of the absorption solution at the outlet of the absorption column 5.

Lorsque les conditions de fonctionnement du cycle d'absorption ne sont pas favorables, c'est-à-dire par exemple lorsque la température de la source froide à laquelle la chaleur extérieure est emprunté est trop basse, on peut arrêter le fonctionnement du cycle d'absorption, c'est-à-dire le fonctionnement du déflegmateur 16, du condenseur 2, du détendeur 3 et de l'évaporateur 4, ainsi que le fonctionnement de l'échangeur 7 qui est court-circuité par un conduit 53 disposé en parallèle sur l'échangeur 7 et commandé par une vanne 54.When the operating conditions of the absorption cycle are not favorable, that is to say for example when the temperature of the cold source from which the external heat is drawn is too low, the operation of the cycle d can be stopped. absorption, that is to say the operation of the de-phlegmator 16, the condenser 2, the regulator 3 and the evaporator 4, as well as the operation of the exchanger 7 which is short-circuited by a conduit 53 arranged in parallel on the exchanger 7 and controlled by a valve 54.

Dans de telles conditions de fonctionnement, on voit que le fluide à chauffer est chauffé essentiellement dans l'échangeur 11 puis dans l'échangeur 8, lequel est chauffé par le circuit de la solution traversant l'échangeur 10, la base de la colonne 141e conduit 29, la dérivation 53, l'échangeur 8 et retournant à l'échangeur 10 après traversée de d'absorbeur 5 (qui ne fonctionne plus en tant qu'absorbeur) et le conduit de retour 45 via la pompe de circulation 6.Under such operating conditions, it can be seen that the fluid to be heated is heated essentially in the exchanger 11 then in the exchanger 8, which is heated by the circuit of the solution passing through the exchanger 10, the base of the column 141e conduit 29, the bypass 53, the exchanger 8 and returning to the exchanger 10 after passing through the absorber 5 (which no longer functions as an absorber) and the return conduit 45 via the circulation pump 6.

De la description qui précède, il apparaît que l'installation conçue selon l'invention et utilisant des appareillages simples et peu nombreux présente une très grande souplesse d'emploi, autorise une grande compacité de construction, et permet le fonctionnement de l'installation avec mise hors circuit ou en circuit selon les conditions les plus favorables du cycle d'absorption formant pompe à chaleur. En outre dans son fonctionnement associé à la pompe à chaleur, l'installation permet d'obtenir des rendements améliorés par rapport aux installations connues, grâce à une meilleure séparation des distillats et résidus produits dans le cycle d'absorption, permettant de meilleurs rendements de ce cycle et parallèlement une meilleure récupération de la chaleur latente et de condensation des fumées et également latente et de condensation au niveau du cycle d'absorption et notamment des distillats dans la colonne de séparation 14 et dans le déflegmateur 16.From the foregoing description, it appears that the installation designed according to the invention and using few and simple apparatuses has very great flexibility of use, allows great compactness of construction, and allows the operation of the installation with switching off or on according to the most favorable conditions of the absorption cycle forming the heat pump. In addition, in its operation associated with the heat pump, the installation makes it possible to obtain improved yields compared to known installations, thanks to better separation of the distillates and residues produced in the absorption cycle, allowing better yields of this cycle and at the same time better recovery of the latent heat and condensation of the fumes and also latent and of condensation at the level of the absorption cycle and in particular of the distillates in the separation column 14 and in the de-phlegmator 16.

Claims (9)

1. Installation for heating fluids such as for example water, particularly for the heating of buildings and the production of hot water for domestic sanitary purposes, comprising at least one burner (9) for gas and/or liquid and/or solid fuel producing smoke at relatively high temperature and comprising a first heat exchanger (10) constituting the boiler of a heat pump and a second heat recovery exchanger (11) placed in series with the first and serving to heat the said fluid, the said first heat exchanger (10) communicating with a separator (14) in which separation of the «distillate» from the «residue» of the absorption solution to be regenerated is carried out, the said installation being characterised in that the said burner (9) discharges into a central combustion chamber (17) in contact with which there is a substantially annularly disposed jacket (15) divided by a wall (18) into two contiguous chambers (19, 20), the first chamber (20):
- receiving the returns of absorption solution to be regenerated before they are introduced into a separation column (14) forming the aforesaid separator and disposed just above the said jacket and
- being at least partially flush-fitted in the second chamber (19), which communicates directly with the residue present at the base of the said column (14) through ducts (21, 22) of large cross-section favouring a closed thermosyphon-induced heat exchange circulation of the said residue around the said combustion chamber (17).
2. Installation according to Claim 1, characterised in that the separation column (14) is of vertical and generally cylindrical shape comprising a certain number of chicanes (26, 28) disposed substantially horizontally and forming a simplified plate column.
3. Installation according to Claim 1 or Claim 2, characterised in that it comprises at the outlet from the separation column (14) on the path (30) of the distillates separated in the column an apparatus (16) referred to as a dephlegmator or fractionating column for at least partial drying of the distillates, the liquid parts separated in the dephlegmator being returned (at 38) to the said separation column (14).
4. Installation according to Claim 3, characterised in that the dephlegmator (16) comprises a substantially cylindrical flask or still having a vertical axis and comprising at least one peripheral helical descending path into which the said distillates are introduced, the said path being disposed so as to enter into a heat exchange with the fluid to be heated.
5. Installation according to Claim 4, characterised in that the said helical path is formed between the inner wall (32) of the said flask and a concentric and more inwardly disposed wall (33), an annular space being disposed between them and within which there is a tubular helix (34) in which the said refrigerant circulates.
6. Installation according to any one of the preceding Claims, characterised in that on the path of the residues emerging from the separation column (14) there is a heat exchanger (7) into which the returns of the solution to be regenerated are admitted in a counter-current pattern after passing through the absorber (5).
7. Installation according to any one of the preceding Claims, characterised in that a supplementary heat exchanger (8) is provided into which the fluid to be heated and the residues prior to their entry into the absorber (5) are admitted in a counter-current pattern.
8. Installation according to Claim 7, characterised in that a by-pass circuit (53) is provided which short circuits the heat exchanger (7) between residues and returns of the absorption solution so that the installation can be operated without the absorption cycle functioning.
9. Installation according to any one of the preceding Claims, characterised in that the separation column (14), the heat exchangers (7, 8) and the dephlegmator (16) are housed in the centre of a helix having a vertical axis forming the aforesaid first and second heat exchangers (10, 11) located on the smoke circuit.
EP84401790A 1983-09-12 1984-09-11 Fluid heating installation comprising an absorption heat pump associated cycle Expired EP0145515B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84401790T ATE27654T1 (en) 1983-09-12 1984-09-11 IMPROVEMENT OF AN INSTALLATION FOR HEATING A FLUID, CONSISTING OF A CYCLE CONNECTED TO AN ABSORPTION HEAT PUMP.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8314483A FR2551848B1 (en) 1983-09-12 1983-09-12 IMPROVEMENTS ON A FLUID HEATING SYSTEM COMPRISING AN ASSOCIATED CYCLE OF AN ABSORPTION HEAT PUMP
FR8314483 1983-09-12

Publications (2)

Publication Number Publication Date
EP0145515A1 EP0145515A1 (en) 1985-06-19
EP0145515B1 true EP0145515B1 (en) 1987-06-03

Family

ID=9292131

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84401790A Expired EP0145515B1 (en) 1983-09-12 1984-09-11 Fluid heating installation comprising an absorption heat pump associated cycle

Country Status (6)

Country Link
US (1) US4580407A (en)
EP (1) EP0145515B1 (en)
AT (1) ATE27654T1 (en)
CA (1) CA1251699A (en)
DE (1) DE3464094D1 (en)
FR (1) FR2551848B1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3507887A1 (en) * 1985-03-06 1986-09-11 M A N Technologie GmbH, 8000 München METHOD FOR CONTROLLING ABSORPTION REFRIGERATION PLANTS OR HEAT PUMPS
DE3716455A1 (en) * 1986-10-20 1988-04-28 Vinz Peter METHOD AND DEVICE FOR QUANTITY-CONTROLLED CONTINUOUS LIQUID EXCHANGE IN DISTILLATION SYSTEMS AND ABSORPTION REFRIGERATION CIRCUITS
DE4030400A1 (en) * 1990-09-26 1992-04-02 Basf Ag LIVING POLYMERS, METHOD FOR THE PRODUCTION THEREOF, AND THEIR USE IN THE MANUFACTURE OF TELECHELES
US5271235A (en) * 1991-03-12 1993-12-21 Phillips Engineering Company High efficiency absorption cycle of the gax type
US5367884B1 (en) * 1991-03-12 1996-12-31 Phillips Eng Co Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
JP2810558B2 (en) * 1991-04-23 1998-10-15 言彦 世古口 Regenerator
US5570584A (en) * 1991-11-18 1996-11-05 Phillips Engineering Co. Generator-Absorber heat exchange transfer apparatus and method using an intermediate liquor
US5579652A (en) * 1993-06-15 1996-12-03 Phillips Engineering Co. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
US5490393A (en) * 1994-03-31 1996-02-13 Robur Corporation Generator absorber heat exchanger for an ammonia/water absorption refrigeration system
US5782097A (en) * 1994-11-23 1998-07-21 Phillips Engineering Co. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
US6305173B1 (en) * 1995-07-31 2001-10-23 Soloman S. Fineblum Vortex chamber generator for absorption heat pump and system using same
US6739142B2 (en) 2000-12-04 2004-05-25 Amos Korin Membrane desiccation heat pump
FR2974165B1 (en) * 2011-04-12 2013-05-17 Besnard Sebastien Larquetou THERMAL INSTALLATION FOR SHOPPING CENTER.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0110763A1 (en) * 1982-11-22 1984-06-13 Gaz De France Heating plant equipped with an absorption heat pump

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE515309C (en) * 1929-09-27 1931-01-03 Platen Munters Refrigerating S Process for heating absorption refrigerators
US2250288A (en) * 1936-12-03 1941-07-22 Servel Inc Refrigeration
US2290532A (en) * 1938-12-12 1942-07-21 Servel Inc Refrigeration
US2479062A (en) * 1946-04-15 1949-08-16 Clayton & Lambert Mfg Co Generator, heat exchanger, and circulator in absorption refrigeration systems
US3000196A (en) * 1957-10-29 1961-09-19 Electrolux Ab Absorption refrigeration
FR1214714A (en) * 1958-02-12 1960-04-11 Absorption refrigerator group with a pressure-balancing gas
US3177675A (en) * 1961-03-20 1965-04-13 Electrolux Ab Defrosting arrangement and control for refrigeration apparatus
SE307962B (en) * 1963-12-03 1969-01-27 Electrolux Ab
US3367137A (en) * 1966-04-20 1968-02-06 Whirlpool Co Absorption refrigeration generator
US3407625A (en) * 1966-09-01 1968-10-29 Babcock & Wilcox Co Vapor generator
JPS4830665A (en) * 1971-08-24 1973-04-23
DE2648855A1 (en) * 1976-10-25 1978-04-27 Herbst Donald Heat loss reduction unit for oil-fired boilers - uses absorption refrigerator with condenser and generator in flue gas flow
DE2913066A1 (en) * 1979-03-23 1980-10-02 Brocks Refrigeration plant used as heat pump - where heat of soln. created by dissolving ammonia gas in water is used as heat source
DE2947925A1 (en) * 1979-11-26 1981-06-04 Joh. Vaillant Gmbh U. Co, 5630 Remscheid SORPTION HEAT PUMP
DE3018708A1 (en) * 1980-05-16 1981-11-26 Volkswagenwerk Ag, 3180 Wolfsburg Absorption heat pump for hot water supply - has adjustable by=pass for heat exchanger in refrigerant return line to absorber
DE3127835A1 (en) * 1981-07-14 1983-02-03 Buderus Ag, 6330 Wetzlar Method and device for operating a monovalent heating installation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0110763A1 (en) * 1982-11-22 1984-06-13 Gaz De France Heating plant equipped with an absorption heat pump

Also Published As

Publication number Publication date
US4580407A (en) 1986-04-08
FR2551848A1 (en) 1985-03-15
DE3464094D1 (en) 1987-07-09
CA1251699A (en) 1989-03-28
FR2551848B1 (en) 1988-04-08
EP0145515A1 (en) 1985-06-19
ATE27654T1 (en) 1987-06-15

Similar Documents

Publication Publication Date Title
EP0145515B1 (en) Fluid heating installation comprising an absorption heat pump associated cycle
EP0431143B1 (en) Process and device for the simultaneous transfer of material and heat
EP2038210B1 (en) Reactor with a thermal gradient controlled for the production of pure hydrogen
RU2627613C2 (en) Solar energy tube with automated extraction and heat collection, trough type device, heat generation system and technology
EP0147304B1 (en) Sodium-water steam generator with concentric straight tubes and gas circulation in the annular space
FR2573188A1 (en) SMOKE GAS RECOVERER FOR A DIRECT HEATING ABSORPTION MACHINE
CA2041938C (en) Process and facility for producing gas-containing hydrogen from methanol
FR2573185A1 (en) HEAT EXCHANGER WITH DIRECT HEATING
EP0216655B1 (en) Cold trap for eliminating the impurities from a polluted liquid metal
EP0110763B1 (en) Heating plant equipped with an absorption heat pump
CN102872607B (en) Reduced-pressure distiller with high-position feeding and low-position collecting functions
FR2490331A1 (en) Fluid circuit for solar energy collector - uses two heat exchanger panels and auxiliary fluid circulation to preheat main fluid
FR2543663A1 (en) Condensation heating boiler
FR2677113A1 (en) TUBULAR HEAT EXCHANGER WITH FINS TO HEAT A LIQUID FLUID BY HOT GASES.
FR2693542A1 (en) Heat exchanger for chemical or adsorption refrigeration - uses tubes in configuration to assist heat exchange between themselves and working substance but not envelope
BE1015568A3 (en) Production installation hot water.
US3312045A (en) Wellhead production unit
FR2938318A1 (en) IMMERSION TUBE HEATING SYSTEM WITH LATENT HEAT RECOVERY
JP3234929B2 (en) Waste plastic oiling equipment
FR2514877A1 (en) DISTILLATION DEVICE, IN PARTICULAR FOR A CHEMICAL CLEANING MACHINE
WO1998023906A1 (en) Heating and cooling pump
BE525643A (en)
BE348333A (en)
BE491983A (en)
FR2618214A1 (en) Self-contained heat-transfer units

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19850925

17Q First examination report despatched

Effective date: 19860428

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 27654

Country of ref document: AT

Date of ref document: 19870615

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. C. CORRADINI & C. S.R.L.

REF Corresponds to:

Ref document number: 3464094

Country of ref document: DE

Date of ref document: 19870709

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930903

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930907

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930908

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19930917

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930920

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930927

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930930

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931124

Year of fee payment: 10

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940911

Ref country code: GB

Effective date: 19940911

Ref country code: AT

Effective date: 19940911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940930

Ref country code: CH

Effective date: 19940930

Ref country code: BE

Effective date: 19940930

EAL Se: european patent in force in sweden

Ref document number: 84401790.5

BERE Be: lapsed

Owner name: GAZ DE FRANCE

Effective date: 19940930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940911

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950601

EUG Se: european patent has lapsed

Ref document number: 84401790.5