EP0144873B1 - Cooling system for indirectly cooled superconducting magnets - Google Patents

Cooling system for indirectly cooled superconducting magnets Download PDF

Info

Publication number
EP0144873B1
EP0144873B1 EP84114197A EP84114197A EP0144873B1 EP 0144873 B1 EP0144873 B1 EP 0144873B1 EP 84114197 A EP84114197 A EP 84114197A EP 84114197 A EP84114197 A EP 84114197A EP 0144873 B1 EP0144873 B1 EP 0144873B1
Authority
EP
European Patent Office
Prior art keywords
helium
cooling system
cooling
cooling channels
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84114197A
Other languages
German (de)
French (fr)
Other versions
EP0144873A2 (en
EP0144873A3 (en
Inventor
Cord-Henrich Dr. Dipl.-Phys. Dustmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Germany
Original Assignee
Brown Boveri und Cie AG Germany
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6216165&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0144873(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Brown Boveri und Cie AG Germany filed Critical Brown Boveri und Cie AG Germany
Publication of EP0144873A2 publication Critical patent/EP0144873A2/en
Publication of EP0144873A3 publication Critical patent/EP0144873A3/en
Application granted granted Critical
Publication of EP0144873B1 publication Critical patent/EP0144873B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/888Refrigeration
    • Y10S505/892Magnetic device cooling

Definitions

  • the invention relates to a cooling system for indirectly cooled superconducting magnets with cooling channels through which liquid helium flows and which are in close thermal contact with the superconducting winding.
  • Indirectly cooled magnets have cooling coils through which liquid helium is pressed. This is no problem when using supercritical helium. However, a pump is required to push the liquid helium through the cooling coils. If the cooling coils are connected to a refrigeration system, the pump can be part of the refrigeration system. However, if the helium is removed from a storage vessel, a separate helium pump is required.
  • the object of the invention is to provide a cooling system for indirectly cooled superconducting magnets, which enables convection cooling and avoids the disadvantages mentioned above.
  • a winding body for the superconducting winding has a lower supply channel and an upper collecting channel parallel to the horizontal magnetic axis, and cooling channels connected in parallel, which connect the supply channel and the collecting channel with one another, and that the supply channel with the outflow opposite the helium vessel, which is arranged in an elevated manner, is connected to the winding body via a flow line, and the collecting duct is connected via a return line to a connecting piece of the helium vessel.
  • the liquid helium can flow through the outflow of the helium vessel into the lower feed channel and from there rises in parallel through the cooling channels into the upper collecting channel.
  • the helium which in the meantime has been warmed up and can be in the vaporous phase, is fed into the return line, which directs the helium above the helium level back into the helium storage vessel. No pump is required for the helium circulation, it is done by convection.
  • the winding body can advantageously be produced by roller seam welding and inflating the cooling channels, care being taken to ensure that the inflated cooling channels are curved to the side facing away from the winding. This enables inexpensive production with high quality.
  • the winding body can be made of austenitic steel or aluminum, the latter material increasing the quench security according to the "quench bare" principle.
  • An advantageous embodiment of the invention provides that in the helium storage vessel the end of the cold head of a mini fridge, e.g. works according to the Gifford-McMahon principle.
  • the temperature of the cold head end is 4.2 K or below.
  • the end of the cold head protrudes into the gas space of the helium storage vessel and recondenses the helium gas flowing back through the return.
  • the invention provides in an expedient embodiment that the helium storage vessel has a connection flange for a helium lifter, which can be arranged above the outflow.
  • the helium lifter is pushed through the connection flange until it partially protrudes into the supply line and is screwed in.
  • the other end of the helium lifter protrudes into a helium can. So much helium is passed from the helium can into the helium storage container and the winding former until these have cooled and are filled to a certain height.
  • the helium storage vessel also contains a closable opening through which the warm, gaseous helium can escape.
  • FIG. 1 shows a cylindrical winding body 10, in the cylindrical surface of which cooling channels are embedded.
  • a supply channel 11 runs axially in the lower area of the winding body 10 and a collecting channel 12 extends axially in the upper area of the winding body 10.
  • the supply channel 11 and the collecting channel 12 are connected by several cooling channels 13, which are guided in parallel and are embedded in the inside of the winding body 10.
  • Such a winding body 10 can be produced by roller seam welding and subsequent inflation of the cooling channels.
  • the lower feed channel 11 is connected to the bottom outlet 15 of a helium storage vessel 16 via a feed line 14.
  • the liquid helium can be conducted from the helium storage vessel 16 into the cooling channels 13 through these lines.
  • the heated helium (in the liquid or gaseous phase) is collected via the upper collecting channel 12 and reaches the upper region of the helium storage vessel 16 via the return 17.
  • the helium level 18 in the storage vessel 16 lies below the return inlet 19 and projects into the gas space of the helium storage vessel 16 the end 20 of the cold head 22 of a mini-frigator connected to a compressor 21.
  • the end 20 of the cold head 22 has a sufficiently low temperature to condense the gaseous helium back.
  • the helium storage vessel 16 has one Connection flange 23 through which a helium lifter 24 is inserted.
  • the connection flange 23 lies above the floor outlet 15. For a first filling of the system, the helium lifter 24 is pushed into the feed line 14 and screwed.
  • FIG. 2 shows the cross section of a magnetic winding 25 with a cooling and vacuum system.
  • the magnet winding 25 is arranged concentrically around an examination opening 26 and consists of superconducting wire.
  • the superconducting winding 25 is applied to a winding body 10 which is designed according to FIG.
  • the supply duct 11, the collecting duct 12 and two cooling ducts 13 can be seen in FIG. 2.
  • Magnet winding 25 and coil carrier 10 are shielded on all sides by cold shields 27, 28.
  • the entire system is housed in a vacuum container consisting of an inner jacket 29 and an outer jacket 30.

Description

Die Erfindung betrifft ein Kühlsystem für indirekt gekühlte supraleitende Magnete mit von flüssigem Helium durchflossenen Kühlkanälen, die in engem thermischen Kontakt mit der supraleitenden Wicklung stehen.The invention relates to a cooling system for indirectly cooled superconducting magnets with cooling channels through which liquid helium flows and which are in close thermal contact with the superconducting winding.

Indirekt gekühlte Magnete haben Kühlschlangen, durch die flüssiges Helium hindurchgedrückt wird. Dies ist bei Verwendung von überkritischem Helium problemlos. Es ist jedoch eine Pumpe erforderlich, die das flüssige Helium durch die Kühlschlangen drückt. Sind die Kühlschlangen an eine Kälteanlage angeschlossen, so kann die Pumpe Bestandteil der Kälteanlage sein. Wird jedoch das Helium einem Vorratsgefäss entnommen, so ist eine separate Heliumpumpe erforderlich.Indirectly cooled magnets have cooling coils through which liquid helium is pressed. This is no problem when using supercritical helium. However, a pump is required to push the liquid helium through the cooling coils. If the cooling coils are connected to a refrigeration system, the pump can be part of the refrigeration system. However, if the helium is removed from a storage vessel, a separate helium pump is required.

Soll die Verwendung einer Heliumpumpe vermieden werden und/oder soll mit zweiphasigem Helium gekühlt werden, so besteht die Gefahr von Instabilitäten durch den sogenannten Gartenschlaucheffekt, wenn die Kühlkanäle in vertikalliegenden Schlangen angeordnet sind, wie es bei Magneten mit horizontaler Magnetfeldachse häufig der Fall ist. Der Gartenschlaucheffekt macht eine Kühlung mit zweiphasigem Helium mit umlaufenden Kühlkanälen bei Verwendung eines Heliumvorratsgefässes und Minirefrigerators, der keine Expansionsmaschine erfordert, unmöglich.If the use of a helium pump is to be avoided and / or cooling is to be carried out with two-phase helium, there is a risk of instability due to the so-called garden hose effect if the cooling channels are arranged in vertical coils, as is often the case with magnets with a horizontal magnetic field axis. The garden hose effect makes cooling with two-phase helium with circumferential cooling channels impossible when using a helium storage vessel and mini-regenerator, which does not require an expansion machine.

Aufgabe der Erfindung ist es, ein Kühlsystem für indirekt gekühlte supraleitende Magnete anzugeben, welches eine Konvektionskühlung ermöglicht und die eingangs genannten Nachteile vermeidet.The object of the invention is to provide a cooling system for indirectly cooled superconducting magnets, which enables convection cooling and avoids the disadvantages mentioned above.

Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass ein Wickelkörper für die supraleitende Wicklung einen unteren Zuleitungskanal und einen oberen Sammelkanal parallel zur horizontalen Magnetachse sowie parallel geschaltete Kühlkanäle, die den Zuleitungskanal und den Sammelkanal miteinander verbinden, aufweist, und dass der Zuleitungskanal mit dem Ausfluss eines gegenüber dem Wickelkörper erhöht angeordneten Heliumgefässes über eine Vorlaufleitung verbunden ist, und der Sammelkanal über einen Rücklauf mit einem Anschlussstutzen des Heliumgefässes verbunden ist. Das flüssige Helium kann durch den Ausfluss des Heliumgefässes in den unteren Zuleitungskanal fliessen und steigt von hier parallel durch die Kühlkanäle in den oberen Sammelkanal. Vom Sammelkanal wird das Helium, das inzwischen erwärmt und in dampfförmiger Phase vorliegen kann, in den Rücklauf geleitet, welcher das Helium oberhalb des Heliumspiegels in das Heliumvorratsgefäss zurückleitet. Für die Heliumumwälzung ist keine Pumpe erforderlich, sie erfolgt durch Konvektion.This object is achieved according to the invention in that a winding body for the superconducting winding has a lower supply channel and an upper collecting channel parallel to the horizontal magnetic axis, and cooling channels connected in parallel, which connect the supply channel and the collecting channel with one another, and that the supply channel with the outflow opposite the helium vessel, which is arranged in an elevated manner, is connected to the winding body via a flow line, and the collecting duct is connected via a return line to a connecting piece of the helium vessel. The liquid helium can flow through the outflow of the helium vessel into the lower feed channel and from there rises in parallel through the cooling channels into the upper collecting channel. From the collecting channel, the helium, which in the meantime has been warmed up and can be in the vaporous phase, is fed into the return line, which directs the helium above the helium level back into the helium storage vessel. No pump is required for the helium circulation, it is done by convection.

Der Wickelkörper lässt sich vorteilhaft durch Rollnahtschweissen und Aufblasen der Kühlkanäle fertigen, wobei dafür Sorge getragen wird, dass die Wölbung der aufgeblasenen Kühlkanäle zu der der Wicklung abgewandten Seite erfolgt. Dies ermöglicht eine preisgünstige Herstellung bei hoher Qualität.The winding body can advantageously be produced by roller seam welding and inflating the cooling channels, care being taken to ensure that the inflated cooling channels are curved to the side facing away from the winding. This enables inexpensive production with high quality.

Der Wickelkörper kann aus austenitischem Stahl oder Aluminium gefertigt werden, wobei letzteres Material die Quenchsicherheit nach dem «quench bare»-Prinzip erhöht.The winding body can be made of austenitic steel or aluminum, the latter material increasing the quench security according to the "quench bare" principle.

Eine vorteilhafte Ausgestaltung der Erfindung sieht vor, dass in das Heliumvorratsgefäss das Ende des Kaltkopfes eines Minirefrigerators, der z.B. nach dem Gifford-McMahon-Prinzip arbeitet, ragt. Die Temperatur des Kaltkopfendes liegt bei 4,2 K oder darunter. Das Ende des Kaltkopfes ragt in den Gasraum des Heliumvorratsgefässes und re-kondensiert das durch den Rücklauf zurückströmende Heliumgas.An advantageous embodiment of the invention provides that in the helium storage vessel the end of the cold head of a mini fridge, e.g. works according to the Gifford-McMahon principle. The temperature of the cold head end is 4.2 K or below. The end of the cold head protrudes into the gas space of the helium storage vessel and recondenses the helium gas flowing back through the return.

Für das erste Abkühlen des Wickelkörpers ist in der Regel die Verwendung eines Minirefrigerators ungeeignet. Hierfür sieht die Erfindung in einer zweckmässigen Ausgestaltung vor, dass das Heliumvorratsgefäss einen Anschlussflansch für einen Heliumheber aufweist, der über dem Ausfluss anordenbar ist. Für das Auffüllen des Systems mit flüssigem Helium wird der Heliumheber durch den Anschlussflansch soweit hindurchgeschoben, dass er teilweise in die Vorlaufleitung hineinragt und eingeschraubt wird. Das andere Ende des Heliumhebers ragt in eine Heliumkanne. Es wird soviel Helium aus der Heliumkanne in das Heliumvorratsgefäss und den Wickelkörper geleitet, bis diese abgekühlt und bis zu einer bestimmten Höhe gefüllt sind. Das Heliumvorratsgefäss enthält ebenfalls eine verschliessbare Öffnung, durch die das noch warme, gasförmige Helium austreten kann.The use of a mini-frigator is generally unsuitable for the first cooling of the winding body. For this purpose, the invention provides in an expedient embodiment that the helium storage vessel has a connection flange for a helium lifter, which can be arranged above the outflow. To fill the system with liquid helium, the helium lifter is pushed through the connection flange until it partially protrudes into the supply line and is screwed in. The other end of the helium lifter protrudes into a helium can. So much helium is passed from the helium can into the helium storage container and the winding former until these have cooled and are filled to a certain height. The helium storage vessel also contains a closable opening through which the warm, gaseous helium can escape.

Anhand der Zeichnung, in der ein Ausführungsbeispiel der Erfindung gezeigt ist, sollen die Erfindung sowie weitere vorteilhafte Ausgestaltungen und Weiterbildungen näher erläutert werden.Based on the drawing, in which an embodiment of the invention is shown, the invention and further advantageous refinements and developments are to be explained in more detail.

Es zeigen:

  • Fig. 1 eine schematische Darstellung des erfindungsgemässen Kühlsystems und
  • Fig. 2 den Querschnitt einer in einem Kryostaten befindlichen supraleitenden Spule.
Show it:
  • Fig. 1 is a schematic representation of the cooling system according to the invention and
  • Fig. 2 shows the cross section of a superconducting coil located in a cryostat.

In der Fig. 1 ist ein zylindrischer Wickelkörper 10 dargestellt, in dessen Zylinderfläche Kühlkanäle eingebettet sind. Im unteren Bereich des Wickelkörpers 10 verläuft axial ein Zuleitungskanal 11 und im oberen Bereich des Wickelkörpers 10 veräuft axial ein Sammelkanal 12. Der Zuleitungskanal 11 und der Sammelkanal 12 sind durch mehrere, parallel geführte in die Innenseite des Wickelkörpers 10 eingebettete Kühlkanäle 13 verbunden.1 shows a cylindrical winding body 10, in the cylindrical surface of which cooling channels are embedded. A supply channel 11 runs axially in the lower area of the winding body 10 and a collecting channel 12 extends axially in the upper area of the winding body 10. The supply channel 11 and the collecting channel 12 are connected by several cooling channels 13, which are guided in parallel and are embedded in the inside of the winding body 10.

Die Herstellung eines derartigen Wickelkörpers 10 kann durch Rollnahtschweissen und anschliessendes Aufblasen der Kühlkanäle erfolgen.Such a winding body 10 can be produced by roller seam welding and subsequent inflation of the cooling channels.

Der untere Zuleitungskanal 11 ist über eine Vorlaufleitung 14 mit dem Bodenausfluss 15 eines Heliumvorratsgefässes 16 verbunden. Durch diese Leitungen kann das flüssige Helium aus dem Heliumvorratsgefäss 16 in die Kühlkanäle 13 geleitet werden. Über den oberen Sammelkanal 12 wird das erwärmte Helium (in flüssiger oder gasförmiger Phase) gesammelt und gelangt über den Rücklauf 17 in den oberen Bereich des Heliumvorratsgefässes 16. Der Heliumspiegel 18 im Vorratsgefäss 16 liegt unterhalb des Rücklaufeintrittes 19. In den Gasraum des Heliumvorratsgefässes 16 ragt das Ende 20 des mit einem Kompressor 21 verbundenen Kaltkopfes 22 eines Minirefrigerators. Das Ende 20 des Kaltkopfes 22 weist eine hinreichend niedrige Temperatur auf, um das gasförmige Helium zurückzukondensieren.The lower feed channel 11 is connected to the bottom outlet 15 of a helium storage vessel 16 via a feed line 14. The liquid helium can be conducted from the helium storage vessel 16 into the cooling channels 13 through these lines. The heated helium (in the liquid or gaseous phase) is collected via the upper collecting channel 12 and reaches the upper region of the helium storage vessel 16 via the return 17. The helium level 18 in the storage vessel 16 lies below the return inlet 19 and projects into the gas space of the helium storage vessel 16 the end 20 of the cold head 22 of a mini-frigator connected to a compressor 21. The end 20 of the cold head 22 has a sufficiently low temperature to condense the gaseous helium back.

Ferner weist das Heliumvorratsgefäss 16 einen Anschlussflansch 23 auf, durch den ein Heliumheber 24 gesteckt ist. Der Anschlussflansch 23 liegt über dem Bodenausfluss 15. Für eine erste Füllung des Systems wird der Heliumheber 24 in die Vorlaufleitung 14 eingeschoben und verschraubt.Furthermore, the helium storage vessel 16 has one Connection flange 23 through which a helium lifter 24 is inserted. The connection flange 23 lies above the floor outlet 15. For a first filling of the system, the helium lifter 24 is pushed into the feed line 14 and screwed.

Der Fig. 2 ist der Querschnitt einer Magnetwicklung 25 mit Kühl- und Vakuumsystem entnehmbar. Die Magnetwicklung 25 ist konzentrisch um eine Untersuchungsöffnung 26 angeordnet und besteht aus supraleitendem Draht. Die supraleitende Wicklung 25 ist auf einen Wickelkörper 10 aufgebracht, der gemäss Fig.1 ausgebildet ist. Es sind in Fig. 2 der Zuleitungskanal 11, der Sammelkanal 12 sowie zwei Kühlkanäle 13 erkennbar. Magnetwicklung 25 und Spulenträger 10 werden allseits durch Kälteschilde 27, 28 abgeschirmt. Das gesamte System ist in einem Vakuumbehälter, bestehend aus innerem Mantel 29 und äusserem Mantel 30 untergebracht.2 shows the cross section of a magnetic winding 25 with a cooling and vacuum system. The magnet winding 25 is arranged concentrically around an examination opening 26 and consists of superconducting wire. The superconducting winding 25 is applied to a winding body 10 which is designed according to FIG. The supply duct 11, the collecting duct 12 and two cooling ducts 13 can be seen in FIG. 2. Magnet winding 25 and coil carrier 10 are shielded on all sides by cold shields 27, 28. The entire system is housed in a vacuum container consisting of an inner jacket 29 and an outer jacket 30.

Claims (5)

1. Cooling system for indirectly cooled superconducting magnets with cooling channels through which liquid helium flows and which are in close thermal contact with the superconducting winding (25), characterized in that a winding form (10) has a lower supply channel (11) and an upper collecting channel (12), and cooling channels (13), connected in parallel, which connect the supply channel (11) and the collecting channel (12) to one another, and in that the supply channel (11) is collected via a flow line (14) to the outlet (15) of a helium supply vessel (16) positioned higher than the winding form (10), and the collecting channel (12) is connected via a return line (17) to a connecting branch (19) of the helium supply vessel (16).
2. Cooling system according to Claim 1, characterized in that the winding form (10) is made by roller seam welding and blow-expanding the cooling channels (11, 12, 13).
3. Cooling system according to Claim 1 or 2, characterized in that the end (20) of the cold leg (22) of a mini refrigerator projects into the helium supply vessel (16).
4. Cooling system according to one of the Claims 1 to 3, characterized in that the helium supply vessel (16) has a connecting flange (23) for a helium siphon (24) which is placed above the bottom outlet (15) so that the helium siphon (24) can be inserted into the flow line (14).
5. Cooling system according to one of the Claims 1 to 4, characterized in that the winding form (10) with integral cooling channels is made of highest grade aluminium and thereby serves as a «quench- bar» to ensure quenching.
EP84114197A 1983-12-06 1984-11-23 Cooling system for indirectly cooled superconducting magnets Expired EP0144873B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833344046 DE3344046A1 (en) 1983-12-06 1983-12-06 COOLING SYSTEM FOR INDIRECTLY COOLED SUPRALINE MAGNETS
DE3344046 1983-12-06

Publications (3)

Publication Number Publication Date
EP0144873A2 EP0144873A2 (en) 1985-06-19
EP0144873A3 EP0144873A3 (en) 1986-02-12
EP0144873B1 true EP0144873B1 (en) 1988-01-27

Family

ID=6216165

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84114197A Expired EP0144873B1 (en) 1983-12-06 1984-11-23 Cooling system for indirectly cooled superconducting magnets

Country Status (3)

Country Link
US (1) US4578962A (en)
EP (1) EP0144873B1 (en)
DE (2) DE3344046A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9283350B2 (en) 2012-12-07 2016-03-15 Surmodics, Inc. Coating apparatus and methods
US9308355B2 (en) 2012-06-01 2016-04-12 Surmodies, Inc. Apparatus and methods for coating medical devices

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171608A (en) * 1984-09-17 1986-04-12 Toshiba Corp Superconductive device
FR2589646B1 (en) * 1985-10-30 1987-12-11 Alsthom SYNCHRONOUS MACHINE WITH SUPERCONDUCTING STATOR AND ROTOR WINDINGS
US4924198A (en) * 1988-07-05 1990-05-08 General Electric Company Superconductive magnetic resonance magnet without cryogens
US4969064A (en) * 1989-02-17 1990-11-06 Albert Shadowitz Apparatus with superconductors for producing intense magnetic fields
JPH0442977A (en) * 1990-06-07 1992-02-13 Toshiba Corp Superconducting magnet device
US5402648A (en) * 1993-07-01 1995-04-04 Apd Cryogenics Inc. Sealed dewar with separate circulation loop for external cooling at constant pressure
US5461873A (en) * 1993-09-23 1995-10-31 Apd Cryogenics Inc. Means and apparatus for convectively cooling a superconducting magnet
US5613367A (en) * 1995-12-28 1997-03-25 General Electric Company Cryogen recondensing superconducting magnet
EP1115997A2 (en) * 1998-09-14 2001-07-18 Massachusetts Institute Of Technology Superconducting apparatuses and cooling methods
DE10020264C1 (en) * 2000-04-25 2001-10-11 Siemens Ag Electric coil, especially gradient coil for medical magnetic resonance device
US6668562B1 (en) * 2000-09-26 2003-12-30 Robert A. Shatten System and method for cryogenic cooling using liquefied natural gas
US7018249B2 (en) * 2001-11-29 2006-03-28 Siemens Aktiengesellschaft Boat propulsion system
DE10317967A1 (en) * 2002-06-06 2004-10-28 Siemens Ag Electrical machine with stator cooling device
US6679066B1 (en) * 2002-08-16 2004-01-20 Sumitomo Heavy Industries, Ltd. Cryogenic cooling system for superconductive electric machines
JP4277312B2 (en) * 2003-11-25 2009-06-10 ツインバード工業株式会社 Thermosiphon
WO2005068920A1 (en) * 2003-12-29 2005-07-28 Supercool Llc System and method for cryogenic cooling using liquefied natural gas
GB0426838D0 (en) * 2004-12-07 2005-01-12 Oxford Instr Superconductivity Magnetic apparatus and method
US7994664B2 (en) * 2004-12-10 2011-08-09 General Electric Company System and method for cooling a superconducting rotary machine
DE102004061869B4 (en) * 2004-12-22 2008-06-05 Siemens Ag Device for superconductivity and magnetic resonance device
ES2730108T3 (en) 2005-11-18 2019-11-08 Mevion Medical Systems Inc Radiation therapy of charged particles
US7626477B2 (en) * 2005-11-28 2009-12-01 General Electric Company Cold mass cryogenic cooling circuit inlet path avoidance of direct conductive thermal engagement with substantially conductive coupler for superconducting magnet
DE102006046688B3 (en) * 2006-09-29 2008-01-24 Siemens Ag Cooling system, e.g. for super conductive magnets, gives a non-mechanical separation between the parts to be cooled and the heat sink
JP2008267496A (en) * 2007-04-20 2008-11-06 Taiyo Nippon Sanso Corp Hydrogen gas cooling device
US20090108969A1 (en) * 2007-10-31 2009-04-30 Los Alamos National Security Apparatus and method for transcranial and nerve magnetic stimulation
US8018102B2 (en) * 2008-08-11 2011-09-13 General Electric Company Shielding of superconducting field coil in homopolar inductor alternator
DE102009022074B4 (en) * 2009-05-20 2011-01-27 Siemens Aktiengesellschaft Magnetic field generating device and associated manufacturing method
US8710944B2 (en) 2010-05-25 2014-04-29 General Electric Company Superconducting magnetizer
US8676282B2 (en) * 2010-10-29 2014-03-18 General Electric Company Superconducting magnet coil support with cooling and method for coil-cooling
KR101367142B1 (en) * 2011-10-12 2014-02-26 삼성전자주식회사 Superconductive electromagnet apparatus
US9958519B2 (en) 2011-12-22 2018-05-01 General Electric Company Thermosiphon cooling for a magnet imaging system
US9827401B2 (en) 2012-06-01 2017-11-28 Surmodics, Inc. Apparatus and methods for coating medical devices
US10224799B2 (en) * 2012-10-08 2019-03-05 General Electric Company Cooling assembly for electrical machines and methods of assembling the same
US11090468B2 (en) 2012-10-25 2021-08-17 Surmodics, Inc. Apparatus and methods for coating medical devices
US9514916B2 (en) * 2013-03-15 2016-12-06 Varian Semiconductor Equipment Associates, Inc. Wafer platen thermosyphon cooling system
JPWO2014155476A1 (en) * 2013-03-25 2017-02-16 株式会社日立製作所 Superconducting magnet device
GB2529897B (en) 2014-09-08 2018-04-25 Siemens Healthcare Ltd Arrangement for cryogenic cooling
GB2537888A (en) * 2015-04-30 2016-11-02 Siemens Healthcare Ltd Cooling arrangement for superconducting magnet coils
CN106373699B (en) * 2016-11-22 2018-05-04 宁波健信核磁技术有限公司 A kind of NMR imaging device and its coil rack
JP6626816B2 (en) * 2016-11-24 2019-12-25 ジャパンスーパーコンダクタテクノロジー株式会社 Superconducting coil precooling method and superconducting magnet device
WO2020112816A1 (en) 2018-11-29 2020-06-04 Surmodics, Inc. Apparatus and methods for coating medical devices
US11819590B2 (en) 2019-05-13 2023-11-21 Surmodics, Inc. Apparatus and methods for coating medical devices
CN111986869B (en) * 2020-08-20 2022-03-01 合肥中科离子医学技术装备有限公司 Superconducting coil framework structure of superconducting proton cyclotron

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2897382A (en) * 1957-02-04 1959-07-28 British Thomson Houston Co Ltd Dynamo-electric machines
US3074401A (en) * 1959-03-12 1963-01-22 Friedman Daniel Apparatus for controlling body temperature
US3122668A (en) * 1959-07-31 1964-02-25 Bbc Brown Boveri & Cie Arrangement for indicating leakage between cooling systems of turbogenerators
US3238400A (en) * 1963-02-04 1966-03-01 Task Corp Gas input assisted evacuation of rotor-stator gaps
US3241329A (en) * 1963-09-06 1966-03-22 Chemetron Corp Liquefied gas refrigeration system
US3363207A (en) * 1966-09-19 1968-01-09 Atomic Energy Commission Usa Combined insulating and cryogen circulating means for a superconductive solenoid
FR1564935A (en) * 1968-03-15 1969-04-25
DE2206841A1 (en) * 1971-02-15 1972-09-21 The British Oxygen Co Ltd, Lon don Superconductor cooling vessel - forms insulating vapour blanket around superconductor when temperature rises
SE381767B (en) * 1974-04-24 1975-12-15 Asea Ab DIRECT COOL BANDAGE WINDING FOR TRANSFORMERS
JPS607396B2 (en) * 1976-05-31 1985-02-23 株式会社東芝 superconducting device
DE2901333C2 (en) * 1979-01-15 1983-06-23 Siemens AG, 1000 Berlin und 8000 München Method for forced cooling of a superconducting magnet coil winding
US4277949A (en) * 1979-06-22 1981-07-14 Air Products And Chemicals, Inc. Cryostat with serviceable refrigerator
US4427907A (en) * 1981-11-23 1984-01-24 Electric Power Research Institute, Inc. Spiral pancake armature winding module for a dynamoelectric machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9308355B2 (en) 2012-06-01 2016-04-12 Surmodies, Inc. Apparatus and methods for coating medical devices
US9283350B2 (en) 2012-12-07 2016-03-15 Surmodics, Inc. Coating apparatus and methods

Also Published As

Publication number Publication date
DE3469095D1 (en) 1988-03-03
EP0144873A2 (en) 1985-06-19
US4578962A (en) 1986-04-01
EP0144873A3 (en) 1986-02-12
DE3344046C2 (en) 1987-06-25
DE3344046A1 (en) 1985-06-20

Similar Documents

Publication Publication Date Title
EP0144873B1 (en) Cooling system for indirectly cooled superconducting magnets
DE102004043488B4 (en) Method and apparatus for pumping a cryogenic liquid from a reservoir
DE10297837B4 (en) Method for fixing a refrigerating machine and fastening device therefor
DE102013011212A1 (en) Device for cooling a consumer with a supercooled liquid in a cooling circuit
DE2308301A1 (en) METHOD AND DEVICE FOR COOLING A REFRIGERATED OBJECT
EP0398156B1 (en) Method and device for precooling the helium vessel of a cryostat
EP3382411B1 (en) Cryostatic device with a neck pipe with a load-bearing structure and an outer tube surrounding the load bearing structure for reducing cryogenic consumption
DE69933982T2 (en) Superconducting cryostat magnet with refrigerant retention reserve
DE102007023821A1 (en) Method for filling cryogenic hydrogen tank on vehicle has residual gas tapped off to be conditioned at lower temperature before returning to cool the tank prior to filling with fresh gas
EP0212093B1 (en) Method of cooling an object by means of superfluid helium (he ii) and device for carrying out the method
DE102010028750B4 (en) Low-loss cryostat arrangement
EP3495711B1 (en) Transport container with coolable, thermal shield
EP0080534B1 (en) Process for impregneting articles consisting of carbon
EP0520937B1 (en) Process and device for transporting and distributing helium
DE102015219983A1 (en) Cryogenic pressure vessel system
DE19645492C1 (en) System and method for maintaining or increasing pressure in a cryogenic tank
DE10318895B3 (en) Cooling device for slow cooling of superconductive component e.g. HTS power transformer, has semi-permeable membrane for separation of liquid cooling medium and gaseous cooling medium
DE2629410C2 (en) Plant for the preservation of wood with a toxic compound
DE1551583A1 (en) Rectifying column of an air separation plant
EP0019259B1 (en) Device for cooling a cryogenic excitation winding in the rotor of an electric machine
DE1811525B1 (en) Nuclear reactor cooled with liquid metal
DE3404600A1 (en) Device for producing images and spatially resolved spectra of a test object by means of nuclear magnetic resonance
DE1942894A1 (en) Procedure for coolant circulation
DE19850911A1 (en) Liquid gas, e.g. nitrogen, cooling system, e.g. to cool monochromator; has insulated coolant container for first deep frozen liquid gas, heat exchanger circuit and second deep frozen liquid gas and filling unit for heat exchanger circuit
EP0019258A1 (en) Device for cooling a cryogenic excitation winding in the rotor of an electric machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19860326

17Q First examination report despatched

Effective date: 19870518

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

REF Corresponds to:

Ref document number: 3469095

Country of ref document: DE

Date of ref document: 19880303

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881123

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19881007

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIEMENS AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19891223

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state