EP0142668A1 - Process for the production of a fine-grained work piece of a nickel base superalloy - Google Patents

Process for the production of a fine-grained work piece of a nickel base superalloy Download PDF

Info

Publication number
EP0142668A1
EP0142668A1 EP84111204A EP84111204A EP0142668A1 EP 0142668 A1 EP0142668 A1 EP 0142668A1 EP 84111204 A EP84111204 A EP 84111204A EP 84111204 A EP84111204 A EP 84111204A EP 0142668 A1 EP0142668 A1 EP 0142668A1
Authority
EP
European Patent Office
Prior art keywords
forging
deformation
workpiece
phase
annealing temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84111204A
Other languages
German (de)
French (fr)
Other versions
EP0142668B1 (en
Inventor
Mohamed Yousef Dr. Nazmy
Hans Dr. Rydstad
Günther Dr. Schroeder
Robert Dr. Singer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0142668A1 publication Critical patent/EP0142668A1/en
Application granted granted Critical
Publication of EP0142668B1 publication Critical patent/EP0142668B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the invention is based on a method for producing a workpiece according to the preamble of claim 1.
  • a fine-grained end product starting from a blank made of a heat-resistant alloy (e.g. nickel superalloy), can be produced in several operations.
  • a method in which, in a first step, the starting material is deformed in a conventional manner, just below its recrystallization temperature, so that the desired fine-grained structure is established in an intermediate product.
  • this intermediate product is then converted into the end product by quasi-isothermal forging using heated dies (GB-PS 1 253 861).
  • the invention is based on the object of specifying a forming process which enables the production of a workpiece from a nickel-based superalloy starting from a solution-annealed coarse-grained blank, the end product simultaneously having the definitive forging shape, a fine-grained structure and the best possible mechanical properties.
  • a is the solution annealing temperature for the ⁇ phase for a given material, that for the investigated Superalloy (trade name "Waspaloy") is between 1020 and 1040 0 C (on average at 1030 ° C).
  • the course b corresponding to phase I relates to a first hot-forming step which essentially serves to refine the grain and which is in an isothermal forging (upsetting).
  • the course c corresponding to phase II represents the second deformation step, which is carried out much more slowly and leads both to the final shape (finished part) and to increasing the mechanical strength.
  • Fig. 2 basically shows the relationships between microstructure formation and forming temperature.
  • d represents the mean grain size
  • x the proportion of coarse individual grains as a function of the forming temperature for constant deformation and speed of deformation.
  • the blank had a cylindrical shape and the following dimensions:
  • phase I It was compressed in a first process step (phase I) in a forging press in the axial direction by isothermal forging at a temperature of 1100 ° C, which was above the solution annealing temperature for the ⁇ 'phase of the material, so that it then has the following dimensions featured:
  • phase II the preformed workpiece was isothermally forged in a forging die at a lower temperature, which was just below the solution annealing temperature for the ⁇ 'phase. In the present case, this forging temperature was 1010 ° C.
  • the deformation rate was gradually reduced according to the degree of deformation already achieved.
  • the maximum pressing force reached was 1800 kN.
  • the maximum pressing force reached was 2000 k N. All ⁇ and related to A o of the second process step!
  • the workpiece was subjected to the usual conventional heat treatment: solution annealing at 1020 ° C. for 4 h, quenching in oil, annealing at 850 ° C. for 4 h, cooling in air, curing at 750 ° C. for 16 h, Cooling in air.
  • the finished forged and heat treated workpiece showed a yield strength of 938 MPa at room temperature, while the elongation was 22%.
  • the method is not restricted to the exemplary embodiment.
  • air cooling after phase I can be dispensed with under certain circumstances.
  • the forging would therefore take place in a heat, as is indicated by the dashed curve between branches b and c in FIG. 1.
  • the method can then also be designed such that the first step essentially consists in compressing the forging blank in the die with subsequent cooling in the die to the forging temperature of the second step.
  • Another possible variant is based on the fact that the first step consists in pre-upsetting the forging blank with subsequent forging in the die at a temperature above the solution annealing temperature for the ⁇ '-phase of the material.
  • the cooling of the workpiece during the transition from the first to the second step (between phase I and phase II) can take place with simultaneous application of a load.
  • the degree of deformation ⁇ should at least reach the value 0.7, at deformation speeds , which advantageously between 5 . 10 -3 s -1 and 15. 10 3s-1 (on average around 10 10 -3 s -1 ).
  • the degree of deformation must reach a level which is sufficient to achieve the desired good mechanical properties. This measure depends on the shape and size of the workpiece. The corresponding deformation speeds range between 2 10 -3 s -1 and 0 , 1. 10 -3 s -1 They decrease with progressive degree of deformation E as the workpiece approaches the final shape.
  • the first step above and the second step just below the solution annealing temperature for the ⁇ '-phase of the material are carried out, so that for the final shape an average grain size of 4 to 40 ⁇ m, a hot stretching limit at 540 ° C of at least 780 MPa and a standing time under a load of 510 MPa at 670 ° C of at least 100 h (Zeitstandfesti g- compatibility) is achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)

Abstract

Ein feinkörniges Werkstück mit verbesserten mechanischen Eigenschaften aus einer Nickelbasis-Superlegierung wird durch ein zweiteiliges Schmieden hergestellt, indem ein Rohling in einem ersten isothermen Warmverformungsschritt (Kurve b) oberhalb der Lösungsglühtemperatur für die γ'-Phase (Linie a) in eine Zwischenform übergeführt und diese anschliessend in einem zweiten isothermen Warmverformungsschritt (Kurve c) knapp unterhalb der Lösungsglühtemperatur für die γ'-Phase bis zur Endform fertiggeschmiedet wird. Dabei ist für den ersten Schritt ein Verformungsgrad ε von mindestens 0,7 bei einer mittleren Verformungsgeschwindigkeit ε˙ von ca. 10 . 10<->³s<->¹ erforderlich. Der zweite Schritt wird bei Verformungsgeschwindigkeiten ε˙ durchgeführt, die um ein bis zwei Zehnerpotenzen tiefer liegen als diejenigen des ersten Schrittes.A fine-grained workpiece with improved mechanical properties made of a nickel-based superalloy is produced by two-part forging, in which a blank is converted into an intermediate form in a first isothermal hot-forming step (curve b) above the solution annealing temperature for the γ'-phase (line a) and this then in a second isothermal hot working step (curve c) just below the solution annealing temperature for the γ'-phase until the final shape is forged. For the first step, there is a degree of deformation ε of at least 0.7 at an average rate of deformation ε˙ of approximately 10. 10 <-> ³s <-> ¹ required. The second step is carried out at deformation speeds ε˙ which are one to two powers of ten lower than those of the first step.

Description

Die Erfindung geht aus von einem Verfahren zur Herstellung eines Werkstücks nach der Gattung des Oberbegriffs des Anspruchs 1.The invention is based on a method for producing a workpiece according to the preamble of claim 1.

Aus der Literatur sind Verfahren bekannt, nach denen ein feinkörniges Endprodukt, ausgehend von einem Rohling aus einer warmfesten Legierung (z.B. Nickelsuperlegierung) in mehreren Arbeitsgängen hergestellt werden kann. Insbesondere trifft dies auf ein Verfahren zu, bei welchem in einem ersten Schritt das Ausgangsmaterial dicht unterhalb seiner Rekristallisationstemperatur nach herkömmlicher Art verformt wird, so dass sich das gewünschte feinkörnige Gefüge in einem Zwischenprodukt einstellt. In einem zweiten Schritt wird dann dieses Zwischenprodukt durch quasiisothermes Schmieden unter Verwendung von beheizten Gesenken in das Endprodukt übergeführt (GB-PS 1 253 861).Methods are known from the literature according to which a fine-grained end product, starting from a blank made of a heat-resistant alloy (e.g. nickel superalloy), can be produced in several operations. In particular, this applies to a method in which, in a first step, the starting material is deformed in a conventional manner, just below its recrystallization temperature, so that the desired fine-grained structure is established in an intermediate product. In a second step, this intermediate product is then converted into the end product by quasi-isothermal forging using heated dies (GB-PS 1 253 861).

Bei der Durchführung dieser Verfahren zeigt es sich, dass es ausserordentlich schwierig ist, durch Verformen unterhalb der Rekristallisationstemperatur ein für das Endprodukt optimales Gefüge mit besten mechanischen Eigenschaften zu erhalten. Ausserdem sind diese Verfahren ausserordentlich langsam, was sich ungünstig auf die Wirtschaftlichkeit auswirkt. Es besteht daher das Bedürfnis, die bekannten Verfahren zu verbessern.When carrying out these processes, it is found that it is extremely difficult to deform one below the recrystallization temperature for the end to obtain the optimal structure with the best mechanical properties. In addition, these processes are extremely slow, which has an unfavorable effect on economy. There is therefore a need to improve the known methods.

Der Erfindung liegt die Aufgabe zugrunde, ein Umformverfahren anzugeben, welches die Herstellung eines Werkstücks aus einer Nickelbasis-Superlegierung, ausgehend von einem lösungsgeglühten grobkörnigen Rohling ermöglicht, wobei das Endprodukt gleichzeitig die definitive Schmiedeform, ein feinkörniges Gefüge und bestmögliche mechanische Eigenschaften aufweist.The invention is based on the object of specifying a forming process which enables the production of a workpiece from a nickel-based superalloy starting from a solution-annealed coarse-grained blank, the end product simultaneously having the definitive forging shape, a fine-grained structure and the best possible mechanical properties.

Diese Aufgabe wird erfindungsgemäss durch die Merkmale des Anspruchs 1 gelöst.According to the invention, this object is achieved by the features of claim 1.

Die Erfindung wird anhand des nachfolgenden, durch Figuren erläuterten Ausführungsbeispiels beschrieben.The invention is described with reference to the following exemplary embodiment explained by figures.

Dabei zeigt:

  • Fig. 1 ein Diagramm des Temperaturverlaufs des Verfahrens in Funktion der Zeit,
  • Fig. 2 ein Diagramm der Korngrösse und des Grobkornanteils in Funktion der Umformtemperatur.
It shows:
  • 1 shows a diagram of the temperature profile of the method as a function of time,
  • 2 shows a diagram of the grain size and the coarse grain fraction as a function of the forming temperature.

In Fig. 1 ist der Temperaturverlauf des Verfahrens in Funktion der Zeit (willkürlicher, unterbrochener Massstab) in den verschiedenen Verfahrensschritten dargestellt. a ist die für ein gegebenes Material vorliegende Lösungsglühtemperatur für die γ-Phase, die für die untersuchte Superlegierung (Handelsname "Waspaloy") zwischen 1020 und 10400C (im Mittel bei 1030°C) liegt. Der Verlauf b entsprechend Phase I bezieht sich auf einen ersten, im wesentlichen der Kornverfeinerung dienenden und in einem isothermen Schmieden (Stauchen) bestehenden Warmverformungsschritt. Der Verlauf c entsprechend Phase II stellt den wesentlich langsamer durchgeführten und sowohl zur Endform (Fertigteil) wie zur Steigerung der mechanischen Festigkeit führenden zweiten Verformungsschritt dar.1 shows the temperature profile of the process as a function of time (arbitrary, interrupted scale) in the various process steps. a is the solution annealing temperature for the γ phase for a given material, that for the investigated Superalloy (trade name "Waspaloy") is between 1020 and 1040 0 C (on average at 1030 ° C). The course b corresponding to phase I relates to a first hot-forming step which essentially serves to refine the grain and which is in an isothermal forging (upsetting). The course c corresponding to phase II represents the second deformation step, which is carried out much more slowly and leads both to the final shape (finished part) and to increasing the mechanical strength.

Im unteren Teil der Figur ist die weitere für diese Klasse von Superlegierungen übliche, aus Lösungsglühen, Abschrekken und mehrfachem Aushärten bestehende, an den Umformprozess anschliessende Wärmebehandlung in einem anderen Zeitmassstab dargestellt.In the lower part of the figure, the further heat treatment which is customary for this class of superalloys and consists of solution heat treatment, quenching and multiple hardening, which follows the forming process, is shown on a different time scale.

Fig. 2 zeigt grundsätzlich die Zusammenhänge zwischen Gefügeausbildung und Umformtemperatur. d stellt die mittlere Korngrösse, x den Anteil an groben Einzelkörnern in Funktion der Umformtemperatur für konstante Verformung und Verformungsgeschwindigkeit dar.Fig. 2 basically shows the relationships between microstructure formation and forming temperature. d represents the mean grain size, x the proportion of coarse individual grains as a function of the forming temperature for constant deformation and speed of deformation.

Ausführungsbeispiel:Design example:

Siehe Fig. l:

  • Zur Herstellung eines doppelkegelförmigen rotationssymmetrischen Hohlkörpers mit Zwischenflansch wurde ein Rohling aus einer lösungsgeglühten Nickelbasis-Superlegierung verwendet. Die Legierung mit dem Handelsnamen "Waspaloy" hatte die nachfolgende Zusammensetzung:
    Figure imgb0001
    Figure imgb0002
See Fig. L:
  • A blank made from a solution-annealed nickel-based superalloy was used to produce a double-cone-shaped, rotationally symmetrical hollow body with an intermediate flange. The alloy with the trade name "Waspaloy" had the following composition:
    Figure imgb0001
    Figure imgb0002

Der. Rohling hatte zylindrische Form und besass folgende Abmessungen:

Figure imgb0003
The. The blank had a cylindrical shape and the following dimensions:
Figure imgb0003

Er wurde in einem ersten Verfahrensschritt (Phase I) in einer Schmiedepresse in axialer Richtung durch isothermes Schmieden bei einer Temperatur von 1100°C, welche oberhalb der Lösungsglühtemperatur für die γ '-Phase des Werkstoffes lag, derart gestaucht, dass er danach die folgenden Abmessungen aufwies:

Figure imgb0004
It was compressed in a first process step (phase I) in a forging press in the axial direction by isothermal forging at a temperature of 1100 ° C, which was above the solution annealing temperature for the γ 'phase of the material, so that it then has the following dimensions featured:
Figure imgb0004

Dies entsprach einem Verformungsgrad ε von 0,7. Die mittlere Verformungsgeschwindigkeit betrug E = 12,5 . 10 -3s -1. Dabei war

Figure imgb0005
wie folgt definiert:
Figure imgb0006

  • A = Querschnittsfläche des Werkstücks vor der Umformung, je pro Schritt,
  • Af = Querschnittsfläche des Werkstücks nach der Umformung,
  • ln = natürlicher Logarithmus
  • t = Zeit in Sekunden
This corresponded to a degree of deformation ε of 0.7. The average rate of deformation was E = 12.5. 10 -3 s -1 . Was there
Figure imgb0005
defined as follows:
Figure imgb0006
  • A = cross-sectional area of the workpiece before forming, each per step,
  • A f = cross-sectional area of the workpiece after forming,
  • ln = natural logarithm
  • t = time in seconds

Nach dem gemäss Phase I ca. 1 min dauernden Stauchvorgang wurde das Werkstück an Luft auf Raumtemperatur abgekühlt.After the compression process, which lasted about 1 min in phase I, the workpiece was cooled in air to room temperature.

In einem zweiten Verfahrensschritt (Phase II) wurde das vorgeformte Werkstück in einem Schmiedegesenk bei einer niedrigeren Temperatur, welche knapp unterhalb der Lösungsglühtemperatur für die γ '-Phase lag, bis zur Fertigform isotherm geschmiedet. Im vorliegenden Fall betrug diese Schmiedetemperatur 1010°C. Während der Phase II wurde die Verformungsgeschwindigkeit stufenweise entsprechend dem bereits erreichten Verformungsgrad erniedrigt. Der der ersten ca. 8 min dauernden Stufe entsprechende Verformungsgrad ε betrug 1,3. Die mittlere Verformungsgeschwindigkeitwar

Figure imgb0007
= 1,5 . 10-3s- 1, was einer durchschnittlichen Stempelgeschwindigkeit von ca. 0,1 mm/s entsprach. Die maximal erreichte Presskraft war 1800 kN. Die ca. 5 min dauernde zweite Stufe entsprach einem Verformungsgrad ε von 0,5 bei einer Verformungsgeschwindigkeit vonε = 0,9 . 10-3s-1. Die dritte, ca. 7 min dauernde Stufe erreichte noch ein ε von 0,2 bei einem
Figure imgb0008
= 0,1 10- 3s- 1. Die maximal erreichte Presskraft betrug hierbei 2000 kN. Alle ε und
Figure imgb0009
auf Ao des zweiten Verfahrensschritts bezogen!In a second process step (phase II), the preformed workpiece was isothermally forged in a forging die at a lower temperature, which was just below the solution annealing temperature for the γ 'phase. In the present case, this forging temperature was 1010 ° C. During phase II, the deformation rate was gradually reduced according to the degree of deformation already achieved. The degree of deformation ε corresponding to the first stage, which lasted approximately 8 minutes, was 1.3. The average rate of deformation was
Figure imgb0007
= 1.5. 10 -3 s - 1 , which corresponded to an average stamp speed of approx. 0.1 mm / s. The maximum pressing force reached was 1800 kN. The second stage, which lasted about 5 minutes, corresponded to a degree of deformation ε of 0.5 at a deformation rate of ε = 0.9. 10 -3 s -1 . The third stage, lasting about 7 minutes, reached ε of 0.2 for one
Figure imgb0008
= 0.1 10 - 3 s - 1 . The maximum pressing force reached was 2000 k N. All ε and
Figure imgb0009
related to A o of the second process step!

Nach dem Fertigschmieden gemäss Phase II wurde das Werkstück der üblichen konventionellen Wärmebehandlung unterzogen: Lösungsglühen bei 1020°C während 4 h, Abschrecken in Oel, Glühen bei 850°C während 4 h, Abkühlen in Luft, Aushärten bei 750°C während 16 h, Abkühlen in Luft.After the final forging according to phase II, the workpiece was subjected to the usual conventional heat treatment: solution annealing at 1020 ° C. for 4 h, quenching in oil, annealing at 850 ° C. for 4 h, cooling in air, curing at 750 ° C. for 16 h, Cooling in air.

Das fertig geschmiedete und wärmebehandelte Werkstück wies bei Raumtemperatur eine Streckgrenze von 938 MPa auf, während die Dehnung 22 % betrug.The finished forged and heat treated workpiece showed a yield strength of 938 MPa at room temperature, while the elongation was 22%.

Das Verfahren ist nicht auf das Ausführungsbeispiel beschränkt. Es kann z.B. auf die Luftabkühlung nach der Phase I unter gewissen Umständen verzichtet werden. Das Schmieden würde also in einer Hitze erfolgen, wie dies durch die gestrichelte Kurve zwischen den Aesten b und c in Fig. 1 angedeutet ist. Das Verfahren kann dann auch so gestaltet werden, dass der erste Schritt im wesentlichen in einem Stauchen des Schmiederohlings im Gesenk mit nachfolgender Abkühlung im Gesenk auf die Schmiedetemperatur des zweiten Schrittes besteht. Eine weitere mögliche Variante beruht darauf, däss der erste Schritt in einem Vorstauchen des Schmiederohlings mit anschliessendem Formschmieden im Gesenk bei einer Temperatur oberhalb der Lösungsglühtemperatur für die γ'-Phase des Werkstoffs besteht. Ferner kann das Abkühlen des Werkstücks beim Uebergang vom ersten zum zweiten Schritt (zwischen Phase I und Phase II) unter gleichzeitigem Aufbringen einer Last erfolgen.The method is not restricted to the exemplary embodiment. For example, air cooling after phase I can be dispensed with under certain circumstances. The forging would therefore take place in a heat, as is indicated by the dashed curve between branches b and c in FIG. 1. The method can then also be designed such that the first step essentially consists in compressing the forging blank in the die with subsequent cooling in the die to the forging temperature of the second step. Another possible variant is based on the fact that the first step consists in pre-upsetting the forging blank with subsequent forging in the die at a temperature above the solution annealing temperature for the γ'-phase of the material. Furthermore, the cooling of the workpiece during the transition from the first to the second step (between phase I and phase II) can take place with simultaneous application of a load.

Ausser "Waspaloy" eignet sich noch eine ganze Anzahl anderer Superlegierungen für das Verfahren, worunter Handelsnamen wie Astroloy, Alloy' 901, IN 718, IN 100, Rene 95 etc. figurieren. Im allgemeinen können die Legierungsgrenzen ungefähr wie folgt angegeben werden:

Figure imgb0010
Figure imgb0011
In addition to "Waspaloy", a number of other superalloys are also suitable for the process, including trade names such as Astroloy, Alloy '901, IN 718, IN 100, Rene 95 etc. In general, the alloy limits can be given approximately as follows:
Figure imgb0010
Figure imgb0011

Während des ersten Verfahrensschrittes (Phase I) soll der Verformungsgrad ε mindestens den Wert 0,7 erreichen, bei Verformungsgeschwindigkeiten

Figure imgb0012
, die vorteilhafterweise zwischen 5 . 10-3s-1 und 15. 10 3s-1 (im Durchschnitt um 10 10-3s-1) liegen. Beim zweiten Verfahrensschritt (Phase II) muss der Verformungsgrad ein Mass erreichen, das ausreicht, um die gewünschten guten mechanischen Eigenschaften zu erzielen. Dieses Mass hängt von der Form und Grösse des Werkstücks ab. Die entsprechenden Verformungsgeschwindigkeiten
Figure imgb0013
bewegen sich dabei etwa zwischen 2 10-3s-1 und 0,1 . 10 -3 s-1 Sie nehmen mit fortschreitendem Verformungsgrad E ab, in dem Masse wie sich das Werkstück der Endform nähert.During the first process step (phase I), the degree of deformation ε should at least reach the value 0.7, at deformation speeds
Figure imgb0012
, which advantageously between 5 . 10 -3 s -1 and 15. 10 3s-1 (on average around 10 10 -3 s -1 ). In the second process step (phase II), the degree of deformation must reach a level which is sufficient to achieve the desired good mechanical properties. This measure depends on the shape and size of the workpiece. The corresponding deformation speeds
Figure imgb0013
range between 2 10 -3 s -1 and 0 , 1. 10 -3 s -1 They decrease with progressive degree of deformation E as the workpiece approaches the final shape.

Wesentlich ist, dass der erste Schritt oberhalb und der zweite Schritt knapp unterhalb der Lösungsglühtemperatur für die γ'-Phase des Werkstoffs durchgeführt wird, so dass für die Endform eine mittlere Korngrösse von 4 bis 40 µm, eine Warmstreckgrenze bei 540°C von mindestens 780 MPa und eine Standzeit unter einer Belastung von 510 MPa bei 670°C von mindestens 100 h (Zeitstandfestig- keit) erzielt wird.It is essential that the first step above and the second step just below the solution annealing temperature for the γ'-phase of the material are carried out, so that for the final shape an average grain size of 4 to 40 µm, a hot stretching limit at 540 ° C of at least 780 MPa and a standing time under a load of 510 MPa at 670 ° C of at least 100 h (Zeitstandfesti g- compatibility) is achieved.

Claims (7)

1. Verfahren zur Herstellung eines feinkörnigen Werkstücks mit verbesserten mechanischen Eigenschaften aus einer Nickelbasis-Superlegierung, dadurch gekennzeichnet, dass in einem ersten Schritt ein Schmiederohling durch isothermes Schmieden oberhalb der Lösungsglühtemperatur für die γ'-Phase in eine Zwischenform übergeführt wird, wobei ein Verformungsgrad E von mindestens 0,7 und eine Verformungsgeschwindigkeit
Figure imgb0014
von 5 . 10-3s-1 bis 15 . 10-3s-1 eingehalten wird, und dass die Zwischenform in einem zweiten Schritt durch isothermes Schmieden dicht unterhalb der Lösungsglühtemperatur für die γ '-Phase unter Anwendung einer Verformungsgeschwindigkeit
Figure imgb0015
von
1. A method for producing a fine-grained workpiece with improved mechanical properties from a nickel-based superalloy, characterized in that in a first step a forging blank is converted into an intermediate form by isothermal forging above the solution annealing temperature for the γ'-phase, with a degree of deformation E of at least 0.7 and a rate of deformation
Figure imgb0014
of 5 . 10 -3 s -1 to 15. 10 -3 s -1 is observed, and that the intermediate form in a second step by isothermal forging just below the solution annealing temperature for the γ 'phase using a rate of deformation
Figure imgb0015
from
2 . 10-3s-1 bis 0,1 . 10-3 s-1 in die Endform übergeführt wird, wobei
Figure imgb0016
wie folgt definiert ist:
Figure imgb0017
A = Querschnittsfläche des Werkstücks vor der Umformung, je pro Schritt, Af = Querschnittsfläche des Werkstücks nach der Umformung, ln = natürlicher Logarithmus t = Zeit in Sekunden .
2nd 10 -3 s -1 to 0.1. 10 -3 s -1 is converted into the final form, whereby
Figure imgb0016
is defined as follows:
Figure imgb0017
A = cross-sectional area of the workpiece before forming, each per step, A f = cross-sectional area of the workpiece after forming, ln = natural logarithm t = time in seconds.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Werkstück bis zur Endform auf eine mittlere Korngrösse von 4 bis 40 µm, eine Warmstreckgrenze bei 540°C von mindestens 780 MPa und eine Standzeit unter einer Belastung von 510 MPa bei 6700C von mindestens 100 h geschmiedet wird.2. The method according to claim 1, characterized in that the workpiece to the final shape to an average grain size of 4 to 40 microns, a hot stretch at 540 ° C of at least 780 MPa and a service life under a load of 510 MPa at 670 0 C. is forged for at least 100 hours. 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Nickelbasis-Superlegierung die nachfolgenden Grenzwerte der Zusammensetzung aufweist:
Figure imgb0018
3. The method according to claim 1, characterized in that the nickel-based superalloy has the following limit values of the composition:
Figure imgb0018
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der erste Schritt im wesentlichen in einem Stauchen des Schmiedrohlings im Gesenk mit nachfolgender Abkühlung im Gesenk auf die Schmiedetemperatur des zweiten Schrittes besteht.4. The method according to claim 1, characterized in that the first step consists essentially in compressing the forging blank in the die with subsequent cooling in the die to the forging temperature of the second step. 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der erste Schritt in einem Vorstauchen des Schmiederohlings mit anschliessendem Formschmieden im Gesenk bei einer Temperatur oberhalb der Lösungsglühtemperatur des Werkstoffs besteht.5. The method according to claim 1, characterized in that the first step consists of pre-upsetting the forging blank with subsequent forging in the die at a temperature above the solution annealing temperature of the material. 6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Abkühlen des Werkstücks beim Uebergang vom ersten zum zweiten Schritt unter gleichzeitigem Aufbringen einer Last erfolgt.6. The method according to claim 1, characterized in that the workpiece is cooled during the transition from the first to the second step with simultaneous application of a load.
EP84111204A 1983-09-28 1984-09-20 Process for the production of a fine-grained work piece of a nickel base superalloy Expired EP0142668B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH5252/83 1983-09-28
CH5252/83A CH654593A5 (en) 1983-09-28 1983-09-28 METHOD FOR PRODUCING A FINE-GRAIN WORKPIECE FROM A NICKEL-BASED SUPER ALLOY.

Publications (2)

Publication Number Publication Date
EP0142668A1 true EP0142668A1 (en) 1985-05-29
EP0142668B1 EP0142668B1 (en) 1987-05-13

Family

ID=4290477

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84111204A Expired EP0142668B1 (en) 1983-09-28 1984-09-20 Process for the production of a fine-grained work piece of a nickel base superalloy

Country Status (5)

Country Link
US (1) US4612062A (en)
EP (1) EP0142668B1 (en)
JP (1) JPS6092458A (en)
CH (1) CH654593A5 (en)
DE (1) DE3463677D1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0330858A1 (en) * 1988-03-02 1989-09-06 Asea Brown Boveri Ag Precipitation-hardenable nickel-based superalloy with particular mechanical properties in the temperature range of 600 to 750o C
EP0790324A1 (en) * 1996-02-16 1997-08-20 Ebara Corporation High-temperature sufidation-corrosion resistant nickel-base alloy
EP0792945A1 (en) * 1996-02-29 1997-09-03 SOCIETE NATIONALE D'ETUDE ET DE CONSTRUCTION DE MOTEURS D'AVIATION -Snecma Process for heat treatment of a nickel-base superalloy

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120373A (en) * 1991-04-15 1992-06-09 United Technologies Corporation Superalloy forging process
DE69218089T2 (en) * 1991-04-15 1997-06-19 United Technologies Corp Forging process for superalloys and related composition
US5360496A (en) * 1991-08-26 1994-11-01 Aluminum Company Of America Nickel base alloy forged parts
US5374323A (en) * 1991-08-26 1994-12-20 Aluminum Company Of America Nickel base alloy forged parts
US5593519A (en) * 1994-07-07 1997-01-14 General Electric Company Supersolvus forging of ni-base superalloys
US5759305A (en) * 1996-02-07 1998-06-02 General Electric Company Grain size control in nickel base superalloys
EP0909339B1 (en) * 1996-06-21 2001-11-21 General Electric Company Method for processing billets from multiphase alloys
US6334912B1 (en) * 1998-12-31 2002-01-01 General Electric Company Thermomechanical method for producing superalloys with increased strength and thermal stability
JP4382269B2 (en) 2000-09-13 2009-12-09 日立金属株式会社 Method for producing Ni-base alloy having excellent resistance to high-temperature sulfidation corrosion
WO2002092260A1 (en) 2001-05-15 2002-11-21 Santoku America, Inc. Castings of alloys with isotropic graphite molds
AU2002311959A1 (en) 2001-05-23 2002-12-03 Santoku America, Inc. Castings of metallic alloys fabricated in anisotropic pyrolytic graphite molds under vacuum
US6755239B2 (en) 2001-06-11 2004-06-29 Santoku America, Inc. Centrifugal casting of titanium alloys with improved surface quality, structural integrity and mechanical properties in isotropic graphite molds under vacuum
US6634413B2 (en) 2001-06-11 2003-10-21 Santoku America, Inc. Centrifugal casting of nickel base superalloys in isotropic graphite molds under vacuum
US6799627B2 (en) 2002-06-10 2004-10-05 Santoku America, Inc. Castings of metallic alloys with improved surface quality, structural integrity and mechanical properties fabricated in titanium carbide coated graphite molds under vacuum
US6986381B2 (en) * 2003-07-23 2006-01-17 Santoku America, Inc. Castings of metallic alloys with improved surface quality, structural integrity and mechanical properties fabricated in refractory metals and refractory metal carbides coated graphite molds under vacuum
CN101332484B (en) * 2007-06-25 2010-05-19 宝山钢铁股份有限公司 Die forging method of high-temperature alloy
JP5670929B2 (en) 2012-02-07 2015-02-18 三菱マテリアル株式会社 Ni-based alloy forging
RU2506340C1 (en) * 2012-10-12 2014-02-10 Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") Heat treatment method of gas-turbine engines discs workpieces from heat-resistant nickel-based alloys
JP6079404B2 (en) * 2013-04-19 2017-02-15 大同特殊鋼株式会社 Method for forging disc-shaped products
RU2741046C1 (en) * 2020-07-27 2021-01-22 Акционерное общество "Металлургический завод "Электросталь" Method for production of large-size contour annular article from heat-resistant nickel-base alloy
CN112846015B (en) * 2020-12-24 2023-01-13 陕西宏远航空锻造有限责任公司 GH536 high-temperature alloy annular forging forming method
CN112746231B (en) * 2020-12-29 2021-10-15 北京钢研高纳科技股份有限公司 Production process for gamma' phase pre-conditioning plasticization of high-performance high-temperature alloy
CN113084061B (en) * 2021-03-31 2022-11-22 陕西长羽航空装备股份有限公司 Nickel-based superalloy GH3536 die forging and forming method thereof
FR3125301B1 (en) * 2021-07-15 2024-01-05 Safran Aircraft Engines Process for manufacturing a nickel-based alloy product
CN114799002B (en) * 2022-03-22 2024-04-02 西安聚能高温合金材料科技有限公司 Forging method of ultra-large high-temperature alloy cake blank

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2046409A1 (en) * 1969-09-26 1971-04-01 United Aircraft Corp Thermo-mechanical increase in the resistance of the superalloys
FR2122974A5 (en) * 1971-01-21 1972-09-01 Bbc Brown Boveri & Cie
US3975219A (en) * 1975-09-02 1976-08-17 United Technologies Corporation Thermomechanical treatment for nickel base superalloys
EP0075416A1 (en) * 1981-09-17 1983-03-30 Inco Alloys International, Inc. Heat treatment of controlled expansion alloys
EP0087183A1 (en) * 1982-02-18 1983-08-31 BBC Aktiengesellschaft Brown, Boveri & Cie. Method to produce a fine-grained object as a finished article consisting of an austenitic, high-temperature strength nickel-base alloy
EP0101097A1 (en) * 1982-07-22 1984-02-22 BBC Aktiengesellschaft Brown, Boveri & Cie. Process for manufacturing work-hardened metallic workpieces by forging or pressing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3519503A (en) * 1967-12-22 1970-07-07 United Aircraft Corp Fabrication method for the high temperature alloys

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2046409A1 (en) * 1969-09-26 1971-04-01 United Aircraft Corp Thermo-mechanical increase in the resistance of the superalloys
FR2122974A5 (en) * 1971-01-21 1972-09-01 Bbc Brown Boveri & Cie
US3975219A (en) * 1975-09-02 1976-08-17 United Technologies Corporation Thermomechanical treatment for nickel base superalloys
EP0075416A1 (en) * 1981-09-17 1983-03-30 Inco Alloys International, Inc. Heat treatment of controlled expansion alloys
EP0087183A1 (en) * 1982-02-18 1983-08-31 BBC Aktiengesellschaft Brown, Boveri & Cie. Method to produce a fine-grained object as a finished article consisting of an austenitic, high-temperature strength nickel-base alloy
EP0101097A1 (en) * 1982-07-22 1984-02-22 BBC Aktiengesellschaft Brown, Boveri & Cie. Process for manufacturing work-hardened metallic workpieces by forging or pressing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0330858A1 (en) * 1988-03-02 1989-09-06 Asea Brown Boveri Ag Precipitation-hardenable nickel-based superalloy with particular mechanical properties in the temperature range of 600 to 750o C
CH675256A5 (en) * 1988-03-02 1990-09-14 Asea Brown Boveri
US4957703A (en) * 1988-03-02 1990-09-18 Asea Brown Boveri Ltd. Precipitation-hardenable nickel-base superalloy with improved mechanical properties in the temperature range from 600 to 750 degrees celsius
EP0790324A1 (en) * 1996-02-16 1997-08-20 Ebara Corporation High-temperature sufidation-corrosion resistant nickel-base alloy
US5900078A (en) * 1996-02-16 1999-05-04 Ebara Corporation High-temperature sulfidation-corrosion resistant nickel-base alloy
EP0792945A1 (en) * 1996-02-29 1997-09-03 SOCIETE NATIONALE D'ETUDE ET DE CONSTRUCTION DE MOTEURS D'AVIATION -Snecma Process for heat treatment of a nickel-base superalloy
WO1997032052A1 (en) * 1996-02-29 1997-09-04 Societe Nationale D'etude Et De Construction De Moteurs D'aviation 'snecma' Method for heat treating a nickel superalloy
FR2745588A1 (en) * 1996-02-29 1997-09-05 Snecma METHOD FOR THE HEAT TREATMENT OF A NICKEL-BASED SUPERALLOY

Also Published As

Publication number Publication date
JPS6092458A (en) 1985-05-24
CH654593A5 (en) 1986-02-28
DE3463677D1 (en) 1987-06-19
EP0142668B1 (en) 1987-05-13
US4612062A (en) 1986-09-16

Similar Documents

Publication Publication Date Title
EP0142668B1 (en) Process for the production of a fine-grained work piece of a nickel base superalloy
EP0513407B1 (en) Method of manufacture of a turbine blade
DE3009656C2 (en) Method for manufacturing a camshaft
DE69933297T2 (en) MACHINING AND AGING OF LIQUID PHASE SINTERED TUNGSTEN GREASE METAL ALLOY
DE102008032911A1 (en) Production of aluminum moldings comprises partially forming aluminum sheet using a molding tool at room temperature, partially formed product being removed and heat aged, after which it is formed in second stage to its final shape
DE3311344C2 (en) Process for the production of moldings from a copper-beryllium alloy
DE1933483A1 (en) Process for the manufacture of cartridge cases
DE69113475T2 (en) HIGH-STRENGTH STEEL PRODUCTS AND METHOD FOR THE PRODUCTION THEREOF.
EP0087183B1 (en) Method to produce a fine-grained object as a finished article consisting of an austenitic, high-temperature strength nickel-base alloy
EP0396185B1 (en) Process for preparing semi-finished creep resistant products from high melting metal
DE2751623C2 (en) Process for the production of thermoformed finished products based on molybdenum
EP0328898A1 (en) Process for preparing a heat-resistant article from a powder-metallurgically prepared work piece with a high transversal ductibility based on aluminium
DE1458485A1 (en) Austenitic chrome-nickel steel
DE3206542A1 (en) &#34;METHOD FOR PRODUCING A FINISHED PART FROM AN NI / TI OR NI / TI / CU MEMORY ALLOY&#34;
DE4315289B4 (en) Method of making metal parts by forging and forging in a press
EP3328572A1 (en) Method for producing a contoured ring rolling product
CH637426A5 (en) METHOD FOR PRODUCING MOLDED PIECES.
DE10014656B4 (en) Cold / hot working and heat treatment process for high carbon steel high alloy steel
DE3784754T2 (en) CEMENTED CARBIDE WIRE PART FROM TUNGSTEN CARBIDE.
DE69115392T2 (en) Process for the manufacture of highly unbreakable products from unstable austenitic steel and products manufactured in this way
DE102004062174A1 (en) Process for producing high strength components by precision forging
DE2056442A1 (en) Titanium alloy annular forging prodn - by repeated deformation
EP0199715A2 (en) Process for manufacturing steel wire
DE1290727B (en) Process for the production of high strength niobium alloys
DE968459C (en) Process for the production of high-strength bolt workpieces with heads, such as screws and rivets, by cold forming

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19850415

17Q First examination report despatched

Effective date: 19860425

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REF Corresponds to:

Ref document number: 3463677

Country of ref document: DE

Date of ref document: 19870619

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890818

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890831

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890930

Ref country code: CH

Effective date: 19890930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19891128

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900920

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST