EP0140827B1 - Process for the manufacture of fine grain-textured aluminium rolling mill products - Google Patents

Process for the manufacture of fine grain-textured aluminium rolling mill products Download PDF

Info

Publication number
EP0140827B1
EP0140827B1 EP84810363A EP84810363A EP0140827B1 EP 0140827 B1 EP0140827 B1 EP 0140827B1 EP 84810363 A EP84810363 A EP 84810363A EP 84810363 A EP84810363 A EP 84810363A EP 0140827 B1 EP0140827 B1 EP 0140827B1
Authority
EP
European Patent Office
Prior art keywords
iron
annealing
manganese
alloy
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84810363A
Other languages
German (de)
French (fr)
Other versions
EP0140827A1 (en
Inventor
Peter Furrer
Jürgen Timm
Frank Wehner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcan Holdings Switzerland AG
Original Assignee
Schweizerische Aluminium AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schweizerische Aluminium AG filed Critical Schweizerische Aluminium AG
Priority to AT84810363T priority Critical patent/ATE29742T1/en
Publication of EP0140827A1 publication Critical patent/EP0140827A1/en
Application granted granted Critical
Publication of EP0140827B1 publication Critical patent/EP0140827B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Definitions

  • the invention relates to a process for the production of aluminum rolled products with iron as the predominant alloying element, which, after final annealing after annealing at at least 250 ° C., have a grain size of less than 10 ⁇ m.
  • Gram size means the average diameter of all grains present.
  • Such small grains in the annealed condition are, among other things, a good prerequisite for high strength or yield strength with good ductility at the same time; this applies to all thickness ranges from millimeter sheet to film a few micrometers thick.
  • the invention is therefore based on the object of providing a process based on low-alloy aluminum-iron alloys which, using the semi-continuous ingot casting plants which are in widespread use, allows the production of rolled products in which the final roll thickness is at an annealing above 250 ° C, the grains are smaller than 10 ⁇ m.
  • the object is achieved in that an alloy consisting of 0.8 to 1.5% by weight of iron, each up to 0.5% silicon and manganese, the sum of silicon and manganese between 0.2 and 0 .8%, and other components up to 0.3% each, up to 0.8% in total, the rest aluminum, is cast at a solidification rate of 2.5 to 25 cm / min, after hot rolling with a cooling rate of at least 0.5 K / sec brought to temperatures below 120 ° C and then cold rolled to a reduction in thickness of at least 75% without intermediate annealing and that the annealing temperature at final thickness does not exceed 380 ° C.
  • the specified method is less suitable for solidification speeds outside the defined range.
  • the ratio of deformability to strength can be increased as the final annealing temperature increases. It was found for the alloy range according to the invention that the final annealing temperature must not exceed 380 ° C. in order to avoid grains of more than 10 ⁇ m with certainty.
  • the steps following hot rolling are also critical for the production of fine grains.
  • the tests showed that, in order not to endanger the formation of fine grains, the cooling rate in the area between the hot rolling end temperature and about 120 ° C must not fall below 0.5 K / sec; the cooling rate below 120 ° C is insignificant in this regard.
  • Such cooling rates can be achieved when the strip passes through a water tank or when the strip is cooled by means of intensive air flow.
  • the first annealing after hot rolling, a final annealing or, if necessary, an intermediate annealing, must not take place at a thickness which is more than a quarter of the final hot rolling thickness.
  • the proportion by weight of iron must be higher than 0.8%; otherwise grains of more than 10 ⁇ m in size are formed after the final annealing. On the other hand, if there is more than 1.5% iron, the eutectic composition is approached; this harbors the risk of forming coarse precipitates during casting, which would seriously impair the deformability.
  • ingots of both alloys with a cross section of 412x1000mm are cast at a speed of 10cm / min; the solidification rate was 7 cm / min.
  • the bars were milled over, preheated to 540 ° C and hot rolled to 8mm.
  • the hot rolled strip passed through a water box and was cold rolled to 0.7 mm.
  • a three-hour annealing was carried out at 350 ° C; then cold rolling to 0.1 mm.
  • After 20 hours of final annealing at 320 ° C the following values were achieved (the mechanical values measured in the rolling direction):
  • Example 2 Up to 0.1 mm thick, the two alloys were processed in the same way as in Example 1. It was then cold rolled to 13 ⁇ m and finally annealed at 280 ° C.
  • the manufacturing procedure corresponds in one case (AE) to that of Example 1, in the other case (AK) it was modified so that the hot rolled strip was not passed through a water box, but was immediately rewound.
  • Example 2 Up to 0.1 mm the above-mentioned alloy was processed as in Example 1. However, the 20-hour final annealing was carried out in one variant (GE) at 320 ° C and in another variant (GK) at 400 ° C.
  • Alloy E1 was processed as in Example 1 to and with the water cooling of the hot-rolled strip.
  • the strip was further cold-rolled to 2.8 mm, annealed at 360 ° C for 3 hours, further rolled to 0.8 mm, annealed at 350 ° C for 3 hours, finish-rolled to 0.1 mm and finally, as in Example 1, 20 hours at 320 ° C annealed (KW).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Forging (AREA)
  • Cereal-Derived Products (AREA)

Abstract

A process for the preparation of a rolled aluminum product, containing iron as the predominant alloy element, which has a grain size of less than 10 mu m after annealing to at least 250 DEG C., in which an alloy consisting of 0.8 to 1.5% iron, up to 0.5% by weight of each of Si and Mn, the sum of Si and Mn being between 0.2 and 0.8%, up to 0.3% by weight of any other component, the total of other components being no more than 0.8% by weight, and the remainder being aluminum, is casted at a solidification rate of 2.5 to 25 cm/min, the hot plate is cooled to less than 120 DEG C. at a rate of less than 0.5 K/sec and is then cold rolled with a thickness decrease of at least 75% without intermediate annealing, and the final annealing temperature does not exceed 380 DEG C.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Aluminiumwalzprodukten mit Eisen als vorwiegendes Legierungselement, welche bei Enddicke, nach einer Glühung bei mindestens 250°C, eine Korngrösse von weniger als 10µm aufweisen.The invention relates to a process for the production of aluminum rolled products with iron as the predominant alloying element, which, after final annealing after annealing at at least 250 ° C., have a grain size of less than 10 μm.

Unter «Korngrösse» ist jeweils der durchschnittliche Durchmesser aller vorliegenden Körner zu verstehen.“Grain size” means the average diameter of all grains present.

Derart kleine Körner im geglühten Zustand sind unter anderem eine gute Voraussetzung für hohe Festigkeit bzw. Streckgrenze bei gleichzeitig guter Verformbarkeit; dies gilt für alle Dickenbereiche von Millimeter-Blech bis zur Folie von wenigen Mikrometern Stärke.Such small grains in the annealed condition are, among other things, a good prerequisite for high strength or yield strength with good ductility at the same time; this applies to all thickness ranges from millimeter sheet to film a few micrometers thick.

Bei Aluminiumwalzprodukten aus hierfür bekannten Legierungen entstehen nach Anwendung üblicher Fertigungsverfahren bei einer Endglühung über 250°C Körner in der Grössenordnung von 15 bis 50gm. Indessen wurde ein Verfahren bekannt, gemäss dem Aluminium-Eisen-Legierungen derart zu Walzprodukten verarbeitet werden, dass nach einer Endglühung im Bereich zwischen 250 und 400°C Korngrössen auftreten, welche unter 3 gm liegen.In the case of aluminum rolled products made of alloys known for this purpose, grains in the order of magnitude of 15 to 50 gm are produced after the use of customary manufacturing processes with a final annealing above 250 ° C. In the meantime, a method has become known according to which aluminum-iron alloys are processed into rolled products in such a way that after final annealing in the range between 250 and 400 ° C., grain sizes which are less than 3 gm occur.

Dieses Verfahren benötigt jedoch den Einsatz spezieller Giessmaschinen, welche Erstarrungsgeschwindigkeiten von mehr als 25 cm/min ermöglichen. Bei den üblichen Stranggiessmethoden aber liegt die Erstarrungsgeschwindigkeit zwischen 5 und 12cm/min. However, this process requires the use of special casting machines that allow solidification speeds of more than 25 cm / min. In the usual continuous casting methods, however, the solidification rate is between 5 and 12 cm / min.

Der Erfindung liegt daher die Aufgabe zugrunde, ein auf niedrig legierten Aluminium-Eisen-Legierungen basierendes Verfahren bereitzustellen, welches unter Verwendung der verbreitet im Einsatz stehenden halbkontinuierlichen Barren-Strangguss-Anlagen die Herstellung von Walzprodukten erlaubt, bei denen bei Walzenddicke, bei einer Glühung oberhalb 250°C, die Körner kleiner als 10µm sind.The invention is therefore based on the object of providing a process based on low-alloy aluminum-iron alloys which, using the semi-continuous ingot casting plants which are in widespread use, allows the production of rolled products in which the final roll thickness is at an annealing above 250 ° C, the grains are smaller than 10µm.

Erfindungsgemäss wird die Aufgabe dadurch gelöst, dass eine Legierung, bestehend aus 0,8 bis 1,5 Gew.-% Eisen, je bis zu 0,5% Silizium und Mangan, wobei die Summe von Silizium und Mangan zwischen 0,2 und 0,8% liegt, und anderen Bestandteilen bis zu je 0,3%, insgesamt bis zu 0,8%, Rest Aluminium, mit einer Erstarrungsgeschwindigkeit von 2,5 bis 25 cm/min vergossen wird, nach dem Warmwalzen mit einer Abkühlgeschwindigkeit von mindestens 0,5 K/sec auf Temperaturen unter 120 °C gebracht und sodann bis zu einer Dickenabnahme von mindestens 75% ohne Zwischenglühung kaltgewalzt wird sowie, dass die Glühtemperatur bei Enddicke 380°C nicht übersteigt.According to the invention, the object is achieved in that an alloy consisting of 0.8 to 1.5% by weight of iron, each up to 0.5% silicon and manganese, the sum of silicon and manganese between 0.2 and 0 .8%, and other components up to 0.3% each, up to 0.8% in total, the rest aluminum, is cast at a solidification rate of 2.5 to 25 cm / min, after hot rolling with a cooling rate of at least 0.5 K / sec brought to temperatures below 120 ° C and then cold rolled to a reduction in thickness of at least 75% without intermediate annealing and that the annealing temperature at final thickness does not exceed 380 ° C.

Durch die Auswahl der Legierungszusammensetzung sowie der Aufstellung dreier notwendiger, aber leicht einzuhaltender thermomechanischer Fertigungsvorschriften gelang es, für alle Giessmethoden, welche Erstarrungsgeschwindigkeiten zwischen 2,5 und 25 cm/min mit sich bringen, ein Verfahren zu definieren, welches bei den geglühten Blechen, Dünnbändern oder Folien, Korngrössen im Bereich zwischen 1 und 5µm, in jedem Falle aber unter 10 µm erzeugen.Through the selection of the alloy composition and the set-up of three necessary, but easily adhered to, thermomechanical manufacturing regulations, it was possible to define a process for all casting methods that involve solidification speeds between 2.5 and 25 cm / min or films, grain sizes in the range between 1 and 5 µm, but in any case less than 10 µm.

Für Erstarrungsgeschwindigkeiten ausserhalb des definierten Bereichs ist das angegebene Verfahren weniger geeignet.The specified method is less suitable for solidification speeds outside the defined range.

Mit zunehmender Endglühtemperatur kann das Verhältnis Verformbarkeit zu Festigkeit gesteigert werden. Dabei stellte sich für den erfindungsgemässen Legierungsbereich heraus, dass die Endglühtemperatur 380°C nicht übersteigen darf, um mit Sicherheit Körner von über 10µm zu vermeiden.The ratio of deformability to strength can be increased as the final annealing temperature increases. It was found for the alloy range according to the invention that the final annealing temperature must not exceed 380 ° C. in order to avoid grains of more than 10 μm with certainty.

Ebenfalls kritisch für die Erzeugung feiner Körner sind die dem Warmwalzen folgenden Schritte. Die Versuche zeigten, dass, um die Entstehung feiner Körner nicht zu gefährden, im Bereich zwischen Warmwalzendtemperatur und etwa 120°C die Abkühlrate 0,5 K/sec nicht unterschreiten darf; die Abkühlrate unterhalb 120°C ist diesbezüglich unbedeutend. Solche Abkühlgeschwindigkeiten sind bei einem Durchgang des Bandes durch einen Wasserkasten oder auch bei einer Bandkühlung mittels intensiver Luftströmung zu erreichen.The steps following hot rolling are also critical for the production of fine grains. The tests showed that, in order not to endanger the formation of fine grains, the cooling rate in the area between the hot rolling end temperature and about 120 ° C must not fall below 0.5 K / sec; the cooling rate below 120 ° C is insignificant in this regard. Such cooling rates can be achieved when the strip passes through a water tank or when the strip is cooled by means of intensive air flow.

Die erste Glühung nach dem Warmwalzen, eine Endglühung oder gegebenenfalls Zwischenglühung, darf nicht bei einer Dicke, welche mehr als ein Viertel der Warmwalzenddicke beträgt, erfolgen.The first annealing after hot rolling, a final annealing or, if necessary, an intermediate annealing, must not take place at a thickness which is more than a quarter of the final hot rolling thickness.

Der Gewichtsanteil an Eisen muss höher als 0,8% liegen; andernfalls entstehen nach der Endglühung Körner von eher über 10 µm Grösse. Liegt andererseits mehr als 1,5% Eisen vor, gelangt man in die Nähe der eutektischen Zusammensetzung; dies birgt die Gefahr der Bildung grober Ausscheidungen beim Guss, welche die Verformbarkeit empfindlich stören würden.The proportion by weight of iron must be higher than 0.8%; otherwise grains of more than 10 µm in size are formed after the final annealing. On the other hand, if there is more than 1.5% iron, the eutectic composition is approached; this harbors the risk of forming coarse precipitates during casting, which would seriously impair the deformability.

Übersteigt der Silizium- oder Mangangehalt 0,5%, oder übersteigt die Summe beider Gehalte 0,8%, so besteht ebenfalls die Gefahr der Bildung grober Ausscheidungen. Bei einer Summe beider Gehalte unter 0,2% wiederum, kann die Entstehung einer Korngrösse von über 10 µm nur schwer vermieden werden.If the silicon or manganese content exceeds 0.5%, or if the sum of both contents exceeds 0.8%, there is also a risk of coarse precipitates. With a total of both contents below 0.2%, it is difficult to avoid the formation of a grain size of more than 10 µm.

Es hat sich als vorteilhaft erwiesen, die untere Grenze für den Eisengehalt bei 1,1% und diejenige für Mangan bei 0,25% festzulegen. Bei geringeren Gehalten können Korngrössen auftreten, welche nicht wesentlich unter 10 µm liegen. Bei Mangangehalten unter 0,25% besteht zudem eine erhöhte Korrosionsanfälligkeit.It has proven to be advantageous to set the lower limit for the iron content at 1.1% and that for manganese at 0.25%. At lower contents, grain sizes can occur which are not significantly less than 10 µm. Manganese levels below 0.25% are also more susceptible to corrosion.

Die Versuche zeigten, dass sich eine Beschränkung des Fe/Mn-Gewichtsverhältnisses zwischen 2,5 und 4,5 besonders günstig auf das Feinkorn auswirkt.The tests showed that a limitation of the Fe / Mn weight ratio between 2.5 and 4.5 has a particularly favorable effect on the fine grain.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele.Further advantages, features and details of the invention result from the following description of preferred exemplary embodiments.

Beispiel 1example 1 Einfluss der Legierung bei DünnbandInfluence of the alloy on thin strips

Figure imgb0001
Figure imgb0001

Nach dem Stranggiessverfahren werden Barren beider Legierungen von 412x1000mm Querschnitt mit einer Geschwindigkeit von 10cm/min gegossen; die Erstarrungsgeschwindigkeit betrug dabei 7 cm/min. Die Barren wurden überfräst, auf 540°C vorgewärmt und auf 8mm warmgewalzt. Das Warmwalzband durchlief einen Wasserkasten und wurde auf 0,7 mm kaltgewalzt. Bei dieser Zwischendicke erfolgte eine dreistündige Glühung bei 350°C; danach wurde kalt auf 0,1 mm gewalzt. Nach einer 20stündigen Endglühung bei 320°C wurden folgende Werte erzielt (die mechanischen Werte in Walzrichtung gemessen):

Figure imgb0002
According to the continuous casting process, ingots of both alloys with a cross section of 412x1000mm are cast at a speed of 10cm / min; the solidification rate was 7 cm / min. The bars were milled over, preheated to 540 ° C and hot rolled to 8mm. The hot rolled strip passed through a water box and was cold rolled to 0.7 mm. At this intermediate thickness, a three-hour annealing was carried out at 350 ° C; then cold rolling to 0.1 mm. After 20 hours of final annealing at 320 ° C the following values were achieved (the mechanical values measured in the rolling direction):
Figure imgb0002

Beispiel 2Example 2 Einfluss der Legierung bei FolienInfluence of the alloy on foils

Figure imgb0003
Figure imgb0003

Bis 0,1 mm Dicke wurden die beiden Legierungen gleich wie im Beispiel 1 verarbeitet. Im Anschluss wurde auf 13 µm kaltgewalzt und bei 280°C endgeglüht.

Figure imgb0004
Up to 0.1 mm thick, the two alloys were processed in the same way as in Example 1. It was then cold rolled to 13 µm and finally annealed at 280 ° C.
Figure imgb0004

Beispiel 3Example 3 Einfluss der Abkühlungsgeschwindigkeit nach dem WarmwalzenInfluence of cooling rate after hot rolling

Figure imgb0005
Figure imgb0005

Das Fertigungsprozedere entspricht in einem Falle (AE) demjenigen des Beispiels 1, im andern Falle (AK) wurde es dahingehend abgeändert, dass das Warmwalzband nicht durch einen Wasserkasten geführt, sondern sofort aufgehaspelt wurde.

Figure imgb0006
The manufacturing procedure corresponds in one case (AE) to that of Example 1, in the other case (AK) it was modified so that the hot rolled strip was not passed through a water box, but was immediately rewound.
Figure imgb0006

Bis 0,1 mm wurde obgenannte Legierung wie in Beispiel 1 verarbeitet. Die 20stündige Endglühung wurde jedoch in einer Variante (GE) bei 320°C und in einer anderen Variante (GK) bei 400°C durchgeführt.

Figure imgb0007
Up to 0.1 mm the above-mentioned alloy was processed as in Example 1. However, the 20-hour final annealing was carried out in one variant (GE) at 320 ° C and in another variant (GK) at 400 ° C.
Figure imgb0007

Beispiel 5Example 5 Einfluss des Kaltwalzgrades zwischen Warmwalzdicke und Dicke bei erster GlühungInfluence of the degree of cold rolling between the hot rolling thickness and the thickness during the first annealing

Die Legierung E1 wurde wie im Beispiel 1 bis und mit der Wasserkühlung des warmgewalzten Bandes verarbeitet. Weiter wurde das Band bis 2,8mm kaltgewalzt, 3 Stunden bei 360°C geglüht, bis 0,8mm weitergewalzt, 3 Stunden bei 350°C geglüht, bis 0,1 mm fertiggewalzt und schliesslich, wie in Beispiel 1, 20 Stunden bei 320°C geglüht (KW).

Figure imgb0008
Alloy E1 was processed as in Example 1 to and with the water cooling of the hot-rolled strip. The strip was further cold-rolled to 2.8 mm, annealed at 360 ° C for 3 hours, further rolled to 0.8 mm, annealed at 350 ° C for 3 hours, finish-rolled to 0.1 mm and finally, as in Example 1, 20 hours at 320 ° C annealed (KW).
Figure imgb0008

Claims (4)

1. Process for the production of rolled aluminium products with iron as predominant alloy element, which at final thickness, after annealing at at least 250°C, have a grain size of less than 10 f.lm, characterised in that an alloy, consisting of 0.8 to 1.5% iron, up to 0.5% each of silicon and manganese, the sum of silicon and manganese lying between 0.2 and 0.8% and other components up to 0.3% each, total up to 0.8%, remainder aluminium, is cast with a solidification rate of 2.5 to 25cm/min, after the hot rolling is brought to temperatures below 120°C with a cooling rate of at least 0.5K./sec. and then cold rolled to a thickness reduction of at least 75% without intermediate annealing, and in that the annealing temperature at final thickness does not exceed 380°C.
2. Process according to claim 1, characterised in that the utilised aluminium alloy contains more than 1.1% iron and more than 0.25% manganese.
3. Process according to claim 1 or 2, characterised in that the weight ratio of iron proportion to manganese proportion lies between 2.5 and 4.5.
4. Process according to at least one of claims 1 to 3, characterised in that the utilised aluminium alloy, apart from Fe, Si and Mn, contains at maximum 0.1 % of each further constituent.
EP84810363A 1983-08-23 1984-07-24 Process for the manufacture of fine grain-textured aluminium rolling mill products Expired EP0140827B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84810363T ATE29742T1 (en) 1983-08-23 1984-07-24 PROCESS FOR THE MANUFACTURE OF FINE-GRAIN ROLLED ALUMINUM PRODUCTS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4584/83 1983-08-23
CH4584/83A CH654027A5 (en) 1983-08-23 1983-08-23 METHOD FOR PRODUCING FINE-GRINED ALUMINUM ROLLING PRODUCTS.

Publications (2)

Publication Number Publication Date
EP0140827A1 EP0140827A1 (en) 1985-05-08
EP0140827B1 true EP0140827B1 (en) 1987-09-16

Family

ID=4278817

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84810363A Expired EP0140827B1 (en) 1983-08-23 1984-07-24 Process for the manufacture of fine grain-textured aluminium rolling mill products

Country Status (6)

Country Link
US (1) US4483719A (en)
EP (1) EP0140827B1 (en)
AT (1) ATE29742T1 (en)
CH (1) CH654027A5 (en)
DE (2) DE3330814C2 (en)
NO (1) NO162081C (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8800082D0 (en) * 1988-01-05 1988-02-10 Alcan Int Ltd Battery
GB8906468D0 (en) * 1989-03-21 1989-05-04 Alcan Int Ltd Metal treatment
DE3913324A1 (en) * 1989-04-22 1990-10-31 Vaw Ver Aluminium Werke Ag ALUMINUM ROLLING MACHINE AND METHOD FOR THE PRODUCTION THEREOF
DE3914020A1 (en) * 1989-04-28 1990-10-31 Vaw Ver Aluminium Werke Ag ALUMINUM ROLLING PRODUCT AND METHOD FOR THE PRODUCTION THEREOF
US5141820A (en) * 1991-01-04 1992-08-25 Showa Aluminum Corporation Aluminum pipe for use in forming bulged portions thereon and process for producing same
CA2104335C (en) * 1993-08-18 1999-03-16 Marcio Douglas Soares Aluminum foil product and manufacturing method
DE4420533A1 (en) * 1994-06-14 1995-12-21 Salzburger Aluminium Ag Process for the production of castings from aluminum alloys
US5725695A (en) * 1996-03-26 1998-03-10 Reynolds Metals Company Method of making aluminum alloy foil and product therefrom
NL1003401C2 (en) * 1996-06-24 1998-01-07 Hoogovens Aluminium Bv Prodn. of aluminium construction plates with good strength and elasticity
DE29923957U1 (en) * 1999-08-05 2001-07-05 Vaw Ver Aluminium Werke Ag Aluminum alloy
DE19948820B4 (en) * 1999-08-05 2004-03-04 Vaw Aluminium Ag Heat shield made of an aluminum alloy
CN102641889B (en) * 2012-04-06 2015-11-04 东北大学 A kind of preparation method of soldering clad aluminum foil
CN102836875B (en) * 2012-08-29 2015-09-02 三门峡天一铝业有限公司 The continuous composite rolling technique of car heat exchanger aluminium sheet, aluminium foil, aluminium strip
JP6496490B2 (en) * 2014-04-16 2019-04-03 三菱アルミニウム株式会社 Aluminum alloy soft foil and manufacturing method thereof
BR112017000317B1 (en) * 2014-07-09 2022-03-29 Hydro Aluminium Rolled Products Gmbh Method to produce an aluminum-plastic composite construction part and aluminum alloy
EP4015658A1 (en) * 2020-12-18 2022-06-22 Speira GmbH Aluminium foil with improved barrier property

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1208504B (en) * 1961-08-10 1966-01-05 Metall Werke Merkur G M B H Process for the production of high-gloss aluminum sheets or strips
US3304208A (en) * 1964-08-03 1967-02-14 Revere Copper & Brass Inc Production of fine grain aluminum alloy sheet
US3397044A (en) * 1967-08-11 1968-08-13 Reynolds Metals Co Aluminum-iron articles and alloys
US3827917A (en) * 1969-06-18 1974-08-06 Kaiser Aluminium Chem Corp Aluminum electrical conductor and process for making the same
US3691972A (en) * 1970-07-09 1972-09-19 Reynolds Metals Co Aluminous metal articles and method
DE2462117C2 (en) * 1973-05-17 1985-07-04 Alcan Research and Development Ltd., Montreal, Quebec Dispersion-strengthened sheet metal made from an aluminum-iron alloy
US3960607A (en) * 1974-03-08 1976-06-01 National Steel Corporation Novel aluminum alloy, continuously cast aluminum alloy shapes, method of preparing semirigid container stock therefrom, and container stock thus prepared
US3938991A (en) * 1974-07-15 1976-02-17 Swiss Aluminium Limited Refining recrystallized grain size in aluminum alloys
AR206656A1 (en) * 1974-11-15 1976-08-06 Alcan Res & Dev METHOD FOR PRODUCING AN ALUMINUM ALLOY SHEET PRODUCT FROM AL-FE ALLOY
GB1524354A (en) * 1974-11-15 1978-09-13 Alcan Res & Dev Method of producing aluminium alloy sheet products
US4028141A (en) * 1975-03-12 1977-06-07 Southwire Company Aluminum iron silicon alloy
US4138275A (en) * 1976-08-10 1979-02-06 Sumitomo Electric Industries, Ltd. Method of manufacturing aluminum alloy for electric conductor
JPS53144813A (en) * 1977-05-24 1978-12-16 Sumitomo Electric Ind Ltd Manufacture of electroconductive aluminum alloy

Also Published As

Publication number Publication date
DE3330814C2 (en) 1986-10-02
NO162081B (en) 1989-07-24
EP0140827A1 (en) 1985-05-08
NO843337L (en) 1985-02-25
DE3330814A1 (en) 1985-03-21
NO162081C (en) 1989-11-01
DE3466247D1 (en) 1987-10-22
US4483719A (en) 1984-11-20
CH654027A5 (en) 1986-01-31
ATE29742T1 (en) 1987-10-15

Similar Documents

Publication Publication Date Title
EP0140827B1 (en) Process for the manufacture of fine grain-textured aluminium rolling mill products
EP2959028B2 (en) Use of an aluminium alloy for the production of semi-finished products or components for motor vehicles
DE2462118C2 (en) Aluminum-iron alloy ingot
DE3247698C2 (en) Method of making a tape suitable for making can ends
DE69916456T2 (en) HIGHLY CONDUCTIVE ALUMINUM ALLOY FOR COOLING RIBS
DE3411760A1 (en) METHOD FOR PRODUCING SHEET OR STRIP FROM A ROLLING BAR OF AN ALUMINUM ALLOY
EP0061256A1 (en) Processes for making can end stock from roll cast aluminium and product
DE69823112T2 (en) Process for producing titanium alloy sheet
CH641496A5 (en) METHOD FOR PRODUCING A LOW-ZIPPED STRIP FROM A HOT-ROLLED STRIP OF ALUMINUM OR AN ALUMINUM ALLOY.
DE60014145T2 (en) METHOD FOR THE PRODUCTION OF CARBON STEEL STRIPS, ESPECIALLY FOR PACKAGING MATERIAL, AND SOFTWARE PRODUCED THEREFOR
DE2551294B2 (en) Process for making dispersion strengthened aluminum alloy products
DE60315232T2 (en) Process for producing a continuously cast aluminum sheet
DE2103614B2 (en) Process for the production of semi-finished products from AIMgSIZr alloys with high notched impact strength
DE2521330A1 (en) PROCESS FOR CONTROLLING THE STRUCTURE IN A METAL ALLOY, IN PARTICULAR ALUMINUM ALLOY, AND FOR MOLDING A FINISHED PART FROM THIS ALLOY
DE2551295A1 (en) ALUMINUM ALLOY PRODUCTS AND THEIR MANUFACTURE
DE2235168C2 (en) Process for the production of aluminum alloys and their use
DE60213761T2 (en) PREPARATION OF HIGH-FIXED FOILS FROM ALUMINUM ALLOYS
DE60213951T2 (en) PREPARATION OF HIGH-WET FILMS FROM ALUMINUM ALLOYS WITH GOOD SLABILITY
DE2747660C2 (en) A method of manufacturing non-oriented silicon steel sheets with high magnetic induction and low core loss
CH617720A5 (en)
EP0394816A1 (en) Rolled aluminium semi-finished product and process for its production
EP0142460B1 (en) Process for producing thin aluminium strips and foils with a predominant dice structure
DE2925977C2 (en) Process for the production of semi-hard aluminum sheets
EP1466992A1 (en) A flat rolled semi-finished product from an aluminium alloy
DE102012108648B4 (en) Process for the production of a component from a magnesium alloy casting belt with good forming behavior

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19851014

17Q First examination report despatched

Effective date: 19860923

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 29742

Country of ref document: AT

Date of ref document: 19871015

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19870930

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3466247

Country of ref document: DE

Date of ref document: 19871022

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19880724

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950616

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950712

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950725

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950731

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19950801

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950823

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950906

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960724

Ref country code: GB

Effective date: 19960724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960731

Ref country code: CH

Effective date: 19960731

Ref country code: BE

Effective date: 19960731

BERE Be: lapsed

Owner name: SCHWEIZERISCHE ALUMINIUM A.G.

Effective date: 19960731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970328

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970402

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST