EP0136969B1 - Cell for the electrolytic refining of aluminium - Google Patents

Cell for the electrolytic refining of aluminium Download PDF

Info

Publication number
EP0136969B1
EP0136969B1 EP84810343A EP84810343A EP0136969B1 EP 0136969 B1 EP0136969 B1 EP 0136969B1 EP 84810343 A EP84810343 A EP 84810343A EP 84810343 A EP84810343 A EP 84810343A EP 0136969 B1 EP0136969 B1 EP 0136969B1
Authority
EP
European Patent Office
Prior art keywords
cell
diaphragm plate
aluminium
aluminum
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84810343A
Other languages
German (de)
French (fr)
Other versions
EP0136969A1 (en
Inventor
Sylvestre Viré
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcan Holdings Switzerland AG
Original Assignee
Schweizerische Aluminium AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schweizerische Aluminium AG filed Critical Schweizerische Aluminium AG
Publication of EP0136969A1 publication Critical patent/EP0136969A1/en
Application granted granted Critical
Publication of EP0136969B1 publication Critical patent/EP0136969B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/24Refining

Definitions

  • the invention relates to a thermally insulated cell for the electrolytic cleaning of aluminum.
  • the aluminum is oxidized to trivalent aluminum ions at the anode, these ions migrate through the electrolyte layer to the cathode, where they are reduced again to metallic aluminum.
  • the forehearth of the cell which has a lower temperature than the 700 to 800 ° C. customary for the refining of aluminum, removes the crystallized impurities, in particular intermetallic products of Al, Cu, Fe and Si, which are known as Seiger crystals.
  • the 10 to 15 cm thick electrolyte layer in conventional three-layer electrolysis cells cannot be reduced in size as desired without the risk of mechanical contamination of the refined aluminum layer due to contact with the anodically connected aluminum alloy.
  • diaphragms which are in the form of vessels or can be displaced in the vertical direction have been used, which help to reduce the high energy consumption.
  • EP-A-0 049 600 discloses a cell for the electrolytic cleaning of aluminum, in which the metal to be cleaned flows through the cell, the cell being equipped with a separator grill. This cell can be used to produce relatively pure metal, but not pure aluminum. In addition, Seiger crystals cannot be removed.
  • the inventor has set himself the task of creating a cell for the electrolytic cleaning of aluminum which, in addition to low energy consumption, has high metallurgical efficiency and which can be implemented with low investment costs.
  • the diaphragm plate In order for the lowest possible voltage drop to be ensured via the diaphragm plate, its material must be readily wettable by the electrolyte, and the aluminum ions must be able to migrate from the interior to the surface of the diaphragm with the least possible voltage drop. On the other hand, the diaphragm plate must be absolutely impermeable to the metallic aluminum, i.e. not be wettable.
  • the electrode units used in an industrial setting have a cross-sectional area of 2 x 2 m. If these are used in a vertical or almost vertical position, the open-pore structures can no longer be made so fine that the static pressure does not push the unpurified aluminum through the diaphragm plate.
  • the electrode plates are therefore divided with partition walls made of graphite, preferably with a square or rectangular grid, the side length of which is between 5 and 30 cm. Each of these sub-elements formed by the partition walls has a separate diaphragm plate and a feed of aluminum to be cleaned.
  • each sub-element can also be designed as separate units, the wall to wall joined together and held together by a graphite frame.
  • Such electrode units composed of building blocks have the advantage that individual sub-elements can be replaced.
  • each sub-element has its own porous diaphragm plate and a feed line for the aluminum to be cleaned.
  • Window-shaped recesses can be made in the partition walls or in the joined walls.
  • the molten aluminum does not only circulate in one sub-element, neighboring chambers are in the Metal flow included.
  • the dimensions of the recesses had to be so small that the static pressure on the porous diaphragm plate remains below the critical value discussed above.
  • care must be taken to ensure that the thickness of the diaphragm plate, the material of which is the density of the electrolyte, the clear width of the open-pore channels, the dimensions of the sub-elements and the window-shaped recesses in the partition walls are matched to one another in such a way that this increases cleaning molten aluminum cannot penetrate into the pores of the diaphragm plate.
  • Aluminum oxide, magnesium oxide, oxynitrides of silicon or oxynitrides of aluminum and silicon are preferably used as materials for the open-pore diaphragm plate.
  • the porosity is preferably between 60 and 90%.
  • the ceramic filters for cleaning liquid metal of CH-PS 622 230 can also be used as porous diaphragm plates if they are dimensioned appropriately for the graphite frame. In practice, 3-15 mm thick diaphragm plates are used for the electrolytic cleaning of aluminum.
  • the electrode units are used in thermally insulated cells with a steel tub embedded in a wall, which in turn is lined with magnesite stones or refractory material containing nitride.
  • the electrode units form one or more rows inside the cell. All electrode units are arranged parallel to the terminal anode and the terminal cathode.
  • the interpolar distance between the inside of the anodic diaphragm plate and the outside of the cathodic graphite frame is preferably 10-25 mm.
  • the space surrounding the electrode units is filled with electrolyte material which is molten at the working temperature.
  • the level of the electrolyte in the cell is practically not subject to fluctuations and lies above the uppermost part of the electrode units.
  • the electrolyte preferably consists of a mixture of lithium chloride, potassium chloride and sodium chloride, it having a particularly favorable effect if a smaller amount of alkali metal fluoride is added. All of these electrolyte compositions are known and can be found in the specialist literature.
  • the aluminum to be cleaned is introduced into the cell for electrolytic cleaning via forehearths. These foreheads also serve to separate out the Seiger crystals. They consist of intermetallic compounds of aluminum, iron, silicon, titanium etc. As a rule, the Seiger crystals do not contain copper, as is the case with rotating layer electrolysis. Because the aluminum to be cleaned is separated from the high-purity aluminum by the diaphragm plate, the density of the anodic metal does not have to be controlled or increased. This means that the density of the electrolyte is irrelevant, which makes it easier to select an electrically highly conductive material.
  • the electrical direct current is conducted to the terminal anode via at least one anodic electrode rod, and is conducted bipolarly via the electrode units and the electrolytes through the cell to the terminal cathode, where the electrical direct current is in turn discharged through at least one cathodic electrode rod.
  • the electrolysis with a bipolar cell as in the three-layer process, where the aluminum is dissolved from the contaminated metal, passes through the electrolyte (as a result, the electrolyte material located in the open-pored channels of the diaphragm plate and the electrolytes located between the electrode units) and is deposited on the cathode becomes.
  • the cathodic surface is the back wall of the graphite frame.
  • the separated high-purity aluminum flows from the cathodic graphite frame into a scoop channel, which is arranged in the electrically insulating part of the cell bottom and from where the high-purity aluminum can be drawn off with a suction pipe.
  • the bipolar cell shown in FIG. 1 shows five vertical electrode units 10 with a graphite frame 12, the full-area recess of which is closed in the direction of the terminal graphite cathode 14 with a porous diaphragm plate 16.
  • the vessel-shaped cavity of the electrode units 10 is filled with the aluminum 18 to be cleaned, which is present in molten form at an operating temperature of 700 to 800 ° C.
  • drainage channels 20 are cut out for the pure aluminum.
  • the electrolyte 22 is arranged between the electrode units and above the ultrapure aluminum.
  • the partitions dividing the interior of the electrode unit are omitted.
  • the electrode unit 10 shown in FIG. 3 and intended for vertical use consists of four sub-elements 28 which are held together with a graphite rim 30.
  • Each sub-element 28 has a graphite frame 12 with a full-area opening which is closed by the porous diaphragm plate 16.
  • This diaphragm plate is expediently already used with electrolyte material in the open-pore structure.
  • Each sub-element 28 has its own forehearth 32, which communicates via an opening 34 with the interior of the sub-element.
  • the foreheads provided for separating the Seiger crystals and for introducing aluminum to be cleaned are also offset horizontally to make operation easier.
  • the clear height H of a sub-element may only be so great that the static pressure for the passage of aluminum through the open-pore structure is not reached. In the present case, H measures approximately 30 cm.
  • the electrode units 10 of FIG. 2 are used in two rows in the cell according to FIG. 4.
  • a steel trough 36 is inserted into the wall 24 and is closed by means of a corrosion-resistant, double-walled cover 38 made of steel using a seal 40.
  • the steel trough is lined with magnesite stones 42, which are resistant to both the molten electrolyte and the molten aluminum.
  • a steel base plate 44 supports the entire cell and offers additional insulation thanks to the air chambers 46.
  • the cover 38 of the steel trough 36 is penetrated by an insulating tube 58, which on the one hand allows the level 50 of the electrolyte 22 to be kept above the electrode units 10 by material replenishment and on the other hand evolving gases.
  • a special device 48 is connected during cell operation in order to extract any gases that may arise.
  • a siphon 70 allows the cleaned aluminum to be sucked off the trough 20 once or several times a day.
  • the level 52 of the pure aluminum must always be below the electrode units 10.
  • the electrode unit 10 shown in FIG. 5 corresponds essentially to FIG. 3, but is intended for the horizontal arrangement of a cell.
  • the forehearth 32 and its opening 34 are arranged accordingly.
  • the vertical section through the electrode unit 10 runs through a partition wall 54 made of graphite, which has window-shaped recesses 56 on its underside. This enables the circulation of the aluminum to be cleaned between neighboring sub-elements.
  • the height H of about 25 cm is chosen so that the static pressure of the aluminum to be cleaned is not sufficient to press the aluminum into the pores of the diaphragm 16.
  • the bottommost graphite cathode 14 is equipped with three cathodic electrode rods 62, the uppermost terminal graphite anode 60 with three anodic electrode rods 72.
  • the cell is equipped with an outer steel pan 64, with individual refractory stones acting as spacers 66.
  • the space formed by the steel tubs is covered with a light insulation material 68, such as. B. rock wool, filled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Secondary Cells (AREA)

Description

Die Erfindung bezieht sich auf eine thermisch isolierte Zelle zur elektrolytischen Reinigung von Aluminium.The invention relates to a thermally insulated cell for the electrolytic cleaning of aluminum.

Die elektrolytische Reinigung von Aluminium beruht darauf, daß sich die, bezogen auf Aluminium, relativ

  • - unedlen Komponenten (z. B. Natrium, Kalium, Lithium, Magnesium, Calcium) der eingesetzten Legierung zwar im Aluminium anodisch auflösen, aber an der Kathode nicht abgeschieden werden können, und
  • - die edlen Komponenten (beispielsweise Kupfer, Silizium, Eisen, Titan) sich nicht anodisch auflösen und somit unter Bildung von Seigerkristallen im Anodenmetall zurückbleiben.
The electrolytic cleaning of aluminum is based on the fact that it is relative to aluminum
  • - Dissolve base components (e.g. sodium, potassium, lithium, magnesium, calcium) of the alloy used in the aluminum anodically, but cannot be deposited on the cathode, and
  • - The noble components (for example copper, silicon, iron, titanium) do not dissolve anodically and thus remain in the anode metal with the formation of Seiger crystals.

Die seit Anfang dieses Jahrhunderts bekannten Dreischichtenraffinationszellen von Aluminium enthalten drei schmelzflüssige Schichten:

  • - Die unterste schwere Schicht, die üblicherweise aus einer AI-Cu-Si-Fe-Legierung besteht und deren Oberfläche zugleich die Anode ist.
  • - Die Elektrolytschicht, bestehend aus den Fluoriden und/oder Chloriden von Alkali- und Erdalkalimetallen.
  • - Das raffinierte Aluminium, die dritte, oberste Schicht, wobei deren untere Fläche die Kathode bildet.
The three-layer aluminum refining cells known since the beginning of this century contain three molten layers:
  • - The bottom heavy layer, which usually consists of an Al-Cu-Si-Fe alloy and whose surface is also the anode.
  • - The electrolyte layer, consisting of the fluorides and / or chlorides of alkali and alkaline earth metals.
  • - The refined aluminum, the third, top layer, the lower surface of which forms the cathode.

Beim Anlegen des Elektrolysegleichstroms wird das Aluminium an der Anode zu dreiwertigen Aluminium-lonen oxidiert, diese Ionen wandern durch die Elektrolytschicht zur Kathode, wo sie wieder zu metallischem Aluminium reduziert werden.When the direct electrolysis current is applied, the aluminum is oxidized to trivalent aluminum ions at the anode, these ions migrate through the electrolyte layer to the cathode, where they are reduced again to metallic aluminum.

Durch den Vorherd der Zelle, der eine niedrigere Temperatur als die zur Raffination von Aluminium üblichen 700 bis 800 0 C hat, werden die auskristallisierten Verunreinigungen, insbesondere intermetallische Produkte von Al, Cu, Fe und Si, welche als Seigerkristalle bekannt sind, entfernt.The forehearth of the cell, which has a lower temperature than the 700 to 800 ° C. customary for the refining of aluminum, removes the crystallized impurities, in particular intermetallic products of Al, Cu, Fe and Si, which are known as Seiger crystals.

Der Energieverbrauch konventioneller Dreischichtenraffinationszellen von Aluminium ist verhältnismäßig hoch. Typische Werte für die Zellenspannung liegen bei ca. 5,5 V bei einer Stromausbeute von ca. 75-97%. Dies ergibt einen Energieverbrauch von etwa 16-18 kWh/kg raffiniertes Aluminium.The energy consumption of conventional three-layer aluminum refining cells is relatively high. Typical values for the cell voltage are around 5.5 V with a current yield of around 75-97%. This results in an energy consumption of around 16-18 kWh / kg of refined aluminum.

Vom physikalischen Standpunkt aus betrachtet, bieten sich zwei Entwicklungsrichtungen zur Erniedrigung des Energieverbrauchs an:

  • - es werden Elektrolyten mit höherer elektrischer Leitfähigkeit eingesetzt, und/oder
  • - die Interpolardistanz, d. h. die Dicke der Elektrolytschicht, wird erniedrigt.
From a physical point of view, there are two development directions for reducing energy consumption:
  • - Electrolytes with higher electrical conductivity are used, and / or
  • - The interpolar distance, ie the thickness of the electrolyte layer, is reduced.

Die in konventionellen Dreischichtenelektrolysezellen 10 bis 15 cm dicke Elektrolytschicht kann jedoch nicht beliebig verkleinert werden, ohne daß die Gefahr einer mechanischen Verunreinigung der raffinierten Aluminiumschicht durch den Kontakt mit der anodisch geschalteten Aluminiumlegierung entsteht.However, the 10 to 15 cm thick electrolyte layer in conventional three-layer electrolysis cells cannot be reduced in size as desired without the risk of mechanical contamination of the refined aluminum layer due to contact with the anodically connected aluminum alloy.

In jüngster Zeit sind gefäßförmige oder in vertikaler Richtung verschiebbare Diaphragmen eingesetzt worden, welche den hohen Energieverbrauch senken helfen.Recently, diaphragms which are in the form of vessels or can be displaced in the vertical direction have been used, which help to reduce the high energy consumption.

Aus der EP-A-O 049 600 ist eine Zelle zur elektrolytischen Reinigung von Aluminium bekannt, bei der das zu reinigende Metall durch die Zelle fließt, wobei diese mit einem Separatorgrill ausgestattet ist. Mit dieser Zelle läßt sich verhältnismäßig reines Metall erzeugen, jedoch kein Reinstaluminium. Zudem lassen sich Seigerkristalle nicht entfernen.EP-A-0 049 600 discloses a cell for the electrolytic cleaning of aluminum, in which the metal to be cleaned flows through the cell, the cell being equipped with a separator grill. This cell can be used to produce relatively pure metal, but not pure aluminum. In addition, Seiger crystals cannot be removed.

Der Erfinder hat sich die Aufgabe gestellt, eine Zelle zur elektrolytischen Reinigung von Aluminium zu schaffen, welche neben einem geringen Energieverbrauch einen hohen metallurgischen Wirkungsgrad aufweist und welche mit geringen Investitionskosten realisiert werden kann.The inventor has set himself the task of creating a cell for the electrolytic cleaning of aluminum which, in addition to low energy consumption, has high metallurgical efficiency and which can be implemented with low investment costs.

Die Aufgabe wird erfindungsgemäß gelöst durch die kennzeichnenden Merkmale des Anspruchs 1. Weitere bevorzugte Merkmale ergeben sich aus den Ansprüchen 2 bis 7.The object is achieved according to the invention by the characterizing features of claim 1. Further preferred features result from claims 2 to 7.

Damit über die Diaphragmaplatte ein möglichst geringer Spannungsabfall gewährleistet ist, muß deren Material vom Elektrolyten gut benetzbar sein, und die Aluminium-lonen müssen mit möglichst geringem Spannungsabfall vom Innenraum an die Oberfläche des Diaphragmas wandern können. Andererseits muß die Diaphragmaplatte für das metallische Aluminium absolut undurchlässig, d.h. nicht benetzbar sein.In order for the lowest possible voltage drop to be ensured via the diaphragm plate, its material must be readily wettable by the electrolyte, and the aluminum ions must be able to migrate from the interior to the surface of the diaphragm with the least possible voltage drop. On the other hand, the diaphragm plate must be absolutely impermeable to the metallic aluminum, i.e. not be wettable.

Wird das zu reinigende Aluminium in den Hohlraum der Elektrodeneinheit, zwischen der Graphitumwandung und der Diaphragmaplatte eingefüllt, so entsteht ein mit der Füllhöhe zunehmender statischer Druck. Bei einem kritischen Wert wird dieser so groß, daß das schmelzflüssige Aluminium durch die offenporigen Kanäle der Diaphragmaplatte hindurchgedrückt wird, obwohl das Material der Diaphragmaplatte nicht benetzt ist.If the aluminum to be cleaned is filled into the cavity of the electrode unit, between the graphite wall and the diaphragm plate, a static pressure increases with the filling level. If the value is critical, it becomes so large that the molten aluminum is pressed through the open-pored channels of the diaphragm plate, even though the material of the diaphragm plate is not wetted.

Die in industriellem Rahmen eingesetzten Elektrodeneinheiten haben beispielsweise eine Querschnittsfläche von 2 x 2 m. Falls diese in vertikaler oder nahezu vertikaler Lage eingesetzt werden, können die offenporigen Strukturen nicht mehr so fein gemacht werden, daß der statische Druck das ungereinigte Aluminium nicht durch die Diaphragmaplatte hindurchdrückt. Die Elektrodenplatten werden deshalb mit Trennwänden aus Graphit unterteilt, vorzugsweise mit einem quadratischen oder rechteckigem Raster, dessen Seitenlänge zwischen 5 und 30 cm liegt. Jedes dieser von den Trennwänden gebildeten Subelemente hat eine separate Diaphragmaplatte und eine Einspeisung von zu reinigendem Aluminium.For example, the electrode units used in an industrial setting have a cross-sectional area of 2 x 2 m. If these are used in a vertical or almost vertical position, the open-pore structures can no longer be made so fine that the static pressure does not push the unpurified aluminum through the diaphragm plate. The electrode plates are therefore divided with partition walls made of graphite, preferably with a square or rectangular grid, the side length of which is between 5 and 30 cm. Each of these sub-elements formed by the partition walls has a separate diaphragm plate and a feed of aluminum to be cleaned.

Die Subelemente einer Elektrodeneinheit können jedoch auch als separate Einheiten ausgebildet sein, die Wand an Wand zusammengefügt und von einer Graphiteinfassung zusammengehalten werden. Solche aus Bausteinen zusammengesetzte Elektrodeneinheiten haben den Vorteil, daß einzelne Subelemente ausgewechselt werden können. Selbstverständlich hat auch hier jedes Subelement eine eigene poröse Diaphragmaplatte und eine Zuleitung für das zu reinigende Aluminium.However, the sub-elements of an electrode unit can also be designed as separate units, the wall to wall joined together and held together by a graphite frame. Such electrode units composed of building blocks have the advantage that individual sub-elements can be replaced. Of course, here too each sub-element has its own porous diaphragm plate and a feed line for the aluminum to be cleaned.

In den Zwischenwänden bzw. in den zusammengefügten Wänden können fensterförmige Aussparungen angebracht werden. So zirkuliert das geschmolzene Aluminium nicht nur in einem Subelement, benachbarte Kammern werden in die Metallströmung einbezogen. Die Dimensionen der Aussparungen sind jedoch derart niedrig zu hatten, daß der statische Druck auf die poröse Diaphragmaplatte unter dem oben diskutierten kritischen Wert bleibt. So ist bei der Konzeption der Zelle darauf zu achten, daß die Dicke der Diaphragmaplatte, deren Material die Dichte des Elektrolyten, die lichte Weite der offenporigen Kanäle, die Dimensionen der Subelemente und die fensterförmigen Aussparungen in den Zwischenwänden derart aufeinander abgestimmt sind, daß das zu reinigende schmelzflüssige Aluminium nicht in die Poren der Diaphragmaplatte eindringen kann.Window-shaped recesses can be made in the partition walls or in the joined walls. The molten aluminum does not only circulate in one sub-element, neighboring chambers are in the Metal flow included. However, the dimensions of the recesses had to be so small that the static pressure on the porous diaphragm plate remains below the critical value discussed above. When designing the cell, care must be taken to ensure that the thickness of the diaphragm plate, the material of which is the density of the electrolyte, the clear width of the open-pore channels, the dimensions of the sub-elements and the window-shaped recesses in the partition walls are matched to one another in such a way that this increases cleaning molten aluminum cannot penetrate into the pores of the diaphragm plate.

Als Materialien für die offenporige Diaphragmaplatte werden vorzugsweise Aluminiumoxid, Magnesiumoxid, Oxynitride von Silizium oder Oxynitride von Aluminium und Silizium eingesetzt. Die Porosität liegt vorzugsweise zwischen 60 und 90%. Generell sind die Keramikfilter zum Reinigen von flüssigem Metall der CH-PS 622 230 auch als poröse Diaphragmaplatten verwendbar, wenn sie den Graphitrahmen entsprechend dimensioniert werden. In der Praxis werden für die elektrolytische Reinigung von Aluminium 3-15 mm dicke Diaphragmaplatten eingesetzt.Aluminum oxide, magnesium oxide, oxynitrides of silicon or oxynitrides of aluminum and silicon are preferably used as materials for the open-pore diaphragm plate. The porosity is preferably between 60 and 90%. In general, the ceramic filters for cleaning liquid metal of CH-PS 622 230 can also be used as porous diaphragm plates if they are dimensioned appropriately for the graphite frame. In practice, 3-15 mm thick diaphragm plates are used for the electrolytic cleaning of aluminum.

Die Elektrodeneinheiten werden in thermisch isolierte Zellen mit einer in eine Ummauerung eingebetteten Stahlwanne, die ihrerseits mit Magnesitsteinen oder nitridhaltigem, refraktärem Material ausgelegt ist, eingesetzt. Die Elektrodeneinheiten bilden im Zelleninnern eine oder mehrere Reihen. Alle Elektrodeneinheiten sind parallel zu der endständigen Anode und der endständigen Kathode angeordnet. Die Interpolardistanz zwischen der Innenseite der anodischen Diaphragmaplatte und der Außenseite des kathodischen Graphitrahmens beträgt vorzugsweise 10-25 mm.The electrode units are used in thermally insulated cells with a steel tub embedded in a wall, which in turn is lined with magnesite stones or refractory material containing nitride. The electrode units form one or more rows inside the cell. All electrode units are arranged parallel to the terminal anode and the terminal cathode. The interpolar distance between the inside of the anodic diaphragm plate and the outside of the cathodic graphite frame is preferably 10-25 mm.

Je nach Anordnung der Elektrodeneinheiten wird zwischen zwei bipolaren Zellentypen zur elektrolytischen Reinigung von Aluminium unterschieden:

  • - eine Horizontalanordnung, bei welcher die Elektrodeneinheiten vertikal oder nahezu vertikal eingesetzt sind,
  • - eine Vertikalanordnung mit horizontal oder leicht geneigt eingesetzten Elektrodeneinheiten.
Depending on the arrangement of the electrode units, a distinction is made between two bipolar cell types for the electrolytic cleaning of aluminum:
  • a horizontal arrangement in which the electrode units are inserted vertically or almost vertically,
  • - A vertical arrangement with horizontally or slightly inclined electrode units.

Der die Elektrodeneinheiten umgebende Zwischenraum ist mit bei Arbeitstemperatur schmelzflüssigem Elektrolytmaterial aufgefüllt. Der Spiegel des Elektrolyten in der Zelle ist praktisch keinen Schwankungen unterworfen und liegt über dem obersten Teil der Elektrodeneinheiten. Bevorzugt besteht der Elektrolyt aus einer Mischung von Lithiumchlorid, Kaliumchlorid und Natriumchlorid, wobei es sich besonders günstig auswirkt, wenn noch eine kleinere Menge von Alkalifluorid zugegeben wird. Alle diese Elektrolytzusammensetzungen sind bekannt und können der Fachliteratur entnommen werden.The space surrounding the electrode units is filled with electrolyte material which is molten at the working temperature. The level of the electrolyte in the cell is practically not subject to fluctuations and lies above the uppermost part of the electrode units. The electrolyte preferably consists of a mixture of lithium chloride, potassium chloride and sodium chloride, it having a particularly favorable effect if a smaller amount of alkali metal fluoride is added. All of these electrolyte compositions are known and can be found in the specialist literature.

Das zu reinigende Aluminium wird über Vorherde in die Zelle zur elektrolytischen Reinigung eingeführt. Weiter dienen diese Vorherde dazu, die Seigerkristalle auszuscheiden. Sie bestehen aus intermetallischen Verbindungen von Aluminium, Eisen, Silizium, Titan usw. In der Regel enthalten die Seigerkristalle kein Kupfer, wie dies bei der Drehschichtenelektrolyse der Fall ist. Weil das zu reinigende Aluminium durch die Diaphragmaplatte vom hochreinen Aluminium getrennt ist, muß die Dichte des anodischen Metalls nicht kontrolliert bzw. erhöht werden. Damit spielt auch die Dichte des Elektrolyten keine Rolle, was die Auswahl eines elektrisch sehr gut leitenden Materials erleichtert.The aluminum to be cleaned is introduced into the cell for electrolytic cleaning via forehearths. These foreheads also serve to separate out the Seiger crystals. They consist of intermetallic compounds of aluminum, iron, silicon, titanium etc. As a rule, the Seiger crystals do not contain copper, as is the case with rotating layer electrolysis. Because the aluminum to be cleaned is separated from the high-purity aluminum by the diaphragm plate, the density of the anodic metal does not have to be controlled or increased. This means that the density of the electrolyte is irrelevant, which makes it easier to select an electrically highly conductive material.

Der elektrische Gleichstrom wird über mindestens eine anodische Elektrodenstange zu der endständigen Anode geführt, bipolar über die Elektrodeneinheiten und den Elektrolyten durch die Zelle zur endständigen Kathode geleitet, wo der elektrische Gleichstrom wiederum durch mindestens eine kathodische Elektrodenstange abgeführt wird. Prinzipiell verläuft die Elektrolyse mit einer bipolaren Zelle wie beim Dreischichtenverfahren, wo das Aluminium aus dem verunreinigten Metall aufgelöst wird, durch den Elektrolyten (hierdurch das in den offenporigen Kanälen der Diaphragmaplatte befindliche Elektrolytmaterial und den zwischen den Elektrodeneinheiten befindlichen Elektrolyten) wandert und an der Kathode abgeschieden wird. Im vorliegenden Fall ist die kathodische Oberfläche die Rückwand des Graphitrahmens. Mit bipolaren Zellen können also die Strom- und Investitionskosten, verglichen mit Dreischichtenzellen, beträchtlich gesenkt werden.The electrical direct current is conducted to the terminal anode via at least one anodic electrode rod, and is conducted bipolarly via the electrode units and the electrolytes through the cell to the terminal cathode, where the electrical direct current is in turn discharged through at least one cathodic electrode rod. In principle, the electrolysis with a bipolar cell, as in the three-layer process, where the aluminum is dissolved from the contaminated metal, passes through the electrolyte (as a result, the electrolyte material located in the open-pored channels of the diaphragm plate and the electrolytes located between the electrode units) and is deposited on the cathode becomes. In the present case, the cathodic surface is the back wall of the graphite frame. With bipolar cells, the electricity and investment costs can be significantly reduced compared to three-layer cells.

Vom kathodischen Graphitrahmen fließt das abgeschiedene Reinstaluminium in einen Schöpfkanal, der im elektrisch isolierenden Teil des Zellenbodens angeordnet ist und von wo das hochreine Aluminium mit einem Saugrohr abgezogen werden kann.The separated high-purity aluminum flows from the cathodic graphite frame into a scoop channel, which is arranged in the electrically insulating part of the cell bottom and from where the high-purity aluminum can be drawn off with a suction pipe.

Die Erfindung wird anhand der Zeichnung näher erläutert. Die schematischen Schnitte zeigen:

  • Fig. 1 einen Vertikalschnitt durch das kathodische Ende einer bipolaren Zelle zur elektrolytischen Reinigung von Aluminium
  • Fig. 2 ein Detail des unteren Bereichs von Fig. 1
  • Fig. 3 eine vertikal einsetzbare Elektrodeneinheit in perspektivischer Darstellung
  • Fig. 4 einen Vertikalschnitt durch eine bipolare Zelle mit zwei Reihen von vertikal angeordneten Elektrodeneinheiten
  • Fig. 5 einen Vertikalschnitt durch eine horizontal einsetzbare Elektrodeneinheit
  • Fig. 6 eine bipolare Zelle mit horizonal eingesetzten Elektrodeneinheiten.
The invention is explained in more detail with reference to the drawing. The schematic sections show:
  • Fig. 1 shows a vertical section through the cathodic end of a bipolar cell for the electrolytic cleaning of aluminum
  • FIG. 2 shows a detail of the lower area of FIG. 1
  • Fig. 3 is a vertically insertable electrode unit in a perspective view
  • Fig. 4 is a vertical section through a bipolar cell with two rows of vertically arranged electrode units
  • 5 shows a vertical section through a horizontally insertable electrode unit
  • 6 shows a bipolar cell with electrode units inserted horizontally.

Die in Fig. 1 dargestellte bipolare Zelle zeigt fünf vertikale Elektrodeneinheiten 10 mit einem Graphitrahmen 12, dessen vollflächige Aussparung in Richtung der endständigen Graphitkathode 14 mit einer porösen Diaphragmaplatte 16 verschlossen ist. Der gefäßförmige Hohlraum der Elektrodeneinheiten 10 ist mit dem zu reinigenden Aluminium 18, bei einer Arbeitstemperatur von 700 bis 800 °C in schmelzflüssiger Form vorliegend, gefüllt. Im Boden der Zellenauskleidung aus refraktärem Mauerwerk sind Abflußrinnen 20 für das Reinstaluminium ausgespart. Zwischen den Elektrodeneinheiten und über dem Reinstaluminium ist der Elektrolyt 22 angeordnet.The bipolar cell shown in FIG. 1 shows five vertical electrode units 10 with a graphite frame 12, the full-area recess of which is closed in the direction of the terminal graphite cathode 14 with a porous diaphragm plate 16. The vessel-shaped cavity of the electrode units 10 is filled with the aluminum 18 to be cleaned, which is present in molten form at an operating temperature of 700 to 800 ° C. In the bottom of the cell lining made of refractory masonry, drainage channels 20 are cut out for the pure aluminum. The electrolyte 22 is arranged between the electrode units and above the ultrapure aluminum.

Wird elektrischer Gleichstrom zu der nicht dargestellten endständigen Anode der Zelle geleitet, so fließt dieser durch die Elektrodeneinheiten zu der endständigen Kathode, von wo der Stromkreis über ebenfalls nicht dargestellte kathodische Elektrodenstangen geschlossen wird. In der Arbeitsphase wirkt die der porösen Diaphragmaplatte zugewandte Seite des zu reinigenden Aluminiums als Anode, die Rückwand der in Richtung der endständigen Kathode angeordneten nächsten Elektrodeneinheit als Kathode. Alle in der Zelle angeordneten Elektrodeneinheiten arbeiten also bipolar. Die Interpolardistanz d entspricht dem kürzesten Abstand des zu reinigenden Aluminiums von der Rückwand des nächsten Graphitrahmens, mit anderen Worten der Dicke der porösen Diaphragmaplatte plus der Dicke der Elektrolytschicht.If direct electrical current is conducted to the terminal anode, not shown, of the cell, it flows through the electrode units to the terminal cathode, from where the circuit via cathodic electro, also not shown the bars are closed. In the working phase, the side of the aluminum to be cleaned facing the porous diaphragm plate acts as an anode, the rear wall of the next electrode unit arranged in the direction of the terminal cathode acts as a cathode. All electrode units arranged in the cell therefore work bipolar. The interpolar distance d corresponds to the shortest distance of the aluminum to be cleaned from the rear wall of the next graphite frame, in other words the thickness of the porous diaphragm plate plus the thickness of the electrolyte layer.

In Fig. 2 wird das frisch abgeschiedene Aluminium 26 dargestellt, welches entlang der kathodischen Rückwand des Graphitrahmens 12 nach unten perlt und sich in der Abflußrinne 20 sammelt. Ebenfalls gut ersichtlich ist die sich über den Elektrolyten 22 und das poröse Diaphragma 16 in horizontaler Richtung erstreckende Interpolardistanz d.2 shows the freshly deposited aluminum 26 which bubbles down along the cathodic rear wall of the graphite frame 12 and collects in the drainage channel 20. The interpolar distance d extending across the electrolyte 22 and the porous diaphragm 16 in the horizontal direction is also clearly visible.

Einfachheitshalber sind die den Innenraum der Elektrodeneinheit unterteilenden Trennwände weggelassen.For the sake of simplicity, the partitions dividing the interior of the electrode unit are omitted.

Die in Fig. 3 dargestellte, für den vertikalen Einsatz vorgesehene Elektrodeneinheit 10 besteht aus vier Subelementen 28, die mit einer Graphiteinfassung 30 zusammengehalten sind. Jedes Subelement 28 hat einen Graphitrahmen 12 mit einer vollflächigen Öffnung, die von der porösen Diaphragmaplatte 16 verschlossen wird. Diese Diaphragmaplatte wird zweckmäßig bereits mit Elektrolytmaterial in der offenporigen Struktur eingesetzt.The electrode unit 10 shown in FIG. 3 and intended for vertical use consists of four sub-elements 28 which are held together with a graphite rim 30. Each sub-element 28 has a graphite frame 12 with a full-area opening which is closed by the porous diaphragm plate 16. This diaphragm plate is expediently already used with electrolyte material in the open-pore structure.

Jedes Subelement 28 hat seinen eigenen Vorherd 32, der über eine Öffnung 34 mit dem Innenraum des Subelementes kommuniziert. Die zum Ausscheiden der Seigerkristalle und zum Einführen von zu reinigendem Aluminium vorgesehenen Vorherde sind zur Erleichterung der Bedienung auch in horizontaler Richtung versetzt. Die lichte Höhe H eines Subelementes darf nur so groß sein, daß der statische Druck für den Durchtritt des Aluminiums durch die offenporige Struktur nicht erreicht wird. Im vorliegenden Fall mißt H etwa 30 cm.Each sub-element 28 has its own forehearth 32, which communicates via an opening 34 with the interior of the sub-element. The foreheads provided for separating the Seiger crystals and for introducing aluminum to be cleaned are also offset horizontally to make operation easier. The clear height H of a sub-element may only be so great that the static pressure for the passage of aluminum through the open-pore structure is not reached. In the present case, H measures approximately 30 cm.

Die Elektrodeneinheiten 10 von Fig. werden zweireihig in Zelle gemäß Fig. 4 eingesetzt. In die Ummauerung 24 ist eine Stahlwanne 36 eingesetzt, die mittels eines korrosionsfesten, doppelwandigen Deckels 38 aus Stahl unter Verwendung einer Dichtung 40, verschlossen ist. Auf der Innenseite ist die Stahlwanne mit Magnesitsteinen 42 ausgekleidet, die sowohl gegen den schmelzflüssigen Elektrolyten als auch gegen das geschmolzene Aluminium beständig sind.The electrode units 10 of FIG. 2 are used in two rows in the cell according to FIG. 4. A steel trough 36 is inserted into the wall 24 and is closed by means of a corrosion-resistant, double-walled cover 38 made of steel using a seal 40. On the inside, the steel trough is lined with magnesite stones 42, which are resistant to both the molten electrolyte and the molten aluminum.

Eine Bodenplatte 44 aus Stahl stützt die ganze Zelle und bietet dank den Luftkammern 46 eine zusätzliche Isolation.A steel base plate 44 supports the entire cell and offers additional insulation thanks to the air chambers 46.

Der Deckel 38 der Stahlwanne 36 wird von einem Rohr 58 isolierend durchgriffen, welches einerseits erlaubt, das Niveau 50 des Elektrolyten 22 durch Materialnachschub stets oberhalb der Elektrodeneinheiten 10 zu halten und andererseits sich allenfalls entwickelnde Gase abführen läßt. Eine spezielle Einrichtung 48 wird während des Zellenbetriebs angeschlossen, um die ggf. entstehenden Gase abzusaugen.The cover 38 of the steel trough 36 is penetrated by an insulating tube 58, which on the one hand allows the level 50 of the electrolyte 22 to be kept above the electrode units 10 by material replenishment and on the other hand evolving gases. A special device 48 is connected during cell operation in order to extract any gases that may arise.

Ein Siphon 70 erlaubt, das gereinigte Aluminium ein- oder mehrmals pro Tag von der Abflußrinne 20 abzusaugen. Das Niveau 52 des Reinstaluminiums dagegen muß stets unterhalb der Elektrodeneinheiten 10 liegen.A siphon 70 allows the cleaned aluminum to be sucked off the trough 20 once or several times a day. The level 52 of the pure aluminum, however, must always be below the electrode units 10.

Die in Fig. 5 dargestellte Eiektrodeneinheit 10 entspricht im wesentlichen Fig. 3, sie ist jedoch für die horizontale Anordnung einer Zelle vorgesehen. Der Vorherd 32 und dessen Öffnung 34 sind entsprechend angeordnet. Der Vertikalschnitt durch die Elektrodeneinheit 10 verläuft durch eine Trennwand 54 aus Graphit, welche auf ihrer Unterseite fensterförmige Aussparungen 56 hat. Diese ermöglicht die Zirkulation des zu reinigenden Aluminiums zwischen benachbarten Subelementen. Die Höhe H von etwa 25 cm ist so gewählt, daß der statische Druck des zu reinigenden Aluminiums nicht ausreicht, um das Aluminium in die Poren des Diaphragmas 16 zu drükken.The electrode unit 10 shown in FIG. 5 corresponds essentially to FIG. 3, but is intended for the horizontal arrangement of a cell. The forehearth 32 and its opening 34 are arranged accordingly. The vertical section through the electrode unit 10 runs through a partition wall 54 made of graphite, which has window-shaped recesses 56 on its underside. This enables the circulation of the aluminum to be cleaned between neighboring sub-elements. The height H of about 25 cm is chosen so that the static pressure of the aluminum to be cleaned is not sufficient to press the aluminum into the pores of the diaphragm 16.

Die Elektrodeneinheiten von Fig. 5 werden in eine Zelle des Typs von Fig. 6, mit der Diaphragmaplatte 16 nach unten, in horizontaler Lage eingesetzt. Die zuunterst eingesetzte endständige Graphitkathode 14 ist mit drei kathodischen Elektrodenstangen 62 bestückt, die zuoberst liegende endständige Graphitanode 60 mit drei anodischen Elektrodenstangen 72.5 are inserted into a cell of the type of FIG. 6, with the diaphragm plate 16 down, in a horizontal position. The bottommost graphite cathode 14 is equipped with three cathodic electrode rods 62, the uppermost terminal graphite anode 60 with three anodic electrode rods 72.

Neben der inneren Stahlwanne 36 ist die Zelle mit einer äusseren Stahlwanne 64 ausgerüstet, wobei einzelne refraktäre Steine als Distanzhalter 66 wirken. Der von den Stahlwannen gebildete Zwischenraum ist mit einem leichten Isolationsmaterial 68, wie z. B. Steinwolle, gefüllt.In addition to the inner steel pan 36, the cell is equipped with an outer steel pan 64, with individual refractory stones acting as spacers 66. The space formed by the steel tubs is covered with a light insulation material 68, such as. B. rock wool, filled.

Claims (7)

1. A heat-insulated cell for the electrolytic purification of aluminium, comprising a trough having a steel tub (36) which is embedded in brickwork (24) and which is clad with electrolyte- and high temperature-resistant material (42) and is closed by a cover (38), having an electrolyte (22) on the base of alkali chlorides, forehearths (32) for the addition of the aluminium (18) to be purified and the separation of the liquation crystals, a supply line (58) for electrolyte material, which is designed also as a gas drain, and a collecting and discharge system for the high- purity aluminium (20), and connected electrically in series in the interior of the cell bipolar electrode units (10) immersed in the electrolytes (22) and each having:
- a graphite frame (12) of vessel-shaped construction open over its whole area in the direction of the graphite cathode (14) fixed at the end;
- partitions (54) of graphite for subdivision into at least three subelements (28);
- a diaphragm plate (16) which closes off and seals the opening to each sub-element (28) in the graphite frame (12) and is wettable by the molten electrolyte (22) but on the contrary not wettable by the aluminium and the open-pore structure of which is filled with electrolyte material; and
- a separate forehearth (32) for each sub-element (28) for the feeding in of aluminium (18) to be purified and the separation of liquation crystals the height (H) of the volume formed between the graphite frame (12) and the diaphragm plate (16) for the aluminium (18) to be purified being dimensioned in such a way that with the volume filled the static pressure is lower than the critical value for flow through the porous diaphragm plate (16).
2. A cell as in Claim 1, characterized in that the sub-elements (28) are made as separate units and held together by a graphite enclosure (30).
3. A cell as in Claim 1 or 2, characterized in that the partition walls (54) serving for the mechanical stabilization of the diaphragm plate (16) or respectively the joined-together walls of the sub-elements (28) have openings (56) in the form of windows.
4. A cell as in at least one of the Claims 1 to 3, characterized in that the diaphragm plate (16) has a porosity of 60-90%.
5. A cell as in at least one of the Claims 1 to 4, characterized in that the interpolar distance (d) between the inside of the anodic diaphragm plate (16) and the cathodic graphite frame (12) amounts to 10-25 mm.
6. A cell as in at least one of the Claims 1 to 5, characterized in that the electrode units (10) are built in vertically or nearly vertically side by side with diaphragm plates (16) arranged at the side.
7. A cell as in at least one of the Claims 1 to 5, characterized in that the electrode units (10) are arranged one above the other between horizontal and slightly sloping, with the diaphragm plates (16) downwards.
EP84810343A 1983-07-27 1984-07-13 Cell for the electrolytic refining of aluminium Expired EP0136969B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4131/83 1983-07-27
CH4131/83A CH655136A5 (en) 1983-07-27 1983-07-27 CELL FOR ELECTROLYTIC CLEANING OF ALUMINUM.

Publications (2)

Publication Number Publication Date
EP0136969A1 EP0136969A1 (en) 1985-04-10
EP0136969B1 true EP0136969B1 (en) 1988-06-01

Family

ID=4270409

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84810343A Expired EP0136969B1 (en) 1983-07-27 1984-07-13 Cell for the electrolytic refining of aluminium

Country Status (8)

Country Link
US (1) US4601804A (en)
EP (1) EP0136969B1 (en)
JP (1) JPS6052588A (en)
AU (1) AU571246B2 (en)
CA (1) CA1232867A (en)
CH (1) CH655136A5 (en)
DE (1) DE3471696D1 (en)
NO (1) NO163291C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8331769D0 (en) * 1983-11-29 1984-01-04 Alcan Int Ltd Aluminium reduction cells
US20030209426A1 (en) * 2000-12-08 2003-11-13 Slaugenhaupt Michael L. Insulating lid for aluminum production cells
CN111549359B (en) 2015-02-11 2022-10-11 美铝美国公司 System and method for purifying aluminum
FI3547474T3 (en) 2018-03-27 2023-01-13 Method and robot for insulation machining in a cable joint
WO2023172717A1 (en) * 2022-03-10 2023-09-14 Reynolds Consumer Products LLC Systems and methods for purifying aluminum

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL56521C (en) * 1939-12-06
FR893325A (en) * 1942-04-27 1944-06-06 Improvements in processes and devices for the electrolytic decomposition of liquefied solutions by heat, in particular with a view to the production, or by refining of aluminum
AU506485B2 (en) * 1976-06-09 1980-01-03 National Research Development Corp. Packed, bed electrorefining
US4214955A (en) * 1979-01-02 1980-07-29 Aluminum Company Of America Electrolytic purification of metals
NZ197038A (en) * 1980-05-23 1984-04-27 Alusuisse Cathode for the production of aluminium
ZA816719B (en) * 1980-10-07 1982-09-29 Alcan Int Ltd Electrolytic refining of molten metal
JPS5942079B2 (en) * 1981-12-01 1984-10-12 三井アルミニウム工業株式会社 Aluminum refining method
US4411747A (en) * 1982-08-30 1983-10-25 Aluminum Company Of America Process of electrolysis and fractional crystallization for aluminum purification

Also Published As

Publication number Publication date
CA1232867A (en) 1988-02-16
NO843001L (en) 1985-01-28
US4601804A (en) 1986-07-22
JPS6052588A (en) 1985-03-25
NO163291B (en) 1990-01-22
AU571246B2 (en) 1988-04-14
NO163291C (en) 1990-05-02
AU3084384A (en) 1985-01-31
EP0136969A1 (en) 1985-04-10
DE3471696D1 (en) 1988-07-07
CH655136A5 (en) 1986-03-27

Similar Documents

Publication Publication Date Title
EP0041045B1 (en) Cathode for molten-salt electrolysis cell
DD144796A5 (en) CATHODE FOR A MELT FLUID ELECTROLYSIS OVEN
DE60013886T2 (en) ELECTROLYSIS CELL OPERATING AT LOW TEMPERATURE FOR THE PREPARATION OF ALUMINUM
DE2438891A1 (en) METHOD OF MELT FLOW ELECTROLYSIS WITH NON-CONSUMABLE BIPOLAR ELECTRODES
EP0027016B1 (en) Improvement in an apparatus for electrolytic production of magnesium metal from its chloride
CH643885A5 (en) ELECTRODE ARRANGEMENT OF A MELTFLOW ELECTROLYSIS CELL FOR PRODUCING ALUMINUM.
EP0136969B1 (en) Cell for the electrolytic refining of aluminium
DE3405762C2 (en) Cell for refining aluminum
DE3110490A1 (en) MELT FLOW ELECTROLYSIS CELL FOR THE PRODUCTION OF ALUMINUM
AU2002321778B2 (en) Aluminium electrowinning cells with inclined cathodes
DE69837966T2 (en) CELL FOR ALUMINUM MANUFACTURE WITH DRAINABLE CATHODE
DE1115467B (en) Furnace for the production of aluminum by fusible electrolysis
AU2002321778A1 (en) Aluminium electrowinning cells with inclined cathodes
DE3322808C2 (en) Floating solid-state cathode
DE60201534T2 (en) ELECTROLYSIS CELLS FOR ALUMINUM PREPARATION WITH DRAINED CATHODE FLOOR AND A RESERVOIR FOR ALUMINUM
DE1174516B (en) Furnace and process for the production of aluminum by fused salt electrolysis
US3676323A (en) Fused salt electrolyzer for magnesium production
DE3151419C1 (en) Cathode-side current connection for a fused-salt electrolysis cell used to produce aluminium
DE60202676T2 (en) ALUMINUM ELECTROLYSIS CELL WITH DRAINABLE CATHODE FLOOR AND ALUMINUM STORAGE CONTAINER
AT201299B (en) Cell for the electrolytic refining of aluminum using the three-layer process
DE263432C (en)
DE1160645B (en) Multi-cell furnace for fused-salt electrolysis and a process for producing aluminum in such a furnace
AT207578B (en) Furnace for the production of aluminum by fused-salt electrolysis from alumina, and processes therefor
AT212031B (en) Process for the continuous production of aluminum by fusible electrolysis and a furnace for carrying out this process
DE3022232C2 (en) Electrode arrangement of a melt flow electrolysis cell for the production of aluminum

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19850914

17Q First examination report despatched

Effective date: 19861030

D17Q First examination report despatched (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE LI

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE LI

REF Corresponds to:

Ref document number: 3471696

Country of ref document: DE

Date of ref document: 19880707

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920615

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920619

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930731

Ref country code: CH

Effective date: 19930731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940401