EP0131544B1 - Electrically conductive filling agent - Google Patents

Electrically conductive filling agent Download PDF

Info

Publication number
EP0131544B1
EP0131544B1 EP84810326A EP84810326A EP0131544B1 EP 0131544 B1 EP0131544 B1 EP 0131544B1 EP 84810326 A EP84810326 A EP 84810326A EP 84810326 A EP84810326 A EP 84810326A EP 0131544 B1 EP0131544 B1 EP 0131544B1
Authority
EP
European Patent Office
Prior art keywords
process according
parts
filler
phthalocyanine
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84810326A
Other languages
German (de)
French (fr)
Other versions
EP0131544A1 (en
Inventor
Fridolin Dr. Bäbler
Kurt Dr. Munk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Ciba Geigy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy AG filed Critical Ciba Geigy AG
Priority to AT84810326T priority Critical patent/ATE31993T1/en
Publication of EP0131544A1 publication Critical patent/EP0131544A1/en
Application granted granted Critical
Publication of EP0131544B1 publication Critical patent/EP0131544B1/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/18Conductive material dispersed in non-conductive inorganic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Definitions

  • the invention thus relates to a method for producing an electrically conductive filler, characterized in that a mixture of at least one metal phthalocyanine and at least one inorganic filler is pyrolyzed.
  • Suitable metal phthalocyanines are e.g. B. copper, iron, nickel, aluminum, cobalt, manganese, tin, silicon, germanium, lead, titanium, chromium, uranium, magnesium, vanadium, molybdenum or Zinc phthalocyanines, mixtures of two or more different metal phthalocyanines also being possible.
  • the metal phthalocyanines can also be mixed with metal-free phthalocyanines. It is also possible, for example, to use metal phthalocyanines substituted with sulfonic acid, sulfonamide, sulfoester, alkyl, aryl, aryl ether or thioether residues.
  • the metal phthalocyanines can be used in fine or coarse form.
  • the metal phthalocyanine used is preferably copper, nickel, cobalt or iron phthalocyanine, but very preferably copper phthalocyanine, in particular crude ⁇ -copper phthalocyanine for economic reasons.
  • Suitable organic fillers are, in particular, glass, quartz, clay minerals, feldspar, silicates, carbonates, rock flour, clay, oxides or sulfates, which can be synthetic or natural materials, such as.
  • the fillers mentioned can be used individually or
  • Aluminum oxide, wollastonite, titanium dioxide, mica, iron oxide or quartz, in particular finely divided quartz, are preferably used as fillers.
  • electrically conductive fillers produced according to the invention, in which the inorganic filler is crystalline or amorphous quartz with a particle size of 0.01 to 1000 ⁇ m, preferably 2 to 200 ⁇ m.
  • the electrically conductive fillers that can be used in accordance with the invention can be produced by intimately mixing the pigment to be pyrolyzed and the inorganic filler dry or in an aqueous suspension, optionally with grinding, and then, if working in an aqueous suspension, filtering and drying . If necessary, the inorganic filler can be added during the synthesis of the metal phthalocyanine.
  • the pigment to be pyrolyzed are preferably used per 100 parts by weight of dry starting mixture.
  • the mixture of inorganic filler and metal phthalocyanine thus obtained is then pyrolyzed, the inorganic filler being coated with pyrolyzed pigment.
  • the pyrolysis can be carried out at 0.5 to 20 bar, preferably at normal pressure, in air, in inert gas, in air with an increased oxygen content or in hydrogen gas. Pressure, gas and temperature increase as a function of time are generally chosen so that the pigment pyrolyzes in the highest possible yield of carbon and metal. Air or nitrogen are particularly suitable as the gas.
  • the pyrolysis is expediently carried out at temperatures from 650 to 2500 ° C., preferably at temperatures from 800 to 1200 ° C.
  • the process according to the invention preferably takes place at temperatures of 650 to 2500 ° C., at a pressure of 0.5 to 20 bar and in air, inert gas, in air with increased oxygen content or in hydrogen gas, but very preferably at 800 to 1200 ° C. and at normal pressure in air instead.
  • heating a 1: 1 mixture of quartz powder / Cu phthalocyanine in air to 1050 ° C (at normal pressure) gives a product consisting of approximately 61% by weight of silicon dioxide, 30% by weight of carbon, 6.4 % By weight copper and 2.6% by weight nitrogen.
  • the electrical conductivity at room temperature is approximately 10 Q-1 cm- 1 .
  • the pyrolysis product is obtained in continuous or loose, dark gray to black solid mass and is usually broken and pulverized.
  • the electrically conductive fillers produced according to the invention are particularly suitable for incorporation into high-molecular organic or inorganic material.
  • a high molecular organic Material are suitable for.
  • the high-molecular compounds mentioned can exist as plastic masses, melts or solutions.
  • the conductive fillers produced according to the invention can be added to the high-molecular organic material by the methods customary in the art, before or during shaping, or also as a dispersion or in the form of preparations. Depending on the purpose, you can add other substances, such as. B. light stabilizers, heat stabilizers, plasticizers, binders, pigments and / or dyes, carbon black, flame retardants or other fillers.
  • the electrically conductive filler according to the invention is preferably used in an amount of 0.5 to 70, preferably 15 to 60 percent by weight (per total mixture).
  • the additives can also be added before or during the polymerization.
  • Epoxy resins which are hardened with dicarboxylic acid anhydrides are preferably used as resin / hardener components.
  • the electrically conductive fillers produced according to the invention can be incorporated, for. B. cement, concrete, glasses, ceramic materials, inorganic polymers such as polysilicic acid or polyphosphoric acid derivatives, alone or in a mixture with organic polymers, such as asphalt, mentioned.
  • the electrically conductive fillers produced according to the invention are preferably used in an amount of 5 to 70, preferably 15 to 60 percent by weight (per total mixture).
  • plastic systems with excellent mechanical and electrical properties can be produced economically. They have a reinforcing effect on the carrier material and are characterized by good electrical conductivity. Certain plastics, for example epoxy resins, containing the fillers according to the invention also have a constant electrical conductivity over a wide temperature range.
  • Casting resin compositions for example epoxy casting resins, containing the fillers produced according to the invention also have good processing properties even with high conductivity (for example no or only low thixotropy) and lead to molded parts without a reduction in the mechanical properties.
  • high conductivity for example no or only low thixotropy
  • the fillers obtained according to the invention can be incorporated into plastics in a mixture with metals, for example in the form of powders, chips or fibers.
  • the metal to be used here and its concentration depend on the area of application and should not impair the mechanical properties and the resistance, for example, to the decomposition of the plastic products produced with it. These are, for example, steel fibers and / or aluminum flakes. Instead of metals, carbon fibers can also be used.
  • the electrical conductivity can be specifically adjusted by dilution with the fillers mentioned at the beginning or by adding graded amounts of the fillers produced according to the invention in such plastics or in inorganic materials, for example in such a way that electrically partially conductive compositions are formed. This is particularly important for controlling electrical fields and / or for reducing surface or space charges.
  • the electrically conductive fillers produced according to the invention are not only suitable for the production of antistatic and electrically conductive polymer compositions, plastic articles and coatings. They can also be used to manufacture batteries and other objects in microelectronics, in or as sensors, as catalysts for certain chemical reactions, for the production of solar collectors, for shielding sensitive electronic components and high-frequency fields [EMI shielding], for equipotential bonding and glow protection higher load capacity of electrical systems and machines, for controlling electrical fields and charges in electrical devices or as surface heating conductors.
  • EMI shielding shielding sensitive electronic components and high-frequency fields
  • Example 1 90 parts of quartz powder Wllb from SIHELCO AG (SH-Birsfelden) are mixed well with 90 parts of crude ⁇ -copper phthalocyanine for 30 minutes on a Turbula machine from WA Bachofen (CH-Basel). The mixture is heated in a quartz glass vessel, the lid of which has a small opening, in an oven to 1050 ° C. within 6 hours. After 0.5 hours at this temperature, the mixture is cooled and 157 parts are obtained, a gray-black, solid mass which is pulverized in a laboratory mixer. The powder has a composition of 61.5% by weight SiO 2 , 30% by weight C, 6.5% by weight Cu and 2% by weight N The electrical conductivity, measured on the compressed powder, is Room temperature 10 Scm- 1 (2 electrodes measurement on micropressling).
  • Cu-Pc copper phthalocyanine "according to F. Beck,” Bunsen Society Reports, Physical Chemistry “68 (1964), pages 558-567.
  • Example 5 50 parts Wl ® from SIHELCO AG (Birsfelden CH-) are thoroughly mixed together with 50 parts of nickel phthalocyanine for 30 minutes on a Turbula machine from WA Bachofen (CH-Basel). The mixture is heated in a quartz glass vessel, the lid of which has a small opening, to 1000 ° C. in an oven within 6 hours. The mixture is kept at 1000 ° C. for 1 hour and then allowed to cool to room temperature. This gives 86.2 parts of a gray-black solid mass which is powdered. The electrical conductivity of the powder thus obtained is 12 Scm- 1 at room temperature .
  • Example 12 270 parts of an analogous manner to Example 1 produced the filler from 135 parts of quartz powder W12 ® from SIHELCO AG and 135 parts of the obtained in Example 1 electrically conductive powder are added to 100 parts of Araldite CY 225 ® (modified bisphenol A epoxy resin having an Molecular weight of 380) and 80 parts of the hardener HY 925® (modified dicarboxylic anhydride). The mixture is heated to 80 ° C., homogenized with a paddle stirrer and vented for 3 minutes. The mixture is then poured into molds preheated to 80 ° C and cured for 4 hours at 80 ° C and for 8 hours at 140 ° C (DIN No. 16945). The following data are measured on the martensets and plates produced in this way:
  • Example 13 For the coloring of PVC, a mixture of 65 parts of stabilized PVC, 35 parts of dioctyl phthalate and 25 parts of the product obtained according to Example 1 is used
  • the soft PVC film obtained in this way has a specific surface resistance R o , measured according to DIN 53482 (electrode arrangement A), of 5.5. 10 10 2 cm.
  • EXAMPLE 14 25 parts of the product obtained according to Example 1, 37.5 parts of polyethylene wax AC-617 0 from Allied Chemicals and 125 parts of sodium chloride are kneaded at 80-110 ° C. for 6 hours in a 300-part laboratory kneader. Then 62.5 parts of MOPLEN MOB-120 ® from Montecatini are incorporated into the plasticine. The kneading compound is cooled to 30 ° C in the running kneader, a gray-black powdery mass is formed, which is finely pulverized with approx. 3 liters of water on a FRYMA Z 050 toothed colloid mill.
  • the suspension obtained is filtered off and the presscake is washed free of chloride with water.
  • the product obtained is dried in a vacuum drying cabinet at 50-60 ° C. This gives 120 parts of a fine, loose, gray-black polyolefin preparation which, after extrusion on a laboratory extruder (Temp.Zone 1: 160 ° C; Zone 2: 190 ° C; Zone 3: 220 ° C; Zone 4: 170 ° C), is a thermoplastic Mass results. This mass has an electrical volume resistance of approx. 4 - 10 5 ⁇ cm, and is excellently suited for the production of injection molded articles or fibers.
  • Example 15 In a 300 parts by volume of comprehensive laboratory kneader, 32 parts of the product obtained according to Example 1, 48 parts DYNAPOL ® 206 of the company Dynamit Nobel, 160 parts of sodium chloride and 25-32 parts by volume of diacetone alcohol for about 5 hours at Kneaded at 80 ° C. Water is then added dropwise in the running kneader and at the same time cooled until the kneading mass is converted into granules. The granules are ground on a FRYMA dental colloid mill Z 050 with plenty of water, filtered off, the press cake obtained is washed salt-free with water and then dried in a vacuum drying cabinet at 65-70 ° C. A gray-black powdery mass is obtained, which is extruded into a cord on a laboratory extruder and then granulated on a chopping machine. The 40% polyester preparation thus obtained has an electrical volume resistance of 10 4 to 10 5 Qcm.
  • EXAMPLE 16 If the procedure is analogous to that of Example 1, but using 5 parts of quartz powder W1® instead of 90 parts and 95 parts of ⁇ -copper phthalocyanine instead of 90 parts, a product containing about 12% by weight of copper is obtained. It is an excellent catalyst for the reaction described in Example 17 for the preparation of an anthraquinoid wool dye.
  • Example 17 Reaction scheme 20.2 parts of 1-amino-4-bromoanthraquinone-2-sulfonic acid sodium are stirred with 300 parts of water and, after the addition of 13.8 parts of sodium carbonate, 11.25 parts of I-aminobenzene-4-sulfonic acid are gradually added. 7 portions of 1 part each of the product obtained according to Example 16, finely powdered, are added to the mixture heated to 85 ° C. as a catalyst at intervals of 45 minutes. After the last addition, the mixture is stirred for a further hour at 85-90 ° C., then 7.5 parts of sodium carbonate, 11.25 parts of 1-aminobenzene-4-sulfonic acid and 1 part of the product obtained according to Example 16 are added.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

Verschiedene Applikationsgebiete verlangen elektrisch leitende Kunststoffsysteme, welche neben guten elektrischen Eigenschaften zusätzlich gute mechanische Festigkeiten aufweisen. Bekannte elektrisch leitende Füllmittel, beispielsweise Metallpulver, weisen wohl sehr gute elektrische Leitfähigkeiten auf, lassen sich aber infolge ihrer schlechten Dispergierbarkeit schwer in Kunststoffe einarbeiten, ergeben inhomogene Systeme, können die mechanischen Eigenschaften negativ beeinflussen und die katalytische Zersetzung der Kunststoffe fördern.Various areas of application require electrically conductive plastic systems which, in addition to having good electrical properties, also have good mechanical strengths. Known electrically conductive fillers, for example metal powder, have very good electrical conductivities, but are difficult to incorporate into plastics due to their poor dispersibility, result in inhomogeneous systems, can have a negative influence on the mechanical properties and promote the catalytic decomposition of the plastics.

Es wurde nun gefunden, dass man durch Pyrolysieren einer Mischung aus einem Metallphthalocyanin und einem bestimmten anorganischen Füllstoff elektrisch leitende Produkte erhält, die sich ausgezeichnet als elektrisch leitende Füllmittel für Kunststoffsysteme und für anorganisches Material eignen. Solche Produkte weisen die Vorteile der bereits heute mit Erfolg zur Verbesserung der mechanischen Festigkeit der Kunststoffe oder der anorganischen Materialien eingesetzten anorganischen Füllmittel auf und sind infolge der gut haftenden Beschichtung von pyrolysiertem Phthalocyanin elektrisch leitend. Sie lassen sich zudem einwandfrei einarbeiten, ergeben somit homogene Systeme und bewirken nicht deren Zersetzung.It has now been found that pyrolyzing a mixture of a metal phthalocyanine and a certain inorganic filler gives electrically conductive products which are outstandingly suitable as electrically conductive fillers for plastic systems and for inorganic material. Such products have the advantages of the inorganic fillers already successfully used today to improve the mechanical strength of plastics or inorganic materials and are electrically conductive due to the well-adhering coating of pyrolyzed phthalocyanine. They can also be incorporated perfectly, resulting in homogeneous systems and not causing them to decompose.

Die Erfindung betrifft somit ein Verfahren zur Herstellung eines elektrisch leitenden Füllmittels, dadurch gekennzeichnet, dass man eine Mischung aus mindestens einem Metallphthalocyanin und mindestens einem anorganischen Füllstoff pyrolysiert.The invention thus relates to a method for producing an electrically conductive filler, characterized in that a mixture of at least one metal phthalocyanine and at least one inorganic filler is pyrolyzed.

Geeignete Metallphthalocyanine sind z. B. Kupfer-, Eisen-, Nickel-, Aluminium-, Kobalt-, Mangan-, Zinn-, Silicium-, Germanium-, Blei-, Titan-, Chrom-, Uran-, Magnesium-, Vanadium-, Molybdän- oder Zinkphthalocyanine, wobei auch Gemische von zwei oder mehr verschiedenen Metallphthalocyaninen möglich sind. Die Metallphthalocyanine können auch mit metallfreien Phthalocyaninen vermischt sein. Ebenenfalls können beispielsweise mit Sulfonsäure-, Sulfonamid-, Sulfoester-, Alkyl-, Aryl-, Aryläther- oder Thioätherresten substituierte Metallphthalocyanine verwendet werden. Die Metallphthalocyanine können in feiner oder grober Form eingesetzt werden. Für die erfindungsgemässen elektrisch leitenden Füllmittel verwendet man als Metallphthalocyanin bevorzugt Kupfer-, Nickel-, Kobalt- oder Eisenphthalocyanin, ganz bevorzugt aber Kupferphthalocyanin, aus wirtschaftlichen Gründen insbesondere rohes β-Kupferphthalocyanin.Suitable metal phthalocyanines are e.g. B. copper, iron, nickel, aluminum, cobalt, manganese, tin, silicon, germanium, lead, titanium, chromium, uranium, magnesium, vanadium, molybdenum or Zinc phthalocyanines, mixtures of two or more different metal phthalocyanines also being possible. The metal phthalocyanines can also be mixed with metal-free phthalocyanines. It is also possible, for example, to use metal phthalocyanines substituted with sulfonic acid, sulfonamide, sulfoester, alkyl, aryl, aryl ether or thioether residues. The metal phthalocyanines can be used in fine or coarse form. For the electrically conductive fillers according to the invention, the metal phthalocyanine used is preferably copper, nickel, cobalt or iron phthalocyanine, but very preferably copper phthalocyanine, in particular crude β-copper phthalocyanine for economic reasons.

Als organische Füllstoffe eignen sich insbesondere Glas, Quarz, Tonminerale, Feldspate, Silikate, Carbonate, Gesteinsmehle, Tonerde, Oxide oder Sulfate, wobei es sich um synthetische oder natürliche Materialien handeln kann, wie z. B. Quarzpulver, Glimmer, Talkum, Feldspat, Perlite, Basalt, Asbest, Schiefermehl, Kaolin, Wollastonit, Kreidepulver, Dolomit, Gips, Lava, Magnesiumcarbonat, Schwerspat, Bentone, Kieselsäureaerogel, Lithopone, Diatomeen, Metalloxide wie Magnesium- Aluminium-, Titan-, Zink-, Eisen-, Bor-, Nickel-, Chrom-, Zirkon-, Vanadium-, Zinn-, Cobalt-, Antimon-, Wismuth- oder Manganoxide, sowie deren Mischoxide, ferner Metallsulfide wie Zink-, Silber- oder Cadmiumsulfid, Glaspulver, Glaskugeln, Glasfasern, Siliciumcarbid oder Cristobalit. Die genannten Füllstoffe können einzeln oder in Mischungen verwendet werden und können faserförmig, körnig oder pulverförmig beschaffen sein.Suitable organic fillers are, in particular, glass, quartz, clay minerals, feldspar, silicates, carbonates, rock flour, clay, oxides or sulfates, which can be synthetic or natural materials, such as. B. quartz powder, mica, talc, feldspar, perlite, basalt, asbestos, slate flour, kaolin, wollastonite, chalk powder, dolomite, gypsum, lava, magnesium carbonate, heavy spar, bentone, silicic acid airgel, lithopone, diatoms, metal oxides such as magnesium aluminum, titanium -, Zinc, iron, boron, nickel, chromium, zirconium, vanadium, tin, cobalt, antimony, bismuth or manganese oxides, as well as their mixed oxides, also metal sulfides such as zinc, silver or Cadmium sulfide, glass powder, glass balls, glass fibers, silicon carbide or cristobalite. The fillers mentioned can be used individually or in mixtures and can be fibrous, granular or powdery.

Als Füllstoff verwendet man bevorzugt Aluminiumoxid, Wollastonit, Titandioxid, Glimmer, Eisenoxid oder Quarz, insbesondere feinteiligen Quarz.Aluminum oxide, wollastonite, titanium dioxide, mica, iron oxide or quartz, in particular finely divided quartz, are preferably used as fillers.

Von besonderem Interesse sind erfindungsgemäss hergestellte elektrisch leitende Füllmittel, worin der anorganische Füllstoff kristalliner oder amorpher Quarz mit einer Teilchengrösse von 0,01 bis 1000 µm, bevorzugt 2 bis 200 µm, ist.Of particular interest are electrically conductive fillers produced according to the invention, in which the inorganic filler is crystalline or amorphous quartz with a particle size of 0.01 to 1000 μm, preferably 2 to 200 μm.

Die erfindungsgemäss in Frage kommenden elektrisch leitenden Füllmittel können hergestellt werden, indem man das zu pyrolysierende Pigment und den anorganischen Füllstoff trocken oder in wässeriger Suspension, gegebenenfalls unter Mahlen, innig miteinander vermischt, wobei, falls in wässriger Suspension gearbeitet wird, anschliessend filtriert und getrocknet wird. Gegebenenfalls kann der anorganische Füllstoff bereits bei der Synthese des Metallphthalocyanins zugesetzt werden.The electrically conductive fillers that can be used in accordance with the invention can be produced by intimately mixing the pigment to be pyrolyzed and the inorganic filler dry or in an aqueous suspension, optionally with grinding, and then, if working in an aqueous suspension, filtering and drying . If necessary, the inorganic filler can be added during the synthesis of the metal phthalocyanine.

Auf 100 Gew.-Teile trockene Ausgangsmischung setzt man bevorzugt 5 bis 99, insbesondere 10 bis 50 Gew.-Teile zu pyrolysierendes Pigment ein. Die so erhaltene Mischung aus anorganischem Füllstoff und Metallphthalocyanin wird anschliessend pyrolysiert, wobei der anorganische Füllstoff mit pyrolysiertem Pigment beschichtet wird. Die Pyrolyse kann bei 0,5 bis 20 bar, be vorzugt bei Normaldruck, in Luft, in Inertgas, in Luft mit erhöhtem Sauerstoffgehalt oder in Wasserstoffgas erfolgen. Druck, Gas und Temperaturerhöhung in Funktion der Zeit werden in der Regel so gewählt, dass das Pigment in möglichst hoher Ausbeute an Kohlenstoff und Metall pyrolysiert. Als Gas eignen sich insbesondere Luft oder Stickstoff.. Das Pyrolysieren findet zweckmässig bei Temperaturen von 650 bis 2500° C, vorzugsweise bei Temperaturen von 800 - 1200° C statt. Das erfindungsgemässe Verfahren findet bevorzugt bei Temperaturen von 650 bis zu 2500° C, bei einem Druck von 0,5 bis 20 bar und in Luft, Inertgas, in Luft mit erhöhtem Sauerstoffgehalt oder in Wasserstoffgas, ganz bevorzugt aber bei 800 bis 1200°C und bei Normaldruck in Luft, statt. Beispielsweise erhält man bei der Erhitzung einer 1 : 1 Mischung von Quarzmehl/Cu-Phthalocyanin in Luft auf 1050°C (bei Normaldruck) ein Produkt bestehend aus ca. 61 Gew.-% Siliciumdioxid, 30 Gew.-% Kohlenstoff, 6,4 Gew.-% Kupfer und 2,6 Gew.-% Stickstoff. Die elektrische Leitfähigkeit bei Raumtemperatur beträgt etwa 10 Q-1 cm-1.5 to 99, in particular 10 to 50 parts by weight of the pigment to be pyrolyzed are preferably used per 100 parts by weight of dry starting mixture. The mixture of inorganic filler and metal phthalocyanine thus obtained is then pyrolyzed, the inorganic filler being coated with pyrolyzed pigment. The pyrolysis can be carried out at 0.5 to 20 bar, preferably at normal pressure, in air, in inert gas, in air with an increased oxygen content or in hydrogen gas. Pressure, gas and temperature increase as a function of time are generally chosen so that the pigment pyrolyzes in the highest possible yield of carbon and metal. Air or nitrogen are particularly suitable as the gas. The pyrolysis is expediently carried out at temperatures from 650 to 2500 ° C., preferably at temperatures from 800 to 1200 ° C. The process according to the invention preferably takes place at temperatures of 650 to 2500 ° C., at a pressure of 0.5 to 20 bar and in air, inert gas, in air with increased oxygen content or in hydrogen gas, but very preferably at 800 to 1200 ° C. and at normal pressure in air instead. For example, heating a 1: 1 mixture of quartz powder / Cu phthalocyanine in air to 1050 ° C (at normal pressure) gives a product consisting of approximately 61% by weight of silicon dioxide, 30% by weight of carbon, 6.4 % By weight copper and 2.6% by weight nitrogen. The electrical conductivity at room temperature is approximately 10 Q-1 cm- 1 .

Das Pyrolyseprodukt fällt je nach Mischungsverhältnis Pigment/Füllstoff in zusammenhängender oder loser, dunkelgrauer bis schwarzer fester Masse an und wird in der Regel gebrochen und pulverisiert.Depending on the mixing ratio of pigment / filler, the pyrolysis product is obtained in continuous or loose, dark gray to black solid mass and is usually broken and pulverized.

Die erfindungsgemäss hergestellten, elektrisch leitenden Füllmittel eignen sich insbesondere zur Einarbeitung in hochmolekulares organisches oder anorganisches Material. Als hochmolekulares organisches Material eignen sich z. B. Celluloseäther und -ester, wie Äthylcellulose, Acetylcellulose, Nitrocellulose, Polyamide, Copolyamide, Polyäther und Polyätheramide, Polyurethane oder Polyester, natürliche Harze oder Kunstharze, insbesondere Harnstoff- und Melamin/Formaldehydharze, Epoxidharze, Alkydharze, Phenoplaste, Polyacetale, Polyvinylalkohole, Polyvinylacetat-, -stearat, -benzoat, -maleat, Polyvinylbutyral, Polyallylphthalat, Polyallylmelamin und deren Copolymere, Polyphenyloxide, Polysulfone, halogenhaltige Vinylpolymere wie Polyvinylchlorid, Polyvinylidenchlorid, Polyvinylfluorid sowie Polychloropren und Chlorkautschuke, ferner Polycarbonate, Polyolefine, wie POlyäthyllJn, Polypropylen und Polystyrol, Polyacrylnitril, Polyacrylsäureester, thermoplastische oder härtbare Acrylharze, Gummi, Bitumen, Casein, Silikon und Silikonharze, einzeln oder in Mischungen. Die erwähnten hochmolekularen Verbindungen können als plastische Massen, Schmelzen oder Lösungen vorliegen. Die erfingdungsgemäss hergestellten, leitenden Füllmitttel können nach den in der Technik üblichen Methoden, vor oder während der Formgebung, oder auch als Dispersion oder in Form von Präparaten zum hochmolekularen organischen Material zugegeben werden. Dabei kann man je nach Verwendungszweck noch weitere Stoffe zufügen, wie z. B. Lichtschutzmittel, Hitzestabilisatoren, Weichmacher, Bindemittel, Pigmente und/oder Farbstoffe, Russe, Flammschutzmittel oder weitere Füllstoffe. Bezogen auf das hochmolekulare organische Material setzt man das erfindungsgemässe elektrisch leitende Füllmittel vorzugsweise in einer Menge von 0,5 bis 70, bevorzugt 15 bis 60 Gewichtsprozenten (pro Gesamtmischung) ein. Die Zusätze können auch vor oder während der Polymerisation zugegeben werden.The electrically conductive fillers produced according to the invention are particularly suitable for incorporation into high-molecular organic or inorganic material. As a high molecular organic Material are suitable for. B. cellulose ethers and esters, such as ethyl cellulose, acetyl cellulose, nitrocellulose, polyamides, copolyamides, polyethers and polyether amides, polyurethanes or polyesters, natural resins or synthetic resins, in particular urea and melamine / formaldehyde resins, epoxy resins, alkyd resins, phenoplasts, polyacetals, polyvinyl alcohols, polyols -, -Stearate, -benzoate, -maleate, polyvinylbutyral, polyallylphthalate, polyallylmelamine and their copolymers, polyphenyloxides, polysulfones, halogen-containing vinyl polymers such as polyvinylchloride, polyvinylidene chloride, polyvinylfluoride as well as polychloroprene and chlorinated rubbers, also polycarbonates, polyolefins, and polystyrene, such as polylylene, such as POlyl , Polyacrylic acid esters, thermoplastic or curable acrylic resins, rubber, bitumen, casein, silicone and silicone resins, individually or in mixtures. The high-molecular compounds mentioned can exist as plastic masses, melts or solutions. The conductive fillers produced according to the invention can be added to the high-molecular organic material by the methods customary in the art, before or during shaping, or also as a dispersion or in the form of preparations. Depending on the purpose, you can add other substances, such as. B. light stabilizers, heat stabilizers, plasticizers, binders, pigments and / or dyes, carbon black, flame retardants or other fillers. Based on the high molecular weight organic material, the electrically conductive filler according to the invention is preferably used in an amount of 0.5 to 70, preferably 15 to 60 percent by weight (per total mixture). The additives can also be added before or during the polymerization.

Als Harz-/Härterkomponenten dienen bevorzugt Epoxidharze, die mit Dicarbonsäureanhydriden gehärtet werden.Epoxy resins which are hardened with dicarboxylic acid anhydrides are preferably used as resin / hardener components.

Als anorganische Material, in welches sich die erfindungsgemäss hergestellten, elektrisch leitenden Füllmittel einarbeiten lassen, seien z. B. Zement, Beton, Gläser, keramische Materialien, anorganische Polymere, wie Polykieselsäure oder Polyphosphorsäurederviate, allein oder in Mischung mit organischen Polymeren, wie beispiels weise Asphalt, erwähnt. Bezogen auf das anorganische Material setzt man die erfindungsgemässe hergestellten, elektrisch leitenden Füllmittel vorzugweise in einer Menge von 5 bis 70, bevorzugt 15 bis 60 Gewichtsprozenten (pro Gesamtmischung) ein.As an inorganic material in which the electrically conductive fillers produced according to the invention can be incorporated, for. B. cement, concrete, glasses, ceramic materials, inorganic polymers such as polysilicic acid or polyphosphoric acid derivatives, alone or in a mixture with organic polymers, such as asphalt, mentioned. Based on the inorganic material, the electrically conductive fillers produced according to the invention are preferably used in an amount of 5 to 70, preferably 15 to 60 percent by weight (per total mixture).

Mit den erfindungsgemäss hergestellten Füllmitteln lassen sich auf wirtschaftliche Art Kunststoffsysteme mit ausgezeichneten mechanischen und elektrischen Eigenschaften herstellen. Sie wirken auf das Trägermaterial verstärkend und zeichnen sich durch eine gute elektrische Leitfähigkeit aus. Gewisse Kumststoffe, beispielsweise Epoxidharze, enthaltend die erfindungsgemässen Füllmittel, weisen zudem über einen weiten Temperaturbereich eine konstante elektrische Leitfähigkeit auf.With the fillers produced according to the invention, plastic systems with excellent mechanical and electrical properties can be produced economically. They have a reinforcing effect on the carrier material and are characterized by good electrical conductivity. Certain plastics, for example epoxy resins, containing the fillers according to the invention also have a constant electrical conductivity over a wide temperature range.

Giessharzmassen, beispielsweise Epoxidgiessharze, enthaltend die erfindungsgemäss hergestellten Füllmittel, weisen zudem auch bei hoher Leitfähigkeit gute verarbeitungstechnische Eigenschaften auf (beispielsweise keine oder nur geringe Thixotropie) und führen zu Formteilen ohne Minderung der mechanischen Eigenschaften.Casting resin compositions, for example epoxy casting resins, containing the fillers produced according to the invention also have good processing properties even with high conductivity (for example no or only low thixotropy) and lead to molded parts without a reduction in the mechanical properties.

Gegebenenfalls können die erfindungsgemäss erhaltenen Füllmittel in Mischung mit Metallen, beispielsweise in Form von Pulvern, Spänen oder Fasern, in Kunststoffe eingearbeitet werden. Das hierfüt zu verwendende Metall und seine Konzentration richten sich nach dem Einsatzgebiet und sollen die mechanischen Eigenschaften und die Beständigkeit beispielsweise gegen die Zersetzung der damit hergestellten Kunststofferzeugnisse nicht verschlechtern. Dabei handelt es sich beispielsweise um Stahlfasern und/oder Aluminiumflocken. Anstelle von Metallen können aber auch Kohlenstoff-Fasern eingesetzt werden.If appropriate, the fillers obtained according to the invention can be incorporated into plastics in a mixture with metals, for example in the form of powders, chips or fibers. The metal to be used here and its concentration depend on the area of application and should not impair the mechanical properties and the resistance, for example, to the decomposition of the plastic products produced with it. These are, for example, steel fibers and / or aluminum flakes. Instead of metals, carbon fibers can also be used.

Durch Verdünnen mit den eingangs aufgeführten Füllstoffen oder durch Zugabe abgestufter Mengen der erfindungsgemäss hergestellten Füllmittel in derartige Kunststoffe oder in anorganische Materialien lässt sich die elektrische Leitfähigkeit gezielt einstellen, beispielsweise so, dass elektrisch partiell leitende Zusammensetzungen entstehen. Dies ist besonders wichtig zur Steuerung elektrischer Felder und/oder zum Abbau von Oberflächen- bzw. Raumladungen.The electrical conductivity can be specifically adjusted by dilution with the fillers mentioned at the beginning or by adding graded amounts of the fillers produced according to the invention in such plastics or in inorganic materials, for example in such a way that electrically partially conductive compositions are formed. This is particularly important for controlling electrical fields and / or for reducing surface or space charges.

Die erfindungsgemäss hergestellten elektrisch leitenden Füllmittel eignen sich nicht nur zur Herstellung von antistatisch wirkenden und elektrisch leitenden Polymermassen, Kumststoffartikeln und Beschichtungen. Sie können auch zur Herstellung von Batterien und anderen Gegenständen in der Mikroelektronik, in oder als Sensoren, als Katalysator bei gewissen chemischen Reaktionen, zur Herstellung von Sonnenkollektoren, zur Abschirmung empfindlicher elektronischer Bauteile und Hochfrequenzfelder [EMI-shielding], zum Potentialausgleich und Glimmschutz, zur höheren Belastbarkeit elektrischer Anlagen und Maschinen, zur Steuerung elektrischer Felder und Ladungen in elektrischen Geräten oder als Flächenheizleiter verwendet werden.The electrically conductive fillers produced according to the invention are not only suitable for the production of antistatic and electrically conductive polymer compositions, plastic articles and coatings. They can also be used to manufacture batteries and other objects in microelectronics, in or as sensors, as catalysts for certain chemical reactions, for the production of solar collectors, for shielding sensitive electronic components and high-frequency fields [EMI shielding], for equipotential bonding and glow protection higher load capacity of electrical systems and machines, for controlling electrical fields and charges in electrical devices or as surface heating conductors.

Die folgenden Beispiele erläutern die Erfindung. Teile bedeuten Gew.-Teile und Prozente Gew.-Prozente.The following examples illustrate the invention. Parts mean parts by weight and percentages percent by weight.

Beispiel 1: 90 Teile Quarzmehl Wllb der Firma SIHELCO AG(SH-Birsfelden) werden zusammen mit 90 Teilen rohem β-Kupferphthalocyanin während 30 Minuten auf einer Turbula-Maschine der Firma W.A. Bachofen (CH-Basel) gut vermischt. Die Mischung wird in einem Quarzglasgefäss, dessen Deckel eine kleine Oeffnung aufweist, in einem Ofen innert 6 Stunden auf 1050° C erhitzt. Nach0,5 Stunden bei dieser Temperatur kühlt man ab und erhält 157 Teile einet grauschwarzen, festen Masse, welche in einem Labormixer pulverisiert wird. Das Pulver weist eine Zusammensetzung von 61,5 Gew.-% Si02, 30 Gew.-% C, 6,5 Gew.-% Cu und 2 Gew.-% N auf Die elektrische Leitfähigkeit, gemessen am komprimierten Pulver, beträgt bei Raumtemperatur 10 Scm-1 (2 Elektroden-Messung an Micropressling).Example 1: 90 parts of quartz powder Wllb from SIHELCO AG (SH-Birsfelden) are mixed well with 90 parts of crude β-copper phthalocyanine for 30 minutes on a Turbula machine from WA Bachofen (CH-Basel). The mixture is heated in a quartz glass vessel, the lid of which has a small opening, in an oven to 1050 ° C. within 6 hours. After 0.5 hours at this temperature, the mixture is cooled and 157 parts are obtained, a gray-black, solid mass which is pulverized in a laboratory mixer. The powder has a composition of 61.5% by weight SiO 2 , 30% by weight C, 6.5% by weight Cu and 2% by weight N The electrical conductivity, measured on the compressed powder, is Room temperature 10 Scm- 1 (2 electrodes measurement on micropressling).

Beispiele 2 bis 4: Verfährt man analog wie in Beispiel 1 beschrieben, vewendet jedoch als Ausgangsmischung die in Tabelle 1 angegebenen Verbindungen, so erhält man grau-schwarze Pulver mit den in der Tabelle 1 aufgeführten elektrische Leitfähigkeiten.Examples 2 to 4: If the procedure is analogous to that described in Example 1, but the compounds given in Table 1 are used as the starting mixture, gray-black powders having the electrical conductivities listed in Table 1 are obtained.

Figure imgb0001
.Cu-Pc = Kupferphthalocyanin " gemäss F. Beck, "Berichte Bunsengesellschaft, Physikalische Chemie" 68 (1964), Seiten 558-567.
Figure imgb0001
Cu-Pc = copper phthalocyanine "according to F. Beck," Bunsen Society Reports, Physical Chemistry "68 (1964), pages 558-567.

Beispiel 5: 50 Teile Wl® der Firma SIHELCO AG (CH-Birsfelden) werden zusammen mit 50 Teilen Nickelphthalocyanin während 30 Minuten auf einer Turbula Maschine der Firma W.A. Bachofen (CH-Basel) gut vermischt. Die Mischung wird in einem Quarzglasgefäss, dessen Deckel eine kleine Oeffnung aufweist, in einem Ofen innert 6 Stunden suf 1000°C erhitzt. Man hält das Gemisch 1 Stunde bei 1000°C und lässt es dann auf Raumtemperatur abkühlen. Man erhält 86,2 Teile einer grauschwarzen festen Masse, welche gepulvert wird. Die elektrische Leitfähigkeit des so erhaltenen Pulvers beträgt bei Raumtemperatur 12 Scm-1. Example 5: 50 parts Wl ® from SIHELCO AG (Birsfelden CH-) are thoroughly mixed together with 50 parts of nickel phthalocyanine for 30 minutes on a Turbula machine from WA Bachofen (CH-Basel). The mixture is heated in a quartz glass vessel, the lid of which has a small opening, to 1000 ° C. in an oven within 6 hours. The mixture is kept at 1000 ° C. for 1 hour and then allowed to cool to room temperature. This gives 86.2 parts of a gray-black solid mass which is powdered. The electrical conductivity of the powder thus obtained is 12 Scm- 1 at room temperature .

Beispiele 6-10: Verfährt man analog wie in Beispiel 5 beschrieben, verwendet jedoch als Ausgangsmischung die in Tabelle 2 angegebenen Verbindungen, so erhält man grauschwarze Pulver mit den in Tabelle 2 angegebenen elektrischen Leitfähigkeiten.

Figure imgb0002
* Pc = PhthalocyaninExamples 6-10: If the procedure is analogous to that described in Example 5, but using the compounds given in Table 2 as the starting mixture, gray-black powders having the electrical conductivities given in Table 2 are obtained.
Figure imgb0002
* Pc = phthalocyanine

Beispiel 11: Verfährt man wie in Beispiel 5 beschrieben, leitet aber während der Pyrolyse Stickstoff langsam durch das Reaktionsgefäss, so erhält man ein grauschwarzes Pulver mit ähnlichen Eigenschaften.EXAMPLE 11 If the procedure is as described in Example 5, but nitrogen is slowly passed through the reaction vessel during the pyrolysis, a gray-black powder with similar properties is obtained.

Beispiel 12: 270 Teile eines analog zu Beispiel 1 hergestellten Füllmittels aus 135 Teilen Quarzmehl W12® der Firma SIHELCO AG und 135 Teilen des gemäss Beispiel 1 erhaltenen elektrisch leitenden Pulvers werden zu 100 Teilen Araldit CY 225® (modifizierter Bisphenol-A-Epoxidharz mit einem Molekulargewicht von 380) und 80 Teilen des Härters HY 925® (modifiziertes Dicarbonsäureanhydrid) gegeben. Man erwärmt auf 80°C, homogenisiert mit einem Flügelrüher und entlüftet während 3 Minuten. Anschliessend wird die Mischung in auf 80°C vorgewärmte Formen gegossen und während 4 Stunden bei 80°C und während 8 Stunden bei 140°C gehärtet (DIN Nr. 16945). An den so hergestellten Martensstäben und Platten werden folgende Daten gemessen:

Figure imgb0003
Example 12: 270 parts of an analogous manner to Example 1 produced the filler from 135 parts of quartz powder W12 ® from SIHELCO AG and 135 parts of the obtained in Example 1 electrically conductive powder are added to 100 parts of Araldite CY 225 ® (modified bisphenol A epoxy resin having an Molecular weight of 380) and 80 parts of the hardener HY 925® (modified dicarboxylic anhydride). The mixture is heated to 80 ° C., homogenized with a paddle stirrer and vented for 3 minutes. The mixture is then poured into molds preheated to 80 ° C and cured for 4 hours at 80 ° C and for 8 hours at 140 ° C (DIN No. 16945). The following data are measured on the martensets and plates produced in this way:
Figure imgb0003

Beispiel 13: Für die Färbung von PVC wird eine Mischung von 65 Teilen stabilisiertem PVC, 35 Teilen Dioctylphthalat und 25 Teilen des nach Beispiel 1 erhaltenen ProduktsExample 13: For the coloring of PVC, a mixture of 65 parts of stabilized PVC, 35 parts of dioctyl phthalate and 25 parts of the product obtained according to Example 1 is used

hergestellt und zwischen zwei Rollen eines Walzkalanders bei ca. 150°C 5 Minuten hin und her bewegt. Die so erhaltene Weich-PVC-Folie weist einen spezifischen Oberflächenwiderstand Ro, gemessen nach DIN 53482 (Elektrodenanordnung A), von 5,5 . 1010 2 cm auf.produced and moved back and forth between two rolls of a rolling calender at approx. 150 ° C for 5 minutes. The soft PVC film obtained in this way has a specific surface resistance R o , measured according to DIN 53482 (electrode arrangement A), of 5.5. 10 10 2 cm.

Beispiel 14: In einem 300 Vol.-Teile fassenden Laborkneter werden 25 Teile des nach Beispiel 1 erhaltenen Produktes, 37,5 Teile Polyäthylenwachs AC-6170 der Firma Allied Chemicals und 125 Teile Natriumchlorid während 6 Stunden bei 80-110°C geknetet. Danach werden 62,5 Teile MOPLEN MOB-120® der Firma Montecatini in die Knetmasse eingearbeitet. Die Knetmasse wird im laufenden Kneter auf 30°C abgekühlt, dabei bildet sich eine grauschwarze pulverige Masse, welche mit ca. 3 Litern Wasser auf einer FRYMA Zahnkolloidmühle Z 050 fein pulverisiert wird. Die erhaltene Suspension wird abfiltriert und der Presskuchen mit Wasser chloridfrei gewaschen. Das erhaltene Produkt wird in Vakuumtrockenschrank bei 50-60° C getrocknet. Man erhält 120 Teile eines feinen lockeren grauschwarzen Polyolefinpräparates, welches nach dem Extrudieren auf einem Laborextruder (Temp.Zone 1:160°C; Zone 2: 190°C; Zone 3: 220°C; Zone 4: 170°C) eine thermoplastische Masse ergibt. Diese Masse weist einen elektrischen Durchgangswiderstand von ca. 4 - 105 Ωcm auf, und eignet sich ausgezeichnet zur Herstellung von Spritzgussartikeln oder Fasern.EXAMPLE 14 25 parts of the product obtained according to Example 1, 37.5 parts of polyethylene wax AC-617 0 from Allied Chemicals and 125 parts of sodium chloride are kneaded at 80-110 ° C. for 6 hours in a 300-part laboratory kneader. Then 62.5 parts of MOPLEN MOB-120 ® from Montecatini are incorporated into the plasticine. The kneading compound is cooled to 30 ° C in the running kneader, a gray-black powdery mass is formed, which is finely pulverized with approx. 3 liters of water on a FRYMA Z 050 toothed colloid mill. The suspension obtained is filtered off and the presscake is washed free of chloride with water. The product obtained is dried in a vacuum drying cabinet at 50-60 ° C. This gives 120 parts of a fine, loose, gray-black polyolefin preparation which, after extrusion on a laboratory extruder (Temp.Zone 1: 160 ° C; Zone 2: 190 ° C; Zone 3: 220 ° C; Zone 4: 170 ° C), is a thermoplastic Mass results. This mass has an electrical volume resistance of approx. 4 - 10 5 Ωcm, and is excellently suited for the production of injection molded articles or fibers.

Beispiel 15: In einem 300 Vol.-Teile fassenden Laborkneter werden 32 Teile des nach Beispiel 1 erhaltenen Produktes, 48 Teile DYNAPOL® 206 der Firma DYNAMIT-NOBEL, 160 Teile Natriumchlorid sowie 25-32 Vol.-Teile Diacetonalkohol ca. 5 Stunden bei 80°C geknetet. Im laufenden Kneter wird dann tropfenweise Wasser zugegeben und gleichzeitig gekühlt, bis sich die Knetmasse in ein Granulat umwandelt. Das Granulat wird auf einer FRYMA-Zahnkolloidmühle Z 050 mit viel Wasser gemahlen, abfiltriert, der erhaltene Presskuchen mit Wasser salzfrei gewaschen und danach im Vakuumtrockenschrank bei 65-70°C getrocknet. Man erhält eine grauschwarze pulverige Masse, welche auf einem Laborextruder zu einer Schnur extrudiert und danach auf einer Hackmaschine granuliert wird. Das so erhaltene 40%-ige Polyesterpräparat weist einen elektrischen Durchgangswiderstand von 104 bis 105 Qcm auf.Example 15: In a 300 parts by volume of comprehensive laboratory kneader, 32 parts of the product obtained according to Example 1, 48 parts DYNAPOL ® 206 of the company Dynamit Nobel, 160 parts of sodium chloride and 25-32 parts by volume of diacetone alcohol for about 5 hours at Kneaded at 80 ° C. Water is then added dropwise in the running kneader and at the same time cooled until the kneading mass is converted into granules. The granules are ground on a FRYMA dental colloid mill Z 050 with plenty of water, filtered off, the press cake obtained is washed salt-free with water and then dried in a vacuum drying cabinet at 65-70 ° C. A gray-black powdery mass is obtained, which is extruded into a cord on a laboratory extruder and then granulated on a chopping machine. The 40% polyester preparation thus obtained has an electrical volume resistance of 10 4 to 10 5 Qcm.

Beispiel 16: Verfährt man analog wie in Beispiel 1, verwendet aber anstelle von 90 Teilen 5 Teile Quarzmehl W1® und anstelle von 90 Teilen 95 Teile β-Kupferphthalocyanin, so erhält man ein Produkt enthaltend ca. 12 Gew.-% an Kupfer. Es eignet sich ausgezeichnet als Katalysator der in Beispiel 17 beschriebenen Reaktion zur Herstellung eines anthrachinoiden Wollfarbstoffes.EXAMPLE 16 If the procedure is analogous to that of Example 1, but using 5 parts of quartz powder W1® instead of 90 parts and 95 parts of β-copper phthalocyanine instead of 90 parts, a product containing about 12% by weight of copper is obtained. It is an excellent catalyst for the reaction described in Example 17 for the preparation of an anthraquinoid wool dye.

Beispiel 17: Reaktionsschema 20,2 Teile 1-amino-4-bromanthrachinon-2-sulfonsaures Natrium werden mit 300 Teilen Wasser verrührt und nach Zugabe von 13,8 Teilen Natriumcarbonat allmählich mit 11,25 Teilen I-Aminobenzol-4-sulfonsäure versetzt. Der auf 85°C erhitzten Mischung werden als Katalysator in Abständen von 45 Minuten 7 Portionen von je 1 Teil des nach Beispiel 16 erhaltenen Produktes, feinst gepulvert, zugefügt. Nach der letzten Zugabe wird das Gemisch eine weitere Stunde bei 85-90°C gerührt, darauf mit 7,5 Teilen Natriumcarbonat, 11,25 Teilen 1-Aminobenzol-4-sulfonsäure und 1 Teil des nach Beispiel 16 erhaltenen Produktes versetzt. Nach 20-stündigem Rühren bei 85-90°C werden 50 Teile Natriumchlorid zugegeben. Der beim Abkühlen ausfallende Niederschlag wird bei 25°C abfiltriert. Das feuchte Nutschgut wird in 1000 Teilen Wasser von 90°C verrührt und die Lösung nach Zugabe von 10 Teilen eines Filterhilfsmittels (Kieselgur Hyflo Supercel) filtriert. Die dunkelblaue Lösung (900 Teile) wird bei 75°C unter Rühren mit 135 Teilen Natriumchlorid versetzt und unter Rühren auf 35°C erkalten gelassen. Der ausgefallene Farbstoff wird abfiltriert, zweimal mit Natriumchloridlösung 15 % gewaschen und getrocknet. Man erhält unter Berücksichtigung des Natriumchloridgehaltes 18,3 Teile des Dinatriumsalzes der 1-Amino-4-anilinoanthrachinon-2,4'-disulfonsäure als dunkles Pulver. Der Farbstoff färbt Wolle aus saurem Bade in blauen Tönen.Example 17: Reaction scheme 20.2 parts of 1-amino-4-bromoanthraquinone-2-sulfonic acid sodium are stirred with 300 parts of water and, after the addition of 13.8 parts of sodium carbonate, 11.25 parts of I-aminobenzene-4-sulfonic acid are gradually added. 7 portions of 1 part each of the product obtained according to Example 16, finely powdered, are added to the mixture heated to 85 ° C. as a catalyst at intervals of 45 minutes. After the last addition, the mixture is stirred for a further hour at 85-90 ° C., then 7.5 parts of sodium carbonate, 11.25 parts of 1-aminobenzene-4-sulfonic acid and 1 part of the product obtained according to Example 16 are added. After stirring for 20 hours at 85-90 ° C, 50 parts of sodium chloride are added. The precipitate which precipitates on cooling is filtered off at 25 ° C. The moist filter cake is stirred in 1000 parts of water at 90 ° C. and the solution is filtered after adding 10 parts of a filter aid (diatomaceous earth Hyflo Supercel). 135 parts of sodium chloride are added to the dark blue solution (900 parts) at 75 ° C. while stirring and the mixture is allowed to cool to 35 ° C. while stirring. The precipitated dye is filtered off, washed twice with 15% sodium chloride solution and dried. Taking into account the sodium chloride content, 18.3 parts of the disodium salt of 1-amino-4-anilinoanthraquinone-2,4'-disulfonic acid are obtained as a dark powder. The dye dyes wool from acid baths in blue tones.

Claims (11)

1. A process for the preparation of an electrically conductive filler which comprises pyrolysing a mixture of at least one metal phthalocyanine and at least one inorganic filler.
2. The process according to claim 1, wherein the metal phthalocyanine used is copper, nickel, cobalt or iron phthalocyanine.
3. The process according to claim 1, wherein the metal phthalocyanine used is copper phthalocyanine.
4. The process according to claim 1, wherein the metal phthalocyanine used is the crude β-form of copper phthalocyanine.
5. The process according to claim 1, wherein the inorganic filler used is aluminium oxide, wollastonite, iron oxide, titanium dioxide, mica or quartz.
6. The process according to claim 1, wherein the inorganic filler used is crystalline or amorphous quartz with a particle size of 0.01 to 1,000 µm.
7. The process according to claim 1, wherein the pyrolysis is carried out at temperatures from 650 up to 2,500°C under a pressure of 0.5 to 20 bar in air, an inert gas, in air with an increased oxygen content or in hydrogen gas.
8. The process according to claim 1, wherein the pyrolysis is carried out at 800 to 1,200°C under atmospheric pressure in air.
9. The use of the process according to claim 1 for the preparation of a filler for incorporation into high molecular weight organic material.
10. The use of the process according to claim 1 for the preparation of a filler for incorporation into inorganic material.
11. The use of the process according to claim 1 for the preparation of a filler for incorporation into an epoxy resin.
EP84810326A 1983-07-08 1984-07-02 Electrically conductive filling agent Expired EP0131544B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84810326T ATE31993T1 (en) 1983-07-08 1984-07-02 ELECTRICALLY CONDUCTIVE FILLERS.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CH3766/83 1983-07-08
CH376683 1983-07-08
CH515383 1983-09-22
CH5153/83 1983-09-22
CH617/84 1984-02-09
CH61784 1984-02-09

Publications (2)

Publication Number Publication Date
EP0131544A1 EP0131544A1 (en) 1985-01-16
EP0131544B1 true EP0131544B1 (en) 1988-01-13

Family

ID=27172246

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84810326A Expired EP0131544B1 (en) 1983-07-08 1984-07-02 Electrically conductive filling agent

Country Status (7)

Country Link
US (1) US4554094A (en)
EP (1) EP0131544B1 (en)
AU (1) AU561786B2 (en)
CA (1) CA1217043A (en)
DE (1) DE3468769D1 (en)
FI (1) FI76102C (en)
NO (1) NO161224C (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720418A (en) * 1985-07-01 1988-01-19 Cts Corporation Pre-reacted resistor paint, and resistors made therefrom
GB8622752D0 (en) * 1986-09-22 1986-10-29 Shell Int Research Conductive polymer compositions
US4756807A (en) * 1986-10-09 1988-07-12 Gas Research Institute Chemically modified electrodes for the catalytic reduction of CO2
US4711708A (en) * 1986-10-09 1987-12-08 Gas Research Institute Chemically modified electrodes for the catalytic reduction of CO2
DE3804381C2 (en) * 1988-02-12 1993-10-28 Sachsenwerk Ag Ohmic voltage divider for a high voltage system
DE4015929A1 (en) * 1990-05-17 1991-11-21 Asea Brown Boveri Gas insulated HV installation isolator - has at least one field control element of electrically conductive plastic coupled by moulding onto insulator body
US5366664A (en) * 1992-05-04 1994-11-22 The Penn State Research Foundation Electromagnetic shielding materials
DE9316606U1 (en) * 1993-10-29 1994-11-24 Siemens AG, 80333 München Slip ring or commutator motor
CN1039506C (en) * 1994-09-12 1998-08-12 宝山钢铁(集团)公司 Stereo-space static electricity prevention and curing method
DE9415851U1 (en) * 1994-09-30 1995-08-03 Siemens AG, 80333 München Slip ring or commutator motor
DE19500849A1 (en) * 1995-01-13 1996-07-18 Abb Research Ltd Electrical component
US20010014399A1 (en) * 1997-02-26 2001-08-16 Stanley J. Jasne Conductive uv-curable epoxy formulations
JP3032491B2 (en) * 1997-08-27 2000-04-17 大塚化学株式会社 Printing sheet
US8999200B2 (en) * 2002-07-23 2015-04-07 Sabic Global Technologies B.V. Conductive thermoplastic composites and methods of making
US20060108567A1 (en) * 2002-07-23 2006-05-25 Charati Sanjay G Conductive poly (arylene ether) compositions and methods of making the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3538021A (en) * 1968-05-07 1970-11-03 Gen Motors Corp Resistor composition
US4252565A (en) * 1976-04-08 1981-02-24 Ciba-Geigy Corporation Stabilized phthalocyanines
GB1535434A (en) * 1976-12-01 1978-12-13 Ciba Geigy Ag Flocculation inhibitors
JPS5940172B2 (en) * 1977-10-28 1984-09-28 東洋インキ製造株式会社 Phthalocyanine pigment composition
US4347173A (en) * 1980-06-06 1982-08-31 Westinghouse Electric Corp. Opaque black dye for color coding of wire enamels, varnishes and synthetic resins
US4304719A (en) * 1981-01-23 1981-12-08 The United States Of America As Represented By The Secretary Of The Navy Conducting iodine-doped fluorometallophthalocyanines
US4477608A (en) * 1982-08-20 1984-10-16 Ciba-Geigy Corporation Compositions containing graphite

Also Published As

Publication number Publication date
AU561786B2 (en) 1987-05-14
FI842682A0 (en) 1984-07-04
NO161224B (en) 1989-04-10
US4554094A (en) 1985-11-19
DE3468769D1 (en) 1988-02-18
EP0131544A1 (en) 1985-01-16
FI842682A (en) 1985-01-09
FI76102B (en) 1988-05-31
AU3039084A (en) 1985-01-10
NO161224C (en) 1989-07-19
FI76102C (en) 1988-09-09
NO842777L (en) 1985-01-09
CA1217043A (en) 1987-01-27

Similar Documents

Publication Publication Date Title
EP0131544B1 (en) Electrically conductive filling agent
DE69713193T2 (en) Black polyamide composition
EP0745558B1 (en) Precipitated silicas, process for their preparation and their use in vulcanizable rubber mixtures
DE69934982T2 (en) PARTICLES WITH BOUND HALOGENIDER GROUP AND METHOD FOR ITS MANUFACTURE
DE2624065A1 (en) NEW MAGNESIUM HYDROXIDES
EP2995178A1 (en) Additive for lds plastics
DE102008058351A1 (en) Surface treated titanium dioxide pigments for plastics and method of manufacture
DE60313200T2 (en) ELECTRO-CONDUCTIVE FLAKE COMPOSITION AND ELECTRO-CONDUCTIVE COMPOSITION
DE69905495T2 (en) BISMUTHMANGANIT PIGMENTS
DE69831916T2 (en) Colored pearlescent pigments
DE69721230T2 (en) ABSORBENT FOR NON-VISIBLE BEAMS
EP0675175B1 (en) Carbon containing pigments
EP0511694A2 (en) Electrical conductive fibrous filler and process for its manufacture
DE60038225T2 (en) Surface modifiers
DE69101599T2 (en) 2,9-dichloroquinacridone in platelet form.
DE69222262T2 (en) New solid solutions of copper phthalocyanine compounds
DE3883859T2 (en) Fast crystallizing polyester compositions.
AU2012275786B2 (en) Treated inorganic pigments having reduced photoactivity and improved anti-microbial properties and their use in polymer compositions
DE69932188T2 (en) COLORED THERMOPLASTIC RESIN COMPOSITION AND ARTICLES MANUFACTURED THEREFROM
DE2632446C2 (en)
DE2855005A1 (en) FLAME RETARDANT THERMOPLASTIC POLYESTER COMPOSITIONS WITH IMPROVED ARC RESISTANCE AND PROCESS FOR THEIR MANUFACTURING
EP0176899A2 (en) Mixed crystals of pigments on the basis of diimides of perylene tetracarboxylic acid, their manufacturing process and their use
DE2025078C3 (en) Process for dyeing organic polymeric materials
DE19617039A1 (en) Precipitated silicas, process for their preparation and use of vulcanizable rubber mixtures
KR102302537B1 (en) A modification method for inorganic materials and a method for preparing biodegradable polymer complex using the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840704

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 31993

Country of ref document: AT

Date of ref document: 19880115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3468769

Country of ref document: DE

Date of ref document: 19880218

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900528

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900529

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900613

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900614

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900618

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900712

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900731

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900924

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910702

Ref country code: AT

Effective date: 19910702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910731

Ref country code: CH

Effective date: 19910731

Ref country code: BE

Effective date: 19910731

BERE Be: lapsed

Owner name: CIBA-GEIGY A.G.

Effective date: 19910731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84810326.3

Effective date: 19920210