EP0131087A2 - Sewing machine with a step motor-driven transporting device - Google Patents

Sewing machine with a step motor-driven transporting device Download PDF

Info

Publication number
EP0131087A2
EP0131087A2 EP84101898A EP84101898A EP0131087A2 EP 0131087 A2 EP0131087 A2 EP 0131087A2 EP 84101898 A EP84101898 A EP 84101898A EP 84101898 A EP84101898 A EP 84101898A EP 0131087 A2 EP0131087 A2 EP 0131087A2
Authority
EP
European Patent Office
Prior art keywords
phase
stepper motor
current
sewing machine
microcomputer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84101898A
Other languages
German (de)
French (fr)
Other versions
EP0131087A3 (en
EP0131087B1 (en
Inventor
Joachim Ing. Grad. Hammermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfaff Haushaltsmaschinen GmbH
GM Pfaff AG
Original Assignee
Pfaff Haushaltsmaschinen GmbH
GM Pfaff AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6201297&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0131087(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pfaff Haushaltsmaschinen GmbH, GM Pfaff AG filed Critical Pfaff Haushaltsmaschinen GmbH
Publication of EP0131087A2 publication Critical patent/EP0131087A2/en
Publication of EP0131087A3 publication Critical patent/EP0131087A3/en
Application granted granted Critical
Publication of EP0131087B1 publication Critical patent/EP0131087B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B19/00Programme-controlled sewing machines
    • D05B19/02Sewing machines having electronic memory or microprocessor control unit
    • D05B19/12Sewing machines having electronic memory or microprocessor control unit characterised by control of operation of machine
    • D05B19/16Control of workpiece movement, e.g. modulation of travel of feed dog

Definitions

  • the invention relates to a sewing machine according to the preamble of claim 1.
  • Electronically controlled sewing machines preferably have stepper motor drives for controlling the change in the lateral swing-out movement of the needle bar and the feed movement of the fabric pusher, since these drives are outstandingly suitable for the implementation of the digitally stored stitch information.
  • the gear ratio between the step size of the stepper motor and the respective driven element must be chosen so that with a sufficiently fine gradation of the adjustment movement, a sufficiently fast execution of the adjustment of the driven element in the maximum adjustment range is achieved within the time available. With very specific requirements, the existing gradation from step to step is not sufficient. A further subdivision is necessary here.
  • Such a correction is particularly necessary for sewing patterns which contain a large number of sewing stitches which are to be carried out both in one and in the other transport direction.
  • any feed difference between the two transport directions that is not recognizable for individual stitches has the effect of a total error, which can render the sewing result unusable.
  • the invention has for its object to enable the step position correction over the entire step area of the stepper motor and to combine with the stepper motor control.
  • a stepper motor control for a sewing machine results, in which not only a fine-step correction of the step positions specified by the stepper motor can be carried out in a simple manner, but which also additionally amplifies the torque when driving the Stepper motor and the holding torque in certain holding positions of the stepper motor.
  • the microcomputer can easily take one under different correction can be specified in different situations.
  • a special adaptation of the correction options to the parameters on which the stepper motor is based results from the circuitry of the D / A converter according to claim 2.
  • the sewing machine is equipped with a main shaft 1 which, via a crank 2 and a link 3, sets a vertical lifting movement of a needle bar 6 provided with a needle 4 and mounted in a guide rocker 5.
  • the guide rocker 5 is mounted in the housing of the sewing machine, not shown, by means of a pin 7.
  • the guide rocker 5 has an extension 8 which is connected via a link 9 to a crank 10 which is fastened on the shaft 11 of a stepping motor 12 arranged in the housing of the sewing machine for controlling the stitch width of the needle 4.
  • the main shaft 1 drives a lower shaft 13 via a chain, not shown.
  • a gearwheel 14 is fastened on the shaft 13, which meshes with a gearwheel 15 which is fastened on a shaft 16 mounted parallel to the shaft 13.
  • a lifting eccentric 17 is screwed, which carries a cam 18.
  • an eccentric 19 is also attached, which is encompassed by an eccentric rod 20, on which two links 22 and 23 are articulated by means of a bolt 21.
  • the handlebar 22 is rotatably connected via a bolt 24 to an angle lever 25 which is rotatably mounted on an axle 26 fastened in the housing of the sewing machine and is connected via an arm 27 of the angle lever 25 and a rod 28 to a crank 29 which is on the Shaft 30 of a second stepping motor 31 arranged in the housing of the sewing machine, which controls the stitch length of the sewing machine.
  • the link 23 is articulated to an arm 33 of a rocker arm 34 supported on the shaft 13 by a bolt 32.
  • a second upwardly projecting arm 35 of the rocker arm 34 has at its end a guide slot 36 in which a pin 37 is guided.
  • This is on attached to a support arm 38 which is slidably mounted on a horizontal axis 39 fastened in the housing of the sewing machine parallel to the feed direction.
  • the support arm 38 carries a fabric slide 40, which is provided for the transport of sewing material, which is sewn by the needle 4 in cooperation with a gripper, not shown.
  • the support arm 38 is supported on the cams 18 of the lifting eccentric 17 via a web 41 directed downwards.
  • the structure of the two stepper motors 12 and 31 are identical in their basic control; it is therefore sufficient to understand the operation of the description of the control of the stepping motor 31.
  • the stepper motor 31 which serves to control the stitch length of the sewing machine, is designed as a two-strand stepper motor. It is controlled by a microcomputer 42 (FIG. 2), in the memory of which a large number of any sewing patterns are stored in a known manner.
  • a pulse generator 43 which is controlled by the main shaft 1 of the sewing machine, is connected to the microcomputer 42 and emits a pulse with each revolution of the main shaft 1 when the fabric pusher 40 is not in engagement with the sewing material and the stepping motor 31 can change the stitch adjustment.
  • the pulse is fed to a comparator 44 for pulse shaping, the output of which is connected to the INT input of the microcomputer 42.
  • the microcomputer 42 is connected via a group of eight data lines 47 to an intermediate memory 48 for transferring the control processes for the two phase windings 49 and 49 'present in the stepper motor 31, which are operated with constant current chopper control.
  • the output P1 of the microcomputer 42 is via a Line 50 and the output WR of the microcomputer 4 2 are connected to the intermediate memory 48 via a line 51.
  • a digital-to-analog converter unit 52 in which a control voltage U ST is generated, is connected downstream of the buffer memory 48. This is fed via line 53 to a chopper stage 54, in which it is compared with an actual voltage U I , which is supplied via line 55 from a stepper motor output stage 56. A switching voltage U s is generated in the chopper stage 54 and conducted to the output stage 56 via a line 57. The two phase windings 49, 49 ′ of the stepping motor 31 are connected to the stepping motor output stage 56. The microcomputer 42 and the output stage 56 are still connected by lines 58 and 59 for the transmission of switching voltages U 0 and U 1 .
  • the intermediate memory 48 serves to expand the output of the microcomputer 42 in order to subdivide the half-steps normally carried out by the stepping motor 31 for balance correction into seven intermediate stages.
  • the buffer 48 (FIG. 3) has outputs O, 1, 2 which are connected directly to inputs 0, 1, 2 of a D / A converter 60, while a further output 3 of the buffer 48 is connected to one via a resistor 61 Input 3 of the D / A converter 60 is connected.
  • the input 3 of the D / A converter 60 is connected to ground via a resistor 62.
  • the output of the D / A converter 60 is connected to the non-inverting input of an impedance converter 63 and to a ground via a capacitor 64.
  • the output of the impedance converter 63 is connected via the line 53 to a voltage divider 65, which consists of resistors 66 and 67, the resistor 67 being connected to ground.
  • a capacitor 68 is connected in parallel with the resistor 67.
  • connection point between the two resistors 66 and 67 is connected via a resistor 69 to the reference input of a comparator 70, to the inverting input of which line 55 is connected via a resistor 71.
  • the inverting input of the comparator 70 is connected to ground via a capacitor 72.
  • the output of the comparator 70 is connected via a capacitor 73 to the non-inverting input of a second comparator 74 and via a resistor 75, to which a diode 76 is connected in parallel, to the positive voltage source + U.
  • the inverting input of comparator 74 is connected to a voltage divider consisting of resistors 77 and 78 and connected between the positive voltage and ground.
  • the outputs of the comparators 70 and 74 are connected to one another and connected to the positive voltage source + U via a resistor 80. They are also connected to the stepper motor output stage 56 via the line 57.
  • the switching voltages U o and U 1 are generated in the microcomputer 42 and are supplied to the stepper motor output stage 56 via the lines 58 and 59.
  • the switching voltages U o and U 1 can assume the value L or H controlled by the microcomputer 42.
  • Line 58 is connected to the non-inverting input of a switching amplifier 81 and line 59 to the non-inverting input of a further switching amplifier 82 in the stepper motor output stage 56.
  • Line 57 is connected to the CE inputs of the two switching amplifiers 81 and 8 2 connected. These operate as switches for switching on and off or switching over the phase current I for the phase winding 49, which lies between the outputs of the two switching amplifiers 81 and 82.
  • the switching amplifiers 81 and 82 are connected with their positive current connections via a line 83 to a positive voltage source + U B and with their sensor connections via line 55 to a measuring resistor 84 which is connected to ground.
  • the arrangement works as follows: If an H signal is applied to the non-inverting inputs of the switching amplifiers 81 and 82 (FIG. 3), their output is switched through to the positive operating voltage, while their output is connected to ground when an L signal is present is switched through. If there is an L signal at the chip enable input (CE), the output becomes high-resistance, i. h . there is no current.
  • CE inputs are used to chop amplifiers 81 and 82.
  • the switching voltage U 0 is the conduit 58 H
  • the switching voltage U 1 the line 59 is L
  • the switching voltage V s of the line 57 have also turns to level L.
  • the level L of the line 59 is the switching amplifier 82 to Dimensions.
  • the level H of line 58 causes the switching amplifier 81 to switch through as soon as the switching voltage U S of line 57 at the CE input also switches to H potential (see also FIG. 4b).
  • the phase current I therefore begin from the source of positive voltage + U B via the switching amplifier 81, the phase winding 49, the Sc h altverEntr 82 and the measuring resistor 84 to flow to ground.
  • the winding 49 is alternately connected to a relatively high voltage and separated from it after reaching the current setpoint I S , so that due to the law of induction, the energy stored in the winding 49 is fed back via the freewheeling diodes 85 into the voltage source + U B .
  • the current I in the phase winding 49 therefore continues to flow.
  • phase current I of the phase windings 49 and 49 ′ can be changed by the D / A converter unit 52 in order to increase the torque of the stepping motor 31 during its movement phase, to increase the holding force of the stepping motor 31 in a half-step position and to correct the step adjustment within the predetermined step angle .
  • the level of the control voltage U ST is controlled by the microcomputer 42 (FIG. 3) by entering a correction number into the buffer memory 48 via the data lines 47. At its output and thus also at the input of the D / A converter 60, this correction number is now pending during normal operation of the stepping motor 31 until a new correction number is entered, while the microcomputer 42 alternately changes the correction number and the value 0 during correction operation for reasons described later 1: 1 in the buffer 48.
  • the correction number is converted into a corresponding level voltage and the square-wave voltage generated in the correction mode is sifted through the capacitor 64, so that a relatively low pulsating control voltage is present on the line 53.
  • the again reduced control voltage U ST which is largely smoothed again by the capacitor 68, can then be taken from the voltage divider 65 and fed to the comparator 70 as a reference voltage via the resistor 69.
  • the level of the control voltage U ST determines the rise time and thus the level of the phase current I (FIG. 4).
  • Suitable constant circuit values assign predetermined constant current values to the string current I.
  • the level of the phase current I is adjusted to a current value + I H , - I H, + I V , -IV or a current value between + I B and -I B in accordance with the correction number pending at the intermediate memory 48 (FIGS. 5 and 6) .
  • b e - indicates a positive sign a current flow of the branch current I in one direction, a negative sign a current flow of the branch current I in the other direction determined by the control voltages U O and U 1 . If the control voltages U O and U 1 are the same, then no current flows through the respective phase winding 49 or 49 '.
  • 5 shows the current profile in the two phase windings 49 and 49 'of the stepping motor 31 during execution. of eight full steps in one direction and after a pause of eight full steps and a half step in the other direction.
  • 5a shows the course of the phase current I in the phase winding 49
  • FIG. 5b shows the course of the phase current I in the phase winding 49 '.
  • the sequence of steps begins at time t 1 .
  • the current flow in the phase winding 49 ' is increased to the current value + I H
  • the current flow in the phase winding 49 is reversed by changing the control voltages U O and U 1 and increased to the current value -I H.
  • the step motor 31 is driven until after the desired full step position at the time t 8, the phase currents I of the two phase windings 49 and 49 'is reduced to the current value I + V.
  • the phase current I of the phase winding 49 is increased to the current value + I H at the time t ′ 1 , while the current flow in the phase winding 49 ′ is reversed and thereby increased to the current value -I H .
  • the phase current I of the phase winding 49 is reversed from the current value + I H , while the phase current I of the phase winding 49' is maintained, etc.
  • the stepper motor 31 is in Half step position, in which the phase current I of the one phase winding, in this case the phase winding 49 ', is zero.
  • the phase current I of the other phase winding 49 is therefore kept at its increased current value + I H in order to correspondingly increase the holding force of the stepping motor 31 which is normally reduced in this position.
  • the step adjustment between a full step VS and the adjacent half step HS is corrected by dividing the intermediate step angle into seven intermediate stages. Since the stepper motor 31 in the intended operation works very strongly in its magnetic saturation, its angular deviation is no longer proportional to the change in current. Measurements have shown that a proportionality of angular rotation and current change in the present case only occurs below half the current value + I V or -I V of the phase current I, that is to say only below + I B or -I B. For performing a correction step in seven equal steps, therefore, the predetermined by the microcomputer 42 S tromnote halved each of the phase current I V + V or -I.
  • the stepper motor 31 sets itself to a half step HS. As shown in FIG. 6 (position HS), the phase current I of the one winding 49 then has the value O and that of the other winding 49 'has a value + I H. The stepper motor 31 thereby changes its angle of rotation such that it adjusts itself to the position HS in the middle between the two full steps VS.
  • the stepping motor 31 By applying a certain correction number chopped with the value 1: 1 from the microcomputer 42 to the buffer 48 of the phase winding 49 - for example H potential at the outputs 0 and 2 and L potential at the outputs 1 and 3 with a positive phase current I while maintaining the Value + I V in the phase winding 49 '- the stepping motor 31 adjusts itself to the correction position of the twist angle ⁇ shown by the identification 5 in FIG. 6. The same applies to the adjustment to other correction positions.
  • the input 3 of the D / A converter 60 at whose inputs H potential is present in this case, remains at H potential in order to increase the holding torque of the stepping motor 31 which is lower in this position .
  • the voltage divider from the resistors 61 and 62 is connected upstream, so that the control voltage U ST is not doubled, but is only increased by half the amount.
  • phase current I of the respectively excited phase winding 49 or 49 'in the half-step position HS increases from the current value + I V or -I V to the current value + I H or -I H , at which there are still no heat problems in a permanent position of the stepper motor 31 in this position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Textile Engineering (AREA)
  • Control Of Stepping Motors (AREA)
  • Sewing Machines And Sewing (AREA)

Abstract

Bei einer Nähmaschine mit einem durch einen Mikrocomputer gesteuerten Schrittmotor für die Steuerung der Vorschubgröße und der Vorschubrichtung eines Stoffschiebers ist zur Schrittstellungskorrektur und zur Drehmomentverstärkung des Schrittmotors der Mikrocomputer über einen Zwischenspeicher und einen D/A-Wandler an den nicht invertierenden Eingang eines sowohl die Ein- und Ausschaltung als auch die Stromstärke des Strangstromes jeder Strangwicklung des Schrittmotors steuernden Komparators angeschlossen, dessen invertierender Eingang mit einem im Strangstromkreis angeordneten Meßglied verbunden ist. Zur Anpassung der Korrekturmöglichkeiten an die Schrittmotorparameter weist der D/A-Wandler vier Eingangsstufen auf, deren größte Stufe über einen Spannungsteiler mit der entsprechenden Ausgangsstufe des Zwischenspeichers verbunden ist.In a sewing machine with a stepper motor controlled by a microcomputer for controlling the feed size and feed direction of a fabric slide, the microcomputer is connected to the non-inverting input of a and switching off as well as the amperage of the phase current of each phase winding of the stepper motor controlling comparator connected, the inverting input of which is connected to a measuring element arranged in the phase circuit. To adapt the correction options to the stepper motor parameters, the D / A converter has four input stages, the largest stage of which is connected to the corresponding output stage of the buffer store via a voltage divider.

Description

Die Erfindung betrifft eine Nähmaschine nach dem Oberbegriff des Anspruches 1.The invention relates to a sewing machine according to the preamble of claim 1.

Elektronisch gesteuerte Nähmaschinen weisen vorzugsweise Schrittmotorantriebe zur Steuerung der Veränderung der seitlichen Ausschwingbewegung der Nadelstange und der Vorschubbewegung des Stoffschiebers auf, da sich diese Antriebe hervorragend für die Umsetzung der digital gespeicherten Stichinformationen eignen. Das Übersetzungsverhältnis zwischen der Schrittgröße des Schrittmotors und dem jeweils angetriebenen Element muß dabei so gewählt werden, daß bei einer genügend feinen Abstufung der Verstellbewegung eine ausreichend schnelle Ausführung der Verstellung des angetriebenen Elementes im maximalen Verstellbereich innerhalb der zur Verfügung stehenden Zeit erreicht wird. Bei ganz bestimmten Voraussetzungen genügt die vorhandene Abstufung von Schritt zu Schritt allerdings nicht. Hier ist eine weitere Unterteilung erforderlich.Electronically controlled sewing machines preferably have stepper motor drives for controlling the change in the lateral swing-out movement of the needle bar and the feed movement of the fabric pusher, since these drives are outstandingly suitable for the implementation of the digitally stored stitch information. The gear ratio between the step size of the stepper motor and the respective driven element must be chosen so that with a sufficiently fine gradation of the adjustment movement, a sufficiently fast execution of the adjustment of the driven element in the maximum adjustment range is achieved within the time available. With very specific requirements, the existing gradation from step to step is not sufficient. A further subdivision is necessary here.

Bei einer bekannten Nähmaschine (DE-OS 28 21 552) nach dem Oberbegriff des Anspruches 1 ist die Schrittstellung des Schrittmotors für die Veränderung der Transportbewegung der Nähmaschine von Hand korrigierbar. Dies geschieht dadurch, daß die beiden Strangwicklungen des Schrittmotors durch zwei Potentiometer unterschiedlich erregt werden. Durch diese Maßnahme lassen sich die Verstellstufen des Stellgliedes für den Stoffvorschub im minimalen Vorschubbereich weiter unterteilen. Durch die bessere Feineinstellung des Stellgliedes können bessere Nähergebnisse erzielt werden, insbesondere dann, wenn gleich große Vorschubschritte nahe des Nulltransportbereiches sowohl beim Vorwärts- als auch beim Rückwärtsnähen ausgeführt werden. Die sich in diesem Bereich zwischen dem Vorwärts- und dem Rückwärtsvorschub ergebenden Differenzen hängen außer von der werkseitig einstellbaren exakten Schrittstellung des Schrittmotors in die Nulltransportlage des Stellgliedes von der Art des zu vernähenden Stoffes und von der Arbeitsweise des Stoffschiebers ab, so daß eine Nachstellbarkeit vorhanden sein muß, wenn nicht die Güte der auszuführenden Näharbeit leiden soll.In a known sewing machine (DE-OS 28 21 552) according to the preamble of claim 1, the step position of the stepping motor for changing the transport movement of the sewing machine can be corrected by hand. This happens because the two phase windings of the stepper motor are excited differently by two potentiometers. This measure allows the adjustment stages of the actuator for the material feed to be subdivided further in the minimal feed range. Due to the better fine adjustment of the actuator, better sewing results can be achieved, in particular if feed steps of the same size are carried out close to the zero feed area both for forward and backward sewing. Which is in this area between the forward and the Differences resulting from the reverse feed depend not only on the exact step position of the stepper motor which can be set in the factory, in the zero transport position of the actuator, but also on the type of fabric to be sewn and on the mode of operation of the fabric pusher, so that readjustment must be present if the quality of the sewing work to be carried out is not to suffer .

Ganz besonders ist eine derartige Korrektur bei Nähmustern erforderlich, welche eine Vielzahl von Nähstichen enthalten, die sowohl in der einen als auch in der anderen Transportrichtung auszuführen sind. Hier wirkt sich jeder bei einzelnen Stichen nicht erkennbare Vorschubunterschied zwischen den beiden Transportrichtungen als Summenfehler aus, der das Nähergebnis unbrauchbar machen kann.Such a correction is particularly necessary for sewing patterns which contain a large number of sewing stitches which are to be carried out both in one and in the other transport direction. Here, any feed difference between the two transport directions that is not recognizable for individual stitches has the effect of a total error, which can render the sewing result unusable.

Die obengenannte bekannte Nähmaschine löst das Problem nur sehr unvollkommen, da die Feineinstellung nur auf den minimalen Vorschubbereich der Nähmaschine beschränkt ist. Bei Einstellung größerer Stichlängen ist eine Korrektur zur exakten Ausführung gleich großer Vor- und Rückwärtsstiche nicht möglich.The known sewing machine mentioned above solves the problem only very imperfectly, since the fine adjustment is limited only to the minimal feed range of the sewing machine. If longer stitch lengths are set, a correction for the exact execution of equally large forward and reverse stitches is not possible.

Der Erfindung liegt die Aufgabe zugrunde, die Schrittstellungskorrektur über den gesamten Schrittbereich des Schrittmotors zu ermöglichen und mit der Schrittmotorsteuerüng zu vereinigen.The invention has for its object to enable the step position correction over the entire step area of the stepper motor and to combine with the stepper motor control.

Mit der erfindungsgemäßen Lösung nach dem Kennzeichen des Anspruches 1 ergibt sich eine Schrittmotorsteuerung für eine Nähmaschine, bei der sich nicht nur eine feinstufige Korrektur der vom Schrittmotor vorgegebenen Schrittpositionen in einfacher Weise durchführen läßt, sondern die darüber hinaus auch noch eine Verstärkung des Drehmomentes beim Antrieb des Schrittmotors und des Haltemoments in bestimmten Haltepositionen des Schrittmotors ermöglicht. Außerdem kann über den Mikrocomputer in einfacher Weise eine unterschiedliche Korrektur bei verschiedenen Situationen vorgegeben werden.With the inventive solution according to the characterizing part of claim 1, a stepper motor control for a sewing machine results, in which not only a fine-step correction of the step positions specified by the stepper motor can be carried out in a simple manner, but which also additionally amplifies the torque when driving the Stepper motor and the holding torque in certain holding positions of the stepper motor. In addition, the microcomputer can easily take one under different correction can be specified in different situations.

Eine besondere Anpassung der Korrekturmöglichkeiten an die dem Schrittmotor zugrundeliegenden Parameter ergibt sich durch die Schaltung des D/A-Wandlers nach Anspruch 2.A special adaptation of the correction options to the parameters on which the stepper motor is based results from the circuitry of the D / A converter according to claim 2.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt. Es zeigen:

  • Fig. 1 eine Ansicht der Triebwerksteile einer Nähmaschine, insbesondere für die Stichlängenverstellung durch einen Schrittmotor;
  • Fig. 2 ein Blockschaltbild, das die Steuerung des Schrittmotors zeigt;
  • Fig. 3 einen vereinfachten Schaltplan der Stromregelung und der Endstufe eines Stranges des Schrittmotors;
  • Fig. 4 den Verlauf der Steuer- und der Pegelspannungen sowie des Strangstromes einer Strangwicklung des Schrittmotors;
  • Fig. 5 den Verlauf der Strangströme der beiden Strangwicklung des Schrittmotors bei der Ausführung von Voll- und Halbschritten während seines Antriebes und in einer Voll- und einer Halbschritthalteposition und
  • Fig. 6 den Verlauf der Strangströme der beiden Strangwicklungen des Schrittmotors in aufeinanderfolgenden Korrekturpositionen.
An embodiment of the invention is shown in the drawing. Show it:
  • Figure 1 is a view of the engine parts of a sewing machine, in particular for the stitch length adjustment by a stepper motor.
  • Fig. 2 is a block diagram showing the control of the stepping motor;
  • 3 shows a simplified circuit diagram of the current control and the output stage of a line of the stepping motor;
  • 4 shows the course of the control and level voltages as well as the phase current of a phase winding of the stepping motor;
  • Fig. 5 shows the course of the phase currents of the two phase winding of the stepping motor when executing full and half steps during its drive and in a full and a half step holding position and
  • 6 shows the course of the phase currents of the two phase windings of the stepping motor in successive correction positions.

Wie die Fig. 1 zeigt, ist die Nähmaschine mit einer Hauptwelle 1 ausgestattet, welche über eine Kurbel 2 und einen Lenker 3 eine mit einer Nadel 4 versehene, in einer Führungsschwinge 5 gelagerte Nadelstange 6 in vertikale Hubbewegungen versetzt. Die Führungsschwinge 5 ist dabei in dem nicht dargestellten Gehäuse der Nähmaschine mittels eines Zapfens 7 gelagert.As shown in FIG. 1, the sewing machine is equipped with a main shaft 1 which, via a crank 2 and a link 3, sets a vertical lifting movement of a needle bar 6 provided with a needle 4 and mounted in a guide rocker 5. The guide rocker 5 is mounted in the housing of the sewing machine, not shown, by means of a pin 7.

Die Führungsschwinge 5 weist einen Ansatz 8 auf, der über einen Lenker 9 mit einer Kurbel 10 verbunden ist, die auf der Welle 11 eines im Gehäuse der Nähmaschine angeordneten Schrittmotors 12 zur Steuerung der Überstichbreite der Nadel 4 befestigt ist.The guide rocker 5 has an extension 8 which is connected via a link 9 to a crank 10 which is fastened on the shaft 11 of a stepping motor 12 arranged in the housing of the sewing machine for controlling the stitch width of the needle 4.

Die Hauptwelle 1 treibt über eine nicht dargestellte Kette eine untere Welle 13 an. Auf der Welle 13 ist ein Zahnrad 14 befestigt, welches mit einem Zahnrad 15 in Eingriff steht, das auf einer parallel zur Welle 13 gelagerten Welle 16 befestigt ist. Auf dieser ist ein Hebeexzenter 17 festgeschraubt, welcher einen Nocken 18 trägt. Auf der Welle 16 ist ferner ein Exzenter 19 befestigt, der von einer Exzenterstange 20 umgriffen wird, an der mittels eines Bolzens 21 zwei Lenker 22 und 23 angelenkt sind. Der Lenker 22 ist über einen Bolzen 24 mit einem Winkelhebel 25 drehbar verbunden, der auf einer im Gehäuse der Nähmaschine befestigten Achse 26 drehbar gelagert ist und über einen Arm 27 des Winkelhebels 25 und eine Stange 28 mit einer Kurbel 29 verbunden ist, die auf der Welle 30 eines zweiten in dem Gehäuse der Nähmaschine angeordneten Schrittmotors 31 befestigt ist, der die Steuerung der Stichlänge der Nähmaschine bewirkt.The main shaft 1 drives a lower shaft 13 via a chain, not shown. A gearwheel 14 is fastened on the shaft 13, which meshes with a gearwheel 15 which is fastened on a shaft 16 mounted parallel to the shaft 13. On this a lifting eccentric 17 is screwed, which carries a cam 18. On the shaft 16, an eccentric 19 is also attached, which is encompassed by an eccentric rod 20, on which two links 22 and 23 are articulated by means of a bolt 21. The handlebar 22 is rotatably connected via a bolt 24 to an angle lever 25 which is rotatably mounted on an axle 26 fastened in the housing of the sewing machine and is connected via an arm 27 of the angle lever 25 and a rod 28 to a crank 29 which is on the Shaft 30 of a second stepping motor 31 arranged in the housing of the sewing machine, which controls the stitch length of the sewing machine.

Durch einen Bolzen 32 ist der Lenker 23 mit einem Arm 33 eines auf der Welle 13 gelagerten Schwinghebels 34 gelenkig verbunden. Ein zweiter nach oben ragender Arm 35 des Schwinghebels 34 weist an seinem Ende einen Führungsschlitz 36 auf, in dem ein Zapfen 37 geführt ist. Dieser ist an einem Tragarm 38 befestigt, der auf einer horizontalen, im Gehäuse der Nähmaschine parallel zur Vorschubrichtung befestigten Achse 39 verschiebbar gelagert ist. An seinem freien Ende trägt der Tragarm 38 einen Stoffschieber 40, der zum Transport von Nähgut vorgesehen ist, welches von der Nadel 4 im Zusammenwirken mit einem nicht dargestellten Greifer vernäht wird. Der Tragarm 38 stützt sich über einen nach unten gerichteten Steg 41 auf den Nocken 18 des Hebeexzenters 17 ab.The link 23 is articulated to an arm 33 of a rocker arm 34 supported on the shaft 13 by a bolt 32. A second upwardly projecting arm 35 of the rocker arm 34 has at its end a guide slot 36 in which a pin 37 is guided. This is on attached to a support arm 38 which is slidably mounted on a horizontal axis 39 fastened in the housing of the sewing machine parallel to the feed direction. At its free end, the support arm 38 carries a fabric slide 40, which is provided for the transport of sewing material, which is sewn by the needle 4 in cooperation with a gripper, not shown. The support arm 38 is supported on the cams 18 of the lifting eccentric 17 via a web 41 directed downwards.

Die beiden Schrittmotore 12 und 31 sind in ihrem Aufbau und in ihrer prinzipiellen Steuerung identisch; es genügt daher für das Verständnis ihrer Wirkungsweise die Beschreibung der Steuerung des Schrittmotors 31.The structure of the two stepper motors 12 and 31 are identical in their basic control; it is therefore sufficient to understand the operation of the description of the control of the stepping motor 31.

Der Schrittmotor 31, der zur Steuerung der Stichlänge der Nähmaschine dient, ist als Zweistrang-Schrittmotor ausgebildet. Er wird von einem Mikrocomputer 42 (Fig. 2) gesteuert, in dessen Speicher in bekannter Weise eine Vielzahl von beliebigen Nähmustern gespeichert sind.The stepper motor 31, which serves to control the stitch length of the sewing machine, is designed as a two-strand stepper motor. It is controlled by a microcomputer 42 (FIG. 2), in the memory of which a large number of any sewing patterns are stored in a known manner.

Am Mikrocomputer 42 ist ein von der Hauptwelle 1 der Nähmaschine gesteuerter Impulsgeber43 angeschlossen, der bei jeder Umdrehung der Hauptwelle l dann einen Impuls abgibt, wenn der Stoffschieber 40 mit dem Nähgut nicht in Eingriff steht und der Schrittmotor 31 eine Veränderung der Stichverstellung vornehmen kann. Der Impuls wird zur Impulsformung einem Komparator 44 zugeführt, dessen Ausgang mit dem INT-Eingang des Mikrocomputers 42 verbunden ist.A pulse generator 43, which is controlled by the main shaft 1 of the sewing machine, is connected to the microcomputer 42 and emits a pulse with each revolution of the main shaft 1 when the fabric pusher 40 is not in engagement with the sewing material and the stepping motor 31 can change the stitch adjustment. The pulse is fed to a comparator 44 for pulse shaping, the output of which is connected to the INT input of the microcomputer 42.

Der Mikrocomputer 42 ist über eine Gruppe von acht Datenleitungen 47 mit einem Zwischenspeicher 48 zur Übertragung der Steuerungsvorgänge für die in dem Schrittmotor 31 vorhandenen beiden Strangwicklungen 49 und 49' verbunden, die mit Konstantstrom-Chopperregelung betrieben werden. Außerdem ist der Ausgang Pll des Mikrocomputers 42 über eine Leitung 50 und der Ausgang WR des Mikrocomputers 42 über eine Leitung 51 mit dem Zwischenspeicher 48 verbunden.The microcomputer 42 is connected via a group of eight data lines 47 to an intermediate memory 48 for transferring the control processes for the two phase windings 49 and 49 'present in the stepper motor 31, which are operated with constant current chopper control. In addition, the output P1 of the microcomputer 42 is via a Line 50 and the output WR of the microcomputer 4 2 are connected to the intermediate memory 48 via a line 51.

Da der Aufbau der Regelschaltung zwischen dem Zwischenspeicher 48 und den Strangwicklungen 49 bzw. 49' identisch ist, wird nur die Regelung für die Strangwicklung 49 beschrieben. Gleichartige Elemente in den beiden Regelkreisen sind dabei mit gleichen Bezugszeichen versehen.Since the structure of the control circuit between the buffer memory 48 and the strand windings 49 and 49 'is identical, only the regulation for the strand winding 49 is described. Elements of the same type in the two control loops are provided with the same reference symbols.

Dem Zwischenspeicher 48 ist eine Digital-Analog-Wandlereinheit 52 nachgeschaltet, in dem eine Steuerspannung UST erzeugt wird. Diese wird über eine Leitung 53 einer Chopper-Stufe 54 zugeführt, in der sie mit einer Istspannung UI verglichen wird, die über eine Leitung 55 von einer Schrittmotor-Endstufe 56 geliefert wird. In der Chopper-Stufe 54 wird eine Schaltspannung Us erzeugt und über eine Leitung 57 an die Endstufe 56 geleitet. An die Schrittmotor-Endstufe 56 sind die beiden Strangwicklungen 49, 49' des Schrittmotors 31 angeschlossen. Der Mikrocomputer 42 und die Endstufe 56 sind noch durch Leitungen 58 und 59 zur Übertragung von Schaltspannungen U0 und U1 verbunden.A digital-to-analog converter unit 52, in which a control voltage U ST is generated, is connected downstream of the buffer memory 48. This is fed via line 53 to a chopper stage 54, in which it is compared with an actual voltage U I , which is supplied via line 55 from a stepper motor output stage 56. A switching voltage U s is generated in the chopper stage 54 and conducted to the output stage 56 via a line 57. The two phase windings 49, 49 ′ of the stepping motor 31 are connected to the stepping motor output stage 56. The microcomputer 42 and the output stage 56 are still connected by lines 58 and 59 for the transmission of switching voltages U 0 and U 1 .

Der Zwischenspeicher 48 dient zur Ausgangserweiterung des Mikrocomputers 42, um die normal vom Schrittmotor 31 ausgeführten Halbschritte zur Balance-Korrektur nochmals in sieben Zwischenstufen zu unterteilen.The intermediate memory 48 serves to expand the output of the microcomputer 42 in order to subdivide the half-steps normally carried out by the stepping motor 31 for balance correction into seven intermediate stages.

Der Zwischenspeicher 48 (Fig. 3) weist Ausgänge O, 1, 2 auf, die direkt an Eingänge 0, 1, 2 eines D/A-Wandlers 60 angeschlossen sind, während ein weiterer Ausgang 3 des Zwischenspeichers 48 über einen Widerstand 61 an einen Eingang 3 des D/A-Wandlers 60 angeschlossen ist. Der Eingang 3 des D/A-Wandlers 60 ist über einen Widerstand 62 mit Masse verbunden. Der Ausgang des D/A-Wandlers 60 ist mit dem nicht invertierenden Eingang eines Impedanzwandlers 63 und über einen Kondensator 64 mit Masse verbunden.The buffer 48 (FIG. 3) has outputs O, 1, 2 which are connected directly to inputs 0, 1, 2 of a D / A converter 60, while a further output 3 of the buffer 48 is connected to one via a resistor 61 Input 3 of the D / A converter 60 is connected. The input 3 of the D / A converter 60 is connected to ground via a resistor 62. The output of the D / A converter 60 is connected to the non-inverting input of an impedance converter 63 and to a ground via a capacitor 64.

Der Ausgang des Impedanzwandlers 63 ist über die Leitung 53 an einem Spannungsteiler 65 angeschlossen, der aus Widerständen 66 qnd 67 besteht, wobei der Widerstand 67 mit Masse verbunden ist. Parallel zu dem Widerstand 67 ist ein Kondensator 68 geschaltet.The output of the impedance converter 63 is connected via the line 53 to a voltage divider 65, which consists of resistors 66 and 67, the resistor 67 being connected to ground. A capacitor 68 is connected in parallel with the resistor 67.

Der Verbindungspunkt zwischen den beiden Widerständen 66 und 67 ist über einen Widerstand 69 an den Referenzeingang eines Komparators 70 angeschlossen, an dessen invertierenden Eingang über einen Widerstand 71 die Leitung 55 angeschlossen ist. Der invertierende Eingang des Komparators 70 ist über einen Kondensator 72 mit Masse verbunden.The connection point between the two resistors 66 and 67 is connected via a resistor 69 to the reference input of a comparator 70, to the inverting input of which line 55 is connected via a resistor 71. The inverting input of the comparator 70 is connected to ground via a capacitor 72.

Der Ausgang des Komparators 70 ist über einen Kondensator 73 an den nicht invertierenden Eingang eines zweiten Komparators 74 angeschlossen und über einen Widerstand 75, dem eine Diode 76 parallel geschaltet ist, mit der positiven Spannungsquelle +U verbunden. Der invertierende Eingang des Komparators 74 ist an einen aus den Widerständen 77 und 78 bestehenden zwischen die positive Spannung und Masse geschalteten Spannungsteiler angeschlossen. Die Ausgänge der Komparatoren 70 und 74 sind miteinander verbunden und über einen Widerstand 80 an die positive Spannungsquelle +U angeschlossen. Außerdem sind sie über die Leitung 57 mit der Schrittmotor-Endstufe 56 verbunden.The output of the comparator 70 is connected via a capacitor 73 to the non-inverting input of a second comparator 74 and via a resistor 75, to which a diode 76 is connected in parallel, to the positive voltage source + U. The inverting input of comparator 74 is connected to a voltage divider consisting of resistors 77 and 78 and connected between the positive voltage and ground. The outputs of the comparators 70 and 74 are connected to one another and connected to the positive voltage source + U via a resistor 80. They are also connected to the stepper motor output stage 56 via the line 57.

Im Mikrocomputer 42 werden die Schaltspannungen Uo und U1 erzeugt, die über die Leitungen 58 und 59 der Schrittmotor-Endstufe 56 zugeführt werden. Die Schaltspannungen Uo und U1 können vom Mikrocomputer 42 gesteuert den Wert L oder H annehmen.The switching voltages U o and U 1 are generated in the microcomputer 42 and are supplied to the stepper motor output stage 56 via the lines 58 and 59. The switching voltages U o and U 1 can assume the value L or H controlled by the microcomputer 42.

Die Leitung 58 ist an den nicht invertierenden Eingang eines Schaltverstärkers 81 und die Leitung 59 an den nicht invertierenden Eingang eines weiteren Schaltverstärkers 82 in der Schrittmotor-Endstufe 56 angeschlossen. Die Leitung 57 ist mit den CE-Eingängen der beiden Schaltverstärker 81 und 82 verbunden. Diese arbeiten als Schalter zur Zu- und Abschaltung bzw. Umschaltung des Strangstromes I für die Strangwicklung·49, die zwischen den Ausgängen der beiden Schaltverstärker 81 und 82 liegt.Line 58 is connected to the non-inverting input of a switching amplifier 81 and line 59 to the non-inverting input of a further switching amplifier 82 in the stepper motor output stage 56. Line 57 is connected to the CE inputs of the two switching amplifiers 81 and 8 2 connected. These operate as switches for switching on and off or switching over the phase current I for the phase winding 49, which lies between the outputs of the two switching amplifiers 81 and 82.

Die Schaltverstärker 81 und 82 sind mit ihren positiven Stromanschlüssen über eine Leitung 83 mit einer positiven Spannungsquelle +UB und mit ihren Sensoranschlüssen über die Leitung 55 an einen Meßwiderstand 84 angeschlossen, der mit Masse in Verbindung steht.The switching amplifiers 81 and 82 are connected with their positive current connections via a line 83 to a positive voltage source + U B and with their sensor connections via line 55 to a measuring resistor 84 which is connected to ground.

Die Anordnung arbeitet wie folgt: Wird an die nicht invertierenden Eingänge der Schaltverstärker 81 und 82 (Fig. 3) jeweils ein H-Signal angelegt, so wird ihr Ausgang an die positive Betriebsspannung durchgeschaltet, während beim Anliegen eines L-Signales ihr Ausgang nach Masse durchgeschaltet wird. Liegt am Chip-Enable-Eingang (CE) ein L-Signal, wird der Ausgang hochohmig, d. h. es fließt kein Strom. Die CE-Eingänge dienen zum Choppen der Verstärker 81 und 82.The arrangement works as follows: If an H signal is applied to the non-inverting inputs of the switching amplifiers 81 and 82 (FIG. 3), their output is switched through to the positive operating voltage, while their output is connected to ground when an L signal is present is switched through. If there is an L signal at the chip enable input (CE), the output becomes high-resistance, i. h . there is no current. The CE inputs are used to chop amplifiers 81 and 82.

Es sei angenommen, die Schaltspannung U0 der Leitung 58 sei H, die Schaltspannung U1 der Leitung 59 sei L und die Schaltspannung Us der Leitung 57 habe ebenfalls den Pegel L. Infolge des Pegels L der Leitung 59 liegt der Schaltverstärker 82 an Masse. Der Pegel H der Leitung 58 bewirkt ein Durchschalten des Schaltverstärkers81, sobald auch die Schaltspannung US der Leitung 57 am CE-Eingang auf H-Potential umschaltet (siehe auch Fig. 4b). In diesem Fall beginnt somit Strangstrom I von der positiven Spannungsquelle +UB über den Schaltverstärker 81, die Strangwicklung 49, den Schaltverstärker 82 und den Meßwiderstand 84 an Masse zu fließen. Am Meßwiderstand 84 wird ein Spannungsabfall erzeugt, der über die Leitung 55, den Widerstand 71 und den Kondensator 72 als Istspannung UI (Fig. 4c) zeitlich ver- zögert dem Komparator 70 zugeführt und hier mit der aus der Steuerspannung UST auf Leitung 53 gebildeten Referenz-It se i assumed the switching voltage U 0 is the conduit 58 H, the switching voltage U 1 the line 59 is L and the switching voltage V s of the line 57 have also turns to level L. As a result of the level L of the line 59 is the switching amplifier 82 to Dimensions. The level H of line 58 causes the switching amplifier 81 to switch through as soon as the switching voltage U S of line 57 at the CE input also switches to H potential (see also FIG. 4b). In this case, the phase current I therefore begin from the source of positive voltage + U B via the switching amplifier 81, the phase winding 49, the Sc h altverstärker 82 and the measuring resistor 84 to flow to ground. At the measuring resistor 84, a voltage drop is generated, the 71 and the capacitor 72. This moves temporally comparable via the line 55, the resistance as actual voltage U I (Fig. 4c) e rt the comparator 70 is supplied, and here with that of the control voltage U ST on Line 53 formed reference

spannung verglichen wird. Überschreitet die Istspannung UI über dem Meßwiderstand 84 die Steuerspannung UST, so ist im Zeitpunkt t1 das Ende der Aufladephase erreicht. Der Ausgang des Komparators 70 schaltet die Schaltspannung Us auf L-Potential um (Fig. 4b) und die beiden Schaltverstärker 81 und 82 werden über die an ihren CE-Eingängen angeschlossene Leitung 57 abgeschaltet. Gleichzeitig wird dieser negative Spannungssprung über den Kondensator 73 als Schaltspannung US1 (Fig. 4d) an den nicht invertierenden Eingang des Komparators 74 übertragen, wodurch dieser auf L-Potential schaltet und die Abschaltung der Schaltverstärker 81 und 82 aufrecht hält. Diese würden sonst, da durch den Meßwiderstand 84 nun kein Strom mehr fließt, wieder eingeschaltet werden.voltage is compared. If the actual voltage U I across the measuring resistor 84 exceeds the control voltage U ST , the end of the charging phase is reached at time t 1 . The output of the comparator 70 switches the switching voltage U s to L potential (FIG. 4b) and the two switching amplifiers 81 and 82 are switched off via the line 57 connected to their CE inputs. At the same time, this negative voltage jump is transmitted via capacitor 73 as switching voltage U S1 (FIG. 4d) to the non-inverting input of comparator 74, as a result of which it switches to L potential and maintains the switching amplifiers 81 and 82 being switched off. Otherwise these would be switched on again since current no longer flows through the measuring resistor 84.

Erst nachdem der Kondensator 73 über den Widerstand 75 so weit aufgeladen ist, daß die Schaltspannung US1 (Fig. 4d) am nicht invertierenden Eingang des Komparators 74 die durch den Spannungsteiler (Widerstände 77 und 78) am invertierenden Eingang anliegende Referenzspannung UR überschreitet (Zeitpunkt t2), schaltet der Ausgang des Komparators 74 wieder auf H-Potential. Dadurch wird der Schaltverstärker 81 über seinen CE-Eingang wieder durchgeschaltet und der beschriebene Schaltablauf beginnt von neuem. Vom Zeitpunkt t1 ab wird der Strangstrom I der Strangwicklung 49 gechoppt.Only after the capacitor 73 has been charged to such an extent via the resistor 75 that the switching voltage U S1 (FIG. 4d) at the non-inverting input of the comparator 74 exceeds the reference voltage U R present at the inverting input through the voltage divider (resistors 77 and 78) ( Time t 2 ), the output of the comparator 74 switches back to H potential. As a result, the switching amplifier 81 is switched through again via its CE input and the switching sequence described begins again. From time t 1 onwards, the phase current I of the phase winding 49 is chopped.

Auf diese Weise wird die Strangwicklung 49 wechselweise an eine verhältnismäßig hohe Spannung geschaltet und nach Erreichen des Stromsollwertes IS von dieser getrennt, so daß auf Grund des Induktionsgesetzes die in der Strangwicklung 49 gespeicherte Energie über die Freilaufdioden 85 in die Spannungsquelle +UB zurückgespeist wird. Der Strom I in der Strangwicklung 49 fließt also weiter.In this way, the winding 49 is alternately connected to a relatively high voltage and separated from it after reaching the current setpoint I S , so that due to the law of induction, the energy stored in the winding 49 is fed back via the freewheeling diodes 85 into the voltage source + U B . The current I in the phase winding 49 therefore continues to flow.

Bei gleichzeitiger Erregung der beiden Strangwicklungen 49 und 49' (Fig. 1) ergeben sich dabei Vollschritte; bei Erregung nur einer einzigen Strangwicklung 49 oder 49' zwischen zwei benachbarten Vollschritten ergibt sich ein Halbschritt.With simultaneous excitation of the two phase windings 49 and 49 '(FIG. 1), full steps result; If only a single phase winding 49 or 49 'is excited between two adjacent full steps, a half step results.

Der Strangstrom I der Strangwicklungen 49 und 49' kann zur Erhöhung des Drehmomentes des Schrittmotors 31 während seiner Bewegungsphase, zur Erhöhung der Haltekraft des Schrittmotors 31 in einer Halbschrittstellung und zur Korrektur der Schrittverstellung innerhalb des vorgegebenen Schrittwinkels durch die D/A-Wandlereinheit 52 verändert werden.The phase current I of the phase windings 49 and 49 ′ can be changed by the D / A converter unit 52 in order to increase the torque of the stepping motor 31 during its movement phase, to increase the holding force of the stepping motor 31 in a half-step position and to correct the step adjustment within the predetermined step angle .

Der Strangstrom I der Strangwicklungen 49 und 49' verändert sich proportional mit der Steuerspannung UST. Die Höhe der Steuerspannung UST wird vom Mikrocomputer 42 (Fig. 3) gesteuert, indem dieser eine Korrekturzahl über die Datenleitungen 47 in den Zwischenspeicher 48 eingibt. An dessen Ausgang und damit auch am Eingang des D/A-Wandlers 60 steht diese Korrekturzahl beim Normalbetrieb des Schrittmotors 31 nunmehr bis zur Eingabe einer neuen Korrekturzahl dauerhaft an, während der Mikrocomputer 42 beim Korrekturbetrieb aus später beschriebenen Gründen abwechselnd die Korrekturzahl und den Wert 0 im Verhältnis 1 : 1 an den Zwischenspeicher 48 anlegt.The phase current I of the phase windings 49 and 49 'changes proportionally with the control voltage U ST . The level of the control voltage U ST is controlled by the microcomputer 42 (FIG. 3) by entering a correction number into the buffer memory 48 via the data lines 47. At its output and thus also at the input of the D / A converter 60, this correction number is now pending during normal operation of the stepping motor 31 until a new correction number is entered, while the microcomputer 42 alternately changes the correction number and the value 0 during correction operation for reasons described later 1: 1 in the buffer 48.

Im D/A-Wandler 60 wird die Korrekturzahl in eine entsprechende Pegelspannung umgewandelt und die im Korrekturbetrieb erzeugte Rechteckspannung durch den Kondensator 64 gesiebt, so daß auf der Leitung 53 eine relativ gering pulsierende Steuerspannung ansteht. Am Spannungsteiler 65 kann dann die nochmals reduzierte Steuerspannung UST, die durch den Kondensator 68 noch einmal weitgehend geglättet wird, entnommen und über den Widerstand 69 den Komparator 70 als Referenzspannung zugeführt werden. Die Höhe der Steuerspannung UST bestimmt die Anstiegszeit und damit die Höhe des Strangstromes I (Fig. 4).In the D / A converter 60, the correction number is converted into a corresponding level voltage and the square-wave voltage generated in the correction mode is sifted through the capacitor 64, so that a relatively low pulsating control voltage is present on the line 53. The again reduced control voltage U ST , which is largely smoothed again by the capacitor 68, can then be taken from the voltage divider 65 and fed to the comparator 70 as a reference voltage via the resistor 69. The level of the control voltage U ST determines the rise time and thus the level of the phase current I (FIG. 4).

Durch geeignete Schaltungsmaßnahmen werden dem Strangstrom I vorbestimmte konstante Stromwerte zugeordnet. Die Höhe des Strangstromes I wird dabei entsprechend der am Zwischenspeicher 48 anstehenden Korrekturzahl auf einen Stromwert +IH, -IH, +IV, -IV oder einen Stromwert zwischen +IB und -IB eingeregelt (Fig. 5 und 6). Dabei be- zeichnet ein positives Vorzeichen einen Stromfluß des Strangstromes I in der einen, ein negatives Vorzeichen einen Stromfluß des Strangstromes I in der anderen durch die Steuerspannungen UO und U1 bestimmten Richtung. Sind die Steuerspannungen UO und U1 gleich, so fließt kein Strom durch die jeweilige Strangwicklung 49 bzw. 49'.Suitable constant circuit values assign predetermined constant current values to the string current I. The level of the phase current I is adjusted to a current value + I H , - I H, + I V , -IV or a current value between + I B and -I B in accordance with the correction number pending at the intermediate memory 48 (FIGS. 5 and 6) . Here b e - indicates a positive sign a current flow of the branch current I in one direction, a negative sign a current flow of the branch current I in the other direction determined by the control voltages U O and U 1 . If the control voltages U O and U 1 are the same, then no current flows through the respective phase winding 49 or 49 '.

Fig. 5 zeigt den Stromverlauf in den beiden Strangwicklungen 49 und 49' des Schrittmotors 31 bei der Ausführung . von acht Vollschritten in der einen Richtung und nach einer Pause von acht Vollschritten und einem Halbschritt in der anderen Richtung. Die Fig. 5a zeigt dabei den Verlauf des Strangstromes I in der Strangwicklung 49 und die Fig. 5b den Verlauf des Strangstromes I in der Strangwicklung 49' an.5 shows the current profile in the two phase windings 49 and 49 'of the stepping motor 31 during execution. of eight full steps in one direction and after a pause of eight full steps and a half step in the other direction. 5a shows the course of the phase current I in the phase winding 49 and FIG. 5b shows the course of the phase current I in the phase winding 49 '.

Zum Zeitpunkt t0 steht der Schrittmotor 31 in Vollschrittposition, da beide Strangwicklungen 49 und 49' von Strangströmen I mit dem Stromwert +IV durchflossen werden. In dieser Vollschrittposition liegt an den Eingängen 0, 1 und 2 der D/A-Wandler 60 der beiden Strangwicklungen jeweils H-Potential an. Da beide Strangströme I die Stromwerte +IV aufweisen, ist ein genügend großes Haltemoment gegeben.At time t 0 is the stepping motor 31 in full step position, because both phase windings are 'flows through 49 and 49 of phase currents I by the current value I + V. In this full step position, H potential is present at the inputs 0, 1 and 2 of the D / A converters 60 of the two phase windings. Since both phase currents I have the current values + I V , the holding torque is sufficiently large.

Im Zeitpunkt t1 beginnt die Schrittfolge. Der Stromfluß in der Strangwicklung 49' wird auf den Stromwert +IH erhöht, während der Stromfluß in der Strangwicklung 49 durch Wechsel der Steuerspannungen UO und U1 umgekehrt und auf den Stromwert -IH erhöht wird. Dadurch wird ein erhöhtes Drehmoment zum Antrieb des Schrittmotors 31 erzeugt, indem der Mikrocomputer 42 zusätzlich zu den Eingängen 0 bis 2 auch an den Eingang 3 der D/A-Wandler 60 H-Potential anlegt.The sequence of steps begins at time t 1 . The current flow in the phase winding 49 'is increased to the current value + I H , while the current flow in the phase winding 49 is reversed by changing the control voltages U O and U 1 and increased to the current value -I H. This results in an increased torque for driving the stepping motor 31 testifies that the microcomputer 42 applies 60 H potential to the input 3 of the D / A converter in addition to the inputs 0 to 2.

Im Zeitpunkt t2 wird der Stromfluß und der Stromwert -IH in der Strangwicklung 49 beibehalten, während in der Strangwicklung 49' der Stromfluß auf den Stromwert -IH umgekehrt wird. Auf diese Weise wird der Schrittmotor 31 angetrieben, bis nach Erreichen der gewünschten Vollschrittposition im Zeitpunkt t8 die Strangströme I der beiden Strangwicklungen 49 und 49' auf den Stromwert +IV reduziert werden.At time t 2 , the current flow and the current value -I H are maintained in the phase winding 49, while in the phase winding 49 'the current flow is reversed to the current value -I H. In this manner, the step motor 31 is driven until after the desired full step position at the time t 8, the phase currents I of the two phase windings 49 and 49 'is reduced to the current value I + V.

Zur Ausführung einer Drehung des Schrittmotors 31 in der umgekehrten Richtung wird im Zeitpunkt t'1 der Strangstrom I der Strangwicklung 49 auf den Stromwert +IH erhöht, während der Stromfluß in der Strangwicklung 49' umgekehrt und dabei auf den Stromwert -IH erhöht wird. Im Zeitpunkt t'2 wird der Strangstrom I der Strangwicklung 49 vom Stromwert +IH umgekehrt, während der Strangstrom I der Strangwicklung 49' beibehalten wird, usw. Im Zeitpunkt t'9, am Ende der zweiten Schrittfolge also, steht der Schrittmotor 31 in Halbschrittposition, in der der Strangstrom I der einen Strangwicklung, in diesem Falle der Strangwicklung 49', Null ist. Der Strangstrom I der anderen Strangwicklung 49 wird daher auf seinem erhöhten Stromwert +IH gehalten, um die normal in dieser Position verminderte Haltekraft des Schrittmotors 31 entsprechend zu erhöhen.To carry out a rotation of the stepping motor 31 in the reverse direction, the phase current I of the phase winding 49 is increased to the current value + I H at the time t ′ 1 , while the current flow in the phase winding 49 ′ is reversed and thereby increased to the current value -I H . At time t ' 2 , the phase current I of the phase winding 49 is reversed from the current value + I H , while the phase current I of the phase winding 49' is maintained, etc. At time t ' 9 , that is to say at the end of the second sequence of steps, the stepper motor 31 is in Half step position, in which the phase current I of the one phase winding, in this case the phase winding 49 ', is zero. The phase current I of the other phase winding 49 is therefore kept at its increased current value + I H in order to correspondingly increase the holding force of the stepping motor 31 which is normally reduced in this position.

In Fig. 6 ist die gesteuerte Korrektur zwischen zwei Vollschrittpositionen VS dargestellt.6 shows the controlled correction between two full step positions VS.

Eine Korrektur der Schrittverstellung zwischen einem Vollschritt VS und dem benachbarten Halbschritt HS erfolgt durch Unterteilung des dazwischen liegenden Schrittwinkels in sieben Zwischenstufen. Da der Schrittmotor 31 bei dem vorgesehenen Betrieb sehr stark in seiner magnetischen Sättigung arbeitet, erfolgt seine Winkelabweichung nicht mehr proportional zur Stromänderung. Messungen haben ergeben, daß eine Proportionalität von Winkeldrehung und Stromänderung im vorliegenden Fall erst unterhalb der Hälfte des Stromwertes +IV bzw. -IV des Strangstromes I, also erst unterhalb von +IB bzw. -IB auftritt. Zur Ausführung einer Schrittkorrektur in sieben gleichmäßigen Stufen wird daher die vom Mikrocomputer 42 vorgegebene Stromstufe des Strangstromes +IV bzw. -IV jeweils halbiert. Dies erfolgt durch das bereits erwähnte Choppen der an den Ausgängen O bis 2 des Zwischenspeichers 48 anstehenden Korrekturzahl durch den Mikrocomputer 42 (Fig. 3) im Verhältnis Pulszeit : Pausenzeit = 1 : 1. Während der Pulszeit steht im Zwischenspeicher 48 die vorgegebene Korrekturzahl und während der Pausenzeit die Zahl O. Nach entsprechender Siebung durch den Kondensator 64 sowie den Widerstand 66 und den Kondensator 68 weist die erzeugte Steuerspannung UST nur noch den halben vorherigen Wert auf.The step adjustment between a full step VS and the adjacent half step HS is corrected by dividing the intermediate step angle into seven intermediate stages. Since the stepper motor 31 in the intended operation works very strongly in its magnetic saturation, its angular deviation is no longer proportional to the change in current. Measurements have shown that a proportionality of angular rotation and current change in the present case only occurs below half the current value + I V or -I V of the phase current I, that is to say only below + I B or -I B. For performing a correction step in seven equal steps, therefore, the predetermined by the microcomputer 42 S tromstufe halved each of the phase current I V + V or -I. This is done by the above-mentioned chopping of the correction number pending at the outputs O to 2 of the buffer memory 48 by the microcomputer 42 (FIG. 3) in the ratio of pulse time: pause time = 1: 1. During the pulse time, the predetermined correction number is in the buffer memory 48 and during the number O of the pause time. After appropriate screening by the capacitor 64 and the resistor 66 and the capacitor 68, the control voltage U ST generated only has half the previous value.

Wenn an allen Eingängen O bis 3 des D/A-Wandlers 60 der einen Strangwicklung 49 bzw. 49' L-Potential anliegt, die Korrekturzahl also 0 ist, während bei der anderen Strangwicklung 49' bzw. 49 der Korrekturwert an den Eingängen O bis 3 konstantes H-Potential aufweist, stellt sich der Schrittmotor 31 auf einen Halbschritt HS ein. Wie die Fig. 6 (Stellung HS) zeigt, weist dann beispielsweise der Strangstrom I der einen Wicklung 49 den Wert O und der der anderen Wicklung 49' einen Wert +IH auf. Der Schrittmotor 31 ändert dadurch seinen Verdrehungswinkel derart, daß er sich auf die Stellung HS in der Mitte zwischen den beiden Vollschritten VS einstellt.If at all inputs O to 3 of D / A converter 60 there is one phase winding 49 or 49 'L potential, ie the correction number is 0, while in the other phase winding 49' or 49 the correction value at inputs O to 3 has a constant H potential, the stepper motor 31 sets itself to a half step HS. As shown in FIG. 6 (position HS), the phase current I of the one winding 49 then has the value O and that of the other winding 49 'has a value + I H. The stepper motor 31 thereby changes its angle of rotation such that it adjusts itself to the position HS in the middle between the two full steps VS.

Beim Vollschritt VS sind alle Eingänge 0 bis 2 der D/A-Wandler 60 der beiden Strangwicklungen 49 und 49' auf H-Potential geschaltet. Wenn dagegen alle Eingänge O bis 3 des einen D/A-Wandlers auf L-Potential geschaltet sind und alle Eingänge 0 bis 3 des anderen D/A-Wandlers 60 auf H-Potential geschaltet sind, liegt ein Halbschritt HS vor.At full step VS, all inputs 0 to 2 of the D / A converter 60 of the two phase windings 49 and 49 'are switched to H potential. If, on the other hand, all inputs O to 3 of one D / A converter is switched to L potential and all inputs 0 to 3 of the other D / A converter 60 are switched to H potential, there is a half step HS.

Durch Anliegen einer bestimmten mit dem Wert 1 : 1 gechoppten Korrekturzahl vom Mikrocomputer 42 an den Zwischenspeicher 48 der Strangwicklung 49 - beispielsweise H-Potential an den Ausgängen 0 und 2 und L-Potential an den Ausgängen 1 und 3 bei positivem Strangstrom I unter Beibehaltung des Wertes +IV bei der Strangwicklung 49' - stellt sich der Schrittmotor 31 auf die in der Fig. 6 durch die Kennzeichnung 5 dargestellte Korrekturlage,des Verdrehungswinkels ϕ ein. Entsprechendes gilt für die Einstellung in andere Korrekturlagen.By applying a certain correction number chopped with the value 1: 1 from the microcomputer 42 to the buffer 48 of the phase winding 49 - for example H potential at the outputs 0 and 2 and L potential at the outputs 1 and 3 with a positive phase current I while maintaining the Value + I V in the phase winding 49 '- the stepping motor 31 adjusts itself to the correction position of the twist angle ϕ shown by the identification 5 in FIG. 6. The same applies to the adjustment to other correction positions.

Soll der Schrittmotor in einer Halbschrittposition HS anhalten, bleibt der Eingang 3 des D/A-Wandlers 60,an dessen Eingängen in diesem Falle H-Potential anliegt, weiterhin auf H-Potential, um das in dieser Stellung geringere Haltemoment des Schrittmotors 31 zu erhöhen. Zur Vermeidung einer zu großen Erhöhung des Strangstromes I, die sich durch eine Stromverdoppelung ergeben würde, ist der Spannungsteiler aus den Widerständen 61 und 62 vorgeschaltet, so daß die Steuerspannung UST nicht verdoppelt, sondern nur um den halben Betrag erhöht wird. Damit erhöht sich der Strangstrom I der jeweils erregten Strangwicklung 49 oder 49' in der Halbschrittposition HS von dem Stromwert +IV bzw. -IV auf den Stromwert +IH bzw. -IH, bei dem sich noch keine Wärmeprobleme bei einer Dauerhaltestellung des Schrittmotors 31 in dieser Position ergeben.If the stepping motor is to stop in a half-step position HS, the input 3 of the D / A converter 60, at whose inputs H potential is present in this case, remains at H potential in order to increase the holding torque of the stepping motor 31 which is lower in this position . To avoid an excessive increase in the phase current I, which would result from a doubling of the current, the voltage divider from the resistors 61 and 62 is connected upstream, so that the control voltage U ST is not doubled, but is only increased by half the amount. Thus, the phase current I of the respectively excited phase winding 49 or 49 'in the half-step position HS increases from the current value + I V or -I V to the current value + I H or -I H , at which there are still no heat problems in a permanent position of the stepper motor 31 in this position.

Claims (2)

1. Nähmaschine mit einer Hauptwelle, einer senkrecht geführten und zur Hubbewegung mit der Hauptwelle in Antriebsverbindung stehenden Nadelstange, einem durch einen Mikrocomputer gesteuerten Schrittmotor, der mit einem Stellmittel zur Steuerung der Vorschubgröße und der Vorschubrichtung eines Stoffschiebers verbunden ist und einem mit der Hauptwelle verbundenen, die Bewegung des Schrittmotors auslösenden Impulsgeber, dadurch gekennzeichnet, daß der Mikrocomputer (42) über einen Zwischenspeicher (48) und einen D/A-Wandler (60) an den nicht invertierenden Eingang eines sowohl die Ein- und Ausschaltung als auch die Stromstärke des Strangstromes (I) jeder Strangwicklung (49, 49') des Schrittmotors (31) steuernden Komparators (70) angeschlossen ist, dessen invertierender Eingang mit einem im Strangstromkreis angeordneten Meßglied (84) verbunden ist.1.sewing machine with a main shaft, a vertically guided needle bar which is connected to the main shaft for lifting movement, a stepper motor controlled by a microcomputer, which is connected to an adjusting means for controlling the feed size and the feed direction of a fabric pusher, and one connected to the main shaft, the pulse generator triggering the movement of the stepper motor, characterized in that the microcomputer (42) via an intermediate memory (48) and a D / A converter (60) to the non-inverting input of both the switching on and off and the current strength of the phase current (I) each phase winding (49, 49 ') of the stepper motor (31) controlling comparator (70) is connected, the inverting input of which is connected to a measuring element (84) arranged in the phase circuit. 2. Nähmaschine nach Anspruch 1, dadurch gekennzeichnet, daß der D/A-Wandler (60) vier Eingangsstufen (0 bis 3) aufweist, deren größte Stufe (3) über einen Spannungsteiler (61, 62) mit der entsprechenden Ausgangsstufe des Zwischenspeichers (48) verbunden ist.2. Sewing machine according to claim 1, characterized in that the D / A converter (60) has four input stages (0 to 3), the largest stage (3) via a voltage divider (61, 62) with the corresponding output stage of the intermediate store ( 48) is connected.
EP84101898A 1983-06-11 1984-02-23 Sewing machine with a step motor-driven transporting device Expired EP0131087B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3321215A DE3321215C2 (en) 1983-06-11 1983-06-11 Sewing machine with a stepper motor for feed control
DE3321215 1983-06-11

Publications (3)

Publication Number Publication Date
EP0131087A2 true EP0131087A2 (en) 1985-01-16
EP0131087A3 EP0131087A3 (en) 1985-05-15
EP0131087B1 EP0131087B1 (en) 1988-11-09

Family

ID=6201297

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84101898A Expired EP0131087B1 (en) 1983-06-11 1984-02-23 Sewing machine with a step motor-driven transporting device

Country Status (4)

Country Link
US (1) US4625667A (en)
EP (1) EP0131087B1 (en)
JP (1) JPS607889A (en)
DE (2) DE3321215C2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139694A (en) * 1985-12-16 1987-06-23 ブラザー工業株式会社 Cloth feeder equipped with pulse motor
JPH0710312B2 (en) * 1986-11-15 1995-02-08 ブラザー工業株式会社 Sewing machine cloth feed control device
DE4032813C1 (en) * 1990-10-16 1991-12-19 Strobel & Soehne Gmbh & Co J
JPH07194193A (en) * 1993-12-27 1995-07-28 Canon Inc Method to control motor
US6979972B2 (en) * 2003-12-30 2005-12-27 Xerox Corporation Method and apparatus for detecting a stalled stepper motor
JP2009095148A (en) * 2007-10-09 2009-04-30 Juki Corp Driving device for stepping motor of sewing machine
CN104911830B (en) * 2015-06-18 2017-04-12 杰克缝纫机股份有限公司 Sewing machine feeding control system and control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2821552A1 (en) * 1977-05-17 1978-11-30 Husqvarna Ab SEWING MACHINE
EP0027867A1 (en) * 1979-10-24 1981-05-06 Pfaff Haushaltmaschinen GmbH Control device for the driving mechanism of a stepping motor for adjustment of the stitch width and/or the feeding lenght in a sewing machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845280B2 (en) * 1978-03-11 1983-10-07 蛇の目ミシン工業株式会社 Rotation phase adjustment device for pulse motor in sewing machine
JPS5666282A (en) * 1979-11-02 1981-06-04 Brother Ind Ltd Cycle sewing machine
US4413577A (en) * 1982-11-08 1983-11-08 The Singer Company Pattern feed balancing arrangement in an electronically controlled sewing machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2821552A1 (en) * 1977-05-17 1978-11-30 Husqvarna Ab SEWING MACHINE
EP0027867A1 (en) * 1979-10-24 1981-05-06 Pfaff Haushaltmaschinen GmbH Control device for the driving mechanism of a stepping motor for adjustment of the stitch width and/or the feeding lenght in a sewing machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELECTRONIC ENGINEERING, Band 52, Nr. 636, April, 1980, LONDON (GB). Seiten 89-92. E. DAVIES: "Using VMOS in microprocessor stepper motor control". *SEITE 89, ZEILE II; FIGUREN 1,4 * *

Also Published As

Publication number Publication date
EP0131087A3 (en) 1985-05-15
DE3475088D1 (en) 1988-12-15
DE3321215A1 (en) 1984-12-13
EP0131087B1 (en) 1988-11-09
US4625667A (en) 1986-12-02
JPH0116200B2 (en) 1989-03-23
DE3321215C2 (en) 1985-04-04
JPS607889A (en) 1985-01-16

Similar Documents

Publication Publication Date Title
EP0027867B1 (en) Control device for the driving mechanism of a stepping motor for adjustment of the stitch width and/or the feeding lenght in a sewing machine
DE3832124A1 (en) ELECTRONIC DEVICE FOR THE AUTOMATIC ADJUSTMENT OF INDUSTRIAL SEWING MACHINES
DE2607810C2 (en) sewing machine
DE2953596C2 (en) Testing device for the automatic testing of circuit boards
DE102017107281A1 (en) sewing machine
DE4405776C1 (en) Rotary edger of a weaving machine
DE4021380A1 (en) DISHWASHER
DE2821552C2 (en) Electronic sewing machine
EP0906239B1 (en) Method for controlling a crosswinding device
EP0131087B1 (en) Sewing machine with a step motor-driven transporting device
DE3026381C2 (en) Offset device for a flat knitting machine
DE3112043A1 (en) "GRIP DEVICE, IN PARTICULAR HAND PROSTHESIS"
DE3519518A1 (en) DEVICE FOR WINDING COILS
DE2842336A1 (en) STITCH LENGTH OVERHAUL DEVICE AND TRANSPORT COMPENSATION FOR DIGITAL TRANSPORT CONTROL DEVICES OF SEWING MACHINES
DE10248010A1 (en) Tension control method and tension control device for an automatic winder
DE4419265A1 (en) Feeder for controlling thread tension economically for textiles
DE1229892B (en) Ready-mixed concrete vehicle
DE2926619C2 (en)
DE1413849A1 (en) Control for electric motors
DE206573C (en)
DE599687C (en)
DE2351212C3 (en) Device for setting stepper motors to any intermediate position
DE102022001853A1 (en) Banknote processing device and method for processing banknotes
DE217275C (en)
DE623006C (en) Synchronization control device for multi-motor drives

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): CH DE IT LI SE

17P Request for examination filed

Effective date: 19850411

17Q First examination report despatched

Effective date: 19870423

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE IT LI SE

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3475088

Country of ref document: DE

Date of ref document: 19881215

ITF It: translation for a ep patent filed

Owner name: RIF. DEL 26.9.95 VEDI DEP. 68813/BE/88;STUDIO JAUM

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: KOCHS ADLER AG

Effective date: 19890803

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: DUERKOPP ADLER AKTIENGESELLSCHAFT

Effective date: 19890803

ITTA It: last paid annual fee
PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19920609

EAL Se: european patent in force in sweden

Ref document number: 84101898.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990222

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990303

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990304

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000229

EUG Se: european patent has lapsed

Ref document number: 84101898.9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001201

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO