EP0130436A1 - Rotary piston machine used as an expansion engine or compressor - Google Patents

Rotary piston machine used as an expansion engine or compressor Download PDF

Info

Publication number
EP0130436A1
EP0130436A1 EP84106846A EP84106846A EP0130436A1 EP 0130436 A1 EP0130436 A1 EP 0130436A1 EP 84106846 A EP84106846 A EP 84106846A EP 84106846 A EP84106846 A EP 84106846A EP 0130436 A1 EP0130436 A1 EP 0130436A1
Authority
EP
European Patent Office
Prior art keywords
rotor
flap
rotary piston
piston machine
machine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP84106846A
Other languages
German (de)
French (fr)
Inventor
Albrecht Kayser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kayser Albrecht
Original Assignee
Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR filed Critical Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR
Publication of EP0130436A1 publication Critical patent/EP0130436A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/40Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and having a hinged member
    • F01C1/44Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and having a hinged member with vanes hinged to the inner member

Definitions

  • the invention relates to a rotary piston machine with a rotor, which has numerous chambers in which there are reciprocating flap pistons which delimit working spaces.
  • a rotary piston machine can either be designed as an expansion machine (motor) or as a compressor.
  • a rotary internal combustion engine is known, the rotor of which has several chambers. In each chamber there is a valve piston which swings back and forth around a valve shaft and delimits a working space. The volume of the work area is increased and decreased periodically when the valve piston moves.
  • the chamber in which the valve piston moves is divided by the valve piston into the working space and a dead space. The dead space is not available for work, so the Machine with low volume only has a low output.
  • Another disadvantage is that the inlet or outlet spaces of the stator must be arranged in the axial direction next to the rotor because there is no circumferential connection between the working spaces and the rotor. The openings must therefore be arranged in the front of the work area, which makes it difficult to seal and control the gas exchange precisely.
  • the invention has for its object to provide a rotary piston machine which has a favorable ratio of work performance and volume or work performance and weight and has a high efficiency.
  • each flap piston is driven in phase opposition to one another and each of the flap pistons separates two working spaces from one another in the same chamber. This prevents the creation of dead spaces behind the valve piston.
  • Each flap piston interacts with two different work rooms, in which opposite work processes are carried out. If compression occurs in one work area, the gas is pushed out of the other work area.
  • the rotary piston machine according to the invention can be designed as an effective and compact hydraulic motor or as a hydraulic pump.
  • An advantage is that the lengths to be sealed are relatively short, so that the problem of sealing the work spaces is reduced.
  • Another advantage is that the gearbox, which is required to control the flap piston, can be arranged coaxially inside the rotor, so that the entire machine has a compact design. The problem of lubricating the gearbox and the flap piston can also be solved in a simple manner.
  • the rotary piston machine shown is a compressor. However, the machine could also be operated as an expansion machine, with only the inlets and the outlets having to be exchanged. It is also possible to operate half of the machine as a compressor and the other half as an expansion machine (motor).
  • the machine has a cylindrical housing 10 which is closed by end walls 11, 12.
  • the rotor shaft 13 protrudes from an opening in the end wall 11 and is connected to a drive device when the machine is operated as a compressor.
  • Two stationary protruding from the opposite end wall 12 coaxial pipes 50 and 14 for the supply and discharge of lubricating oil.
  • the housing 10 rests on feet 15. On its peripheral surface there is an inlet 16 through which the fluid to be compressed is fed into the machine.
  • the compressed fluid exits at two outlets 17 and 18, which are connected to one another by external pipes 19. These pipes 19 lead to the main outlet 20th
  • the housing 10 is part of the stator 21, which also includes the tubes 50 and 14.
  • the tube 50 leads into the interior of the rotor 22.
  • This tube 50 carries a toothing 23 inside the machine, which forms the sun gear of a planetary gear.
  • the rotor 22 is mounted on the tube 50 via axial pressure bearings 24, 25 and needle bearings 26, 27.
  • the rotor 22 has an annular body 28 which is connected to a flange 29 of the rotor shaft 13 in the interior of the housing 10.
  • the ring body 28, which consists of several assembled parts, contains twelve evenly distributed over the circumference 30 chambers which are V-shaped and each form a segment of a circle with an angle of approximately 90 °.
  • a valve shaft 31 is supported near the inner end of each chamber 30, from which a valve piston 32 projects radially.
  • the flap pistons 32 are flat disks that move back and forth in the V-shaped chambers 30 between the one wall and the other wall by being pivoted about the axes of the flap shafts 31.
  • Each chamber 30 is circumferentially delimited by a wall 33 which has a circular contour and is at the same distance from the associated valve shaft 31 at all points.
  • the annular body 28 thus forms a ring of chambers 30, each of which widens radially outwards.
  • the flap shafts 31 and thus the flap pistons 32 are controlled by connecting rod drives 34.
  • the other end of the connecting rod 36 is mounted on a pin 37 which projects eccentrically from the axis 38 of the planet gear 39.
  • a planet gear 39 is assigned to each flap shaft 31.
  • the planet gear 39 is arranged between the valve shaft 31 and the sun gear 40 which is integrally formed on the tube 50.
  • the planet gears 39 mesh with the toothing 23 of the sun gear 40.
  • the ratio of the number of teeth of the sun gear 40 and the planet gear 39 is z: 1, where z is half the number of flap pistons, in the present case 6.
  • the planet gears 39 control the movements of the Flap piston 32 in synchronism with the rotation of the rotor 22.
  • two adjacent flap pistons 32 are driven in phase opposition to each other, i.e. if one of the valve pistons lies against the left end of its chamber, the adjacent valve piston lies against the right end of its chamber.
  • the back and forth movement of the flap piston 32 is achieved in that the planet gears 39 roll continuously on the toothing 23 of the sun gear 40.
  • the planet gear is rotated and it causes the reciprocating pivoting movement of the flap piston 32 via the connecting rod drive 34.
  • the walls 33 of the chambers 30 form an annular casing 41 which rotates with the other parts of the rotor 22.
  • This coat 41 which is the outer boundary of the rotor 22 forms, is closely enclosed by the housing 10.
  • the housing alternately has z inlet spaces A, C, D and z outlet spaces B, D, E distributed over the circumference, on the radially inward walls of which there are window-like openings 42.
  • Each pair of inlet and outlet windows together with two rotating chambers 30 along them form a separate compressor.
  • the z partial compressors can either be operated individually or connected in groups in parallel or in series. As shown in FIG. 2, the present example contains two identical two-stage compressors, the inlets and outlets of which are connected in parallel.
  • the inlet spaces A and C of the two first stages are connected to the inlet 16.
  • Rooms D are both outlets of the first and second tier inlets and are connected to rooms B, the two other outlets of the first tier.
  • the outlet spaces E of the two second stages are connected to the main outlet 20 via external lines 19.
  • the connections emerge on the one hand from FIG. 2 and on the other hand from FIG. 1.
  • the welds 45 indicate the meandering dividing line between the rooms.
  • the rooms A, B, C and .E each extend over a range of 30 ° of the circumference, ie over the same angular extent as a chamber 30.
  • the room D has the double angular extent as the other rooms, ie 60 °.
  • Adjacent chambers 30 are separated from one another by walls 43 which taper radially outwards. At the ends of the walls 43, however, the adjacent chambers are interconnected.
  • the jacket 41 has a radial, slot-like one opening 44, which runs along the openings 42, so that the two chambers are connected in sections via the openings 44 and 42 to the associated inlet and outlet spaces A, B, C, D, E.
  • the lubricating oil is supplied under pressure through the inlet port 50 'and introduced into the machine through the interior of the hollow tube 50.
  • the lubricating oil is distributed over the grooves 48 and bores 49 in the rotor 22 and is distributed to the connecting rod drives 34, the planet gears 39 and the chambers 30.
  • the lubricating oil then reaches the tubes 46, which run radially through the sun gear 40 and open into the tube 14.
  • the lubricating oil is discharged through the pipe 14.
  • the rotor shaft 13 is rotated so that the rotor 22 rotates in the direction of the arrow 47.
  • Gas is sucked into the chambers 30 via the openings 44 and 42 from the rooms A and C, which are connected to the inlet 16, and is subsequently compressed in a first stage.
  • the compressed gas is pushed into rooms B and D and subsequently sucked out of room D and further compressed in a second stage.
  • the gas compressed in this way in two stages is pushed out into the space E and reaches the outlet 17.
  • Each group of chambers 30 thus carries out a double two-stage compression.
  • Room D is twice the size of the other rooms because it combines the gases from the first two compression stages.
  • Each flap piston 32 delimits two working spaces, one of which widens and the other shrinks. In this way, each valve piston is used twice.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Reciprocating Pumps (AREA)
  • Hydraulic Motors (AREA)

Abstract

Die Rotationskolbenmaschine weist einen Rotor (22) mit zahlreichen sektorförmigen Kammern (30) auf. In jeder Kammer (30) ist ein Klappenkolben (32) schwenkbar gelagert. Jeder Klappenkolben (32) ist synchron mit der Drehung des Rotors (22) angetrieben. Jeder Klappenkolben (32) begrenzt zwei Arbeitsräume. Jeweils zwei benachbarte Klappenkolben (32) sind gegenphasig zueinander angetrieben. Die Einlaß- oder Auslaßräume (A, B, C, D, E) sind im Stator (21) um den Rotor (22) herum angeordnet.The rotary piston machine has a rotor (22) with numerous sector-shaped chambers (30). A flap piston (32) is pivotally mounted in each chamber (30). Each flap piston (32) is driven synchronously with the rotation of the rotor (22). Each flap piston (32) delimits two working spaces. Two adjacent flap pistons (32) are driven in opposite phase to each other. The inlet or outlet spaces (A, B, C, D, E) are arranged in the stator (21) around the rotor (22).

Description

Die Erfindung betrifft eine Rotationskolbenmaschine mit einem Rotor, der zahlreiche Kammern aufweist, in denen sich hin- und herbewegbare Klappenkolben befinden, welche Arbeitsräume begrenzen. Eine solche Rotationskolbenmaschine kann entweder als Expansionsmaschine (Motor) ausgebildet sein oder als Verdichter.The invention relates to a rotary piston machine with a rotor, which has numerous chambers in which there are reciprocating flap pistons which delimit working spaces. Such a rotary piston machine can either be designed as an expansion machine (motor) or as a compressor.

Aus DE-A-23 44 460 ist eine Rotations-Brennkraftmaschine bekannt, deren Rotor mehrere Kammern aufweist. In jeder Kammer befindet sich ein um eine Klappenwelle hin- und herschwingender Klappenkolben, der einen Arbeitsraum begrenzt. Das Volumen des Arbeitsraumes wird bei der Bewegung des Klappenkolbens periodisch vergrößert und verkleinert. Bei dieser bekannten Rotationskolbenmaschine wird die Kammer, in der sich der Klappenkolben bewegt, von dem Klappenkolben unterteilt in den Arbeitsraum und einen Totraum. Der Totraum steht nicht für eine Arbeitsleistung zur Verfügung, so daß die Maschine bei großem Volumen nur eine geringe Leistung erbringt. Nachteilig ist ferner, daß die Einlaß- oder Auslaßräume des Stators in axialer Richtung neben dem Rotor angeordnet sein müssen, weil keine umfangsmäßige Verbindung zwischen den Arbeitsräumen und dem Rotor besteht. Die öffnungen müssen daher in den Stirnseiten der Arbeitsräume angeordnet sein, wodurch die Abdichtung und die exakte Steuerung des Gaswechsels erschwert werden.From DE-A-23 44 460 a rotary internal combustion engine is known, the rotor of which has several chambers. In each chamber there is a valve piston which swings back and forth around a valve shaft and delimits a working space. The volume of the work area is increased and decreased periodically when the valve piston moves. In this known rotary piston machine, the chamber in which the valve piston moves is divided by the valve piston into the working space and a dead space. The dead space is not available for work, so the Machine with low volume only has a low output. Another disadvantage is that the inlet or outlet spaces of the stator must be arranged in the axial direction next to the rotor because there is no circumferential connection between the working spaces and the rotor. The openings must therefore be arranged in the front of the work area, which makes it difficult to seal and control the gas exchange precisely.

Der Erfindung liegt die Aufgabe zugrunde, eine Rotationskolbenmaschine zu schaffen, die ein günstiges Verhältnis von Arbeitsleistung und Volumen bzw. Arbeitsleistung und Gewicht aufweist und einen hohen Wirkungsgrad hat.The invention has for its object to provide a rotary piston machine which has a favorable ratio of work performance and volume or work performance and weight and has a high efficiency.

Nach der Erfindung sind je zwei benachbarte Klappenkolben gegenphasig zueinander angetrieben und jeder der Klappenkolben trennt zwei Arbeitsräume in derselben Kammer voneinander. Damit wird die Entstehung von Toträumen hinter den Klappenkolben vermieden. Jeder Klappenkolben wirkt mit zwei verschiedenen Arbeitsräumen zusammen, in denen entgegengesetzte Arbeitsvorgänge ausgeführt werden. Wenn in dem einen Arbeitsraum eine Verdichtung erfolgt, wird aus dem anderen Arbeitsraum das Gas ausgeschoben.According to the invention, two adjacent flap pistons are driven in phase opposition to one another and each of the flap pistons separates two working spaces from one another in the same chamber. This prevents the creation of dead spaces behind the valve piston. Each flap piston interacts with two different work rooms, in which opposite work processes are carried out. If compression occurs in one work area, the gas is pushed out of the other work area.

Die erfindungsgemäße Rotationskolbenmaschine kann als effektiver und kompakter Hydraulikmotor oder als Hydraulikpumpe gestaltet werden. Ein Vorteil ist, daß die abzudichtenden Längen relativ kurz sind, so daß das Problem der Abdichtung der Arbeitsräume verringert ist. Ein weiterer Vorteil besteht darin, daß das Getriebe, das zur Steuerung der Klappenkolben erforderlich ist, koaxial im Innern des Rotors angeordnet werden kann, so daß die gesamte Maschine eine kompakte Bauform hat. Hierbei läßt sich auch das Problem der Schmierung des Getriebes und der Klappenkolben auf einfache Weise lösen.The rotary piston machine according to the invention can be designed as an effective and compact hydraulic motor or as a hydraulic pump. An advantage is that the lengths to be sealed are relatively short, so that the problem of sealing the work spaces is reduced. Another advantage is that the gearbox, which is required to control the flap piston, can be arranged coaxially inside the rotor, so that the entire machine has a compact design. The problem of lubricating the gearbox and the flap piston can also be solved in a simple manner.

Im folgenden wird unter Bezugnahme auf die Zeichnungen ein Ausführungsbeispiel der Erfindung näher erläutert.In the following an embodiment of the invention will be explained with reference to the drawings.

Es zeigen:

  • Fig. 1 eine Seitenansicht der Rotationskolbenmaschine,
  • Fig. 2 einen Vertikalschnitt durch die Rotationskolbenmaschine entlang der Linie II-II von Fig. 3,
  • Fig. 3 einen Schnitt entlang der Linie III-III von Fig. 2, und
  • Fig. 4 einen Schnitt entlang der Linie IV-IV von Fig. 2.
Show it:
  • 1 is a side view of the rotary piston machine,
  • 2 shows a vertical section through the rotary piston machine along the line II-II of FIG. 3,
  • Fig. 3 is a section along the line III-III of Fig. 2, and
  • 4 shows a section along the line IV-IV of FIG. 2nd

Die dargestellte Rotationskolbenmaschine ist ein Verdichter. Die Maschine könnte jedoch auch als Expansionsmaschine betrieben werden, wobei lediglich die Einlässe und die Auslässe vertauscht werden müßten. Es ist auch möglich, die eine Hälfte der Maschine als Verdichter und die andere Hälte als Expansionsmaschine (Motor) zu betreiben.The rotary piston machine shown is a compressor. However, the machine could also be operated as an expansion machine, with only the inlets and the outlets having to be exchanged. It is also possible to operate half of the machine as a compressor and the other half as an expansion machine (motor).

Die Maschine weist ein zylindrisches Gehäuse 10 auf, das durch Stirnwände 11,12 abgeschlossen ist. Aus einer öffnung der Stirnwand 11 ragt die Rotorwelle 13 heraus, die mit einer Antriebseinrichtung verbunden wird, wenn die Maschine als Verdichter betrieben wird. Aus der gegenüberliegenden Stirnwand 12 ragen zwei stationäre koaxiale Rohre 50 und 14 für die Zufuhr und Abfuhr von Schmieröl heraus.The machine has a cylindrical housing 10 which is closed by end walls 11, 12. The rotor shaft 13 protrudes from an opening in the end wall 11 and is connected to a drive device when the machine is operated as a compressor. Two stationary protruding from the opposite end wall 12 coaxial pipes 50 and 14 for the supply and discharge of lubricating oil.

Das Gehäuse 10 ruht auf Füßen 15. An seiner Umfangsfläche befindet sich ein Einlaß 16, durch den das zu verdichtende Fluid in die Maschine eingegeben wird. Das verdichtete Fluid tritt an zwei Auslässen 17 und 18 aus, die durch externe Rohre 19 miteinander verbunden sind. Diese Rohre 19 führen zu dem Hauptauslaß 20.The housing 10 rests on feet 15. On its peripheral surface there is an inlet 16 through which the fluid to be compressed is fed into the machine. The compressed fluid exits at two outlets 17 and 18, which are connected to one another by external pipes 19. These pipes 19 lead to the main outlet 20th

Das Gehäuse 10 ist Bestandteil des Stators 21, zu dem auch die Rohre 50 und 14 gehören. Das Rohr 50 führt in das Innere des Rotors 22 hinein. Dieses Rohr 50 trägt im Innern der Maschine eine Verzahnung 23, die das Sonnenrad eines Planetenradgetriebes bildet. Auf dem Rohr 50 ist über Axialdrucklager 24,25 und Nadellager 26,27 der Rotor 22 gelagert.The housing 10 is part of the stator 21, which also includes the tubes 50 and 14. The tube 50 leads into the interior of the rotor 22. This tube 50 carries a toothing 23 inside the machine, which forms the sun gear of a planetary gear. The rotor 22 is mounted on the tube 50 via axial pressure bearings 24, 25 and needle bearings 26, 27.

Der Rotor 22 weist einen Ringkörper 28 auf, der im Innern des Gehäuses 10 mit einem Flansch 29 der Rotorwelle 13 verbunden ist. Der Ringkörper 28, der aus mehreren zusammengesetzten Teilen besteht, enthält zwölf gleichmäßig über den Umfang verteilte Kammern 30, die V-förmig gestaltet sind und jeweils ein Kreissegment mit einem Winkel von annähernd 90° bilden. In der Nähe des inneren Endes einer jeden Kammer 30 ist eine Klappenwelle 31 gelagert, von der ein Klappenkolben 32 radial absteht. Die Klappenkolben 32 sind flache Scheiben, die sich in den V-förmigen Kammern 30 zwischen der einen Wand und der anderen Wand hin- und herbewegen, indem sie um die Achsen der Klappenwellen 31 geschwenkt werden. Jede Kammer 30 ist umfangsmäßig durch eine Wand 33 begrenzt, die kreisförmige Kontur aufweist und an allen Stellen den gleichen Abstand von der zugehörigen Klappenwelle 31 hat. An dieser Wand 33 streicht das äußere Ende des Klappenkolbens 32 entlang. Der Ringkörper 28 bildet somit einen Kranz von Kammern 30, von denen sich jede radial nach außen erweitert. Die Steuerung der Klappenwellen 31 und somit der Klappenkolben 32 erfolgt durch Pleueltriebe 34. Auf jedem der beiden Enden der Klappenwelle 31 sitzt ein exzentrischer Zapfen 35, auf dem eine Pleuelstange 36 gelagert ist. Das andere Ende der Pleuelstange 36 ist auf einem Zapfen 37 gelagert, der von der Achse 38 des Planetenrades 39 exzentrisch absteht. Jeder Klappenwelle 31 ist ein Planetenrad 39 zugeordnet. Das Planetenrad 39 ist zwischen der Klappenwelle 31 und dem dem Rohr 50 einstückig angeformten Sonnenrad 40 angeordnet. Die Planetenräder 39 kämmen mit der Verzahnung 23 des Sonnenrades 40. Das Verhältnis der Zähnezahlen von Sonnenrad 40 und Planetenrad 39 beträgt z : 1, wobei z die Hälfte der Anzahl der Klappenkolben ist, im vorliegenden Fall also 6. Die Planetenräder 39 steuern die Bewegungen der Klappenkolben 32 synchron mit der Drehung des Rotors 22.The rotor 22 has an annular body 28 which is connected to a flange 29 of the rotor shaft 13 in the interior of the housing 10. The ring body 28, which consists of several assembled parts, contains twelve evenly distributed over the circumference 30 chambers which are V-shaped and each form a segment of a circle with an angle of approximately 90 °. A valve shaft 31 is supported near the inner end of each chamber 30, from which a valve piston 32 projects radially. The flap pistons 32 are flat disks that move back and forth in the V-shaped chambers 30 between the one wall and the other wall by being pivoted about the axes of the flap shafts 31. Each chamber 30 is circumferentially delimited by a wall 33 which has a circular contour and is at the same distance from the associated valve shaft 31 at all points. This strokes on this wall 33 along the outer end of the valve piston 32. The annular body 28 thus forms a ring of chambers 30, each of which widens radially outwards. The flap shafts 31 and thus the flap pistons 32 are controlled by connecting rod drives 34. On each of the two ends of the flap shaft 31 there is an eccentric pin 35 on which a connecting rod 36 is mounted. The other end of the connecting rod 36 is mounted on a pin 37 which projects eccentrically from the axis 38 of the planet gear 39. A planet gear 39 is assigned to each flap shaft 31. The planet gear 39 is arranged between the valve shaft 31 and the sun gear 40 which is integrally formed on the tube 50. The planet gears 39 mesh with the toothing 23 of the sun gear 40. The ratio of the number of teeth of the sun gear 40 and the planet gear 39 is z: 1, where z is half the number of flap pistons, in the present case 6. The planet gears 39 control the movements of the Flap piston 32 in synchronism with the rotation of the rotor 22.

Wie Fig. 3 zeigt, sind jeweils zwei benachbarte Klappenkolben 32 gegenphasig zueinander angetrieben, d.h. wenn der eine Klappenkolben am linken Ende seiner Kammer anliegt, liegt der benachbarte Klappenkolben am rechten Ende seiner Kammer an. Die Hin- und Herbewegung der Klappenkolben 32 wird dadurch erreicht, daß sich die Planetenräder 39 kontinuierlich auf der Verzahnung 23 des Sonnenrades 40 abwälzen. Dabei wird das Planetenrad gedreht und es bewirkt über den Pleueltrieb 34 die hin-und hergehende Schwenkbewegung des Klappenkolbens 32.As shown in Fig. 3, two adjacent flap pistons 32 are driven in phase opposition to each other, i.e. if one of the valve pistons lies against the left end of its chamber, the adjacent valve piston lies against the right end of its chamber. The back and forth movement of the flap piston 32 is achieved in that the planet gears 39 roll continuously on the toothing 23 of the sun gear 40. The planet gear is rotated and it causes the reciprocating pivoting movement of the flap piston 32 via the connecting rod drive 34.

Die Wände 33 der Kammern 30 bilden einen ringförmigen Mantel 41, der mit den übrigen Teilen des Rotors 22 rotiert. Dieser Mantel 41, der die äußere Begrenzung des Rotors 22 bildet, ist von dem Gehäuse 10 eng umschlossen. Das Gehäuse weist über den Umfang verteilt abwechselnd z Einlaßräume A,C,D und z Auslaßräume B,D,E auf, an deren radial nach innen liegenden Wänden sich fensterartige öffnungen 42 befinden. Jedes Paar von Einlaß- und Auslaßfenstern bildet zusammen mit zwei daran entlangrotierenden Kammern 30 einen separaten Verdichter. Die z Teilverdichter können sowohl einzeln betrieben als auch gruppenweise parallel oder in Serie zusammengeschaltet werden. Wie Fig. 2 zeigt, enthält das vorliegende Beispiel zwei gleiche zweistufige Verdichter, deren Ein- und Auslässe jeweils parallel geschaltet sind.The walls 33 of the chambers 30 form an annular casing 41 which rotates with the other parts of the rotor 22. This coat 41, which is the outer boundary of the rotor 22 forms, is closely enclosed by the housing 10. The housing alternately has z inlet spaces A, C, D and z outlet spaces B, D, E distributed over the circumference, on the radially inward walls of which there are window-like openings 42. Each pair of inlet and outlet windows together with two rotating chambers 30 along them form a separate compressor. The z partial compressors can either be operated individually or connected in groups in parallel or in series. As shown in FIG. 2, the present example contains two identical two-stage compressors, the inlets and outlets of which are connected in parallel.

Die Einlaßräume A und C der beiden Erststufen sind mit dem Einlaß 16 verbunden. Die Räume D sind sowohl Auslässe der Erst- als auch Einlässe der Zweitstufen und mit den Räumen B, den beiden weiteren Auslässen der Erststufen, verbunden. Die Auslaßräume E der beiden Zweitstufen sind über externe Leitungen 19 mit dem Hauptauslaß 20 verbunden. Die Verbindungen gehen einerseits aus Fig. 2 und andererseits aus Fig. 1 hervor. In Fig. 1 geben die Schweißnähte 45 die mäanderförmige Trennungslinie zwischen den Räumen an. Die Räume A,B,C und .E erstrecken sich jeweils über einen Bereich von 30° des Umfangs, also über dieselbe Winkelerstreckung wie eine Kammer 30. Der Raum D hat die doppelte Winkelerstreckung wie die übrigen Räume, also 60°.The inlet spaces A and C of the two first stages are connected to the inlet 16. Rooms D are both outlets of the first and second tier inlets and are connected to rooms B, the two other outlets of the first tier. The outlet spaces E of the two second stages are connected to the main outlet 20 via external lines 19. The connections emerge on the one hand from FIG. 2 and on the other hand from FIG. 1. In Fig. 1, the welds 45 indicate the meandering dividing line between the rooms. The rooms A, B, C and .E each extend over a range of 30 ° of the circumference, ie over the same angular extent as a chamber 30. The room D has the double angular extent as the other rooms, ie 60 °.

Benachbarte Kammern 30 sind durch Wände 43, die radial nach außen spitz zulaufen, voneinander getrennt. An den Enden der Wände 43 sind die benachbarten Kammern jedoch untereinander verbunden. In den Verbindungsbereichen weist der Mantel 41 jeweils eine radiale, schlitzartige öffnung 44 auf, die an den öffnungen 42 entlangstreicht, so daß die beiden Kammern abschnittsweise über die öffnungen 44 und 42 mit den zugehörigen Einlaß- bzw. Auslaßräumen A,B,C,D,E verbunden werden.Adjacent chambers 30 are separated from one another by walls 43 which taper radially outwards. At the ends of the walls 43, however, the adjacent chambers are interconnected. In the connection areas, the jacket 41 has a radial, slot-like one opening 44, which runs along the openings 42, so that the two chambers are connected in sections via the openings 44 and 42 to the associated inlet and outlet spaces A, B, C, D, E.

Wie Fig. 2 zeigt, wird das Schmieröl durch den Einlaßstutzen 50' unter Druck zugeführt und durch das Innere des hohlen Rohres 50 in die Maschine eingeführt. Das Schmieröl verteilt sich über die Nuten 48 und Bohrungen 49 im Rotor 22 und wird auf die Pleueltriebe 34, die Planetenräder 39 und die Kammern 30 verteilt. Das Schmieröl gelangt dann zu den Rohren 46, die radial durch das Sonnenrad 40 verlaufen und in das Rohr 14 einmünden. Durch das Rohr 14 wird das Schmieröl abgeführt.As shown in Fig. 2, the lubricating oil is supplied under pressure through the inlet port 50 'and introduced into the machine through the interior of the hollow tube 50. The lubricating oil is distributed over the grooves 48 and bores 49 in the rotor 22 and is distributed to the connecting rod drives 34, the planet gears 39 and the chambers 30. The lubricating oil then reaches the tubes 46, which run radially through the sun gear 40 and open into the tube 14. The lubricating oil is discharged through the pipe 14.

Im folgenden wird die Funktionsweise der Maschine anhand von Fig. 3 erläutert.The mode of operation of the machine is explained below with reference to FIG. 3.

Die Rotorwelle 13 wird gedreht, so daß der Rotor 22 in Richtung des Pfeiles 47 rotiert. Aus den Räumen A und C, die mit dem Einlaß 16 in Verbindung stehen, wird über die öffnungen 44 und 42 Gas in die Kammern 30 eingesaugt, das nachfolgend in einer ersten Stufe verdichtet wird. Das verdichtete Gas wird bei Weiterdrehung des Rotors in die Räume B und D eingeschoben und nachfolgend aus dem Raum D angesaugt und in einer zweiten Stufe weiter verdichtet. Das auf diese Weise zweistufig verdichtete Gas wird in den Raum E hinein ausgeschoben und gelangt zu dem Auslaß 17. Jede Gruppe von Kammern 30 führt somit eine doppelte zweistufige Verdichtung durch. Der Raum D ist doppelt so groß wie die übrigen Räume, weil er die Gase der beiden ersten Verdichtungsstufen zusammenfaßt.The rotor shaft 13 is rotated so that the rotor 22 rotates in the direction of the arrow 47. Gas is sucked into the chambers 30 via the openings 44 and 42 from the rooms A and C, which are connected to the inlet 16, and is subsequently compressed in a first stage. As the rotor continues to rotate, the compressed gas is pushed into rooms B and D and subsequently sucked out of room D and further compressed in a second stage. The gas compressed in this way in two stages is pushed out into the space E and reaches the outlet 17. Each group of chambers 30 thus carries out a double two-stage compression. Room D is twice the size of the other rooms because it combines the gases from the first two compression stages.

Jeder Klappenkolben 32 begrenzt zwei Arbeitsräume, von denen sich der eine erweitert und der andere verkleinert. Auf diese Weise wird jeder Klappenkolben doppelt ausgenutzt.Each flap piston 32 delimits two working spaces, one of which widens and the other shrinks. In this way, each valve piston is used twice.

Claims (9)

1. Rotationskolbenmaschine als Expansionsmaschine oder Verdichter, mit einem Stator (21) und einem zum Stator koaxialen Rotor (22), mehreren in Kammern (30) des Rotors (22) schwenkbar gelagerten Klappenkolben (32), die Arbeitsräume begrenzen und von denen jeder an einer im Rotor gelagerten Klappenwelle (31) befestigt ist, welche synchron mit der Drehung des Rotors angetrieben ist, und mit am Stator vorgesehenen Einlaß- oder Auslaßräumen (A,B,C,D,E), die intermittierend über öffnungen (42,44) mit den vorbeilaufenden Kammern (30) des Rotors (22) verbunden werden,
dadurch gekennzeichnet ,
daß je zwei benachbarte Klappenkolben (32) gegenphasig zueinander angetrieben sind und daß jeder der Klappenkolben zwei Arbeitsräume in derselben Kammer (30) voneinander trennt.
1. Rotary piston machine as an expansion machine or compressor, with a stator (21) and a coaxial to the stator rotor (22), several in chambers (30) of the rotor (22) pivotally mounted flap pistons (32), which limit the working spaces and each of which a flap shaft (31) mounted in the rotor, which is driven synchronously with the rotation of the rotor, and with inlet or outlet spaces (A, B, C, D, E) provided on the stator, which are intermittent via openings (42, 44 ) are connected to the passing chambers (30) of the rotor (22),
characterized ,
that two adjacent flap pistons (32) are driven in phase opposition to each other and that each of the flap pistons separates two working spaces in the same chamber (30).
2. Rotationskolbenmaschine nach Anspruch 1, dadurch gekennzeichnet, daß jeweils zwei benachbarte Kammern (30) in ihrem gemeinsamen Grenzbereich untereinander verbunden sind.2. Rotary piston machine according to claim 1, characterized in that in each case two adjacent chambers (30) are interconnected in their common border area. 3. Rotationskolbenmaschine nach Anspruch 2, dadurch gekennzeichnet, daß der Rotor (22) einen alle Kammern (30) umschließenden Mantel (41) aufweist, der in den Verbindungsbereichen zwischen zwei Kammern mit öffnungen (44) versehen ist, die an öffnungen (42) des Stators (21) vorbeilaufen.3. Rotary piston machine according to claim 2, characterized in that the rotor (22) has a casing (41) which surrounds all the chambers (30) and which is provided in the connecting regions between two chambers with openings (44) which are connected to openings (42). of the stator (21). 4. Rotationskolbenmaschine nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß jeder Klappenkolben (32) bei einer Umdrehung des Rotors (22) z Hin- und Herbewegungen ausführt, wobei die Anzahl der Klappenkolben 2 z beträgt.4. Rotary piston machine according to one of claims 1 to 3, characterized in that each flap piston (32) performs back and forth movements with one revolution of the rotor (22), the number of flap pistons being 2 z. 5. Rotationskolbenmaschine nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß jeder Klappenkolben (32) um eine Mittelebene herum schwingt, die radial zu der Achse des Rotors (22) verläuft.5. Rotary piston machine according to one of claims 1 to 4, characterized in that each flap piston (32) swings around a central plane which extends radially to the axis of the rotor (22). 6. Rotationskolbenmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß für jeden Klappenkolben (32) ein im Rotor (22) gelagertes Planetenrad (39) vorgesehen ist, welches eine Pleuelstange (36) treibt, die mit einem Ende exzentrisch auf der Achse (37) des Planetenrades (39) und mit dem anderen Ende exzentrisch auf der Klappenwelle (31) gelagert ist.6. Rotary piston machine according to one of claims 1 to 5, characterized in that for each flap piston (32) a in the rotor (22) mounted planet gear (39) is provided which drives a connecting rod (36) which is eccentrically at one end on the Axis (37) of the planet gear (39) and with the other end eccentrically on the valve shaft (31). 7. Rotationskolbenmaschine nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß bei einem Verdichter mindestens zwei Auslaßräume (B,D) mit einem Einlaßraum (D) verbunden sind, um eine mehr- . stufige Verdichtung zu erzielen.7. Rotary piston machine according to one of claims 1 to 6, characterized in that in a compressor at least two outlet spaces (B, D) with an inlet space (D) are connected to a more. to achieve gradual compression. 8. Rotationskolbenmaschine nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Stator (21) zwei gleichartige Gruppen von Einlaß- oder Auslaßräumen (A,B,C,D,E) aufweist, wobei mindestens ein Einlaß- oder Auslaßraum (A;E) der einen Gruppe mit dem entsprechenden Einlaß- oder Auslaßraum der anderen Gruppe verbunden ist.8. Rotary piston machine according to one of claims 1 to 7, characterized in that the stator (21) has two similar groups of inlet or outlet spaces (A, B, C, D, E), at least one inlet or outlet space (A E) one group is connected to the corresponding inlet or outlet space of the other group. 9. Rotationskolbenmaschine nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Stator (21) zwei koaxiale Rohre (50,14) zum Hinführen und Rückführen von Schmiermittel zu und von den Berührungsbereichen zwischen Stator (21) und Rotor (22) aufweist.9. Rotary piston machine according to one of claims 1 to 8, characterized in that the stator (21) has two coaxial tubes (50, 14) for supplying and returning lubricant to and from the contact areas between the stator (21) and rotor (22) .
EP84106846A 1983-06-29 1984-06-15 Rotary piston machine used as an expansion engine or compressor Ceased EP0130436A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833323397 DE3323397A1 (en) 1983-06-29 1983-06-29 ROTATING MACHINE WITH FOLDING PISTON
DE3323397 1983-06-29

Publications (1)

Publication Number Publication Date
EP0130436A1 true EP0130436A1 (en) 1985-01-09

Family

ID=6202672

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84106846A Ceased EP0130436A1 (en) 1983-06-29 1984-06-15 Rotary piston machine used as an expansion engine or compressor

Country Status (6)

Country Link
US (1) US4560328A (en)
EP (1) EP0130436A1 (en)
JP (1) JPS6035101A (en)
DE (1) DE3323397A1 (en)
DK (1) DK315384A (en)
ES (1) ES533771A0 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3603132A1 (en) * 1986-02-01 1986-06-05 Albrecht Dipl.-Ing. 5060 Bergisch Gladbach Kayser Internal combustion engine with rotary hinged pistons
DE10257047A1 (en) * 2002-12-06 2004-06-24 Mathias Stefan Pump for fluid and gases has intake chambers formed by two neighboring blades and facing walls of inner and outer rings

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3540369A1 (en) * 1985-11-14 1986-05-07 Albrecht Dipl.-Ing. 5060 Bergisch Gladbach Kayser Opposed-rotation screwed-shaft seal and a contactless dry controlled-gap seal with automatic minimum-gap adjustment
JP2795424B2 (en) * 1992-07-23 1998-09-10 伊那食品工業株式会社 Foods using low-strength agar
CN100374725C (en) * 2006-03-15 2008-03-12 王振忠 Rotary blade pump
US8177536B2 (en) 2007-09-26 2012-05-15 Kemp Gregory T Rotary compressor having gate axially movable with respect to rotor
EP3350447B1 (en) 2015-09-14 2020-03-25 Torad Engineering, LLC Multi-vane impeller device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE652128A (en) *
DE573821C (en) * 1931-04-10 1933-04-06 Sulzer Akt Ges Geb Rotary lobe compressors
US2460821A (en) * 1942-09-03 1949-02-08 Joseph O Hamren Oscillating vane rotary pump
DE2344460A1 (en) * 1972-09-05 1974-05-09 Green Edward Howard ROTATIONAL COMBUSTION MACHINE

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US536393A (en) * 1895-03-26 Steam-engine
US638570A (en) * 1899-03-13 1899-12-05 Philip F Haas Rotary engine.
US1232850A (en) * 1915-06-16 1917-07-10 Saunders Motor Power Company Rotary engine.
US1209989A (en) * 1915-08-06 1916-12-26 Ernest Edward Edgar Mullin Internal-combustion engine.
US1236009A (en) * 1916-06-03 1917-08-07 Saunders Motor Power Company Rotary engine.
US1271950A (en) * 1917-03-12 1918-07-09 Saunders Motor Power Company Rotary engine.
FR800753A (en) * 1936-01-16 1936-07-18 Internal combustion engine with oscillating bulkheads and multiple driving elements
FR1277381A (en) * 1960-10-19 1961-12-01 Rotary fluid machine
US3948226A (en) * 1972-09-05 1976-04-06 Edward Howard Green Internal combustion engine
US3923013A (en) * 1973-12-14 1975-12-02 Innovate Inc Rotary engine
DE2437714B2 (en) * 1974-08-06 1977-02-24 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5300 Bonn ROTARY PISTON MACHINE AS EXPANSION MACHINE OR COMPRESSOR
US4099448A (en) * 1976-01-19 1978-07-11 Young Gerald H Oscillating engine
DE2757016C3 (en) * 1977-12-21 1980-07-10 Casimir 5342 Rheinbreitbach Tychota Central-axis rotary piston internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE652128A (en) *
DE573821C (en) * 1931-04-10 1933-04-06 Sulzer Akt Ges Geb Rotary lobe compressors
US2460821A (en) * 1942-09-03 1949-02-08 Joseph O Hamren Oscillating vane rotary pump
DE2344460A1 (en) * 1972-09-05 1974-05-09 Green Edward Howard ROTATIONAL COMBUSTION MACHINE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3603132A1 (en) * 1986-02-01 1986-06-05 Albrecht Dipl.-Ing. 5060 Bergisch Gladbach Kayser Internal combustion engine with rotary hinged pistons
DE10257047A1 (en) * 2002-12-06 2004-06-24 Mathias Stefan Pump for fluid and gases has intake chambers formed by two neighboring blades and facing walls of inner and outer rings

Also Published As

Publication number Publication date
DK315384D0 (en) 1984-06-28
ES8503066A1 (en) 1985-02-16
JPS6035101A (en) 1985-02-22
ES533771A0 (en) 1985-02-16
DE3323397A1 (en) 1985-01-31
US4560328A (en) 1985-12-24
DK315384A (en) 1984-12-30
JPH0140201B2 (en) 1989-08-25

Similar Documents

Publication Publication Date Title
DE69004087T2 (en) LIQUID RING MACHINES.
DE3312280C2 (en)
EP0295480A2 (en) Positive displacement machine
DE69503862T2 (en) PUMP WITH DOUBLE CYLINDRICAL ROTORS
DE1553057B2 (en) Rotary piston machine
DE3117651A1 (en) TURNING PISTON MOTOR WITH DRIVE SHAFT ENLARGED IN DIAMETER
DE19509913A1 (en) Rotary piston machine for pump
EP0130436A1 (en) Rotary piston machine used as an expansion engine or compressor
DE2512547A1 (en) ROTARY LISTON MACHINE
DE2215007A1 (en) DRIVE MACHINE, IN PARTICULAR COMBUSTION MACHINE, WITH CRANKSHAFT-FREE POWER TRANSMISSION
DE2848220A1 (en) ROTARY PISTON ENGINE
EP1005604B1 (en) Rotary piston machine
DE69931181T2 (en) ROTATION PUMP
DE3335742C2 (en) In-axis rotary piston internal combustion engine
CH373593A (en) Power plant with two four-stroke rotary piston engines
DE19616880A1 (en) Pump with two- or three-cornered rotors
DE1528985A1 (en) Valve arrangement for hydraulic pressure device
DE2349247A1 (en) IMPROVEMENTS TO COMBUSTION ENGINES
AT524617B1 (en) expansion machine
DE3727281A1 (en) Rotary displacement compressor
DE2405706A1 (en) ROTATION MECHANISM
DE2400324C3 (en)
DE2718148A1 (en) Internal gear ring pump or motor - has rotary distributor valve connected to tooth interspaces via housing fixing screw bore clearances
DE1553245C3 (en)
DE102017011017A1 (en) Rotary piston engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19841012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KAYSER, ALBRECHT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KAYSER, ALBRECHT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19871231

18R Application refused

Effective date: 19880331