EP0126993A2 - Waveguide structure for end-fire arrays - Google Patents

Waveguide structure for end-fire arrays Download PDF

Info

Publication number
EP0126993A2
EP0126993A2 EP84104791A EP84104791A EP0126993A2 EP 0126993 A2 EP0126993 A2 EP 0126993A2 EP 84104791 A EP84104791 A EP 84104791A EP 84104791 A EP84104791 A EP 84104791A EP 0126993 A2 EP0126993 A2 EP 0126993A2
Authority
EP
European Patent Office
Prior art keywords
dipole
waveguide structure
groups
dipoles
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP84104791A
Other languages
German (de)
French (fr)
Other versions
EP0126993A3 (en
Inventor
Walter Dr.-Ing. Buck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirschmann Electronics GmbH and Co KG
Original Assignee
Hirschmann Electronics GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirschmann Electronics GmbH and Co KG filed Critical Hirschmann Electronics GmbH and Co KG
Publication of EP0126993A2 publication Critical patent/EP0126993A2/en
Publication of EP0126993A3 publication Critical patent/EP0126993A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1207Supports; Mounting means for fastening a rigid aerial element
    • H01Q1/1228Supports; Mounting means for fastening a rigid aerial element on a boom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/28Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
    • H01Q19/30Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being centre-fed and substantially straight, e.g. Yagi antenna

Definitions

  • the invention relates to a longitudinal radiator with a connection dipole and at least one waveguide structure, each of which has at least two radiation-coupled dipole groups which are arranged in planes perpendicular to the direction of propagation and are each composed of at least two half-wave dipoles.
  • L ticasstrahler this kind are in many embodiments of literature (eg, E. Spindler "Yagi antennas as a special case of all - common along radiating structures" FUNKTECHNIK 1966, pages 91-94, 127 - 129 and 165/66) and practice known and often referred to as So-called YAGI antennas, in particular for the UHF television sector, are designed with a reflector screen and half-wave coupling rod between the connecting dipole and the waveguide structure (s).
  • the directors of the waveguide structure are designed as dipole groups to increase the gain, which in the simplest case are made up of two axially aligned half-wave dipoles that are firmly connected by an insulating part (see, for example, DE-PS 1616261).
  • the invention has for its object to provide an end-fire of the type mentioned, which in relation to the prior art, comparable to one possible compartment e way electrical values is less expensive, or has at the same cost better electrical data.
  • This object is achieved in that a single dipole is arranged at least in a partial area of a waveguide structure between two dipole groups in each case.
  • some of the dipole groups can be omitted compared to an antenna with comparable electrical properties, in particular in the vicinity of the connection dipole of approximately one wavelength.
  • the savings that can be achieved are greater the more complex and thus the more expensive the dipole groups are.
  • the lower number of directors also means that the wind load is reduced.
  • the individual dipoles Towards the end of the waveguide structure on the radiation side, the individual dipoles have a decreasing profit-increasing effect, so that B there the potential savings in dipole groups are smaller; however, an effective antenna tuning can be achieved using the length and position of the individual dipoles, which results in a significant reduction in the different lengths of the dipole groups (in extreme cases only a single length) and thus a further cost reduction compared to the prior art, in which the different lengths are used for tuning and are therefore indispensable.
  • broadband improvement can be achieved in this way.
  • the two measures mentioned can also be used on their own and in several sub-areas of the waveguide structure in all combination solutions.
  • FIG. 1 shows a plan view
  • Fig. 2 and 3 are sections on an enlarged scale according to the section lines A - B and C - D.
  • connection housing 2 made of insulating material with integrated full-wave connection dipole 3
  • waveguide structure arranged in front of it in the radiation direction
  • coupling dipole 4 for broadband adaptation
  • the waveguide structure consists of seven individual dipoles 5 and dipole groups 6, which are arranged in alternating order in planes perpendicular to the longitudinal beam 1 and thus to the direction of radiation.
  • the individual dipoles 5 are metal rods fastened in the middle by screws 7 directly to the longitudinal member 1, and their length is less than half the operating wavelength.
  • the dipole groups 6 each consist of a center len insulating piece 8, which is a Shell on the longitudinal beams 1 - U-shaped bares central portion 9 and two of which comprises symmetrically laterally projecting parts 10, and two likewise U-shaped metal loops 11 whose free end portions in the recesses 12 of the free end pieces of parts 10 are inserted and clamped.
  • a groove 13 of the parts 10 of the insulating piece 8 ensures good stability with a low cost of materials.
  • metal clips 14 are provided, which engage behind the tabs provided in the groove 13 with retaining tabs 15.
  • the metal loops 11 made of strip material are electrically known in a known manner each two dipoles opposite each other vertically at a distance of about ⁇ / 8, slightly less than half a wavelength long; they are deformed in two sub-areas 16, 17 to increase the mechanical stability.
  • connection housing 2 is fastened to the side member 1 by means of a wing screw 18.
  • the dipole groups 6 are only necessary in two and the single dipoles 5 in three different lengths.
  • This antenna is cheaper to produce than a conventional longitudinal radiator with 9 differently long dipole groups of the same shape without individual dipoles and moreover has a broadband better front-to-back ratio with otherwise the same electrical data.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

In an end-fire array with a connecting dipole (3) and at least one waveguide structure each of which has at least two emission-coupled dipole groups (6) arranged in planes perpendicular to the direction of propagation and constructed in each case of at least two half-wave dipoles, a single dipole (5) is provided at least in one partial region of a waveguide structure between in each case two dipole groups (6). In comparison to known end-fire arrays, whose waveguide structure is made up exclusively of dipole groups, this technique provides a simple means of achieving either a cost reduction with comparable electrical data or an improvement in the emission characteristics at the same material and manufacturing costs. <IMAGE>

Description

Die Erfindung betrifft einen Längsstrahler mit einem Anschlußdipol und wenigstens einer Wellenleitstruktur, deren jede mindestens zwei strahlungsgekoppelte, in Ebenen senkrecht zur Ausbreitungsrichtung angeordnete, aus jeweils wenigstens zwei Halbwellendipolen aufgebaute Dipolgruppen aufweist.The invention relates to a longitudinal radiator with a connection dipole and at least one waveguide structure, each of which has at least two radiation-coupled dipole groups which are arranged in planes perpendicular to the direction of propagation and are each composed of at least two half-wave dipoles.

Längsstrahler dieser Art sind in vielen Ausführungsformen aus Literatur (z.B. E. Spindler "YAGI-Antennen als Spezialfall all - gemeiner längsstrahlender Strukturen", FUNKTECHNIK 1966, Seiten 91 - 94, 127 - 129 und 165/66) und Praxis bekannt und häufig als sog. YAGI-Antennen, insbesondere für den UHF-Fernsehbereich, mit Reflektorschirm und Halbwellenkoppelstab zwischen AnschluBdipol und Wellenleitstruktur(en) ausgebildet. Bei diesen Antennen sind die Direktoren der Wellenleitstruktur zur Erhöhung des Gewinns als Dipolgruppen ausgeführt, die im einfachsten Fall aus zwei, durch ein Isolierteil fest miteinander verbundenen, axial fluchtenden Halbwellendipolen aufgebaut sind (siehe z.B.DE-PS 1616261). Bei komplizierteren Ausführungen sind hierfür X-förmige Dipolkombinationen (siehe "XC"-Antennen der Fa. Fuba, Hans Kolbe & Co.) oder brillenförmige Anordnungen mit je einer Leiterschleife anstatt eines gestreckten Halbwellendipols (siehe beispielsweise die Antennen "Super-Spectral N" der Anmelderin) verwendet. L ängsstrahler this kind are in many embodiments of literature (eg, E. Spindler "Yagi antennas as a special case of all - common along radiating structures" FUNKTECHNIK 1966, pages 91-94, 127 - 129 and 165/66) and practice known and often referred to as So-called YAGI antennas, in particular for the UHF television sector, are designed with a reflector screen and half-wave coupling rod between the connecting dipole and the waveguide structure (s). In these antennas, the directors of the waveguide structure are designed as dipole groups to increase the gain, which in the simplest case are made up of two axially aligned half-wave dipoles that are firmly connected by an insulating part (see, for example, DE-PS 1616261). In the case of more complicated designs, X-shaped dipole combinations (see “XC” antennas from Fuba, Hans Kolbe & Co.) or spectacle-shaped arrangements with a conductor loop instead of an elongated half-wave dipole (see, for example, the “Super-Spectral N” antennas) Applicant) used.

Alle diese bekannten Längsstrahler benötigen zur Erzielung ausreichend guter elektrischer Daten nicht nur eine groBe Anzahl der beschriebenen Dipolgruppen pro Längeneinheit, insbesondere in der Nähe des AnschluBdipoles, sondern diese auch in einer Vielzahl unterschiedlicher Längen. Der damit verbundene hohe Material- und Fertigungsaufwand ist zwar durch Ausführungen mit weniger Dipolgruppen vermeidbar, die ungünstigeren elektrischen Werte dieser Antennen sind aber in den meisten Anwendungsfällen nicht ausreichend.To achieve sufficiently good electrical data, all of these known longitudinal radiators not only require a large number of the described dipole groups per unit length, in particular in the vicinity of the connection dipole, but also in a large number of different lengths. The associated high material and manufacturing costs are due to versions with less dipole groups can be avoided, but the less favorable electrical values of these antennas are not sufficient in most applications.

Der Erfindung liegt die Aufgabe zugrunde, einen Längsstrahler der eingangs genannten Art zu schaffen, der auf möglichst ein- fache Weise bei gegenüber dem Stand der Technik vergleichbaren elektrischen Werten kostengünstiger ist oder bei gleichem Kostenaufwand bessere elektrische Daten aufweist. Diese Aufgabe ist dadurch gelöst, daB zumindest in einem Teil - bereich einer Wellenleitstruktur zwischen jeweils zwei Dipol - gruppen ein Einzeldipol angeordnet ist. Dadurch kann gegenüber einer Antenne mit vergleichbaren elektrischen Eigenschaften, insbesondere im Nahbereich des AnschluBdipols von etwa einer Wellenlänge ein Teil der Dipolgruppen entfallen. Beispielsweise sind dort bei einer kurzen "Super-Spektral N"-Antenne der An - melderin anstatt 5 nur 3 brillenförmige Direktoren und 3 einfache Dipolstäbe erforderlich. Selbstverständlich ist die erreichbare Einsparung dabei umso gröBer je komplexer und damit teurer die Dipolgruppen gestaltet sind.
Neben diesem wirtschaftlichen Vorteil ist durch die geringere Belegung mit Direktoren auch eine Verringerung der Windlast erreicht. Zum strahlungsseitigen Ende der Wellenleitstruktur hin wirken die Einzeldipole in abnehmendem Maße gewinnerhöhend, so- daB dort die möglichen Einsparungen an Dipolgruppen geringer sind; dafür ist jedoch eine wirksame Antennenabstimmung mit Hilfe von Länge und Position der Einzeldipole erzielbar, wodurch eine deutliche Reduzierung der unterschiedlichen Längen der Dipolgruppen (im Extremfall nur eine einzige Länge) und damit eine weitere Kostensenkung gegenüber dem Stand der Technik erreicht ist, bei dem ja die unterschiedlichen Längen zur Abstimmung benutzt und damit unentbehrlich sind. Zugleich läBt sich auf diese Weise breitbandig eine Verbesserung der Nebenzipfeldämpfung erreichen.
Selbstverständlich können die beiden genannten MaBnahmen auch für sich alleine, sowie in mehreren Teilbereichen der Wellenleitstruktur in allen Kombinationslösungen angewendet werden.
The invention has for its object to provide an end-fire of the type mentioned, which in relation to the prior art, comparable to one possible compartment e way electrical values is less expensive, or has at the same cost better electrical data. This object is achieved in that a single dipole is arranged at least in a partial area of a waveguide structure between two dipole groups in each case. As a result, some of the dipole groups can be omitted compared to an antenna with comparable electrical properties, in particular in the vicinity of the connection dipole of approximately one wavelength. For example, there with a short "super spectral N" antenna of An - melderin instead of 5 only 3 glasses-shaped directors and three simple D ip ol rods required. Of course, the savings that can be achieved are greater the more complex and thus the more expensive the dipole groups are.
In addition to this economic advantage, the lower number of directors also means that the wind load is reduced. Towards the end of the waveguide structure on the radiation side, the individual dipoles have a decreasing profit-increasing effect, so that B there the potential savings in dipole groups are smaller; however, an effective antenna tuning can be achieved using the length and position of the individual dipoles, which results in a significant reduction in the different lengths of the dipole groups (in extreme cases only a single length) and thus a further cost reduction compared to the prior art, in which the different lengths are used for tuning and are therefore indispensable. At the same time, broadband improvement can be achieved in this way.
Of course, the two measures mentioned can also be used on their own and in several sub-areas of the waveguide structure in all combination solutions.

Umgekehrt ist der erfindungsgemäße Aufbau eines Längsstrahlers natürlich auch zur Verbesserung der elektrischen Werte bei gleichem oder allenfalls geringfügig höherem Kostenaufwand einsetzbar.Conversely, the construction of a longitudinal radiator according to the invention can of course also be used to improve the electrical values at the same or at most slightly higher cost.

Bei den eingangs beschriebenen, bekannten Längsstrahlern ist die Verwendung von Ganzwellenanschlußdipolen optimal (siehe beispielsweise DE-PS 1 616 261, Spalte 4, Zeile 54 - 59). Da bei diesen Dipolen und der Verwendung gebräuchlicher Symmetrierglieder keine leitende Verbindung mit Masse gegeben ist, sind zum Schutze gegen Überspannungen Drosseln vorgesehen. Demgegenüber ermöglicht die erfindungsgemäBe Einfügung von Einzeldipolen die gemäß Anspruch 2 vorgesehene Verwendung eines Halbwellen-Faltdipoles bei breitbandig gleich guter Ankopplung an die Wellenleitstruktur, wobei wegen der dabei vorhandenen Masseverbindungen keine gesonderten ÜberspannungsschutzmaBnahmen nötig sind.In the case of the known longitudinal radiators described at the outset, the use of full-wave connection dipoles is optimal (see, for example, DE-PS 1 616 261, column 4, lines 54-59). Since these dipoles and the use of common balun elements do not provide a conductive connection to ground, chokes are provided to protect against overvoltages. In contrast, the insertion of single dipoles according to the invention enables the use of a half-wave folding dipole as provided in claim 2 with broadband equally good coupling to the waveguide structure, no separate overvoltage protection measures being necessary because of the ground connections present.

Die Figuren zeigen ein einfaches Ausführungsbeispiel eines erfindungsgemäßen Längsstrahlers für den UHF-Fernsehbereich mit nur einer Wellenleitstruktur, wobei zur Vereinfachung der Reflektorschirm weggelassen ist. Fig. 1 stellt eine Draufsicht dar, Fig. 2 und 3 sind Schnitte in vergröBertem Maßstab gemäß den Schnittlinien A - B und C - D.The figures show a simple exemplary embodiment of a longitudinal radiator according to the invention for the UHF television sector with only one waveguide structure, the reflector screen being omitted for simplicity. Fig. 1 shows a plan view, Fig. 2 and 3 are sections on an enlarged scale according to the section lines A - B and C - D.

An einem geraden rohrförmigen Längsträger 1 ist, neben dem nicht dargestellten Reflektorschirm ein Anschlußgehäuse 2 aus Isolierstoff mit integriertem Ganzwellen-AnschluBdipol 3, eine in Strahlungsrichtung davor angeordnete Wellenleitstruktur, sowie ein Koppeldipol 4 zur breitbandigen Anpassung angebracht. Die Wellenleitstruktur besteht aus je sieben Einzeldipolen 5 und Dipolgruppen 6, die in alternierender Reihenfolge in Ebenen senkrecht zum Längsträger 1 und damit zur Strahlungsrichtung angeordnet sind. Die Einzeldipole 5 sind wie der Koppeldipol 4 in ihrer Mitte durch Schrauben 7 direkt am Längsträger 1 befestigte Metallstäbe, deren Länge kleiner ist als die halbe Betriebs - wellenlänge. Die Dipolgruppen 6 bestehen jeweils aus einem zentralen Isolierstück 8, das ein auf den Längsträger 1 aufsteck - bares Mittelteil 9 und zwei U-förmige, davon symmetrisch seitlich abragende Teile 10 aufweist, sowie zwei ebenfalls U-förmige Metallschleifen 11, deren freie Endteile in Ausnehmungen 12 der freien Endstücke der Teile 10 eingeführt und darin festgeklemmt sind. Eine Nut 13 der Teile 10 des Isolierstücks 8 gewährleistet eine gute Stabilität bei geringem Materialaufwand. Zur Befestigung der brillenförmigen Dipolgruppen 6 sind Metallklammern 14 vorgesehen, die mit Haltelaschen 15 in der Nut 13 angebrachte Nasen rastend hintergreifen. Die aus Bandmaterial hergestellten Metallschleifen 11 stellen elektrisch in bekannter Weise je zwei einander vertikal in einem Abstand von etwa λ/8 gegenüberliegende, etwas weniger als eine halbe Wellenlänge lange Dipole dar; sie sind zur Erhöhung der mechanischen Stabilität in zwei Teilbereichen 16, 17 verformt.On a straight tubular longitudinal member 1, in addition to the reflector screen (not shown), a connection housing 2 made of insulating material with integrated full-wave connection dipole 3, a waveguide structure arranged in front of it in the radiation direction, and a coupling dipole 4 for broadband adaptation are attached. The waveguide structure consists of seven individual dipoles 5 and dipole groups 6, which are arranged in alternating order in planes perpendicular to the longitudinal beam 1 and thus to the direction of radiation. Like the coupling dipole 4, the individual dipoles 5 are metal rods fastened in the middle by screws 7 directly to the longitudinal member 1, and their length is less than half the operating wavelength. The dipole groups 6 each consist of a center len insulating piece 8, which is a Shell on the longitudinal beams 1 - U-shaped bares central portion 9 and two of which comprises symmetrically laterally projecting parts 10, and two likewise U-shaped metal loops 11 whose free end portions in the recesses 12 of the free end pieces of parts 10 are inserted and clamped. A groove 13 of the parts 10 of the insulating piece 8 ensures good stability with a low cost of materials. To fasten the glasses-shaped dipole groups 6, metal clips 14 are provided, which engage behind the tabs provided in the groove 13 with retaining tabs 15. The metal loops 11 made of strip material are electrically known in a known manner each two dipoles opposite each other vertically at a distance of about λ / 8, slightly less than half a wavelength long; they are deformed in two sub-areas 16, 17 to increase the mechanical stability.

Das Anschlußgehäuse 2 ist mittels einer Flügelschraube 18 am Längsträger 1 befestigt.The connection housing 2 is fastened to the side member 1 by means of a wing screw 18.

Durch optimale Bemessung und Positionierung sind die Dipol - gruppen 6 lediglich in zwei und die Einzeldipole 5 in drei unterschiedlichen Längen nötig. Diese Antenne ist gegenüber einem herkömmlichen Längsstrahler mit 9 unterschiedlich langen Dipolgruppen der gleichen Form ohne Einzeldipole billiger her - stellbar und weist darüberhinaus bei sonst etwa gleichen elektrischen Daten ein breitbandig besseres Vor-Rück-Verhältnis auf.Due to optimal dimensioning and positioning, the dipole groups 6 are only necessary in two and the single dipoles 5 in three different lengths. This antenna is cheaper to produce than a conventional longitudinal radiator with 9 differently long dipole groups of the same shape without individual dipoles and moreover has a broadband better front-to-back ratio with otherwise the same electrical data.

Claims (2)

1. Längsstrahler mit einem AnschluBdipol und wenigstens einer Wellenleitstruktur, deren jede mindestens zwei strahlungsgekoppelte, in Ebenen senkrecht zur Ausbreitungsrichtung angeordnete, aus jeweils wenigstens zwei Halbwellendipolen aufgebaute Dipolgruppen aufweist, dadurch gekennzeichnet, daB zumindest in einem Teilbereich einer Wellenleitstruktur zwischen jeweils zwei Dipolgruppen (6) ein Einzeldipol (5) angeordnet ist.1. Longitudinal radiator with a connection dipole and at least one waveguide structure, each of which has at least two radiation-coupled dipole groups, arranged in planes perpendicular to the direction of propagation and each composed of at least two half-wave dipoles, characterized in that at least in a partial region of a waveguide structure between two dipole groups (6) a single dipole (5) is arranged. 2. Längsstrahler nach Anspruch 1, dadurch gekennzeichnet, daß der AnschluBdipol (3) ein Halbwellen-Faltdipol ist.2. Longitudinal radiator according to claim 1 , characterized in that the connecting dipole (3) is a half-wave folding dipole.
EP84104791A 1983-05-21 1984-04-28 Waveguide structure for end-fire arrays Withdrawn EP0126993A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833318602 DE3318602A1 (en) 1983-05-21 1983-05-21 WAVE GUIDE STRUCTURE FOR LATERAL SPOTLIGHTS
DE3318602 1983-05-21

Publications (2)

Publication Number Publication Date
EP0126993A2 true EP0126993A2 (en) 1984-12-05
EP0126993A3 EP0126993A3 (en) 1987-06-10

Family

ID=6199609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84104791A Withdrawn EP0126993A3 (en) 1983-05-21 1984-04-28 Waveguide structure for end-fire arrays

Country Status (5)

Country Link
EP (1) EP0126993A3 (en)
DE (1) DE3318602A1 (en)
DK (1) DK159031C (en)
FI (1) FI75451C (en)
NO (1) NO841940L (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2897497A (en) * 1959-03-13 1959-07-28 Jr Lewis H Finneburgh Selective multiple channel tv antennas
US2980912A (en) * 1955-04-22 1961-04-18 Channei Master Corp Television antenna having multi-band elements
DE1980255U (en) * 1967-10-04 1968-03-07 Hirschmann Radiotechnik ANTENNA ARRANGEMENT.
DE1298161B (en) * 1964-04-24 1969-06-26 Siemens Ag Yagi antenna for only one frequency range
DE1616261B1 (en) * 1968-01-18 1970-07-09 Richard Hischmann Radiotechnis Antenna made of two identical waveguide structures, a third waveguide structure and a connection dipole
DE1616440A1 (en) * 1968-03-07 1971-04-29 Kolbe & Co Hans Antenna arrangement

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1184818B (en) * 1962-03-23 1965-01-07 Fuba Antennenwerke Hans Kolbe Antenna arrangement, consisting of a dipole antenna with several rows of directors
DE7013960U (en) * 1970-04-16 1970-11-26 Bosch Elektronik Gmbh TELEVISION RECEIVING ANTENNA.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2980912A (en) * 1955-04-22 1961-04-18 Channei Master Corp Television antenna having multi-band elements
US2897497A (en) * 1959-03-13 1959-07-28 Jr Lewis H Finneburgh Selective multiple channel tv antennas
DE1298161B (en) * 1964-04-24 1969-06-26 Siemens Ag Yagi antenna for only one frequency range
DE1980255U (en) * 1967-10-04 1968-03-07 Hirschmann Radiotechnik ANTENNA ARRANGEMENT.
DE1616261B1 (en) * 1968-01-18 1970-07-09 Richard Hischmann Radiotechnis Antenna made of two identical waveguide structures, a third waveguide structure and a connection dipole
DE1616440A1 (en) * 1968-03-07 1971-04-29 Kolbe & Co Hans Antenna arrangement

Also Published As

Publication number Publication date
FI842028A (en) 1984-11-22
DK243484A (en) 1984-11-22
DK243484D0 (en) 1984-05-17
DE3318602C2 (en) 1987-08-13
DK159031B (en) 1990-08-20
FI842028A0 (en) 1984-05-21
NO841940L (en) 1984-11-22
EP0126993A3 (en) 1987-06-10
DK159031C (en) 1991-02-11
FI75451B (en) 1988-02-29
DE3318602A1 (en) 1984-11-22
FI75451C (en) 1988-06-09

Similar Documents

Publication Publication Date Title
DE3688588T2 (en) Shortened stripline antenna.
DE2316842B2 (en) Multi-frequency antenna for three frequency bands
DE2047315A1 (en) Multi-range antenna
DE3217437A1 (en) MICROWAVE DIRECTIONAL ANTENNA FROM A DIELECTRIC LINE
DE3129045A1 (en) Direction-finding antenna system
DE102006057144A1 (en) Waveguide radiators, in particular for synthetic aperture radar systems
EP0353378A1 (en) Vehicle window antenna
EP0126993A2 (en) Waveguide structure for end-fire arrays
DE102004024800A1 (en) Multiband antenna for motor vehicles has at least one parasitic element in addition to main radiator, whereby it also radiates in at least one other frequency band in addition to main frequency band
DE2432592A1 (en) DIELECTRIC SUPPORT FOR A DEFLECTION DEVICE IN AN ELECTRONIC SCANNING ARRANGEMENT LIKE A CATHODE BEAM TUBE
DE1285025B (en) Dipole antenna
DE2410498A1 (en) LOGARITHMIC-PERIODIC ANTENNA
DE3312638C2 (en)
DE3919884C2 (en) Rod-shaped radio antenna
DE1129191B (en) Directional antenna for very short electromagnetic waves
AT234771B (en) Transmitter for high-frequency electromagnetic waves for the mutual adaptation of balanced and unbalanced lines
DE2722600B2 (en) Antenna socket with a circuit board
EP0113818B1 (en) Blocking device for surface waves
AT289895B (en) Directional antenna
DE2139257C3 (en) Omnidirectional transmission antenna with radiating elements emanating from a central support arrangement
DE3642735C1 (en) Antenna array consisting of two log-periodic individual dipole antennas
EP0573971A1 (en) Antenna
DE112021006782T5 (en) SURGE PROTECTION CIRCUIT AND SURGE PROTECTION METHOD
DE1466271C (en) Coiled dipole antenna
DE1541549C (en) Broadband omnidirectional antenna with several radiators arranged above the ground and graded in length according to the logarithmically periodic principle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR IT LI NL SE

17P Request for examination filed

Effective date: 19870709

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RICHARD HIRSCHMANN GMBH & CO.

17Q First examination report despatched

Effective date: 19910625

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19911019

R18W Application withdrawn (corrected)

Effective date: 19911019

R18W Application withdrawn (corrected)

Effective date: 19911019

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BUCK, WALTER, DR.-ING.