EP0116806B1 - Curved electronic avalanche gaseous detector with strip-shaped electrode - Google Patents

Curved electronic avalanche gaseous detector with strip-shaped electrode Download PDF

Info

Publication number
EP0116806B1
EP0116806B1 EP83420191A EP83420191A EP0116806B1 EP 0116806 B1 EP0116806 B1 EP 0116806B1 EP 83420191 A EP83420191 A EP 83420191A EP 83420191 A EP83420191 A EP 83420191A EP 0116806 B1 EP0116806 B1 EP 0116806B1
Authority
EP
European Patent Office
Prior art keywords
strip
gas
curved
detector according
filled detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83420191A
Other languages
German (de)
French (fr)
Other versions
EP0116806A1 (en
Inventor
Jean Ballon
Vincent Comparat
Joseph Pouxe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP0116806A1 publication Critical patent/EP0116806A1/en
Application granted granted Critical
Publication of EP0116806B1 publication Critical patent/EP0116806B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/02Ionisation chambers

Definitions

  • the present invention relates to the technical field of gas detectors used for the spatial localization of particles or radiation and which is defined in the preamble of claim 1.
  • a gas detector of the above type, comprises a body defining an enclosure containing a gaseous fluid under a certain pressure.
  • the enclosure has an entry window for radiation or a particle to be detected and comprises, internally, at least one elongated element, generally parallel to the window.
  • This elongate element is isolated from the body and is brought to a high positive potential with respect to the body or to electrodes surrounding the elongate element, forming cathodes.
  • the localization along the avalanche anode is carried out according to a well-known procedure, by determining the center of gravity by means of cathode strips measuring the collection of positive charges induced by the avalanche in the gaseous fluid.
  • a delay line By means of, for example, a delay line, it is possible to locate such a center of gravity and, consequently, to know the position of the avalanche along the anode.
  • the accuracy of the localization and the spatial resolution depend on the quality of the electronic measurement chain, on the nature and the pressure of the gas, on the nature and on the energy of the particle or of the radiation. Commonly obtained a resolution of 200 m it to X-ray 8 keV.
  • the detector comprises several parallel anodes, which makes it possible to have a substantially increased detection area and to make a determination of the position in two dimensions.
  • Detectors of the above type may be qualified as rectilinear anodes, since the anode or anodes which they comprise consist of conductive wires of small diameter stretched between two anchoring and electrical connection points to extend parallel at the cathodes and the entrance window.
  • the angular opening that can be examined does not exceed ten degrees. In fact, beyond this, account should be taken of parallax phenomena originating from the angle of incidence of the trajectory of the particles relative to the anode and also resulting from the position on this trajectory from which such a particle initiates the electron avalanche phenomenon.
  • gas detectors of the curved type comprising a body delimiting, on a concave face, a window whose radius of curvature is centered on the emission or reflection source.
  • the anode or anodes are each formed in the traditional way by a wire which is kept curved, being centered on the radius of curvature, by rigid insulating supports.
  • anode in the form of a conductive wire with a section of the order of 40 p initially bent or curved according to the radius of curvature chosen and over the convergent angular range.
  • Such an anode is fixed at both ends on supports and is held parallel to the entry window by interaction of the field of a current passing through it with that of two permanent magnets between which the wire extends.
  • a variant of this construction consists in maintaining the constituent wire of the anode in the required position by electrostatic effect.
  • a third solution known by the reference Nuclear Instruments and Methods, 177 (1980), North Holland Publishing Company, 405-409, T. Izumi, Curved position-sensitive detector for X-ray crystallography, consists in producing a curved gas detector using , as anode, a conductive wire of larger cross section made of hard steel, for example 0.20 mm in diameter, replacing the wire of smaller cross section used in the previous solutions.
  • a wire of such a section can be bent and maintained, thanks to its mechanical qualities, by anchoring at the two ends representing points of support and conduction of an electrical operating voltage.
  • the object of the invention is to propose a new curved gaseous detector providing a technological solution to the problems thus posed and capable of remedying the drawbacks observed of the solutions adopted for the constitution of curved detectors with good spatial resolution currently known.
  • the other object of the invention is to provide a slightly fragile curved gas detector, which can be subjected to various mechanical working conditions and which is also capable of having significant resistance to electrical breakdowns and the dimensions of which are not limited. by mechanical problems.
  • Another object of the invention is to propose a curved gas detector capable of being produced quickly, simply and safely, without involving a delicate operation of regular shaping of one or more anodes.
  • the object of the invention aims, moreover, to allow the use, as an anode, of a basic product supplied in a strip or blade commercially, according to various physical characteristics allowing a choice in relation to the particularities of a detector to be built.
  • the curved gas detector with spatial localization blade is characterized in that it comprises an electron avalanche anode constituted by a structure of at least one conductive, curved blade, maintained by the detector body and having a curved longitudinal edge extending parallel to the longitudinal median axis of the window.
  • Fig. 1 is a partial perspective illustrating the curved gas detector according to the invention.
  • Fig. 2 is a schematic view of a section showing the arrangement of the various electrodes.
  • Fig. 3 is a partial perspective illustrating another embodiment of one of the constituent elements of the object of the invention.
  • Fig. 4 is a perspective similar to FIG. 3 but showing another embodiment of the same constituent element.
  • Figs. 5 to 8 are schematic views showing different alternative embodiments of one of the constituent elements of the detector.
  • Fig. 9 is a schematic view showing another embodiment of the detector.
  • the curved gas detector of spatial location, comprises a body 1 of generally tubular shape, delimiting an enclosure 2 intended to contain a gaseous fluid under a pressure to be chosen.
  • the body 1 is produced in a curved manner and therefore has a concave face 3 defined by a radius of curvature which is centered on the source of emission or reflection of a radiation to be detected.
  • the concave face 3 defines an inlet window 4 which is, for example, closed by a cover 5 to preserve the sealed confinement of the gaseous fluid.
  • the cover 5 is made of an appropriate material, permeable to the radiation to be detected and, for example of mylar or beryllium in the case of application to X-ray crystallography.
  • the element 7 is formed by a conductive strip which is held so that one of its longitudinal edges, such as 8, extends parallel to the window 4, made conductive by an internal deposit and forming with the conductive element 14 a cathode.
  • the conductive strip 7 is held to have a radius of curvature centered on the same center as that of the wall 3 and, for this purpose, for example, is embedded by the second longitudinal edge 9 'in an insulating support formed by or adapted on the body 1.
  • the metal blade 7 is electrically connected to a production source, capable of applying to it a constant positive potential. Under tension, the edge 8 produces an electric field influencing the surrounding medium and the gaseous fluid confined in the enclosure 2.
  • Such a construction provides an absolute certainty of the position occupied by the edge 8 and of its conformation in a curved anode, exactly centered on the center of the wall 3, so that all the points of this edge are exactly equidistant from such a center.
  • This construction makes it possible to maintain, in a rigid stable state, an elongated anode by giving it a determined radius of curvature and by developing it over an angular extent related to the possible dispersion characteristics of the emitted or reflected radiation. More generally, such a construction makes it possible to conform the edge 8 along any curve desired for detection.
  • the curved gaseous detector is associated with a bar 10 for measuring the collection of positive charges induced by the presence of positive ions resulting from the avalanche of electrons.
  • the strip 10 consists of cathode strips 11, conductive, extending parallel to each other, having a direction orthogonal to the edge 8.
  • the cathode strips are placed parallel to the plane of the blade 7, for example, along the internal face of the wall 12 of the body 1 opposite the wall 3.
  • the cathode strips 11 pass through the body 1 outside of which they are connected to a delay line 13 of design known in the art.
  • the body 1 is made of an insulating material and internally comprises a conductive coating 14 forming a cathode, in the general sense, isolated from the strips 11.
  • Fig. 2 shows, diagrammatically, an exemplary embodiment according to which the body 1 is made of conductive material and supports the strip 7 by an attached wall element 15, made of an insulating material.
  • the body of conductive material is connected to earth by a connection 16.
  • the bar 10 is mounted without contact or electrical connection with the body 1.
  • the body 1 has means making it possible to keep the enclosure 2 filled with the desired gas mixture.
  • the blade 7 is held in the body 1 by an intermediate support 17 which is preferably made up of two complementary half-parts 18a and 18b.
  • the half-parts 18a and 18b can be connected together by means of connecting members 19 of any suitable type.
  • the half-parts 18a and 18b are made of an insulating material and shaped to delimit between them, once assembled, a recess 20 capable of retaining the blade 7 from its longitudinal edge 9.
  • the complementary half-parts 18a and 18b are shaped to present, once assembled, a curved shape centered on the center of curvature of the wall 3.
  • a support 17 it becomes possible to effectively maintain the blade 7 in a stable position and, simultaneously, to impose on such a blade the desired curvature.
  • one end of the support 17 comprises a conductive terminal 21 making it possible to establish an electrical contact between the blade 7 and a conductor 22 connecting said blade to a source of positive voltage with respect to the potential of the cathodes (which is generally to ground).
  • Fig. 4 illustrates an alternative embodiment in which the support 17 is produced so as to delimit itself a window 23 in which extends the edge 8 of the blade 7 maintained as said previously with reference to FIG. 3.
  • a detector of the above type containing in enclosure 2 a gaseous fluid constituted by a mixture of argon, methane, forane 13B1 confined under a pressure of a bar, made it possible to obtain localization results in proportional regime, by means of a 40 p thick blade to which a positive voltage of 3,700 volts was applied, for an X radiation of 8 KeV of energy.
  • the conductive strip had a linear length of 25 cm and was shaped according to a radius of curvature of 20 cm.
  • the blade 7 described above may include an active edge 8 shaped in different ways.
  • This edge 8 can be tapered (fig. 5), with sharp edges (fig. 6) or rounded.
  • the edge 8 can also be constituted by a wire 8 1 reported in any suitable manner, in particular by gluing on a blade 7 1 , as illustrated in FIG. 7.
  • the object of the invention allows one-dimensional position detection.
  • the detector comprises, inside the sealed enclosure an insulating support 24 now n curved blades 7a, for example by embedding.
  • the blades 7a are parallel to each other and directed so that their plane is parallel or substantially parallel to the direction of propagation of a particle or of radiation.
  • Each blade 7a has, facing the direction of propagation, a generally concave curved edge 8a.
  • the determination of the blade 7a which has received the avalanche provides, by processing the negative electronic pulse which is triggered there, the location in the X dimension.
  • the location in dimension Y is obtained, as in the previous example, by implementing a structure 25 of cathode strips 1 la extending parallel to the edges 8a in a direction orthogonal to that of the blades 7a.
  • the cathode strips 11a are, for example, carried by a thin insulating support 26 and are connected to a delay line 13a.
  • the structure is arranged upstream of the edges 8a with respect to the direction of propagation along the arrow f.

Landscapes

  • Measurement Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Description

La présente invention concerne le domaine technique des détecteurs gazeux utilisés pour la localisation spatiale de particules ou rayonnements et que définit le préambule de la revendication 1.The present invention relates to the technical field of gas detectors used for the spatial localization of particles or radiation and which is defined in the preamble of claim 1.

Dans de nombreuses applications, il est nécessaire de pouvoir détecter et localiser spatialement une particule ou un rayonnement. A titre d'exemples, on peut citer la cristallographie par rayons X, la détection de radioactivité, la recherche médicale ou biologique, la détection de particules autour des accélérateurs.In many applications, it is necessary to be able to detect and spatially locate a particle or a radiation. By way of examples, mention may be made of X-ray crystallography, detection of radioactivity, medical or biological research, detection of particles around the accelerators.

De façon générale, un détecteur gazeuz, du type ci-dessus, comprend un corps définissant une enceinte contenant un fluide gazeux sous une certaine pression.Generally, a gas detector, of the above type, comprises a body defining an enclosure containing a gaseous fluid under a certain pressure.

L'enceinte présente une fenêtre d'entrée d'un rayonnement ou d'une particule à détecter et comporte, intérieurement, au moins un élément allongé, en général parallèle à la fenêtre. Cet élément allongé est isolé du corps et se trouve porté à un potentiel positif élevé par rapport au corps ou à des électrodes entourant l'élément allongé, formant des cathodes.The enclosure has an entry window for radiation or a particle to be detected and comprises, internally, at least one elongated element, generally parallel to the window. This elongate element is isolated from the body and is brought to a high positive potential with respect to the body or to electrodes surrounding the elongate element, forming cathodes.

L'impact d'une particule élémentaire, ayant traversé la fenêtre d'entrée avec un ou des atomes du fluide gazeux, fait naître un ou des électrons primaires qui sont attirés par le champ électrique produit par le potentiel positif appliqué à l'élément allongé formant anode. Ces électrons, sous l'influence de ce champ, migrent vers l'anode et initient, si le champ électrique est suffisant, un processus de collisions en chaîne produisant une avalanche d'électrons captée par l'anode. La localisation le long de l'anode de l'avalanche s'effectue suivant une procédure bien connue, en déterminant le centre de gravité au moyen de bandes cathodes mesurant la collection de charges positives induites par l'avalanche dans le fluide gazeux. Par l'intermédiaire par exemple d'une ligne à retard, il est possible de localiser un tel centre de gravité et, par conséquent, de connaître la position de l'avalanche le long de l'anode. On obtient donc une localisation monodimensionnelle le long de l'anode. La précision de la localisation et la résolution spatiale sont fonction de la qualité de la chaîne électronique de mesure, de la nature et de la pression du gaz, de la nature et de l'énergie de la particule ou du rayonnement. On obtient couramment une résolution de 200 Ilm pour des rayons X de 8 KeV.The impact of an elementary particle, having crossed the entry window with one or more atoms of the gaseous fluid, gives rise to one or more primary electrons which are attracted by the electric field produced by the positive potential applied to the elongated element forming anode. These electrons, under the influence of this field, migrate towards the anode and initiate, if the electric field is sufficient, a process of chain collisions producing an avalanche of electrons captured by the anode. The localization along the avalanche anode is carried out according to a well-known procedure, by determining the center of gravity by means of cathode strips measuring the collection of positive charges induced by the avalanche in the gaseous fluid. By means of, for example, a delay line, it is possible to locate such a center of gravity and, consequently, to know the position of the avalanche along the anode. One thus obtains a one-dimensional localization along the anode. The accuracy of the localization and the spatial resolution depend on the quality of the electronic measurement chain, on the nature and the pressure of the gas, on the nature and on the energy of the particle or of the radiation. Commonly obtained a resolution of 200 m it to X-ray 8 keV.

Dans certaines applications, le détecteur comporte plusieurs anodes parallèles, ce qui permet de disposer d'une aire de détection sensiblement accrue et de faire une détermination de la position à deux dimensions.In certain applications, the detector comprises several parallel anodes, which makes it possible to have a substantially increased detection area and to make a determination of the position in two dimensions.

Les détecteurs du type ci-dessus peuvent être qualifiés à anodes rectilignes, étant donné que la ou les anodes qu'ils comportent sont constituées par des fils conducteurs de faible diamètre tendus entre deux points d'ancrage et de connexion électrique pour s'étendre parallèlement aux cathodes et à la fenêtre d'entrée.Detectors of the above type may be qualified as rectilinear anodes, since the anode or anodes which they comprise consist of conductive wires of small diameter stretched between two anchoring and electrical connection points to extend parallel at the cathodes and the entrance window.

Dans certaines applications, telles que l'étude de diffraction des rayons X, il serait intéressant de pouvoir localiser le long d'un arc de cercle.In certain applications, such as the study of X-ray diffraction, it would be interesting to be able to locate along an arc of a circle.

Si on se contente de résolutions spatiales d'environ 1 à 2 mm, on peut utiliser une nappe de fils anode épousant la circonférence. La lecture des impulsions sur ces fils donnant la position du rayonnement à un fil près.If one is satisfied with spatial resolutions of approximately 1 to 2 mm, one can use a sheet of anode son following the circumference. Reading the pulses on these wires giving the position of the radiation to the nearest wire.

Avec des détecteurs à anodes rectilignes et pour des résolutions spatiales inférieures au millimètre, l'ouverture angulaire pouvant être examinée n'excède pas une dizaine de degrés. En effet, au-delà il convient alors de tenir compte de phénomènes de parallaxe provenant de l'angle d'incidence de la trajectoire des particules par rapport à l'anode et résultant aussi de la position sur cette trajectoire à partir de laquelle une telle particule initie le phénomène d'avalanche d'électrons.With detectors with rectilinear anodes and for spatial resolutions less than a millimeter, the angular opening that can be examined does not exceed ten degrees. In fact, beyond this, account should be taken of parallax phenomena originating from the angle of incidence of the trajectory of the particles relative to the anode and also resulting from the position on this trajectory from which such a particle initiates the electron avalanche phenomenon.

- Des essais de correction de parallaxe n'ont pas permis d'aboutir à une solution technologique simple, par le simple fait que le phénomène d'initiation d'avalanche d'électrons peut être considéré comme totalement aléatoire et susceptible d'intervenir indifféremment en amont ou en aval de l'anode par rapport au plan passant cette dernière et coupant la direction de propagation de la particule.- Parallax correction tests did not lead to a simple technological solution, by the simple fact that the phenomenon of electron avalanche initiation can be considered as completely random and likely to occur indifferently in upstream or downstream of the anode relative to the plane passing the latter and intersecting the direction of propagation of the particle.

En vue de résoudre ce problème, on pourrait penser réaliser des détecteurs gazeux de type courbe comprenant un corps délimitant, sur une face concave, une fenêtre dont le rayon de courbure est centré sur la source d'émission ou de réflexion. La ou les anodes sont constituées de façon traditionnelle chacune par un fil qui est maintenu courbe, en étant centré sur le rayon de courbure, par des supports rigides isolants.In order to solve this problem, one could think of producing gas detectors of the curved type comprising a body delimiting, on a concave face, a window whose radius of curvature is centered on the emission or reflection source. The anode or anodes are each formed in the traditional way by a wire which is kept curved, being centered on the radius of curvature, by rigid insulating supports.

Une telle solution n'est, cependant, pas acceptable, car les supports sont responsables de l'existence de zones pouvant être considérées comme mortes, c'est-à-dire dans lesquelles le phénomène d'avalanche des électrons ne peut se produire comme il convient.Such a solution is, however, not acceptable, because the supports are responsible for the existence of zones which can be considered as dead, that is to say in which the phenomenon of avalanche of electrons cannot occur as it suits.

Pour résoudre ce problème, on a proposé de réaliser l'anode sous la forme d'un fil conducteur d'une section de l'ordre de 40 p initialement cambré ou courbé selon le rayon de courbure choisi et sur la plage angulaire converte. Une telle anode est fixée aux deux extrémités sur des supports et se trouve maintenue parallèlement à la fenêtre d'entrée par interaction du champ d'un courant la traversant avec celui magnétique de deux aimants permanents entre lesquels s'étend le fil.To solve this problem, it has been proposed to produce the anode in the form of a conductive wire with a section of the order of 40 p initially bent or curved according to the radius of curvature chosen and over the convergent angular range. Such an anode is fixed at both ends on supports and is held parallel to the entry window by interaction of the field of a current passing through it with that of two permanent magnets between which the wire extends.

Une variante de cette construction consiste à maintenir le fil constitutif de l'anode dans la position requise par effet électrostatique.A variant of this construction consists in maintaining the constituent wire of the anode in the required position by electrostatic effect.

Ces deux propositions ont permis d'effectuer des mesures au plan du laboratoire ou de l'expérimentation. Par contre, il n'a pas été possible de retenir une application industrielle satisfaisante étant donné la fragilité structurelle de tels appareils et leur sensibilité aux vibrations appliquées au support ou à l'appareil et transmises au fil d'anode, uniquement maintenu dans l'ouverture angulaire de détection par effet magnétique ou électrostatique.These two proposals made it possible to carry out measurements at the laboratory or experimental level. On the other hand, it was not possible to retain a satisfactory industrial application given the structural fragility of such devices and their sensitivity to vibrations applied to the support or to the device and transmitted to the anode wire, only maintained in the open angular detection by magnetic or electrostatic effect.

Une troisième solution connue par la référence Nuclear Instruments and Methods, 177 (1980), North Holland Publishing Company, 405-409, T. Izumi, Curved position-sensitive detector for X-ray crystallography, consiste à réaliser un détecteur gazeux courbe en utilisant, en tant qu'anode, un fil conducteur de plus grosse section en acier dur, par exemple 0,20 mm de diamètre, en remplacement du fil de section faible utilisé dans les solutions précédentes.A third solution known by the reference Nuclear Instruments and Methods, 177 (1980), North Holland Publishing Company, 405-409, T. Izumi, Curved position-sensitive detector for X-ray crystallography, consists in producing a curved gas detector using , as anode, a conductive wire of larger cross section made of hard steel, for example 0.20 mm in diameter, replacing the wire of smaller cross section used in the previous solutions.

Un fil d'une telle section peut être courbé et maintenu, grâce à ses qualités mécaniques, par ancrage au niveau des deux extrémités représentant des points de support et de conduction d'une tension électrique de fonctionnement.A wire of such a section can be bent and maintained, thanks to its mechanical qualities, by anchoring at the two ends representing points of support and conduction of an electrical operating voltage.

Si une telle solution technique peut être considérée comme apportant, théoriquement, une solution au problème posé, en revanche, il a été pratiquement constaté que le rayon de courbure et la longueur d'anode étaient limités et donc que la résolution angulaire pouvait être souvent insuffisante.If such a technical solution can be considered as providing, theoretically, a solution to the problem posed, on the other hand, it has been practically observed that the radius of curvature and the length of anode were limited and therefore that the angular resolution could often be insufficient. .

Ceci est dû au fait que l'anode devient, au fur et à mesure de l'accroissement de sa longueur, moins stable et le détecteur de plus en plus fragile. De même que précédemment, cette solution ne protège pas contre les vibrations mécaniques.This is due to the fact that the anode becomes, as its length increases, less stable and the detector more and more fragile. As before, this solution does not protect against mechanical vibrations.

L'objet de l'invention est de proposer un nouveau détecteur gazeux courbe apportant une solution technologique aux problèmes ainsi posés et capable de remédier aux inconvénients constatés des solutions retenues pour la constitution de détecteurs courbes à bonne résolution spatiale actuellement connus.The object of the invention is to propose a new curved gaseous detector providing a technological solution to the problems thus posed and capable of remedying the drawbacks observed of the solutions adopted for the constitution of curved detectors with good spatial resolution currently known.

L'autre object de l'invention est de proposer un détecteur gazeux courbe peu fragile, pouvant être soumis à des conditions mécaniques de travail diverses et susceptible, en outre, de présenter une résistance importante aux claquages électriques et dont les dimensions ne sont pas limitées par des problèmes mécaniques.The other object of the invention is to provide a slightly fragile curved gas detector, which can be subjected to various mechanical working conditions and which is also capable of having significant resistance to electrical breakdowns and the dimensions of which are not limited. by mechanical problems.

Un autre object de l'invention est de proposer un détecteur gazeux courbe susceptible d'être réalisé de façon rapide, simple et sûre, sans faire intervenir d'opération délicate de mise en forme régulière d'une ou des anodes.Another object of the invention is to propose a curved gas detector capable of being produced quickly, simply and safely, without involving a delicate operation of regular shaping of one or more anodes.

L'objet de l'invention vise, en outre, à permettre l'utilisation, en tant qu'anode, d'un produit de base fourni en bande ou lame dans le commerce, selon des caractéristiques physiques variées permettant un choix en rapport avec les particularités d'un détecteur à construire.The object of the invention aims, moreover, to allow the use, as an anode, of a basic product supplied in a strip or blade commercially, according to various physical characteristics allowing a choice in relation to the particularities of a detector to be built.

Pour atteindre les buts ci-dessus, le détecteur gazeux courbe à lame de localisation spatiale est caractérisé en ce qu'il comprend une anode d'avalanche d'électrons constituée par une structure d'au moins une lame conductrice, courbe, maintenue par le corps du détecteur et présentant une arête longitudinale courbe s'étendant parallèlement à l'axe médian longitudinal de la fenêtre.To achieve the above goals, the curved gas detector with spatial localization blade is characterized in that it comprises an electron avalanche anode constituted by a structure of at least one conductive, curved blade, maintained by the detector body and having a curved longitudinal edge extending parallel to the longitudinal median axis of the window.

Diverses autres caractéristiques ressortent de la description faite ci-dessous en référence aux dessins annexés qui montrent, à titre d'exemples non limitatifs, des formes de réalisation de l'objet de l'invention.Various other characteristics will emerge from the description given below with reference to the appended drawings which show, by way of nonlimiting examples, embodiments of the subject of the invention.

La fig. 1 est une perspective partielle illustrant le détecteur gazeux courbe conforme à l'invention.Fig. 1 is a partial perspective illustrating the curved gas detector according to the invention.

La fig. 2 est une vue schématique d'une coupe montrant la disposition des diverses électrodes.Fig. 2 is a schematic view of a section showing the arrangement of the various electrodes.

La fig. 3 est une perspective partielle illustrant une autre forme d'exécution de l'un des éléments constitutifs de l'objet de l'invention.Fig. 3 is a partial perspective illustrating another embodiment of one of the constituent elements of the object of the invention.

La fig. 4 est une perspective analogue à la fig. 3 mais montrant une autre forme d'exécution du même élément constitutif.Fig. 4 is a perspective similar to FIG. 3 but showing another embodiment of the same constituent element.

Les fig. 5 à 8 sont des vues schématiques représentant différentes variantes de réalisation de l'un des éléments constitutifs du détecteur.Figs. 5 to 8 are schematic views showing different alternative embodiments of one of the constituent elements of the detector.

La fig. 9 est une vue schématique montrant un autre exemple de réalisation du détecteur.Fig. 9 is a schematic view showing another embodiment of the detector.

Le détecteur gazeux courbe, de localisation spatiale, comprend un corps 1 de forme générale tubulaire, délimitant une enceinte 2 destinée à contenir un fluide gazeux sous une pression à choisir.The curved gas detector, of spatial location, comprises a body 1 of generally tubular shape, delimiting an enclosure 2 intended to contain a gaseous fluid under a pressure to be chosen.

Le corps 1 est réalisé de façon courbe et présente, par conséquent, une face 3 concave, définie par un rayon de courbure qui est centré sur la source d'émission ou de réflexion d'un rayonnement devant être détecté. La face concave 3 délimite une fenêtre d'entrée 4 qui est, par exemple, fermée par un opercule 5 pour préserver le confinement étanche du fluide gazeux. L'opercule 5 est réalisé en une matière appropriée, perméable au rayonnement à détecter et, par exemple en mylar ou en beryllium dans le cas d'application à la cristallographie par rayon X.The body 1 is produced in a curved manner and therefore has a concave face 3 defined by a radius of curvature which is centered on the source of emission or reflection of a radiation to be detected. The concave face 3 defines an inlet window 4 which is, for example, closed by a cover 5 to preserve the sealed confinement of the gaseous fluid. The cover 5 is made of an appropriate material, permeable to the radiation to be detected and, for example of mylar or beryllium in the case of application to X-ray crystallography.

Une autre des parois du corps tubulaire 1 et, de préférence, le fond plan 6, supporte, directement ou indirectement, un élément allongé 7 isolé électriquement du corps 1 et destiné à constituer l'anode d'avalanche d'électrons. Selon l'invention, l'élément 7 est formé par une lame conductrice qui est maintenue de manière que l'une des ses arêtes longitudinales, telle que 8, s'étende parallèlement à la fenêtre 4, rendue conductrice par un dépôt interne et formant avec l'élément conducteur 14 une cathode.Another of the walls of the tubular body 1 and, preferably, the flat bottom 6, supports, directly or indirectly, an elongated element 7 electrically isolated from the body 1 and intended to constitute the electron avalanche anode. According to the invention, the element 7 is formed by a conductive strip which is held so that one of its longitudinal edges, such as 8, extends parallel to the window 4, made conductive by an internal deposit and forming with the conductive element 14 a cathode.

La lame conductrice 7 est maintenue pour présenter un rayon de courbure centré sur le même centre que celui de la paroi 3 et, à cet effet, par exemple, se trouve encastrée par la seconde arête longitudinale 9' dans un support isolant formé par ou adapté sur le corps 1. La lame métallique 7 est reliée électriquement à une source de production, capable de lui appliquer un potentiel positif constant. Sous tension, l'arête 8 produit un champ électrique influençant le milieu environnant et le fluide gazeux confiné dans l'enceinte 2.The conductive strip 7 is held to have a radius of curvature centered on the same center as that of the wall 3 and, for this purpose, for example, is embedded by the second longitudinal edge 9 'in an insulating support formed by or adapted on the body 1. The metal blade 7 is electrically connected to a production source, capable of applying to it a constant positive potential. Under tension, the edge 8 produces an electric field influencing the surrounding medium and the gaseous fluid confined in the enclosure 2.

Une telle construction permet de disposer d'une certitude absolue de la position occupée par l'arête 8 et de sa conformation en anode courbe, exactement centrée sur le centre de la paroi 3, de telle sorte que tous les points de cette arête se trouvent exactement à égale distance d'un tel centre. Cette construction permet de maintenir, dans un état stable rigide, une anode allongée en lui conférant un rayon de courbure déterminé et en la développant sur une étendue angulaire en rapport avec les caractéristiques de dispersion possibles du rayonnement émis ou réfléchi. Plus généralement, une telle construction permet de conformer l'arête 8 suivant la courbe quelconque désirée pour la détection.Such a construction provides an absolute certainty of the position occupied by the edge 8 and of its conformation in a curved anode, exactly centered on the center of the wall 3, so that all the points of this edge are exactly equidistant from such a center. This construction makes it possible to maintain, in a rigid stable state, an elongated anode by giving it a determined radius of curvature and by developing it over an angular extent related to the possible dispersion characteristics of the emitted or reflected radiation. More generally, such a construction makes it possible to conform the edge 8 along any curve desired for detection.

De manière à pouvoir localiser l'endroit de l'arête 8 au niveau duquel se produit l'avalanche d'électrons résultant de l'impact d'une particule élémentaire du rayonnement à détecter avec le fluide gazeux, le détecteur gazeux courbe est associé à une barrette 10 de mesure de collection des charges positives induites par la présence d'ions positifs résultant de l'avalanche d'électrons.In order to be able to locate the location of the edge 8 at which the avalanche of electrons resulting from the impact of an elementary particle of the radiation to be detected with the gaseous fluid occurs, the curved gaseous detector is associated with a bar 10 for measuring the collection of positive charges induced by the presence of positive ions resulting from the avalanche of electrons.

La barrette 10 est constituée de bandes cathodes 11, conductrices, s'étendant parallèlement entre elles, en présentant une direction orthogonale à l'arête 8. Les bandes cathodes sont placées parallèlement au plan de la lame 7, par exemple, le long de la face interne de la paroi 12 du corps 1 opposée à la paroi 3. Les bandes cathodes 11 traversent le corps 1 à l'extérieur duquel elles sont reliées à une ligne à retard 13 de conception connue dans la technique.The strip 10 consists of cathode strips 11, conductive, extending parallel to each other, having a direction orthogonal to the edge 8. The cathode strips are placed parallel to the plane of the blade 7, for example, along the internal face of the wall 12 of the body 1 opposite the wall 3. The cathode strips 11 pass through the body 1 outside of which they are connected to a delay line 13 of design known in the art.

Selon la fig. 1, le corps 1 est réalisé en une matière isolante et comporte intérieurement un revêtement conducteur 14 formant cathode, au sens général, isolé des bandes 11.According to fig. 1, the body 1 is made of an insulating material and internally comprises a conductive coating 14 forming a cathode, in the general sense, isolated from the strips 11.

La fig. 2 montre, schématiquement, un exemple de réalisation selon lequel le corps 1 est en matière conductrice et supporte la lame 7 par un élément de paroi rapporté 15, réalisé en une matière isolante. Dans cet exemple, le corps en matière conductrice est relié à la masse par une connexion 16. Dans un tel cas, la barrette 10 est montée sans contact ou liaison électrique avec le corps 1.Fig. 2 shows, diagrammatically, an exemplary embodiment according to which the body 1 is made of conductive material and supports the strip 7 by an attached wall element 15, made of an insulating material. In this example, the body of conductive material is connected to earth by a connection 16. In such a case, the bar 10 is mounted without contact or electrical connection with the body 1.

Dans tous les cas, le corps 1 possède des moyens permettant de maintenir l'enceinte 2 remplie du mélange gazeux désiré.In all cases, the body 1 has means making it possible to keep the enclosure 2 filled with the desired gas mixture.

Selon une réalisation préférée, illustrée par la fig. 3, la maintien de la lame 7 dans le corps 1 est assuré par un support intermédiaire 17 qui est, de préférence, constitué par deux demi-parties 18a et 18b complémentaires. Les demi-parties 18a et 18b peuvent être reliées ensemble par l'intermédiaire d'organes de liaison 19 de tout type convenable. Les demi-parties 18a et 18b sont réalisées en une matière isolante et conformées pour délimiter entre elles, une fois assemblées, un encastrement 20 capable de retenir la lame 7 à partir de son arête longitudinale 9.According to a preferred embodiment, illustrated in FIG. 3, the blade 7 is held in the body 1 by an intermediate support 17 which is preferably made up of two complementary half-parts 18a and 18b. The half-parts 18a and 18b can be connected together by means of connecting members 19 of any suitable type. The half-parts 18a and 18b are made of an insulating material and shaped to delimit between them, once assembled, a recess 20 capable of retaining the blade 7 from its longitudinal edge 9.

Les demi-parties 18a et 18b complémentaires sont conformées pour présenter, une fois assemblées, une forme courbe centrée sur le centre de courbure de la paroi 3. Ainsi, par un tel support 17, il devient possible d'assurer efficacement le maintien de la lame 7 dans une position stable et, simultanément, d'imposer à une telle lame la courbure recherchée. Il est ainsi possible d'utiliser pour constituer la lame 7 une bande conductrice d'épaisseur convenable, déformable élastiquement ou plastiquement, et qui est ainsi maintenue dans un état déformé par son encastrement entre les parties complémentaires 18a et 18b. Dans un tel cas, une extrémité du support 17 comporte une borne 21 conductrice permettant d'établir un contact électrique entre la lame 7 et un conducteur 22 reliant ladite lame à une source de tension positive par rapport au potentiel des cathodes (qui est en général à la masse).The complementary half-parts 18a and 18b are shaped to present, once assembled, a curved shape centered on the center of curvature of the wall 3. Thus, by such a support 17, it becomes possible to effectively maintain the blade 7 in a stable position and, simultaneously, to impose on such a blade the desired curvature. It is thus possible to use to form the blade 7 a conductive strip of suitable thickness, elastically or plastically deformable, and which is thus maintained in a deformed state by its embedding between the complementary parts 18a and 18b. In such a case, one end of the support 17 comprises a conductive terminal 21 making it possible to establish an electrical contact between the blade 7 and a conductor 22 connecting said blade to a source of positive voltage with respect to the potential of the cathodes (which is generally to ground).

La fig. 4 illustre une variante de réalisation dans laquelle le support 17 est réalisé de manière à délimiter lui-même une fenêtre 23 dans laquelle s'étend l'arête 8 de la lame 7 maintenue comme dit précédemment en référence à la fig. 3.Fig. 4 illustrates an alternative embodiment in which the support 17 is produced so as to delimit itself a window 23 in which extends the edge 8 of the blade 7 maintained as said previously with reference to FIG. 3.

De bons résultats de détection sont obtenus en utilisant une lame 7 en acier inoxydable, dont l'épaisseur peut être comprise entre 10 et 100 p.Good detection results are obtained using a blade 7 made of stainless steel, the thickness of which can be between 10 and 100 p.

Un détecteur du type ci-dessus, contenant dans l'enceinte 2 un fluide gazeux constitué par un mélange d'argon, de méthane, de forane 13B1 confiné sous une pression d'un bar, a permis d'obtenir des résultats de localisation en régime proportionnel, au moyen d'une lame de 40 p d'épaisseur à laquelle était appliquée une tension positive de 3 700 volts, pour un rayonnement X de 8 KeV d'énergie.A detector of the above type, containing in enclosure 2 a gaseous fluid constituted by a mixture of argon, methane, forane 13B1 confined under a pressure of a bar, made it possible to obtain localization results in proportional regime, by means of a 40 p thick blade to which a positive voltage of 3,700 volts was applied, for an X radiation of 8 KeV of energy.

Des résultats particulièrement satisfaisants ont été obtenus en régime de fonctionnement, dit de sillages lumineux autocoupants, en mettant en oeuvre les moyens suivants:

Figure imgb0001
Particularly satisfactory results have been obtained in operating mode, called self-cutting luminous wakes, by implementing the following means:
Figure imgb0001

Avec des conditions telles que ci-dessus, une résolution spatiale à mi-hauteur de 180 u a été obtenue, soit, dans cette expérience, une résolution angulaire de 0,05°.With conditions such as above, a half-height spatial resolution of 180 u was obtained, that is, in this experiment, an angular resolution of 0.05 °.

Les résultats ci-dessus ont été obtenus en utilisant un corps 1 en stésalit avec une face avant en aluminium pour rigidifier l'ensemble.The above results were obtained by using a body 1 in stesalit with an aluminum front face to stiffen the assembly.

Dans ces réalisations, la lame conductrice possédait une longueur linéaire de 25 cm et était conformée selon un rayon de courbure de 20 cm.In these embodiments, the conductive strip had a linear length of 25 cm and was shaped according to a radius of curvature of 20 cm.

La lame 7 décrite ci-avant peut comporter une arête active 8 conformée de différentes façons. Cette arête 8 peut être effilée (fig. 5), à bords francs (fig. 6) ou arrondie.The blade 7 described above may include an active edge 8 shaped in different ways. This edge 8 can be tapered (fig. 5), with sharp edges (fig. 6) or rounded.

L'arête 8 peut aussi être constituée par un fil 81 rapporté de toute façon convenable, notamment par collage sur une lame 71, comme illustré par la fig. 7.The edge 8 can also be constituted by a wire 8 1 reported in any suitable manner, in particular by gluing on a blade 7 1 , as illustrated in FIG. 7.

Il peut aussi être retenu de constituer l'arête 8 en conformant une lame 72 autour d'un fil 82, comme cela est illustré par la fig. 8.It may also be retained to constitute the edge 8 by shaping a blade 7 2 around a wire 8 2 , as illustrated in FIG. 8.

Les exemples ci-dessus ne sont donnés qu'à titre non limitatif car d'autres géométries peuvent être retenues pour faire assumer à l'anode courbe les deux fonctions de l'invention, savoir:

  • - pour la lame 7, le support de l'arête 8 et le maintien de la courbure désirée sans perturber outre mesure le champ électrique,
  • - pour l'arête 8, le lieu où le champ électrique est très intense et provoque le phénomène d'avalanche.
The above examples are only given non-limiting title because other geometries can be used to make the curved anode assume the two functions of the invention, namely:
  • - for the blade 7, the support of the edge 8 and the maintenance of the desired curvature without unduly disturbing the electric field,
  • - for edge 8, the place where the electric field is very intense and causes the avalanche phenomenon.

Dans ce qui précède, il est indiqué que l'objet de l'invention permet une détection de position monodimensionnelle.In the foregoing, it is indicated that the object of the invention allows one-dimensional position detection.

Il est possible de réaliser un détecteur courbe en vue d'une détection bidimensionnelle en adoptant une structure telle que celle représentée schématiquement par la fig. 9. Selon cette figure, le détecteur comprend, à l'intérieur de l'enceinte étanche un support isolant 24 maintenant n lames courbes 7a, par exemple par encastrement. Les lames 7a sont parallèles entre elles et dirigées pour que leur plan soit parallèle ou sensiblement parallèle à la direction de propagation d'une particule ou d'un rayonnement. Chaque lame 7a présente, face au sens de propagation, une arête 8a courbe en général concave.It is possible to produce a curved detector for two-dimensional detection by adopting a structure such as that shown diagrammatically in FIG. 9. According to this figure, the detector comprises, inside the sealed enclosure an insulating support 24 now n curved blades 7a, for example by embedding. The blades 7a are parallel to each other and directed so that their plane is parallel or substantially parallel to the direction of propagation of a particle or of radiation. Each blade 7a has, facing the direction of propagation, a generally concave curved edge 8a.

La détermination de la lame 7a qui a reçu l'avalanche fournit, par le traitement de l'impulsion électronique négative qui s'y déclenche, la localisation dans la dimension X.The determination of the blade 7a which has received the avalanche provides, by processing the negative electronic pulse which is triggered there, the location in the X dimension.

La localisation dans la dimension Y est obtenue, comme dans l'exemple précédent, en mettant en oeuvre une structure 25 de bandes cathodes 1 la s'étendant parallèlement aux arêtes 8a selon une direction orthogonale à celle des lames 7a. Les bandes cathodes 11a sont, par exemple, portées par un support 26 mince isolant et sont reliées à une ligne à retard 13a. La structure est disposée en amont des arêtes 8a par rapport au sens de propagation selon la flèche f. L'invention n'est pas limitée aux exemples décrits et représentés car diverses modifications peuvent y être apportées sans sortir de son cadre.The location in dimension Y is obtained, as in the previous example, by implementing a structure 25 of cathode strips 1 la extending parallel to the edges 8a in a direction orthogonal to that of the blades 7a. The cathode strips 11a are, for example, carried by a thin insulating support 26 and are connected to a delay line 13a. The structure is arranged upstream of the edges 8a with respect to the direction of propagation along the arrow f. The invention is not limited to the examples described and shown since various modifications can be made without departing from its scope.

Claims (9)

1. Curved gas-filled detector of the type comprising a body (1) defining an enclosure (2) having the shape of an annular segment, containing a gaseous fluid, and having a concave cylindrical wall (3) in which is provided a window (4) for the admission of the radiation to be detected and the outline of which has an axis contained in a cross- sectional plane of the cylindrical wall, said enclosure containing at least one elongated element (7) which is parallel to the plane occupied by at least part of a cathode electrode (14) insulated from the body, and receiving a high positive voltage, in order to form means of picking up the avalanche of electrons created by the impact of a particle or radiation caused to traverse the gaseous fluid and of which the source of emission or the means reflecting it are situated at right angle to the window on the axis of the concave cylindrical wall (3) said enclosure containing a plurality of conducting cathode bands (11) which are all parallel and oriented orthogonally to the elongated element (7) characterised in that the electron avalanche anode (7) is constituted by a structure of at least one curved conducting strip held by the body (1) and presenting a curved longitudinal edge (8) which extends in parallel to the longitudinal middle axis of the window.
2. Gas-filled detector according to claim 1, characterised in that it comprises at least a curved strip of which the generatrix is perpendicular to the plane containing the strip curving direction.
3. Gas-filled detector according to claim 1, characterised in that it comprises at least one curved strip (7a) of which the curving direction is co-planar thereto and which is carried by the body so that its longitudinal edge (8a) extends in parallel to the inner face of the window.
4. Gas-filled detector according to claim 1, 2 or 3, characterised in that the thickness of the conducting strip (7) may vary between 10 and 100u.
5. Gas-filled detector according to any one of claims 1 to 4, characterised in that the strip (7) is supported by a body (1) in insulating material covered on the inside with a conducting layer (14) insulated from the cathode bands (11
6. Gas-filled detector according to any one of claims 1 to 4, characterised in that the strip (7) is supported by a support (15) in insulating material adapted inside a body in conducting material.
7. Gas-filled detector according to claim 1 or 2, characterised in that the conducting strip (7) extends between the wall (3) having the window (4), and a plurality of conducting cathode bands (11) connected to a delay line (13).
8. Gas-filled detector according to claim 7, characterised in that the strip (7) is supported by a support (17) composed of two complementary halves (18-18a) which immobilize the strip and give it the wanted curvature.
9. Gas-filled detector according to claim 3, characterised in that it comprises a plurality of strips (7a) parallel together and to cathode structure (25) situated upstream of the strips with respect to the direction of propagation.
EP83420191A 1982-12-30 1983-12-22 Curved electronic avalanche gaseous detector with strip-shaped electrode Expired EP0116806B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8222219 1982-12-30
FR828222219A FR2538913B1 (en) 1982-12-30 1982-12-30 GAS DETECTOR WITH ELECTRONIC AVALANCHE, CURVE AND BLADE

Publications (2)

Publication Number Publication Date
EP0116806A1 EP0116806A1 (en) 1984-08-29
EP0116806B1 true EP0116806B1 (en) 1988-02-24

Family

ID=9280772

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83420191A Expired EP0116806B1 (en) 1982-12-30 1983-12-22 Curved electronic avalanche gaseous detector with strip-shaped electrode

Country Status (5)

Country Link
US (1) US4553062A (en)
EP (1) EP0116806B1 (en)
JP (1) JPS59157944A (en)
DE (1) DE3375752D1 (en)
FR (1) FR2538913B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4570071A (en) * 1983-12-27 1986-02-11 General Electric Company Ionization detector
NL8503153A (en) * 1985-11-15 1987-06-01 Optische Ind De Oude Delft Nv DOSEMETER FOR IONIZING RADIATION.
US8138673B1 (en) 2002-05-21 2012-03-20 Imaging Systems Technology Radiation shielding
US8198812B1 (en) 2002-05-21 2012-06-12 Imaging Systems Technology Gas filled detector shell with dipole antenna
US7791037B1 (en) 2006-03-16 2010-09-07 Imaging Systems Technology Plasma-tube radiation detector
US9024526B1 (en) 2012-06-11 2015-05-05 Imaging Systems Technology, Inc. Detector element with antenna
FR2996954B1 (en) * 2012-10-15 2014-12-05 Commissariat Energie Atomique GAS PARTICLE CURVED DETECTOR

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031396A (en) * 1975-02-28 1977-06-21 General Electric Company X-ray detector
JPS5816066B2 (en) * 1975-08-18 1983-03-29 ノダゴウハン カブシキガイシヤ The best way to get started
US4075527A (en) * 1976-09-27 1978-02-21 General Electric Company X-ray detector
DE2650607C3 (en) * 1976-11-04 1979-11-29 M. Braun Gmbh, 8042 Oberschleissheim Curved position-sensitive proportional counter tube
JPS584992B2 (en) * 1978-07-06 1983-01-28 理学電機株式会社 Radiation incident position detection device
US4306155A (en) * 1980-04-04 1981-12-15 General Electric Company Gas-filled x-ray detector with improved window

Also Published As

Publication number Publication date
FR2538913A1 (en) 1984-07-06
EP0116806A1 (en) 1984-08-29
US4553062A (en) 1985-11-12
JPS59157944A (en) 1984-09-07
FR2538913B1 (en) 1985-07-26
DE3375752D1 (en) 1988-03-31
JPH029430B2 (en) 1990-03-01

Similar Documents

Publication Publication Date Title
EP0792571B1 (en) Method and device for measuring ion flow in a plasma
EP1712900B1 (en) Device to analyse the composition of the contents of a receptacle
FR2718633A1 (en) Medical imaging device for low dose X or gamma ionizing radiation.
EP1869500A1 (en) Device for limiting decoding artefact appearance for an encoded mask gamma camera
EP0116806B1 (en) Curved electronic avalanche gaseous detector with strip-shaped electrode
WO2006131670A2 (en) Gas controlling device
WO2003083893A1 (en) Device for confinement of a plasma within a volume
CA2576774C (en) Ion trap with longitudinal permanent magnet and mass spectrometer using same
FR2591036A1 (en) DEVICE FOR DETECTING AND LOCATING NEUTRAL PARTICLES, AND APPLICATIONS
EP0046125B1 (en) Radiation detector
FR2530381A1 (en) IONIZATION CHAMBER FOR MEASURING HIGH ENERGY GAMMA RADIATION
EP0107568B1 (en) Device for examining samples with the use of electronic emissions
FR2731279A1 (en) IMPROVEMENTS TO MEDICAL IMAGING DEVICES IN X-RAY OR LOW-DOSE GAMMA IONIZING RADIATION
FR2505492A1 (en)
EP0000672B1 (en) Meter or decimeter waves generator formed by a resonant structure coupled to a hollow electron beam.
FR2504277A1 (en) X-RAY DETECTOR
FR2922350A1 (en) HIGH ANGLE TOMOGRAPHIC PROBE WITH HIGH RESOLUTION.
EP2958127B1 (en) Structured anode in multiple sites for generation of x photons, x-ray tube and use for coded source imaging
EP3086140B1 (en) Spherical device for detecting particles or radiation
EP0115734B1 (en) Process for the examination of the radiographic image of an object irradiated with ionizing rays, and ionization chamber for carrying out this process
CA2178467A1 (en) Process and device for real time control of ionizing radiation dosage
EP0326479B1 (en) Detector for x-ray tomography
EP1186058A1 (en) High dynamic radiation detection device
EP0340126A1 (en) Parallax-free gas-filled X-ray detector
FR2522415A1 (en) PROPORTIONAL DETECTOR OF IONIZING RADIATION FOR TWO DIMENSIONAL LOCATION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19841009

17Q First examination report despatched

Effective date: 19860414

R17C First examination report despatched (corrected)

Effective date: 19860909

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3375752

Country of ref document: DE

Date of ref document: 19880331

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20021127

Year of fee payment: 20

Ref country code: GB

Payment date: 20021127

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021209

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20031221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20031222

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20031222