EP0112771B1 - Process for dispensing of wastes constituted by radioactive metallic particles, for instance by dissolution dusts from irradiated fuel elements - Google Patents

Process for dispensing of wastes constituted by radioactive metallic particles, for instance by dissolution dusts from irradiated fuel elements Download PDF

Info

Publication number
EP0112771B1
EP0112771B1 EP83402466A EP83402466A EP0112771B1 EP 0112771 B1 EP0112771 B1 EP 0112771B1 EP 83402466 A EP83402466 A EP 83402466A EP 83402466 A EP83402466 A EP 83402466A EP 0112771 B1 EP0112771 B1 EP 0112771B1
Authority
EP
European Patent Office
Prior art keywords
process according
alloy
metal
tube
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83402466A
Other languages
German (de)
French (fr)
Other versions
EP0112771A1 (en
Inventor
Roger Bonniaud
Antoine Jouan
Yves Hery
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0112771A1 publication Critical patent/EP0112771A1/en
Application granted granted Critical
Publication of EP0112771B1 publication Critical patent/EP0112771B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/008Apparatus specially adapted for mixing or disposing radioactively contamined material

Definitions

  • the subject of the present invention is a process for conditioning waste constituted by radioactive metallic particles such as the fines obtained during the dissolution of the irradiated fuel elements and the dust obtained during the cutting and / or mechanical stripping operations of the irradiated fuel elements. .
  • dissolving fines consist essentially of ruthenium, rhodium, palladium, molybdenum and, to a lesser extent, zirconium, niobium, technetium, uranium and plutonium.
  • dissolving fines consist essentially of ruthenium, rhodium, palladium, molybdenum and, to a lesser extent, zirconium, niobium, technetium, uranium and plutonium.
  • the cladding is made of Zircalloy and the quantities of shearing fines produced are generally of the order of 3 kg / t; in the case of fuel elements of fast neutron reactors for which the cladding is generally made of stainless steel, these shear fines represent approximately 1 kg / t of uranium.
  • radioactive waste consisting of oxide or glass particles obtained from solu tions, using metal matrices as described in patents FR-A 2 387 093 and GB-A 1 446016.
  • the products obtained by these processes have a heterogeneous structure, the particles of oxides or radioactive glasses being dispersed in the metallic matrix.
  • the process described in patent FR-A 2 387 093 involves the preparation of a finely divided powder from a solution of radioactive waste containing a salt of the metal forming the matrix, then carrying out a step of hot compression.
  • this method cannot be used for the treatment of dissolving fines because it leads to the formation of a ceramic-metal, having from the thermal point of view the same drawbacks as glass.
  • the mixture of very energetic fines in an oxide which is a poor conductor of heat, leads to significant increases in temperature in the mixture, to agglomeration of the mixture and to the impossibility of obtaining a fine powder for sintering.
  • the present invention specifically relates to a process for packaging radioactive waste consisting of dissolving fines and / or parting and / or mechanical stripping fines, which overcomes the drawbacks of the methods currently known.
  • the process according to the invention for conditioning waste constituted by radioactive metallic particles insoluble in nitric solutions is characterized in that said particles are suspended in a liquid, in that the suspension is subjected to a heat treatment of evaporation by injection of said suspension on a hot bed of a powder of a metal or an alloy chosen from the group comprising copper, nickel, zinc, copper alloys, alloys nickel, zinc alloys and stainless steel, and in that the dry mixture of powder and metal particles obtained after this heat treatment is subjected to a melting carried out at a temperature sufficient to melt the metal powder or of alloy and form compounds defined between the metal of the powder and at least part of the metallic constituents of the radioactive particles.
  • the metal or alloy powder is thus used to fix, by chemical bonding, in the form of defined compounds, the metallic constituents of the radioactive particles, which has many advantages.
  • the choice of a metal or an alloy as a material for fixing radioactive waste makes it possible to solve the problems posed by the elimination of heat from radioactive particles because the metals have good thermal conductivity, which does not This is not the case with cement, glass and cermets in which large temperature gradients develop which can cause the appearance of cracks and an increase in the leaching rate because it increases with temperature. Furthermore, thanks to the good thermal conductivity of metals, it is possible to increase the rate of fixed radioactive particles and thereby reduce the volume of the packaging.
  • the level of radioactive particles fixed in the blocks obtained after solidification of the mixture is generally limited to 10% by weight.
  • the choice according to the invention, of a powder of copper, nickel, zinc, copper alloy, nickel alloy, zinc alloy or stainless steel to constitute the medium of fixing of radioactive waste makes it possible to obtain products which retain this waste better and which moreover have satisfactory characteristics over time. Indeed, these materials can form defined compounds with most of the radioactive metallic constituents of the waste particles.
  • the rhodium which is the most radioactive of the mixture of fines to be treated forms a compound defined with copper, which dissolves in the matrix giving an alloy consisting of a solid solution Cu- Rh.
  • cupronickel makes it possible to obtain a solid solution also with the fission molybdenum.
  • a powder of copper or a copper alloy for example bronze, cupronickel or a copper and zirconium alloy, is used.
  • the fines for dissolving irradiated fuels and the shearing fines are conveyed in suspension in a liquid such as water. Indeed, to recover these fines after dissolution of the irradiated fuels, the dissolution solution is subjected to a clarifica tion using either a centrifugal decanter or a pulsed filter.
  • the fines thus separated are then washed and they are suspended in a stream of water, then the suspension is stored in suitable containers before being treated by the process of the invention.
  • the suspension obtained is generally acidic and can have a nitric acidity of about 0.8 N.
  • the suspension of radioactive particles is subjected to a thermal evaporation treatment carried out by injecting this suspension on a hot bed of metal or alloy powder which will constitute the fixing medium.
  • the liquid in the suspension is evaporated simultaneously and a homogeneous mixture of radioactive particles with the metal or alloy powder of the bed which is preferably in motion during this heat treatment.
  • this treatment is carried out in a substantially horizontal tube heated and driven in rotation about its axis, which contains the bed of metal or alloy powder.
  • this tube further comprises means such as a scraper to prevent sticking of the powder particles on the wall of the tube.
  • This scraper can be constituted by a crazy bar of star section, which is supported on the tube in the bed of metal or alloy powder.
  • the suspension of radioactive particles and the metal or alloy powder are advantageously introduced at one end of the heated tube which is rotated around of its axis, and the dry mixture obtained is recovered at the other end of the tube, then it is transferred to a melting furnace.
  • a metal or alloy powder is advantageously used having a particle size of 100 to 500 ⁇ m and, preferably, a tormented surface to facilitate the mechanical attachment of the radioactive particles to the powder, because given their small dimensions (from 0.3 to 15 ⁇ m) the particles would risk being entrained by the gases circulating in the device used for thermal evaporation treatment.
  • the volumes of metal or alloy powder are chosen relative to the volume of radioactive particles to be treated, so as to obtain, after solidification, a block having satisfactory qualities. .
  • the volume ratio between the metal and alloy powder and the radioactive particles is 10, but thermal conditions (release of heat from the ingot produced, cooling conditions, etc.) can cause this ratio to be modified, by example to double it.
  • the apparatus used to carry out the thermal evaporation treatment can be constituted in particular by a calciner such as that described in patent FR-A 2 262 854.
  • the metal or alloy powder used can be oxidized by this acid solution, the dry mixture of powder and metal particles obtained following the evaporation treatment, a reduction treatment with hydrogen before carrying out the fusion.
  • This reduction treatment can be carried out in the rotary tube containing the bed of metal or alloy powder.
  • the rotary tube comprises at least two zones heated to different temperatures and a reducing gas mixture consisting, for example, of circulating in the rotary tube against the suspension and the bed of metal or alloy powder. argon or nitrogen with added hydrogen.
  • a reducing gas mixture consisting, for example, of circulating in the rotary tube against the suspension and the bed of metal or alloy powder. argon or nitrogen with added hydrogen.
  • the dry mixture obtained is then subjected to a fusion.
  • This can be carried out in a vacuum induction furnace or in a controlled atmosphere, for example under an argon atmosphere containing hydrogen.
  • the dry mixture obtained is transferred directly from the rotary tube into the melting furnace by making it flow by gravity into the crucible of the furnace and the melting is carried out at a temperature ranging from 1100 to 1500 ° C.
  • a liquid bath is generally obtained by heating the mixture to a temperature of 1300 to 1500 ° C. After fusion, the liquid bath is poured into an ingot mold. A metallic ingot is thus obtained in which the different radioactive constituents of the fines are alloyed or dispersed.
  • a flux can be added to the liquid bath, for example consisting of glass frit to digest the remaining oxides which come from the surface oxidation of the metal powder or of alloy by water vapor. After separation of the glass, upon cooling, an ingot having a clean surface is obtained.
  • the vapors and gases which escape from this tube can cause radioactive particles which it is necessary to separate.
  • the dust entrained by the vapors released during the recovery is recovered. heat treatment of evaporation, for example by washing gases and vapors, and this dust is recycled in the suspension of radioactive particles to be treated.
  • the heat treatment of evaporation is advantageously carried out by heating the rotary tube to temperatures of 250 to 450 ° C and operating under pressure lower than atmospheric pressure.
  • the device for conditioning radioactive waste in the form of particles comprises an evaporation assembly 1 and a melting furnace 2.
  • the assembly 1 comprises a tube 3 produced for example from an alloy sold under the URANUS brand, which can be rotated about its axis by means of an electric gear motor 5 via an assembly 6 with chain and gears.
  • the rotary tube 3 can be arranged either horizontally or in such a way that its axis is slightly inclined, for example up to around 3%, relative to the horizontal. It is provided at its ends with flanges 7 and 9.
  • a ferrule 11 is fixed on the flange 7 and a sealing device 13 is fitted around the ferrule 11 to seal the tube at one of its ends during of its rotation.
  • a conduit 15 connected to a suspension reservoir crosses the end piece 13 to open at the end of the tube 3 and it makes it possible to introduce into the tube 3 the suspension of radioactive particles at the desired flow rate.
  • a conduit 17 connected to a hopper 19 filled with metal or alloy powder also passes through the nozzle 13 to open into the tube 3. This conduit 17 is provided with a supply screw 21 and it makes it possible to introduce into the tube 3 the metal powder at the desired flow rate.
  • the end piece 13 is still crossed by a conduit 23 for discharging the gases.
  • This conduit then passes through a dedusting installation (not shown in the drawing), in which the entrained radioactive particles are recovered by washing the gas. The particles thus recovered are then recycled to the suspension tank associated with line 15.
  • the tube 3 is closed by a fixed sealing end piece 25 comprising a sealing connection assembly to the melting furnace 2.
  • the tube 3 is supported by rollers 26 to support the latter when the latter is in a fixed position or in rotation.
  • a conduit 27 passes through the nozzle 25 in order to circulate in the tube 3 a gas such as argon containing 5% of hydrogen against the current of the powder bed 29 which circulates in the tube 3.
  • a scraper 31 made up a crazy star-shaped bar prevents sticking of the powder particles on the walls of the tube 3 during the heat treatment.
  • the tube is placed inside an oven 33 which comprises three heating zones I, II and III in order to be able to bring the corresponding zones of the tube 3 to different temperatures.
  • the melting installation 2 comprises an induction furnace 41 inside which is placed a crucible 43 receiving the dry mixture of powder and metallic particles, coming from the tube 3, which is transferred by gravity by the light provided for this purpose in the flange 9.
  • a conduit 45 for introducing into the crucible a neutral or reducing gas such as hydrogenated argon in order to protect the bed in the crucible and push the vapors towards the nozzle 13. After fusion, the molten bath flows into an ingot mold 47.
  • a suspension containing 50 g / l of dissolving fines having a particle size of the order of a few microns is kept under stirring in the storage tank associated with line 15, and the suspension is introduced into the rotary tube 3 through line 15 at a flow rate of 5 l / h, which corresponds to the introduction of 250 g / h of fines.
  • a neutral gas containing hydrogen is introduced through the tube 27.
  • the rotation of the tube 3 is adjusted at a speed of approximately 5 revolutions / min. and zones I and II are heated to a temperature of 425 ° C and zone III to a temperature of approximately 350 ° C.
  • a bed of powders 29 having a thickness of approximately 3 cm and weighing approximately 13 kg are formed inside the tube 3, which remains in the tube for a period of approximately 5 hours.
  • the temperature of the bed rises to 80, 195 and 250 ° C. in the zones which correspond respectively to the heating zones I, II and III, and the water vapor is evacuated with the purging gas by the conduit 23 while the dry product flows by gravity into the crucible 43 of the melting installation 2.
  • the supply of tube 3 is interrupted to go to the melting phase. This can be done in about 1 hour 30 minutes when operating under 23 KW. After fusion, the liquid bath is poured into the ingot mold 47.
  • cupronickel powder was used containing for certain tests: 80% copper and 20% nickel, for other tests: 60% copper and 40% nickel. After fusion, ingots were obtained, the analysis of which confirms the formation of a solid solution with Mo.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Processing Of Solid Wastes (AREA)

Description

La présente invention a pour objet un procédé de conditionnement de déchets constitués par des particules métalliques radioactives telles que les fines obtenues lors de la dissolution des éléments combustibles irradiés et les poussières obtenues lors des opérations de tronçonnage et/ou de dégainage mécanique des éléments combustibles irradiés.The subject of the present invention is a process for conditioning waste constituted by radioactive metallic particles such as the fines obtained during the dissolution of the irradiated fuel elements and the dust obtained during the cutting and / or mechanical stripping operations of the irradiated fuel elements. .

Dans les installations de retraitement d'éléments combustibles nucléaires irradiés, la pratique habituelle consiste à soumettre tout d'abord les éléments combustibles à un traitement mécanique préparatoire effectué, par exemple, par tronçonnage ou cisaillage en vue de faciliter la dissolution ultérieure du combustible dans une solution d'acide nitrique. Lors de cette opération, il est difficile d'éviter la formation de poussières et ces poussières métalliques radioactives qui sont en majeure partie insolubles dans les solutions utilisées pour le retraitement devront être récupérées et soumises à un conditionnement. De même, lors de la dissolution des éléments combustibles, certaines particules métalliques ne sont pas attaquées car elles sont insolubles dans la solution nitrique et elles constituent ce que l'on appelle généralement les «fines de dissolution»; celles-ci sont constituées essentiellement par du ruthénium, du rhodium, du palladium, du molybdène et à un moindre niveau par du zirconium, du niobium, du technétium, de l'uranium et du plutonium. A titre d'exemple, on donne dans le tableau ci-joint, la nature et la composition de fines de dissolution et de cisaillage provenant de réacteurs à eau légère et de réacteurs à neutrons rapides.In facilities for reprocessing irradiated nuclear fuel elements, the usual practice is to first subject the fuel elements to a preparatory mechanical treatment carried out, for example, by cutting or shearing in order to facilitate the subsequent dissolution of the fuel in a nitric acid solution. During this operation, it is difficult to avoid the formation of dust and these radioactive metallic dusts which are for the most part insoluble in the solutions used for reprocessing will have to be recovered and subjected to conditioning. Similarly, during the dissolution of the fuel elements, certain metallic particles are not attacked because they are insoluble in the nitric solution and they constitute what is generally called "dissolving fines"; these consist essentially of ruthenium, rhodium, palladium, molybdenum and, to a lesser extent, zirconium, niobium, technetium, uranium and plutonium. By way of example, the nature and composition of dissolving and shearing fines from light water reactors and fast neutron reactors are given in the attached table.

Ces particules métalliques constituent des déchets fortement radioactifs et difficilement valorisables à court terme malgré la présence en quantité importante de métaux de la famille du platine.These metallic particles constitute highly radioactive waste which is difficult to recover in the short term despite the presence in large quantities of metals of the platinum family.

Aussi, il est nécessaire de traiter ces déchets afin d'assurer leur stockage à long terme dans de bonnes conditions de sûreté.Also, it is necessary to treat this waste in order to ensure its long-term storage under good safety conditions.

Etant donné que la quantité et les dimensions de ces particules radioactives insolubles croissent avec le taux d'irradiation, le problème du traitement de ces déchets devient de plus en plus important avec le développement des réacteurs à eau légère et des réacteurs à neutrons rapides dont les éléments combustibles sont soumis à des taux de combustion élevés.As the quantity and dimensions of these insoluble radioactive particles increase with the rate of irradiation, the problem of the treatment of this waste becomes more and more important with the development of light water reactors and fast neutron reactors whose fuel elements are subject to high combustion rates.

Ainsi, on estime que le traitement d'une tonne d'uranium provenant de combustibles de réacteurs à eau légère donne environ 3,5 kg de «fines» de dissolution et qu'une tonne d'oxyde provenant d'éléments combustibles de réacteurs à neutrons rapides donne de 8 kg à 13 kg de «fines» de dissolution.Thus, it is estimated that the treatment of a tonne of uranium coming from light water reactor fuels gives about 3.5 kg of dissolving "fines" and that a tonne of oxide coming from fuel elements of fast neutrons gives 8 kg to 13 kg of "fines" of dissolution.

Aussi, si l'on prend comme ordre de grandeur une usine de retraitement ayant une capacité de 800 t/an pour des combustibles de la filière à eau légère, on aurait à traiter 2800 kg de ces fines par an, et dans le cas d'une usine de retraitement à 150 t/an pour les combustibles de la filière à neutrons rapides, on obtiendrait 1200 kg de fines par an. Par ailleurs, on doit ajouter à ces chiffres, les poussières obtenues lors du cisaillage ou du tronçonnage des combustibles. Dans le cas des combustibles des réacteurs à eau légère, la gaine est en Zircalloy et les quantités de fines de cisaillage produites sont généralement de l'ordre de 3 kg/t; dans le cas des éléments combustibles de réacteurs à neutrons rapides pour lesquels la gaine est généralement en acier inoxydable, ces fines de cisaillage représentent environ 1 kg/t d'uranium.Also, if we take as an order of magnitude a reprocessing plant with a capacity of 800 t / year for fuels in the light water sector, we would have to process 2800 kg of these fines per year, and in the case of '' a reprocessing plant at 150 t / year for fuels in the fast neutron sector, we would obtain 1200 kg of fines per year. In addition, we must add to these figures, the dust obtained during shearing or cutting of fuels. In the case of light water reactor fuels, the cladding is made of Zircalloy and the quantities of shearing fines produced are generally of the order of 3 kg / t; in the case of fuel elements of fast neutron reactors for which the cladding is generally made of stainless steel, these shear fines represent approximately 1 kg / t of uranium.

Or le traitement des fines de dissolution et de cisaillage pose certains problèmes en raison de leur forte puissance thermique liée à leur forte radioactivité, et aussi dans certains cas en raison de leur caractère pyrophorique dû à la présence de fines particules de zirconium provenant du cisaillage des gaines d'éléments combustibles de réacteurs à eau légère.However, the processing of dissolving and shearing fines poses certain problems because of their high thermal power linked to their high radioactivity, and also in certain cases because of their pyrophoric nature due to the presence of fine zirconium particles originating from the shearing of sheaths of light water reactor fuel elements.

Par ailleurs, il est préférable de traiter ces fines de dissolution et de cisaillage dans les premiers stades du processus de retraitement des combustibles afin de prévenir les bouchages de tuyauteries, car ces particules qui ont de fortes masses spécifiques ont tendance à se déposer dans les zones calmes de l'installation. Il en est de même pour éviter les surchauffes locales, causes d'attaques prématurées des récipients, et de la dégradation des solvants organiques par radiolyse.In addition, it is preferable to treat these dissolving and shearing fines in the early stages of the fuel reprocessing process in order to prevent clogging of the pipes, because these particles which have high specific masses tend to settle in the areas installation calm. The same is true to avoid local overheating, which causes premature attack on containers, and the degradation of organic solvents by radiolysis.

Aussi, on envisage de séparer et de récupérer ces fines à la sortie de l'installation de dissolution et de les traiter ensuite en vue de leur conditionnement.Also, it is envisaged to separate and recover these fines at the outlet of the dissolution installation and to treat them afterwards for their packaging.

Jusqu'à présent, pour le conditionnement de produits radioactifs, on a utilisé différents procédés dont les principaux consistent à enrober les déchets dans du ciment ou à les vitrifier. Cepen- dent, ces procédés connus sont limités lorsqu'il s'agit de conditionner des déchets radioactifs constitués par des fines de dissolution ou de cisaillage. En effet, dans le cas des ciments, la puissance spécifique élevée des fines est préjudiciable à la tenue mécanique du matériau d'enrobage. De plus, il existe des risques de radiolyse de l'eau de constitution du ciment.Hitherto, for the packaging of radioactive products, various processes have been used, the main ones of which consist in coating the waste in cement or in vitrifying it. However, these known methods are limited when it comes to conditioning radioactive waste constituted by dissolving or shearing fines. In fact, in the case of cements, the high specific power of the fines is detrimental to the mechanical strength of the coating material. In addition, there are risks of radiolysis of the water constituting the cement.

L'incorporation de ces particules dans un verre n'est possible qu'après une période suffisante de refroidissement du combustible irradié; ceci dans le but d'éviter de constituer dans le matériau, des points chauds favorables à un développement hétérogène de cristallisation et à des amorces de rupture. C'est pourquoi le procédé, utilisable pour le conditionnement des fines provenant de combustibles PWR, qui est en général retraité après plusieurs années de refroidissement, n'est plus adapté pour le conditionnement des fines provenant du combustible rapide, qui, en général, est retraité assez rapidement après déchargement du réacteur.The incorporation of these particles into a glass is only possible after a sufficient period of cooling of the spent fuel; this in order to avoid constituting in the material, hot spots favorable to a heterogeneous development of crystallization and to primers of rupture. This is why the process, which can be used for the conditioning of fines from PWR fuels, which is generally reprocessed after several years of cooling, is no longer suitable for the conditioning of fines from fast fuel, which, in general, is reprocessed fairly quickly after unloading the reactor.

On a aussi envisagé de conditionner des déchets radioactifs constitués par des particules d'oxydes ou de verres obtenues à partir de solutions, en utilisant des matrices métalliques comme cela est décrit dans les brevets FR-A 2 387 093 et GB-A 1 446016. Cependant, les produits obtenus par ces procédés ont une structure hétérogène, les particules d'oxydes ou de verres radioactifs étant dispersées dans la matrice métallique. De plus, le procédé décrit dans le brevet FR-A 2 387 093 implique la préparation d'une poudre finement divisée à partir d'une solution de déchets radioactifs contenant un sel du métal formant la matrice, puis la réalisation d'une étape de compression à chaud.It has also been envisaged to package radioactive waste consisting of oxide or glass particles obtained from solu tions, using metal matrices as described in patents FR-A 2 387 093 and GB-A 1 446016. However, the products obtained by these processes have a heterogeneous structure, the particles of oxides or radioactive glasses being dispersed in the metallic matrix. In addition, the process described in patent FR-A 2 387 093 involves the preparation of a finely divided powder from a solution of radioactive waste containing a salt of the metal forming the matrix, then carrying out a step of hot compression.

Ainsi, ce procédé ne peut être utilisé pour le traitement des fines de dissolution car il conduit à la formation d'une céramique-métal, présentant du point de vue thermique les mêmes inconvénients que le verre. En outre, le mélange de fines très énergétiques dans un oxyde, mauvais conducteur de la chaleur, conduit à des élévations importantes de température dans le mélange, à une agglomération du mélange et à une impossibilité d'obtenir une poudre fine pour frittage.Thus, this method cannot be used for the treatment of dissolving fines because it leads to the formation of a ceramic-metal, having from the thermal point of view the same drawbacks as glass. In addition, the mixture of very energetic fines in an oxide, which is a poor conductor of heat, leads to significant increases in temperature in the mixture, to agglomeration of the mixture and to the impossibility of obtaining a fine powder for sintering.

De même, le procédé du brevet GB-A 1 446016 ne peut convenir pour le traitement des fines de dissolution car, compte tenu des dimensions très petites de fines de dissolution, il sera impossible d'obtenir une dispersion homogène des fines dans la matrice métallique par coulée de celle-ci dans un récipient contenant les fines de dissolution. De ce fait, les produits obtenus ne présenteront pas des caractéristiques satisfaisantes pour un stockage à long terme.Likewise, the process of patent GB-A 1 446016 cannot be suitable for the treatment of dissolving fines because, taking into account the very small dimensions of dissolving fines, it will be impossible to obtain a homogeneous dispersion of the fines in the metal matrix. by pouring it into a container containing the dissolving fines. Therefore, the products obtained will not have satisfactory characteristics for long-term storage.

La présente invention a précisément pour objet un procédé de conditionnement de déchets radioactifs constitués par des fines de dissolution et/ou des fines de tronçonnage et/ou de dégainage mécanique, qui pallie les inconvénients des procédés connus actuellement.The present invention specifically relates to a process for packaging radioactive waste consisting of dissolving fines and / or parting and / or mechanical stripping fines, which overcomes the drawbacks of the methods currently known.

Le procédé, selon l'invention, de conditionnement de déchets constitués par des particules métalliques radioactives insolubles dans les solutions nitriques, se caractérise en ce que l'on met lesdites particules en suspension dans un liquide, en ce que l'on soumet la suspension à un traitement thermique d'évaporation par injection de ladite suspension sur un lit chaud d'une poudre d'un métal ou d'un alliage choisi dans le groupe comprenant le cuivre, le nickel, le zinc, les alliages de cuivre, les alliages de nickel, les alliages de zinc et l'acier inoxydable, et en ce que l'on soumet le mélange sec de poudre et de particules métalliques obtenu après ce traitement thermique à une fusion effectuée à une température suffisante pour fondre la poudre de métal ou d'alliage et former des composés définis entre le métal de la poudre et au moins une partie des constituants métalliques des particules radioactives.The process according to the invention for conditioning waste constituted by radioactive metallic particles insoluble in nitric solutions, is characterized in that said particles are suspended in a liquid, in that the suspension is subjected to a heat treatment of evaporation by injection of said suspension on a hot bed of a powder of a metal or an alloy chosen from the group comprising copper, nickel, zinc, copper alloys, alloys nickel, zinc alloys and stainless steel, and in that the dry mixture of powder and metal particles obtained after this heat treatment is subjected to a melting carried out at a temperature sufficient to melt the metal powder or of alloy and form compounds defined between the metal of the powder and at least part of the metallic constituents of the radioactive particles.

Selon l'invention, on utilise ainsi la poudre de métal ou d'alliage pour fixer par liaison chimique, sous la forme de composés définis, les constituants métalliques des particules radioactives, ce qui présente de nombreux avantages.According to the invention, the metal or alloy powder is thus used to fix, by chemical bonding, in the form of defined compounds, the metallic constituents of the radioactive particles, which has many advantages.

En effet, le choix d'un métal ou d'un alliage comme matériau de fixation des déchets radioactifs permet de résoudre les problèmes posés par l'élimination de la chaleur des particules radioactives car les métaux ont une bonne conductibilité thermique, ce qui n'est pas le cas du ciment, du verre et des cermets dans lesquels se développent des gradients de températures importants pouvant provoquer l'apparition de fissures et une augmentation du taux de lixiviation car celle-ci croît avec la température. Par ailleurs, grâce à la bonne conductibilité thermique des métaux, on peut augmenter le taux de particules radioactives fixées et diminuer de ce fait le volume du conditionnement.Indeed, the choice of a metal or an alloy as a material for fixing radioactive waste makes it possible to solve the problems posed by the elimination of heat from radioactive particles because the metals have good thermal conductivity, which does not This is not the case with cement, glass and cermets in which large temperature gradients develop which can cause the appearance of cracks and an increase in the leaching rate because it increases with temperature. Furthermore, thanks to the good thermal conductivity of metals, it is possible to increase the rate of fixed radioactive particles and thereby reduce the volume of the packaging.

Toutefois, on limite généralement à 10% en poids le taux de particules radioactives fixées dans les blocs obtenus après solidification du mélange.However, the level of radioactive particles fixed in the blocks obtained after solidification of the mixture is generally limited to 10% by weight.

De plus, le choix selon l'invention, d'une poudre de cuivre, de nickel, de zinc, d'alliage de cuivre, d'alliage de nickel, d'alliage de zinc ou d'acier inoxydable pour constituer le milieu de fixation des déchets radioactifs permet l'obtention de produits retenant mieux ces déchets et présentant par ailleurs des caractéristiques satisfaisantes de tenue dans le temps. En effet, ces matériaux peuvent former des composés définis avec la plupart des constituants métalliques radioactifs des particules de déchets. Ainsi, lorsqu'on utilise une poudre de cuivre, le rhodium qui est le plus radioactif du mélange de fines à traiter forme un composé défini avec le cuivre, qui se solubilise dans la matrice en donnant un alliage constitué d'une solution solide Cu-Rh. Il en est de même pour le palladium et le zirconium. L'utilisation de cupronickel permet d'obtenir une solution solide également avec le molybdène de fission.In addition, the choice according to the invention, of a powder of copper, nickel, zinc, copper alloy, nickel alloy, zinc alloy or stainless steel to constitute the medium of fixing of radioactive waste makes it possible to obtain products which retain this waste better and which moreover have satisfactory characteristics over time. Indeed, these materials can form defined compounds with most of the radioactive metallic constituents of the waste particles. Thus, when using a copper powder, the rhodium which is the most radioactive of the mixture of fines to be treated forms a compound defined with copper, which dissolves in the matrix giving an alloy consisting of a solid solution Cu- Rh. The same is true for palladium and zirconium. The use of cupronickel makes it possible to obtain a solid solution also with the fission molybdenum.

En ce qui concerne la tenue dans le temps, on sait que le cuivre, le nickel, le zinc et leurs alliages ainsi que l'acier inoxydable ont une tenue dans le temps meilleure que le ciment ou les verres, ce qui permet d'assurer un meilleur confinement des déchets radioactifs, de limiter la surface d'échange avec le milieu environnant et d'éviter les risques de fracturation qui sont importants dans le cas de matrices en ciment ou en verre. De plus, si l'on choisit de façon appropriée la poudre de métal utilisée, on peut récupérer ultérieurement certains constituants, en particulier les pla- tinoïdes, après désactivation; ainsi, dans le cas du cuivre, ceci peut être réalisé en soumettant les déchets conditionnés dans le cuivre, après désactivation, à un traitement chimique de dissolution sélective du cuivre.With regard to resistance over time, it is known that copper, nickel, zinc and their alloys as well as stainless steel have better resistance over time than cement or glasses, which makes it possible to ensure better containment of radioactive waste, limit the exchange surface with the surrounding environment and avoid the risks of fracturing which are significant in the case of cement or glass matrices. In addition, if the metal powder used is appropriately chosen, certain constituents, in particular the platinoids, can be recovered later, after deactivation; thus, in the case of copper, this can be achieved by subjecting the conditioned waste in the copper, after deactivation, to a chemical treatment of selective dissolution of the copper.

De préférence, selon l'invention, on utilise une poudre de cuivre ou d'alliage de cuivre, par exemple de bronze, de cupronickel ou d'alliage de cuivre et de zirconium.Preferably, according to the invention, a powder of copper or a copper alloy, for example bronze, cupronickel or a copper and zirconium alloy, is used.

Généralement, pour la mise en oeuvre du procédé de l'invention, les fines de dissolution des combustibles irradiés et les fines de cisaillage sont véhiculées en suspension dans un liquide tel que de l'eau. En effet, pour récupérer ces fines après dissolution des combustibles irradiés, on soumet la solution de dissolution à une clarification en utilisant, soit un décanteur centrifuge, soit un filtre pulsé.Generally, for the implementation of the process of the invention, the fines for dissolving irradiated fuels and the shearing fines are conveyed in suspension in a liquid such as water. Indeed, to recover these fines after dissolution of the irradiated fuels, the dissolution solution is subjected to a clarifica tion using either a centrifugal decanter or a pulsed filter.

On lave ensuite les fines ainsi séparées et on les entraîne en suspension dans un courant d'eau, puis on stocke la suspension dans des récipients appropriés avant de la traiter par le procédé de l'invention.The fines thus separated are then washed and they are suspended in a stream of water, then the suspension is stored in suitable containers before being treated by the process of the invention.

Compte tenu de l'acidité de la solution de dissolution à partir de laquelle on a récupéré les fines, la suspension obtenue est généralement acide et peut présenter une acidité nitrique d'environ 0,8 N.Taking into account the acidity of the dissolution solution from which the fines were recovered, the suspension obtained is generally acidic and can have a nitric acidity of about 0.8 N.

Pour la mise en oeuvre du procédé de l'invention, on soumet la suspension de particules radioactives à un traitement thermique d'évaporation réalisé en injectant cette suspension sur un lit chaud de la poudre de métal ou d'alliage qui constituera le milieu de fixation. Ainsi, on obtient simultanément une évaporation du liquide de la suspension et un mélange homogène de particules radioactives avec la poudre de métal ou d'alliage du lit qui est de préférence en mouvement pendant ce traitement thermique.For the implementation of the process of the invention, the suspension of radioactive particles is subjected to a thermal evaporation treatment carried out by injecting this suspension on a hot bed of metal or alloy powder which will constitute the fixing medium. . Thus, the liquid in the suspension is evaporated simultaneously and a homogeneous mixture of radioactive particles with the metal or alloy powder of the bed which is preferably in motion during this heat treatment.

Avantageusement, on réalise ce traitement dans un tube sensiblement horizontal chauffé et entraîné en rotation autour de son axe, qui contient le lit de poudre de métal ou d'alliage. De préférence, ce tube comprend de plus des moyens tels qu'un racleur pour éviter le collage des particules de poudre sur la paroi du tube. Ce racleur peut être constitué par une barre folle de section étoilée, qui est en appui sur le tube dans le lit de poudre de métal ou d'alliage.Advantageously, this treatment is carried out in a substantially horizontal tube heated and driven in rotation about its axis, which contains the bed of metal or alloy powder. Preferably, this tube further comprises means such as a scraper to prevent sticking of the powder particles on the wall of the tube. This scraper can be constituted by a crazy bar of star section, which is supported on the tube in the bed of metal or alloy powder.

Lorsqu'on utilise un tube tournant contenant le lit de poudre de métal ou d'alliage, on introduit avantageusement la suspension de particules radioactives et la poudre de métal ou d'alliage à l'une des extrémités du tube chauffé et entraîné en rotation autour de son axe, et on récupère à l'autre extrémité du tube le mélange sec obtenu, puis on le transfère dans un four de fusion.When a rotating tube containing the bed of metal or alloy powder is used, the suspension of radioactive particles and the metal or alloy powder are advantageously introduced at one end of the heated tube which is rotated around of its axis, and the dry mixture obtained is recovered at the other end of the tube, then it is transferred to a melting furnace.

Ainsi, on peut opérer en continu en formant dans le tube rotatif un lit de matériau sec sur lequel on introduit à des débits contrôlés la suspension de particules radioactives et la poudre de métal ou d'alliage.Thus, one can operate continuously by forming in the rotary tube a bed of dry material on which the suspension of radioactive particles and the metal or alloy powder is introduced at controlled flow rates.

Afin d'obtenir lors du traitement thermique d'évaporation un mélange homogène des particules radioactives avec la poudre de métal ou d'alliage du lit, on utilise avantageusement une poudre de métal ou d'alliage ayant une granulométrie de 100 à 500 pm et, de préférence, une surface tourmentée pour faciliter l'accrochage mécanique des particules radioactives sur la poudre, car compte tenu de leurs dimensions faibles (de 0,3 à 15 ¡.Lm) les particules risqueraient d'être entraînées par les gaz circulant dans l'appareil utilisé pour le traitement thermique d'évaporation.In order to obtain, during the evaporation heat treatment, a homogeneous mixture of the radioactive particles with the metal or alloy powder of the bed, a metal or alloy powder is advantageously used having a particle size of 100 to 500 μm and, preferably, a tormented surface to facilitate the mechanical attachment of the radioactive particles to the powder, because given their small dimensions (from 0.3 to 15 µm) the particles would risk being entrained by the gases circulating in the device used for thermal evaporation treatment.

Par ailleurs, pour obtenir un mélange homogène fixant bien les particules radioactives, on choisit les volumes de poudre de métal ou d'alliage par rapport au volume de particules radioactives à traiter, de façon à obtenir, après solidification, un bloc présentant des qualités satisfaisantes. Généralement, le rapport en volume entre la poudre de métal et d'alliage et les particules radioactives est de 10, mais des conditions thermiques (dégagement de chaleur du lingot fabriqué, conditions de refroidissement, etc.) peuvent amener à modifier ce rapport, par exemple à le doubler.Furthermore, to obtain a homogeneous mixture which fixes the radioactive particles well, the volumes of metal or alloy powder are chosen relative to the volume of radioactive particles to be treated, so as to obtain, after solidification, a block having satisfactory qualities. . Generally, the volume ratio between the metal and alloy powder and the radioactive particles is 10, but thermal conditions (release of heat from the ingot produced, cooling conditions, etc.) can cause this ratio to be modified, by example to double it.

L'appareil utilisé pour réaliser le traitement thermique d'évaporation peut être constitué en particulier par un calcinateur tel que celui décrit dans le brevet FR-A 2 262 854.The apparatus used to carry out the thermal evaporation treatment can be constituted in particular by a calciner such as that described in patent FR-A 2 262 854.

De préférence, notamment lorsque la suspension aqueuse de départ présente une certaine acidité, et que la poudre de métal ou d'alliage utilisée peut être oxydée par cette solution acide, on soumet le mélange sec de poudre et de particules métalliques obtenu à la suite du traitement d'évaporation, à un traitement de réduction par l'hydrogène avant d'effectuer la fusion. On peut réaliser ce traitement de réduction dans le tube rotatif contenant le lit de poudre de métal ou d'alliage. Dans ce but, le tube rotatif comprend au moins deux zones chauffées à des températures différentes et on fait circuler dans le tube rotatif à contrecourant de la suspension et du lit de poudre de métal ou d'alliage un mélange gazeux réducteur constitué par exemple par de l'argon ou de l'azote additionné d'hydrogène. Ainsi, on réalise l'évaporation dans la première zone du tube et on complète le traitement d'évaporation par un traitement de réduction dans la seconde zone du tube afin de réduire les oxydes éventuellement formés lors du traitement thermique d'évaporation.Preferably, in particular when the starting aqueous suspension has a certain acidity, and the metal or alloy powder used can be oxidized by this acid solution, the dry mixture of powder and metal particles obtained following the evaporation treatment, a reduction treatment with hydrogen before carrying out the fusion. This reduction treatment can be carried out in the rotary tube containing the bed of metal or alloy powder. For this purpose, the rotary tube comprises at least two zones heated to different temperatures and a reducing gas mixture consisting, for example, of circulating in the rotary tube against the suspension and the bed of metal or alloy powder. argon or nitrogen with added hydrogen. Thus, evaporation is carried out in the first zone of the tube and the evaporation treatment is completed by a reduction treatment in the second zone of the tube in order to reduce the oxides possibly formed during the thermal evaporation treatment.

On soumet ensuite le mélange sec obtenu à une fusion. Ceci peut être réalisé dans un four à induction sous vide ou sous atmosphère contrôlée, par exemple sous atmosphère d'argon contenant de l'hydrogène.The dry mixture obtained is then subjected to a fusion. This can be carried out in a vacuum induction furnace or in a controlled atmosphere, for example under an argon atmosphere containing hydrogen.

Avantageusement, on transfère directement le mélange sec obtenu à la sortie du tube rotatif dans le four de fusion en le faisant s'écouler par gravité dans le creuset du four et on réalise la fusion à une température allant de 1100 à 1500°C.Advantageously, the dry mixture obtained is transferred directly from the rotary tube into the melting furnace by making it flow by gravity into the crucible of the furnace and the melting is carried out at a temperature ranging from 1100 to 1500 ° C.

Dans le cas où on utilise une poudre de cuivre, on obtient généralement un bain liquide en chauffant le mélange à une température de 1300 à 1500°C. Après fusion, on coule le bain liquide dans une lingotière. On obtient ainsi un lingot métallique dans lequel les différents constituants radioactifs des fines sont alliés ou dispersés.In the case where copper powder is used, a liquid bath is generally obtained by heating the mixture to a temperature of 1300 to 1500 ° C. After fusion, the liquid bath is poured into an ingot mold. A metallic ingot is thus obtained in which the different radioactive constituents of the fines are alloyed or dispersed.

Dans certains cas, pour améliorer l'état de surface du lingot obtenu on peut ajouter sur le bain liquide un flux constitué par exemple par de la fritte de verre pour digérer les oxydes restants qui proviennent de l'oxydation superficielle de la poudre de métal ou d'alliage par la vapeur d'eau. Après séparation du verre, lors du refroidissement, on obtient un lingot ayant une surface nette.In some cases, to improve the surface condition of the ingot obtained, a flux can be added to the liquid bath, for example consisting of glass frit to digest the remaining oxides which come from the surface oxidation of the metal powder or of alloy by water vapor. After separation of the glass, upon cooling, an ingot having a clean surface is obtained.

Lors du traitement thermique d'évaporation réalisé dans le tube rotatif, les vapeurs et les gaz qui s'échappent de ce tube peuvent entraîner des particules radioactives qu'il est nécessaire de séparer. Avantageusement, on récupère les poussières entraînées par les vapeurs libérées lors du traitement thermique d'évaporation, par exemple par lavage des gaz et des vapeurs, et on recycle ces poussières dans la suspension de particules radioactives à traiter.During the evaporation heat treatment carried out in the rotary tube, the vapors and gases which escape from this tube can cause radioactive particles which it is necessary to separate. Advantageously, the dust entrained by the vapors released during the recovery is recovered. heat treatment of evaporation, for example by washing gases and vapors, and this dust is recycled in the suspension of radioactive particles to be treated.

Pour la mise en oeuvre du procédé de l'invention, on réalise avantageusement le traitement thermique d'évaporation en chauffant le tube rotatif à des températures de 250 à 450°C et en opérant sous pression inférieure à la pression atmosphérique.For the implementation of the process of the invention, the heat treatment of evaporation is advantageously carried out by heating the rotary tube to temperatures of 250 to 450 ° C and operating under pressure lower than atmospheric pressure.

D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description qui suit, donnée bien entendu à titre illustratif et non limitatif en référence au dessin annexé qui représente, en coupe verticale, un dispositif pour la mise en oeuvre du procédé de l'invention.Other characteristics and advantages of the invention will appear better on reading the description which follows, given of course by way of nonlimiting illustration with reference to the appended drawing which represents, in vertical section, a device for implementing the method of the invention.

Sur cette figure, on voit que le dispositif de conditionnement de déchets radioactifs à l'état de particules, comprend un ensemble d'évaporation 1 et un four de fusion 2. L'ensemble 1 comprend un tube 3 réalisé par exemple en alliage commercialisé sous la marque URANUS, qui peut être entraîné en rotation autour de son axe au moyen d'un moto-réducteur électrique 5 par l'intermédiaire d'un ensemble 6 à chaîne et engrenages. Le tube rotatif 3 peut être disposé soit horizontalement, soit de façon que son axe soit légèrement incliné, par exemple jusqu'à environ 3%, par rapport à l'horizontale. Il est muni à ses extrémités de collerettes 7 et 9. Une virole 11 est fixée sur la collerette 7 et un dispositif d'étanchéité 13 est emboîté autour de la virole 11 pour obturer de façon étanche le tube à l'une de ses extrémités lors de sa rotation. Un conduit 15 relié à un réservoir de suspension (non représenté sur le dessin) traverse l'embout 13 pour déboucher à l'extrémité du tube 3 et il permet d'introduire dans le tube 3 la suspension de particules radioactives au débit voulu. Un conduit 17 relié à une trémie 19 remplie de poudre de métal ou d'alliage traverse également l'embout 13 pour déboucher dans le tube 3. Ce conduit 17 est muni d'une vis d'alimentation 21 et il permet d'introduire dans le tube 3 la poudre métallique au débit voulu. L'embout 13 est encore traversé par un conduit 23 d'évacuation des gaz. Ce conduit traverse ensuite une installation de dépoussiérage (non représentée sur le dessin), dans laquelle on récupère par lavage du gaz les particules radioactives entraînées. Les particules ainsi récupérées sont ensuite recyclées dans le réservoir de suspension associé à la conduite 15.In this figure, it can be seen that the device for conditioning radioactive waste in the form of particles, comprises an evaporation assembly 1 and a melting furnace 2. The assembly 1 comprises a tube 3 produced for example from an alloy sold under the URANUS brand, which can be rotated about its axis by means of an electric gear motor 5 via an assembly 6 with chain and gears. The rotary tube 3 can be arranged either horizontally or in such a way that its axis is slightly inclined, for example up to around 3%, relative to the horizontal. It is provided at its ends with flanges 7 and 9. A ferrule 11 is fixed on the flange 7 and a sealing device 13 is fitted around the ferrule 11 to seal the tube at one of its ends during of its rotation. A conduit 15 connected to a suspension reservoir (not shown in the drawing) crosses the end piece 13 to open at the end of the tube 3 and it makes it possible to introduce into the tube 3 the suspension of radioactive particles at the desired flow rate. A conduit 17 connected to a hopper 19 filled with metal or alloy powder also passes through the nozzle 13 to open into the tube 3. This conduit 17 is provided with a supply screw 21 and it makes it possible to introduce into the tube 3 the metal powder at the desired flow rate. The end piece 13 is still crossed by a conduit 23 for discharging the gases. This conduit then passes through a dedusting installation (not shown in the drawing), in which the entrained radioactive particles are recovered by washing the gas. The particles thus recovered are then recycled to the suspension tank associated with line 15.

A son autre extrémité, le tube 3 est obturé par un embout d'étanchéité fixe 25 comportant un ensemble de raccordement étanche au four de fusion 2.At its other end, the tube 3 is closed by a fixed sealing end piece 25 comprising a sealing connection assembly to the melting furnace 2.

A chacune de ses extrémités, le tube 3 est supporté par des galets 26 pour soutenir ce dernier lorsque celui-ci est en position fixe ou en rotation. Un conduit 27 traverse l'embout 25 afin de faire circuler dans le tube 3 un gaz tel que de l'argon contenant 5% d'hydrogène à contre-courant du lit de poudre 29 qui circule dans le tube 3. Un racleur 31 constitué d'une barre folle de section en étoile permet d'éviter le collage des particules de poudre sur les parois du tube 3 lors du traitement thermique. Pour réaliser ce traitement thermique, le tube est disposé à l'intérieur d'un four 33 qui comprend trois zones de chauffage I, Il et III afin de pouvoir porter les zones correspondantes du tube 3 à des températures différentes.At each of its ends, the tube 3 is supported by rollers 26 to support the latter when the latter is in a fixed position or in rotation. A conduit 27 passes through the nozzle 25 in order to circulate in the tube 3 a gas such as argon containing 5% of hydrogen against the current of the powder bed 29 which circulates in the tube 3. A scraper 31 made up a crazy star-shaped bar prevents sticking of the powder particles on the walls of the tube 3 during the heat treatment. To carry out this heat treatment, the tube is placed inside an oven 33 which comprises three heating zones I, II and III in order to be able to bring the corresponding zones of the tube 3 to different temperatures.

L'installation de fusion 2 comprend un four à induction 41 à l'intérieur duquel est disposé un creuset 43 recevant le mélange sec de poudre et de particules métalliques, provenant du tube 3, qui est transféré par gravité par la lumière prévue à cet effet dans la collerette 9. A l'intérieur du creuset de fusion débouche un conduit 45 pour introduire dans le creuset un gaz neutre ou réducteur comme de l'argon hydrogéné afin de protéger le lit dans le creuset et de pousser les vapeurs vers l'embout 13. Après fusion, le bain fondu s'écoule dans une lingotière 47.The melting installation 2 comprises an induction furnace 41 inside which is placed a crucible 43 receiving the dry mixture of powder and metallic particles, coming from the tube 3, which is transferred by gravity by the light provided for this purpose in the flange 9. Inside the melting crucible opens a conduit 45 for introducing into the crucible a neutral or reducing gas such as hydrogenated argon in order to protect the bed in the crucible and push the vapors towards the nozzle 13. After fusion, the molten bath flows into an ingot mold 47.

On décrit ci-après, un exemple de mise en oeuvre du procédé de l'invention utilisant le dispositif décrit ci-dessus avec un tube rotatif de 30 cm de diamètre et de 80 cm de longueur.An example of implementation of the method of the invention is described below using the device described above with a rotating tube 30 cm in diameter and 80 cm in length.

On maintient sous agitation dans le réservoir de stockage associé à la conduite 15 une suspension contenant 50 g/I de fines de dissolution ayant une granulométrie de l'ordre de quelques microns, et on introduit la suspension dans le tube rotatif 3 par la conduite 15 à un débit de 5 I/h, ce qui correspond à l'introduction de 250 g/h de fines. On introduit également dans le tube 3 par la vis de transfert 21, 2,5 kg/h de poudre de cuivre ayant une granulométrie comprise entre 500 et 100 µm, et on introduit par le tube 27 un gaz neutre contenant de l'hydrogène pour réaliser l'évaporation sous atmosphère neutre d'argon ou d'azote. On règle la rotation du tube 3 à une vitesse d'environ 5 tours/min. et on chauffe les zones I et Il à une température de 425°C et la zone III à une température de 350°C environ.A suspension containing 50 g / l of dissolving fines having a particle size of the order of a few microns is kept under stirring in the storage tank associated with line 15, and the suspension is introduced into the rotary tube 3 through line 15 at a flow rate of 5 l / h, which corresponds to the introduction of 250 g / h of fines. Also introduced into the tube 3 by the transfer screw 21, 2.5 kg / h of copper powder having a particle size between 500 and 100 μm, and a neutral gas containing hydrogen is introduced through the tube 27. evaporate under a neutral argon or nitrogen atmosphere. The rotation of the tube 3 is adjusted at a speed of approximately 5 revolutions / min. and zones I and II are heated to a temperature of 425 ° C and zone III to a temperature of approximately 350 ° C.

Dans ces conditions, on forme à l'intérieur du tube 3 un lit de poudres 29 ayant une épaisseur d'environ 3 cm et pesant environ 13 kg qui séjourne dans le tube pendant une durée d'environ 5 heures. La température du lit s'élève à 80, 195 et 250°C dans les zones qui correspondent respectivement aux zones de chauffage I, Il et III, et la vapeur d'eau est évacuée avec le gaz de balayage par le conduit 23 tandis que le produit sec s'écoule par gravité dans le creuset 43 de l'installation de fusion 2.Under these conditions, a bed of powders 29 having a thickness of approximately 3 cm and weighing approximately 13 kg are formed inside the tube 3, which remains in the tube for a period of approximately 5 hours. The temperature of the bed rises to 80, 195 and 250 ° C. in the zones which correspond respectively to the heating zones I, II and III, and the water vapor is evacuated with the purging gas by the conduit 23 while the dry product flows by gravity into the crucible 43 of the melting installation 2.

Lorsque le creuset contient 20 à 40 kg de produit, on interrompt l'alimentation du tube 3 pour passer à la phase de fusion. Celle-ci peut être réalisée en environ 1 h 30 lorsqu'on opère sous 23 KW. Après fusion, on coule le bain liquide dans la lingotière 47.When the crucible contains 20 to 40 kg of product, the supply of tube 3 is interrupted to go to the melting phase. This can be done in about 1 hour 30 minutes when operating under 23 KW. After fusion, the liquid bath is poured into the ingot mold 47.

On obtient ainsi des lingots de 20 à 40 kg, qui présentent des propriétés satisfaisantes.Ingots of 20 to 40 kg are thus obtained, which have satisfactory properties.

Dans d'autres essais, on a utilisé une poudre d'acier inoxydable ayant une granulométrie de 150 à 300 pm, et on a réalisé l'introduction de cette poudre dans le tube 3 à un débit de 2 kg/h. Avec les mêmes conditions de fonctionnement, on obtient un mélange satisfaisant des fines avec la poudre d'acier inoxydable et par fusion vers 1500°C, on obtient des lingots ayant des propriétés satisfaisantes.In other tests, a stainless steel powder having a particle size of 150 to 300 μm was used, and the introduction of this powder into the tube 3 was carried out at a flow rate of 2 kg / h. With the same operating conditions, a satisfactory mixture of fines is obtained with stainless steel powder and by melting at around 1500 ° C., ingots are obtained which have satisfactory properties.

Pour optimiser la solubilisation du molybdène des fines, on a utilisé une poudre de cupronickel contenant pour certains essais: 80% de cuivre et 20% de nickel, pour d'autres essais: 60% de cuivre et 40% de nickel. Après fusion, on a obtenu des lingots dont l'analyse confirme la formation d'une solution solide avec Mo.To optimize the solubilization of the molybdenum from the fines, a cupronickel powder was used containing for certain tests: 80% copper and 20% nickel, for other tests: 60% copper and 40% nickel. After fusion, ingots were obtained, the analysis of which confirms the formation of a solid solution with Mo.

Bien que sur cette figure on ait représenté une installation de fusion fonctionnant de façon discontinue, on pourraît aussi utiliser une installation de fusion continue, l'écoulement du métal étant assuré par une busette de coulée continue.Although this figure shows a melting installation operating discontinuously, one could also use a continuous melting installation, the metal flow being ensured by a continuous casting nozzle.

Des essais effectués avec d'autred déchets constitués par des particules métalliques radioactives, ont montré qu'on pouvait obtenir des résultats satisfaisants en partant de poudres de cuivre ou de poudres d'acier inoxydable ayant des granulométries de 40 µm à 1,25 mm, la plage la mieux adaptée étant 100 à 500 µm, en faisant circuler dans le tube 3 de l'argon contenant 5% d'hydrogène à un débit de 800 I/h et en chauffant les zones I, Il et III du tube 3 à des températures de 300 à 500°C avec une vitesse de rotation du tube 3 de 5 à 15t/min. et un temps de séjour des produits dans le tube 3 d'environ 5 heures.Tests carried out with other waste consisting of radioactive metallic particles, have shown that satisfactory results could be obtained starting from copper powders or stainless steel powders having particle sizes of 40 μm to 1.25 mm, the most suitable range being 100 to 500 μm, by circulating in tube 3 argon containing 5% hydrogen at a flow rate of 800 I / h and by heating zones I, II and III of tube 3 to temperatures from 300 to 500 ° C with a rotation speed of the tube 3 from 5 to 15 rpm. and a residence time of the products in the tube 3 of approximately 5 hours.

Lorsqu'on utilise comme poudre métallique de la poudre de cuivre, il est nécessaire d'éviter au maximum l'oxydation du cuivre et d'opérer en présence d'hydrogène pour réduire dans la dernière zone du tube 3 les oxydes éventuellement formés.When copper powder is used as the metal powder, it is necessary to avoid as much as possible the oxidation of the copper and to operate in the presence of hydrogen to reduce in the last zone of the tube 3 the oxides possibly formed.

Figure imgb0001
Figure imgb0001
Figure imgb0002
Figure imgb0002

Claims (12)

1. Process for conditioning waste consisting of radioactive metal particles insoluble in nitric acid solutions, characterized in that the said particles are suspended in a liquid, in that the suspension is subjected to an evaporative heat treatment by injecting the said suspension onto a hot bed of a powdered metal or alloy chosen from the group comprising copper, nickel, zinc, copper alloys, nickel alloys, zinc alloys and stainless steel, and in that the dry mixture of powder and metal particles obtained after this heat treatment is subjected to a melting performed at a temperature sufficient to melt the powdered metal or alloy and form defined compounds between the metal of the powder and at least part of the metallic constituents of the radioactive particles.
2. Process according to Claim 1, characterized in that the dry mixture of powder and metal particles obtained after the evaporative heat treatment is subjected to a reductive treatment with hydrogen before the melting is performed.
3. Process according to either of Claims 1 and 2, characterized in that the said bed of powdered metal or alloy is in motion during the evaporative heat treatment.
4. Process according to any of Claims 1 to 3, characterized in that the evaporative heat treatment of the suspension is performed in a heated, substantially horizontal tube driven in rotation about its axis, containing the said bed of powdered metal or alloy.
5. Process according to Claim 4, characterized in that the suspension of radioactive metal particles and the powdered metal or alloy are introduced at one end of the said tube, in that the dry mixture obtained is recovered at the other end of the said tube and in that the mixture is transferred into a melting furnace.
6. Process according to any one of Claims 2 to 5, characterized in that the reductive treatment is carried out in the rotating tube by establishing, in this tube, at least two zones heated to different temperatures and by circulating a reductive gaseous mixture in countercurrent to the suspension and to the bed.
7. Process according to Claim 6, characterized in that the said gasesous mixture is argon or nitrogen to which hydrogen has been added.
8. Process according to any one of Claims 1 to 7, characterized in that the dusts carried away by vapours released during the evaporative heat treatment are recovered and in that the said dusts are recycled into the suspension of radioactive particles to be treated.
9. Process according to any one of Claims 1 to 8, characterized in that the powdered metal or alloy has a particle size of 40 µm to 1.25 mm.
10. Process according to Claim 9, characterized in that the powdered metal or alloy has a particle size of 100 to 500 j.Lm.
11. Process according to any one of Claims 1 to 10, characterized in that the said powder is powdered copper or copper alloy.
12. Process according to any one of Claims 1 to 10, characterized in that the said powder is a powdered stainless steel.
EP83402466A 1982-12-23 1983-12-19 Process for dispensing of wastes constituted by radioactive metallic particles, for instance by dissolution dusts from irradiated fuel elements Expired EP0112771B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8221665 1982-12-23
FR8221665A FR2538603B1 (en) 1982-12-23 1982-12-23 PROCESS FOR THE CONDITIONING OF WASTE CONSTITUTED BY RADIOACTIVE METAL PARTICLES SUCH AS THE FINS OF DISSOLUTION OF IRRADIATED FUEL ELEMENTS

Publications (2)

Publication Number Publication Date
EP0112771A1 EP0112771A1 (en) 1984-07-04
EP0112771B1 true EP0112771B1 (en) 1987-04-01

Family

ID=9280456

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83402466A Expired EP0112771B1 (en) 1982-12-23 1983-12-19 Process for dispensing of wastes constituted by radioactive metallic particles, for instance by dissolution dusts from irradiated fuel elements

Country Status (5)

Country Link
US (1) US4571307A (en)
EP (1) EP0112771B1 (en)
JP (1) JPS59133499A (en)
DE (1) DE3370715D1 (en)
FR (1) FR2538603B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1176516B (en) * 1984-07-31 1987-08-18 Agip Spa PROCEDURE FOR THE IMMOBILIZATION OF ELEMENTS OF FIXED PRODUCTS AND / OR TRANSURANIC ELEMENTS CONTAINED IN RADIOACTIVE LIQUID SLOTS AND EQUIPMENT SUITABLE FOR THE PURPOSE
DE3702320A1 (en) * 1987-01-27 1988-08-04 Siempelkamp Gmbh & Co Method for disposal of radioactive wastes consisting mainly of iron oxalate
JPH0648314B2 (en) * 1987-02-13 1994-06-22 動力炉・核燃料開発事業団 Treatment method of radioactive waste liquid
US6069290A (en) * 1990-05-16 2000-05-30 Clean Technologies International Corporation Waste treatment process and reactant metal alloy
US5640702A (en) * 1992-03-17 1997-06-17 Shultz; Clifford G. Method of and system for treating mixed radioactive and hazardous wastes
US6355857B1 (en) 1999-06-17 2002-03-12 Clean Technologies International Corporation Metal alloy treatment process for radioactive waste
US7034197B2 (en) 1998-06-12 2006-04-25 Clean Technologies International Corporation Metal alloy and metal alloy storage product for storing radioactive materials
US6037517A (en) * 1998-11-04 2000-03-14 Clean Technologies International Corporation Apparatus and method for treating waste materials which include charged particle emitters
US7365237B2 (en) * 2002-09-26 2008-04-29 Clean Technologies International Corporation Liquid metal reactor and method for treating materials in a liquid metal reactor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE632265A (en) * 1962-05-14
US3787321A (en) * 1971-07-01 1974-01-22 Atomic Energy Commission Californium-palladium metal neutron source material
US3778295A (en) * 1972-03-08 1973-12-11 Atomic Energy Commission Chemical plating method of preparing radiation source material
GB1446016A (en) * 1973-07-24 1976-08-11 Europ Pour Le Traitement Chimi Method for the conditioning of high level radioactive wastes for their safe storage and disposal
US4040973A (en) * 1974-01-03 1977-08-09 Magyar Tudomanyos Akademia Izotop Intezete Process and apparatus for the concentration and storage of liquid radioactive wastes
JPS521399A (en) * 1975-06-24 1977-01-07 Toshiba Corp The fixation treatment method of a radioactive gas and its device
DE2704147C2 (en) * 1977-02-02 1986-04-10 Deutsche Gesellschaft für Wiederaufarbeitung von Kernbrennstoffen mbH, 3000 Hannover Process for the production of a stable solidification product containing radioactive substances which can be finally stored
US4072501A (en) * 1977-04-13 1978-02-07 The United States Of America As Represented By The United States Department Of Energy Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures
JPS54130798A (en) * 1978-03-31 1979-10-11 Toshiba Corp Radioactive waste solidifying method
JPS54130800A (en) * 1978-03-31 1979-10-11 Toshiba Corp Radioactive waste solidifying method
DE2856466C2 (en) * 1978-12-28 1986-01-23 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Process for solidifying highly radioactive waste materials in a metal matrix in the form of granules or powder
DE2917437C2 (en) * 1979-04-28 1983-11-17 Nukem Gmbh, 6450 Hanau Procedure for incorporating radioactive and toxic waste
FR2456371A1 (en) * 1979-05-07 1980-12-05 Commissariat Energie Atomique PROCESS FOR RUTHENIUM DECONTAMINATION OF LIQUID RADIOACTIVE EFFLUENTS AND DEVICE FOR CARRYING OUT SAID METHOD
US4409137A (en) * 1980-04-09 1983-10-11 Belgonucleaire Solidification of radioactive waste effluents
US4770817A (en) * 1982-04-30 1988-09-13 Westinghouse Electric Corp. Encapsulation of solids in alpha-alumina

Also Published As

Publication number Publication date
JPS59133499A (en) 1984-07-31
US4571307A (en) 1986-02-18
EP0112771A1 (en) 1984-07-04
FR2538603A1 (en) 1984-06-29
DE3370715D1 (en) 1987-05-07
FR2538603B1 (en) 1988-07-01
JPH0356439B2 (en) 1991-08-28

Similar Documents

Publication Publication Date Title
EP0112771B1 (en) Process for dispensing of wastes constituted by radioactive metallic particles, for instance by dissolution dusts from irradiated fuel elements
EP0121529B1 (en) Method for manufacturing aluminium- and boron-based composite alloys and application thereof
EP2303786B1 (en) Method for confining waste by vitrification in metal pots
FR2550654A1 (en) SOLID VITREOUS SOLUTION, METHOD AND DEVICE FOR REDUCING VOLUME OF SOLUTION OF RADIO-ACTIVE WASTE
FR2620560A1 (en) THERMAL DECOMPOSITION TREATMENT APPARATUS FOR RADIOACTIVE WASTE
EP0077282B1 (en) Installation for the continuous treatment of liquid metals or liquid metal alloys in the form of magnesium or aluminium
FR2547034A1 (en) METHOD AND DEVICE FOR LIQUEFACTION OF FUSE FABRIC BY ABLATION USING A PLASMA
EP0012074B1 (en) Method of cleaning a cold trap for liquid metals, and device for carrying out this method
FR2629251A1 (en) PROCESS FOR VITRIFICATION OF LIQUID RADIO-ACTIVE WASTE WITHOUT FORMATION OF RUTHENIUM GASEOUS
EP0204634B1 (en) Process and device for treating non-organic solid tritiated wastes
EP0125173B1 (en) Process for producing solid metal particles from a molten metal
EP1324846B1 (en) Method for preparing nuclear metal or metal alloy particles
FR2502381A1 (en) METHOD FOR COATING SOLID MATERIALS CONTAINING RADIO-ACTIVATED OR RADIO-ACTIVATED CONTAMINATED MATERIAL FROM NUCLEAR FACILITIES IN A MATRIX FOR DEFINITIVE STORAGE
FR3019367A1 (en)
CH619005A5 (en)
TW593748B (en) Method of obtaining protective coatings on the surface of chemically active materials
EP0028569B1 (en) Process for agitating a molten metal by injection of gases
FR2762328A1 (en) PROCESS FOR RECYCLING WASTE FROM BRASS FOUNDRY
FR2677798A1 (en) METHOD FOR REDUCING VITRIFICATION OF THE VOLUME OF HIGHLY RADIOACTIVE WASTE.
BE1011754A3 (en) Method and metal surfaces decontamination installation.
FR2681852A1 (en) PROCESS FOR THE CONTINUOUS PREPARATION OF VANADIUM PENTOXIDE GELS AND APPARATUS FOR IMPLEMENTING THE PROCESS.
EP0392910B1 (en) Process and apparatus for the preparation of the eutectic alloy lithium-lead with formula lithium 17%-lead 83%
EP0240419A1 (en) Process for coating powdery and/or grained radioactive or toxic waste with granulated bitumen
FR2619803A1 (en) PROCESS FOR PRODUCING INTERMETALLIC COMPOUNDS
FR2850673A1 (en) Dissolution of oxides deposited on metal substrates with a cobalt based alloy part by oxidation and reduction for decontaminating walls and circuits of nuclear reactors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE GB IT

17P Request for examination filed

Effective date: 19841206

17Q First examination report despatched

Effective date: 19860401

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB IT

REF Corresponds to:

Ref document number: 3370715

Country of ref document: DE

Date of ref document: 19870507

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

BECN Be: change of holder's name

Effective date: 19870401

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19891231

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Effective date: 19891231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911122

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19911216

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921219

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930901