EP0111985A2 - Process for cooling thin metal strips - Google Patents

Process for cooling thin metal strips Download PDF

Info

Publication number
EP0111985A2
EP0111985A2 EP83201820A EP83201820A EP0111985A2 EP 0111985 A2 EP0111985 A2 EP 0111985A2 EP 83201820 A EP83201820 A EP 83201820A EP 83201820 A EP83201820 A EP 83201820A EP 0111985 A2 EP0111985 A2 EP 0111985A2
Authority
EP
European Patent Office
Prior art keywords
phase
cooling
strip
temperature
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83201820A
Other languages
German (de)
French (fr)
Other versions
EP0111985A3 (en
EP0111985B1 (en
Inventor
Stéphan Wilmotte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre de Recherches Metallurgiques CRM ASBL
Original Assignee
Centre de Recherches Metallurgiques CRM ASBL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BE6/47760A external-priority patent/BE895434A/en
Application filed by Centre de Recherches Metallurgiques CRM ASBL filed Critical Centre de Recherches Metallurgiques CRM ASBL
Priority to AT83201820T priority Critical patent/ATE41789T1/en
Publication of EP0111985A2 publication Critical patent/EP0111985A2/en
Publication of EP0111985A3 publication Critical patent/EP0111985A3/en
Application granted granted Critical
Publication of EP0111985B1 publication Critical patent/EP0111985B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Definitions

  • the present invention relates to the forced cooling of thin metal strips, in particular steel. It relates in particular to the cooling operation carried out in the continuous heat treatment lines for thin strips.
  • the strips can, in the final state, present serious defects.
  • the strips may also have vermiculations, that is to say marks of plastic deformation, which appear when the elastic limit of the material is reached for a certain temperature of the product and when the tensile characteristic of the material has a plateau. at this temperature.
  • a first known method consists in applying cooling by air blowing, for which the heat exchange coefficient is approximately 0.15 kW / m 2 ° C. This is a fairly slow cooling, which requires a long period of application and therefore the use of long cooling installations. The consumption of compressed air and the cost of the operation are consequently high.
  • Another cooling method which consists in immersing the thin strip in water maintained at its boiling temperature.
  • the heat exchange coefficient is approximately 0.28 kW / m 2 ° C in the film boiling range, that is to say when the surface temperature of the product is above 300 ° C. Below this temperature, the heat exchange coefficient increases very quickly and cooling by immersion in boiling water does not always make it possible to obtain a flat strip free of vermiculations. In addition, this cooling is also quite slow and has in this respect the same drawbacks as cooling by air blowing.
  • the subject of the present invention is a method making it possible to remedy the drawbacks which have just been mentioned.
  • the method of the invention ensures intense cooling of the strip, while making it possible to obtain a quality product, having excellent flatness and free from vermiculations.
  • the process which is the subject of the present invention, in which a thin metal strip is subjected to cooling sement by spraying a refrigerant, is essentially characterized in that said cooling comprises a phase, called low intensity, during which the heat exchange coefficient defined at 6 00 ° C is less than 3 k W / m 2 ° C , and a phase, called high intensity, during which the heat exchange coefficient defined at 6 00 ° C is greater than 3 kw / m2 ° C.
  • the cooling phase is carried out first at low intensity, until the strip has reached a predetermined temperature, and then the cooling phase at high intensity.
  • an additional cooling phase called an intermediate intensity phase, which is preferably situated between the low intensity phase and the high intensity phase.
  • the strip it has been found to be particularly advantageous to cool the strip by means of jets, for example of water, arranged so as to cover the entire surface of the strip.
  • jets for example of water
  • the water may possibly be hot and / or sprayed in the form of a mist.
  • the difference in intensity being obtained by adjusting the total flow of refrigerant in each phase.
  • This adjustment can be performed by modifying either the number of coolant jets, or the flow rate of the various jets by any means known per se.
  • the strip A moving in the direction of the arrow B is subjected to the action of water jets arranged in staggered rows, of which only the three jets of axis perpendicular to the strip at points C, D and E are shown.
  • Figures 2 to 5 reflect the results obtained by a cooling operation, either only at high intensity (fig. 2 and 3), or only at low intensity (fig. 4 and 5).
  • FIG. 2 shows the curves O to 5 giving the evolution of the heat flux density as a function of the surface temperature of the strip, corresponding respectively to the points O to 5 indicated in FIG. 1. These curves reflect high intensity cooling for which the average heat exchange coefficient is 3.8 kW / m 2 ° C to 600 ° C.
  • FIG. 3 shows the evolution of the stresses of thermal origin, superimposed on the traction in the strip (2 0 N / mm 2 ), as a function of the surface temperature of the strip, still in the case of cooling. at high intensity of FIG. 2. These curves show that it develops in the band, compressive stresses (line passing through point O) and tensile stresses (line passing through point 4). It also appears that the maximum difference between the tensile and compressive stresses is manifested for a temperature of the strip of the order of 300 ° C.
  • This FIG. 3 also shows the evolution of the elastic limit Re of the strip, as a function of its temperature, as well as the point M of the appearance of the bearing in the traction curve.
  • Figure 4 shows the curves reflecting the evolution of the heat flux density as a function of the surface temperature of the strip, respectively at points O to 5 of Figure 1. The difference between the curves also reveals a fairly heterogeneous cooling sensitive, but weaker however than in the case of FIG. 2.
  • Figure 5 shows that the maximum difference between the tensile and compressive stresses is significantly less than in Figure 3. In addition, these stresses at no point exceed the elastic limit of the material. The strips cooled at low intensity therefore do not exhibit any defect in flatness or vermiculations. On the other hand, the cooling length necessary to reach a temperature below 170 ° C is equal to 1.61 m. It is therefore 2.2 times higher than in the case of high-intensity cooling, which leads to an increased total consumption of cooling agent.
  • FIG. 6 shows the evolution of the maximum difference ⁇ between the maximum tensile and compression stresses in the strip, as a function of the interruption temperature of phase I.
  • the points of breakthrough of the axes of the jets of phase II are aligned with those of phase I according to straight lines parallel to the longitudinal axis of the strip.
  • This case is illustrated by curve 1 in FIG. 6.
  • the interruption temperature is less than 300 ° C., it is brought back to the case where the cooling is entirely carried out in phase I; below this temperature of 300 ° C, the value of ⁇ max remains constant and equal to 78 N / mm 2 .
  • An intermediate interruption temperature of 450 ° C leads to a maximum ⁇ of 8 7 N / mm 2 .
  • the jets of phase I I are offset transversely by half a step with respect to those of phase I.
  • This case corresponds to curve 2 of FIG. 6.
  • the points corresponding to temperatures of 750 ° C on the one hand and less than 300 ° C on the other hand, are identical to those of curve 1. It is noted however that when the interruption temperature is between 580 ° C and 300 ° C, the value of ⁇ max is less than the lowest achievable value in the first case (curve 1). For an interruption temperature of 450 ° C, ⁇ max is 56 N / mm 2 .
  • the phases I and I I must have respective lengths of 0.88 m and 0.30 m, ie a total length of 1, 18 m.
  • the method of the invention therefore makes it possible to reduce the duration of cooling, in this case by 27%, and consequently the consumption of refrigerant, compared to low intensity cooling, while avoiding the appearance of flatness defects. and worms in the strips.
  • This value of 78 N / mm 2 corresponds to the lowest value achievable by low intensity cooling (curve 1), - but with a length of 1 m instead of 1.61 m, a reduction of 38%. ''

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Secondary Cells (AREA)

Abstract

1. Process for cooling a moving thin steel strip by spraying a refrigerant onto the surface of the strip, in which the said steel strip is subjected to a low intensity cooling phase followed by a high intensity cooling phase, characterized in that the said low intensity phase is carried out with a heat exchange coefficient less than or equal to 3 kW/m**2 degrees C and in the said high intensity phase is carried out with a heat exchange coefficient greater than 3 kW/m**2 degrees C, and in that the said low intensity phase is interrupted when the strip has reached a temperature of between 600 degrees C and 350 degrees C.

Description

La présente invention concerne le refroidissement forcé de bandes métalliques minces, en particulier en acier. Elle vise notamment l'opération de refroidissement pratiquée dans les lignes continues de traitement thermique des bandes minces.The present invention relates to the forced cooling of thin metal strips, in particular steel. It relates in particular to the cooling operation carried out in the continuous heat treatment lines for thin strips.

On sait que si le refroidissement appliqué n'est pas homogène, les bandes peuvent, à l'état final, présenter de graves défauts. A cet égard, on peut citer le manque de planéité, qui se manifeste lorsque les tensions ont dépassé localement la limite d'élasticité du matériau pendant le refroidissement. Les bandes peuvent également présenter des vermiculures, c'est-à-dire des marques de déformation plastique, qui apparaissent lorsque la limite d'élasticité du matériau est atteinte pour une certaine température du produit et que la caractéristique de traction du matériau présente un palier à cette température.It is known that if the cooling applied is not homogeneous, the strips can, in the final state, present serious defects. In this regard, one can cite the lack of flatness, which manifests itself when the tensions locally exceed the elastic limit of the material during cooling. The strips may also have vermiculations, that is to say marks of plastic deformation, which appear when the elastic limit of the material is reached for a certain temperature of the product and when the tensile characteristic of the material has a plateau. at this temperature.

Pour tenter de prévenir l'apparition de ces deux types de défauts, on a déjà proposé divers procédés mettant en oeuvre des méthodes pour un refroidissement relativement doux.In an attempt to prevent the appearance of these two types of defect, various methods have already been proposed using methods for relatively gentle cooling.

Une première méthode connue consiste à appliquer un refroidissement par soufflage d'air, pour lequel le coefficient d'échange de chaleur vaut environ 0,15 kW/m2 °C. Il s'agit d'un refroidissement assez lent, qui nécessite une longue durée d' application et par conséquent l'utilisation d'installation de refroidissement de grande longueur. La consommation d'air comprimé et le coût de l'opération sont en conséquence élevés.A first known method consists in applying cooling by air blowing, for which the heat exchange coefficient is approximately 0.15 kW / m 2 ° C. This is a fairly slow cooling, which requires a long period of application and therefore the use of long cooling installations. The consumption of compressed air and the cost of the operation are consequently high.

On connaît une autre méthode de refroidissement qui consiste à immerger la bande mince dans de l'eau maintenue à sa température d'ébullition. Dans ce cas, le coefficient d'échange de chaleur vaut environ 0,28 kW/m2 °C dans le domaine de l'ébullition en film, c'est-à-dire lorsque la température de surface du produit est supérieure à 300°C. En dessous de cette température, le coefficient d'échange de chaleur croit très rapidement et le refroidissement par immersion dans l'eau bouillante ne permet pas toujours d'obtenir une bande plane et exempte de vermiculures. En outre, ce refroidissement est également assez lent et présente à cet égard les mêmes inconvénients que le refroidissement par soufflage d'air.Another cooling method is known which consists in immersing the thin strip in water maintained at its boiling temperature. In this case, the heat exchange coefficient is approximately 0.28 kW / m 2 ° C in the film boiling range, that is to say when the surface temperature of the product is above 300 ° C. Below this temperature, the heat exchange coefficient increases very quickly and cooling by immersion in boiling water does not always make it possible to obtain a flat strip free of vermiculations. In addition, this cooling is also quite slow and has in this respect the same drawbacks as cooling by air blowing.

La présente invention a pour objet un procédé permettant de remédier aux inconvénients qui viennent d'être mentionnés. A cet effet, le procédé de l'invention assure un refroidissement intense de la bande, tout en permettant d'obtenir un produit de qualité, présentant une excellente planéité et exempt de vermiculures.The subject of the present invention is a method making it possible to remedy the drawbacks which have just been mentioned. To this end, the method of the invention ensures intense cooling of the strip, while making it possible to obtain a quality product, having excellent flatness and free from vermiculations.

Le procédé qui fait'l'objet de la présente invention, dans lequel on soumet une bande métallique mince à un refroidissement par projection d'un agent réfrigérant, est essentiellement caractérisé en ce que le dit refroidissement comporte une phase, dite à basse intensité, au cours de laquelle le coefficient d'échange de chaleur défini à 600°C est inférieur à 3 kW/m2 °C, et une phase, dite à haute intensité, au cours de laquelle le coefficient d'échange de chaleur défini à 600°C est supérieur à 3 kw/m2 °C.The process which is the subject of the present invention, in which a thin metal strip is subjected to cooling sement by spraying a refrigerant, is essentially characterized in that said cooling comprises a phase, called low intensity, during which the heat exchange coefficient defined at 6 00 ° C is less than 3 k W / m 2 ° C , and a phase, called high intensity, during which the heat exchange coefficient defined at 6 00 ° C is greater than 3 kw / m2 ° C.

Selon une mise en oeuvre intéressante du procédé de l'invention, on exécute en premier lieu la phase de refroidissement à basse intensité, jusqu'à ce que la bande ait atteint une température prédéterminée, et ensuite la phase de refroidissement à haute intensité. .According to an advantageous implementation of the method of the invention, the cooling phase is carried out first at low intensity, until the strip has reached a predetermined temperature, and then the cooling phase at high intensity. .

Egalement selon l'invention, il a été trouvé avantageux d'interrompre la première phase de refroidissement lorsque la surface de la bande a atteint une valeur comprise entre 350°C et 600°C. E also according to the invention, it has been found advantageous to interrupt the first stage of cooling when the surface of the strip has reached a value between 350 ° C and 600 ° C.

Toujours selon l'invention, il peut être intéressant de prévoir une phase de refroidissement supplémentaire, dite à intensité intermédiaire, qui se situe de préférence entre la phase à basse intensité et la phase à haute intensité.Still according to the invention, it may be advantageous to provide an additional cooling phase, called an intermediate intensity phase, which is preferably situated between the low intensity phase and the high intensity phase.

Dans le cadre de l'invention, il s'est avéré particulièrement intéressant de refroidir la bande au moyen de jets, par exemple d'eau, disposés de façon à couvrir la totalité de la surface de la bande. L'eau peut éventuellement être chaude et/ou projetée sous forme d'un brouillard.In the context of the invention, it has been found to be particularly advantageous to cool the strip by means of jets, for example of water, arranged so as to cover the entire surface of the strip. The water may possibly be hot and / or sprayed in the form of a mist.

Dans ce cas, il est intéressant d'utiliser le même agent réfrigérant dans les diverses phases de refroidissement, la différence d'intensité étant obtenue en ajustant le débit total d'agent réfrigérant de chaque phase. Cet ajustement peut être effectué en modifiant soit le nombre de jets d'agent réfrigérant, soit le débit des divers jets par tout moyen connu en soi.In this case, it is advantageous to use the same refrigerant in the various cooling phases, the difference in intensity being obtained by adjusting the total flow of refrigerant in each phase. This adjustment can be performed by modifying either the number of coolant jets, or the flow rate of the various jets by any means known per se.

A titre d'exemple, on va décrire à présent une application du procédé de l'invention au refroidissement en deux phases d'une bande mince au moyen de jets d'eau, en faisant référence aux figures annexées.By way of example, an application of the method of the invention will now be described for the cooling in two phases of a thin strip by means of water jets, with reference to the appended figures.

Dans cet exemple, une bande en acier doux de 0,7 mm d'épaisseur et se déplaçant à une vitesse de 109 m/min., est refroidie depuis 750°C jusqu'à une température inférieure à 170°C.In this example, a strip of mild steel 0.7 mm thick and moving at a speed of 109 m / min., Is cooled from 750 ° C to a temperature below 170 ° C.

Sur la figure 1, la bande A se déplaçant dans la direction de la flèche B, est soumise à l'action de jets d'eau disposés en quinconce, dont seuls les trois jets d'axe perpendiculaire à la bande aux points C, D et E sont représentés. On a également indiqué 5 points, numérotés O, 1, 2, 3, et 4 situés à distance croissante du point C, ainsi qu'un point 5 situé à égale distance des points C, D et E.In FIG. 1, the strip A moving in the direction of the arrow B, is subjected to the action of water jets arranged in staggered rows, of which only the three jets of axis perpendicular to the strip at points C, D and E are shown. We also indicated 5 points, numbered O, 1, 2, 3, and 4 located at an increasing distance from point C, as well as a point 5 located at equal distance from points C, D and E.

Les figures 2 à 5 traduisent les résultats obtenus par une opération de refroidissement, soit uniquement à haute intensité (fig. 2 et 3), soit uniquement à basse intensité (fig. 4 et 5).Figures 2 to 5 reflect the results obtained by a cooling operation, either only at high intensity (fig. 2 and 3), or only at low intensity (fig. 4 and 5).

La figure 2 montre les courbes O à 5 donnant l'évolution de la densité de flux calorifique en fonction de la température superficielle de la bande, correspondant respectivement aux points O à 5 indiqués à la figure 1. Ces courbes traduisent un refroidissement à haute intensité pour lequel le coeffi-- cient d'échange de chaleur moyen vaut 3,8 kW/m2 °C à 600°C.FIG. 2 shows the curves O to 5 giving the evolution of the heat flux density as a function of the surface temperature of the strip, corresponding respectively to the points O to 5 indicated in FIG. 1. These curves reflect high intensity cooling for which the average heat exchange coefficient is 3.8 kW / m 2 ° C to 600 ° C.

Ces courbes sont séparées les unes des autres, ce qui révèle une hétérogénéité sensible du refroidissement appliqué.These curves are separated from each other, which reveals a significant heterogeneity of the cooling applied.

on a représenté à la figure 3, l'évolution des contraintes d'origine thermique, superposées à la traction dans la bande (20 N/mm2), en fonction de la température superficielle de la bande, toujours dans le cas du refroidissement à haute intensité de la figure 2. Ces courbes montrent qu'il se développe dans la bande, des contraintes de compression (ligne passant par le point O) et des contraintes de traction (ligne passant parle point 4). Il apparaît également que la différence maximale entre les contraintes de traction et de compression se manifeste pour une température de la bande de l'ordre de 300°C. Sur cette figure 3, on a également représenté l'évolution de la limite d'élasticité Re de la bande, en fonction de sa température, ainsi que le point M d'apparition du palier dans la courbe de traction.FIG. 3 shows the evolution of the stresses of thermal origin, superimposed on the traction in the strip (2 0 N / mm 2 ), as a function of the surface temperature of the strip, still in the case of cooling. at high intensity of FIG. 2. These curves show that it develops in the band, compressive stresses (line passing through point O) and tensile stresses (line passing through point 4). It also appears that the maximum difference between the tensile and compressive stresses is manifested for a temperature of the strip of the order of 300 ° C. This FIG. 3 also shows the evolution of the elastic limit Re of the strip, as a function of its temperature, as well as the point M of the appearance of the bearing in the traction curve.

L'examen de ces courbes montre qu'au voisinage du point d'apparition du palier, la contrainte de traction est supérieure à la limite d'élasticité. Il en résulte que la bande traitée de cette façon présente un défaut de planéité ainsi que des vermiculures. On calcule que dans ces conditions, la longueur de refroidissement nécessaire pour ramener la bande à une température inférieure à 170°C est égale à 0,73 m.Examination of these curves shows that in the vicinity of the point of appearance of the bearing, the tensile stress is greater than the elastic limit. As a result, the strip treated in this way has a flatness defect as well as worms. It is calculated that under these conditions, the cooling length necessary to bring the strip to a temperature below 170 ° C is equal to 0.73 m.

Une bande identique, se déplaçant également à une vitesse de 109 m/min., a été soumise à un refroidissement à basse intensité, avec un coefficient d'échange de chaleur moyen de 1,9 kW/m2 °C à 600"C.An identical strip, also moving at a speed of 109 m / min., Was subjected to low intensity cooling, with an average heat exchange coefficient of 1.9 kW / m 2 ° C at 600 "C .

La figure 4 montre les courbes traduisant l'évolution de la densité de flux calorifique en fonction de la température superficielle de la bande, respectivement aux points O à 5 de la figure 1. L'écart entre les courbes révèle également une hétérogénéité de refroidissement assez sensible, mais plus faible cependant que dans le-cas de la figure 2.Figure 4 shows the curves reflecting the evolution of the heat flux density as a function of the surface temperature of the strip, respectively at points O to 5 of Figure 1. The difference between the curves also reveals a fairly heterogeneous cooling sensitive, but weaker however than in the case of FIG. 2.

La figure 5 montre que la différence maximale entre les contraintes de traction et de compression est nettement-moins importante qu'à la figure 3. En outre, ces contraintes ne dépassent en aucun point la limite d'élasticité du matériau. Les bandes refroidies à basse intensité ne présentent donc pas de défaut de planéité ni de vermiculures. En revanche, la longueur de refroidissement nécessaire pour atteindre une température inférieure à 170°C est égale à 1,61 m. Elle est donc 2,2 fois plus élevée que dans le cas du.refroidissement à haute intensité, ce qui entraîne une consommation totale accrue d'agent de refroidissement.Figure 5 shows that the maximum difference between the tensile and compressive stresses is significantly less than in Figure 3. In addition, these stresses at no point exceed the elastic limit of the material. The strips cooled at low intensity therefore do not exhibit any defect in flatness or vermiculations. On the other hand, the cooling length necessary to reach a temperature below 170 ° C is equal to 1.61 m. It is therefore 2.2 times higher than in the case of high-intensity cooling, which leads to an increased total consumption of cooling agent.

La même bande a enfin été soumise au procédé de refroidissement conforme à l'invention, comportant une phase I à basse intensité suivie d'une phase II à haute intensité. La figure 6 montre l'évolution de la différence maximale Δσ entre les max contraintes de traction et de compression dans la bande, en fonction de la température d'interruption de la phase I.The same strip was finally subjected to the cooling process according to the invention, comprising a phase I at low intensity followed by a phase II at high intensity. FIG. 6 shows the evolution of the maximum difference Δσ between the maximum tensile and compression stresses in the strip, as a function of the interruption temperature of phase I.

Dans un premier cas, les points de percée des axes des jets de la phase II sont alignés avec ceux de la phase I selon.des droites parallèles à l'axe longitudinal de la bande. Ce cas est illustré par la courbe 1 de la figure 6. Le point P de cette courbe correspond à une interruption de la phase I à 750°C; le refroidissement se déroule tout entier en phase II et conduit à Δσmax = 172 N/mm2. Si, par contre la température d'interruption est inférieure à 300°C, on est ramené au cas où le refroidissement est entièrement effectué en phase I; en deça de cette température de 300°C, la valeur de Δσmax reste constante et égale à 78 N/mm2. Une température intermédiaire d'interruption de 450°C conduit à un Δσmax de 87 N/mm2.In a first case, the points of breakthrough of the axes of the jets of phase II are aligned with those of phase I according to straight lines parallel to the longitudinal axis of the strip. This case is illustrated by curve 1 in FIG. 6. The point P of this curve corresponds to an interruption of phase I at 750 ° C; the cooling takes place entirely in phase II and leads to Δσ max = 172 N / mm 2 . If, on the other hand, the interruption temperature is less than 300 ° C., it is brought back to the case where the cooling is entirely carried out in phase I; below this temperature of 300 ° C, the value of Δσ max remains constant and equal to 78 N / mm 2 . An intermediate interruption temperature of 450 ° C leads to a maximum Δσ of 8 7 N / mm 2 .

Dans une seconde disposition, les jets de la phase II sont décalés transversalement d'un demi-pas par rapport à ceux de la phase I. Ce cas correspond à la courbe 2 de la figure 6. Les points correspondant aux températures de 750°C d'une part et de moins de 300°C d'autre part, sont identiques à ceux de la courbe 1. On constate cependant que lorsque la température d' interruption est comprise entre 580°C et 300°C, la valeur de Δσmax est inférieure à la plus basse valeur réalisable dans le premier cas (courbe 1). Pour une température d'interruption de 450°C, Δσmax vaut 56 N/mm2.In a second arrangement, the jets of phase I I are offset transversely by half a step with respect to those of phase I. This case corresponds to curve 2 of FIG. 6. The points corresponding to temperatures of 750 ° C on the one hand and less than 300 ° C on the other hand, are identical to those of curve 1. It is noted however that when the interruption temperature is between 580 ° C and 300 ° C, the value of Δσ max is less than the lowest achievable value in the first case (curve 1). For an interruption temperature of 450 ° C, Δσ max is 56 N / mm 2 .

Pour réaliser une température d'interruption de 450°C dans le cas de cette seconde disposition des jets, les phases I et II doivent avoir des longueurs respectives de 0,88 m et 0,30 m, soit une longueur totale de 1,18 m.To achieve an interruption temperature of 450 ° C. in the case of this second arrangement of the jets, the phases I and I I must have respective lengths of 0.88 m and 0.30 m, ie a total length of 1, 18 m.

Le procédé de l'invention permet donc de réduire la durée du refroidissement, dans ce cas de 27 %, et par conséquent la consommation d'agent réfrigérant, par rapport au refroidissement à basse intensité, tout en évitant l'apparition de défauts de planéité et de vermiculures dans les bandes.The method of the invention therefore makes it possible to reduce the duration of cooling, in this case by 27%, and consequently the consumption of refrigerant, compared to low intensity cooling, while avoiding the appearance of flatness defects. and worms in the strips.

Il est possible, par le procédé de l'invention, de réduire encore la longueur, donc la durée du refroidissement sans altérer la qualité de la bande. La courbe 2 donne, pour une température d'interruption de 580°C, un Δσmax égal à 78 N/mm 2, mais ne nécessite qu'une longueur de 0,53 m (phase I) + 0,47 m (phase II) = 1 m, pour atteindre une température finale inférieure à 170°C. Cette valeur de 78 N/mm2 correspond à la valeur la plus basse réalisable par un refroidissement à basse intensité (courbe 1),-mais avec une longueur de 1 m au lieu de 1,61 m, soit une réduction de 38 %. 'It is possible, by the method of the invention, to further reduce the length, therefore the duration of the cooling, without altering the quality of the strip. Curve 2 gives, for an interruption temperature of 580 ° C, a Δσ max equal to 78 N / m m 2 , but only requires a length of 0.53 m (phase I) + 0.47 m ( phase II) = 1 m, to reach a final temperature below 170 ° C. This value of 78 N / mm 2 corresponds to the lowest value achievable by low intensity cooling (curve 1), - but with a length of 1 m instead of 1.61 m, a reduction of 38%. ''

Claims (6)

1. Procédé de refroidissement d'une bande métallique mince en mouvement, par projection d'un agent réfrigérant sur la surface de la bande, caractérisé en ce que le dit refroidissement comporte une phase, dite à basse intensité, au cours de laquelle le coefficient d'échange de chaleur défini à 600°C est inférieur ou égal à 3 kW/m2 °C, et une phase, dite à haute intensité, au cours de laquelle le coefficient d'échange de chaleur est supérieur à 3 kW/m2 °C.1. A method of cooling a thin metal strip in motion, by spraying a cooling agent onto the surface of the strip, characterized in that said cooling comprises a phase, called a low intensity phase, during which the coefficient heat exchange defined at 600 ° C is less than or equal to 3 kW / m 2 ° C, and a phase, called high intensity, during which the heat exchange coefficient is greater than 3 k W / m 2 ° C. 2. Procédé suivant la revendication 1, caractérisé en ce que l'on exécute en premier lieu la dite phase à basse intensité, jusqu'à ce que la bande ait atteint une température prédéterminée, dite température d'interruption, et ensuite la dite phase à haute intensité à partir de cette température d'interruption.2. Method according to claim 1, characterized in that the said phase is firstly executed at low intensity, until the strip has reached a predetermined temperature, called the interruption temperature, and then the said phase at high intensity from this interruption temperature. 3. Procédé suivant l'une ou l'autre des revendications 1 ou 2, caractérisé en ce que l'on choisit la dite température d'interruption entre environ 350°C et environ 600°C.3. Method according to either of Claims 1 or 2, characterized in that the said interruption temperature is chosen between approximately 350 ° C and approximately 600 ° C. 4. Procédé suivant l'une ou l'autre des revendications-1 ou 2, caractérisé en ce que l'on exécute une phase de refroidissement, dite à intensité intermédiaire, entre la dite phase à basse intensité et la dite phase à haute intensité.4. Method according to either of claims-1 or 2, characterized in that one performs a cooling phase, called intermediate intensity, between said low intensity phase and said high intensity phase . 5. Procédé suivant l'une ou l'autre des revendications 1 à 4, caractérisé en ce que l'on utilise, comme agent réfrigérant, de l'eau, éventuellement chaude, de préférence sous la forme de jets coniques pleins.5. Method according to either of claims 1 to 4, characterized in that water, possibly hot, is used as the cooling agent, preferably in the form of full conical jets. 6. Procédé suivant l'une ou l'autre des revendications 1 à 4, caractérisé en ce que l'on utilise comme agent réfrigérant, un brouillard d'eau et d'air.6. Method according to either of Claims 1 to 4 , characterized in that a mist of water and air is used as the cooling agent.
EP83201820A 1982-12-21 1983-12-20 Process for cooling thin metal strips Expired EP0111985B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83201820T ATE41789T1 (en) 1982-12-21 1983-12-20 METHOD OF COOLING THIN METAL STRIPS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE6047760 1982-12-21
BE6/47760A BE895434A (en) 1982-12-21 1982-12-21 Cooling of moving thin steel strip - by low intensity and then high intensity cooling to avoid strip distortion

Publications (3)

Publication Number Publication Date
EP0111985A2 true EP0111985A2 (en) 1984-06-27
EP0111985A3 EP0111985A3 (en) 1985-08-07
EP0111985B1 EP0111985B1 (en) 1989-03-29

Family

ID=3874917

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83201820A Expired EP0111985B1 (en) 1982-12-21 1983-12-20 Process for cooling thin metal strips

Country Status (3)

Country Link
EP (1) EP0111985B1 (en)
AT (1) ATE41789T1 (en)
DE (1) DE3379508D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921208A2 (en) * 1997-12-05 1999-06-09 Mitsubishi Heavy Industries, Ltd. Method and system for cooling strip material
WO2010079452A1 (en) * 2009-01-09 2010-07-15 Fives Stein Method and section for cooling a moving metal belt by spraying liquid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1151265A (en) * 1966-08-09 1969-05-07 Olin Mathieson Apparatus for the Controlled Cooling of Metal Sheet
EP0086331A1 (en) * 1982-01-13 1983-08-24 Nippon Steel Corporation Continuous heat treating line for mild and high tensile strength stell strips or sheets

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE873060A (en) * 1978-12-22 1979-06-22 Centre Rech Metallurgique METHOD AND DEVICE FOR ACCELERATED COOLING OF THIN BANDS
BE880587A (en) * 1979-12-12 1980-06-12 Centre Rech Metallurgique CONTINUOUS HEAT TREATMENT PLANT FOR STEEL SHEETS
BE895434A (en) * 1982-12-21 1983-04-15 Centre Rech Metallurgique Cooling of moving thin steel strip - by low intensity and then high intensity cooling to avoid strip distortion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1151265A (en) * 1966-08-09 1969-05-07 Olin Mathieson Apparatus for the Controlled Cooling of Metal Sheet
EP0086331A1 (en) * 1982-01-13 1983-08-24 Nippon Steel Corporation Continuous heat treating line for mild and high tensile strength stell strips or sheets

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921208A2 (en) * 1997-12-05 1999-06-09 Mitsubishi Heavy Industries, Ltd. Method and system for cooling strip material
EP0921208A3 (en) * 1997-12-05 2000-01-19 Mitsubishi Heavy Industries, Ltd. Method and system for cooling strip material
US6301920B2 (en) 1997-12-05 2001-10-16 Mitsubishi Heavy Industries, Ltd. Method and system for cooling strip material
US6305176B1 (en) 1997-12-05 2001-10-23 Mitsubishi Heavy Industries, Ltd. Method and system for cooling strip material
US6537374B2 (en) 1997-12-05 2003-03-25 Mitsubishi Heavy Industries, Ltd. Method and system for cooling strip material
WO2010079452A1 (en) * 2009-01-09 2010-07-15 Fives Stein Method and section for cooling a moving metal belt by spraying liquid
FR2940978A1 (en) * 2009-01-09 2010-07-16 Fives Stein METHOD AND COOLING SECTION OF A METAL BAND THROUGH A PROJECTION OF A LIQUID
CN102272338A (en) * 2009-01-09 2011-12-07 法孚斯坦因公司 Method and section for cooling a moving metal belt by spraying liquid
US8918199B2 (en) 2009-01-09 2014-12-23 Fives Stein Method and section for cooling a moving metal belt by spraying liquid

Also Published As

Publication number Publication date
ATE41789T1 (en) 1989-04-15
EP0111985A3 (en) 1985-08-07
EP0111985B1 (en) 1989-03-29
DE3379508D1 (en) 1989-05-03

Similar Documents

Publication Publication Date Title
EP0988255B1 (en) Method for cracking off glassware
FR2801322A1 (en) METHOD FOR ULTRASONIC BLASTING OF LARGE DIMENSIONAL ANNULAR SURFACES ON THIN PARTS
EP0111985B1 (en) Process for cooling thin metal strips
EP0402287B1 (en) Apparatus for anodising aluminium alloy pistons used in internal combustion engines
BE895434A (en) Cooling of moving thin steel strip - by low intensity and then high intensity cooling to avoid strip distortion
CA2030610C (en) Continuous casting process and device on one or between two cylinders
BE1001336A7 (en) Method for marking the surface of a roll stand.
BE1004526A6 (en) Heat treatment method of steel product.
LU85267A1 (en) METHOD FOR IMPROVING THE SURFACE CONDITION OF A CYLINDER
EP0350345B1 (en) Method of and installation for continuous casting thin metallic products
EP0407323A1 (en) Method and apparatus for twin roll continuous casting of thin metallic products suitable for cold rolling
FR2502522A1 (en) PROCESS AND PLANT FOR THE MANUFACTURE OF AN ELONGATED ALUMINUM PRODUCT BY CONTINUOUS CASTING, EXTRUSION AND LAMINATION
FR2522287A1 (en) PROCESS FOR THE MANUFACTURE OF STEEL SHEETS OR PLATES
BE1006484A3 (en) Method and device for cutting the ribbon with son.
EP0988901A1 (en) Manufacturing method for stainless steel thin strip
EP0345103B1 (en) Process and installation for in-line homogenizing and recrystallization of continuously cast metallic products
EP0290423B1 (en) Device for continuously manufacturing a thin metal strip
BE531796A (en)
CH256028A (en) Process for at least partially eliminating, by thermal means, the residual stresses of welded metal parts or constructions.
EP1025275A1 (en) Method for making a composite metal product
FR2726209A1 (en) CASTING SURFACE OF A CONTINUOUS CASTING LINGOTIERE OF MOBILE WALL METALS
BE507629A (en)
BE1005224A7 (en) Method of manufacturing wire rod high strength steel hard and device for its implementation.
BE903077A (en) CONTINUOUS CASTING DEVICE OF A THIN METAL STRIP, AND METHOD OF USING SAME
LU83424A1 (en) IMPROVED PROCESS FOR THE CONTINUOUS COOLING OF MACHINE WIRE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE FR GB IT LU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT DE FR GB IT LU

17P Request for examination filed

Effective date: 19860205

17Q First examination report despatched

Effective date: 19870626

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT LU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19890329

Ref country code: GB

Effective date: 19890329

Ref country code: AT

Effective date: 19890329

REF Corresponds to:

Ref document number: 41789

Country of ref document: AT

Date of ref document: 19890415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3379508

Country of ref document: DE

Date of ref document: 19890503

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19891130

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19891231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921130

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19921201

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST