EP0111527A1 - Process for using multiple reusable tubular casings - Google Patents

Process for using multiple reusable tubular casings

Info

Publication number
EP0111527A1
EP0111527A1 EP19830901923 EP83901923A EP0111527A1 EP 0111527 A1 EP0111527 A1 EP 0111527A1 EP 19830901923 EP19830901923 EP 19830901923 EP 83901923 A EP83901923 A EP 83901923A EP 0111527 A1 EP0111527 A1 EP 0111527A1
Authority
EP
European Patent Office
Prior art keywords
sausage
casing
fat
layer
lipids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19830901923
Other languages
German (de)
French (fr)
Inventor
Karl Potthast
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Food Technology Transfer SA
Original Assignee
Food Technology Transfer SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Food Technology Transfer SA filed Critical Food Technology Transfer SA
Publication of EP0111527A1 publication Critical patent/EP0111527A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C11/00Sausage making ; Apparatus for handling or conveying sausage products during manufacture
    • A22C11/001Machines for making skinless sausages, e.g. Frankfurters, Wieners

Definitions

  • This invention relates to an improved process for making caseless (skinless) sausage.
  • this invention relates to a particular improved process for using reusable tubular casings for making parboil or raw sausage.
  • cooking sausage In general, the art recognized three types of sausages: cooking sausage, parboil sausage, and raw sausage.
  • Cooking sausage has a high fat and protein content and accordingly contains a smaller amount of water than the parboil sausage. For this reason cooking sausage releases practically no water during the heating process, and can therefore be produced in casings that are impenetrable by water vapor and steam evolved during the sausage-making process.
  • many organic polymeric materials that are impervious to water and steam can be used with cooking sausage.
  • Parboil sausage is produced from an emulsion in water of a protein and fat. During the formation of this emulsion in high capacity grinding or cutting machines, ice is used for cooling. For this reason, the bulk sausage contains more water than is permissible for the perservation of the sausage. Therefore, the bulk sausage must release about 5 to 50% (as an average about 10%) gaseous constituents, in relation to the raw (unprocessed sausage meat) weight during the entire sausage-making process. Generally speaking, a higher percentage of water is removed from the sausage material at the outside surface of the formed sausage to produce a cohesive, skin-like layer which promotes sausage integrity.
  • the gaseous constituents consist for the most part of water vapor or steam, but also contain aromatic constituents and other volatile substances released during the heating steps for reddening and / or coagulation.
  • parboil sausage occurs as a rule at about 35 ° C within approximately 15 minutes; the coagulation must be carried out at temperatures above 45oC and takes place in conventional processes as a rule by heating in water or steam at temperatures between 70 and 100oC, usually at about 80 ° C in about another 45 minutes.
  • Raw sausage is produced from bulk sausage which contains fat and meat pieces of various size. During the reddening and ripening process the bulk sausage releases gaseous constituents from about 10 to 50%, as related to the raw (unprocessed bulk) weight. These gases constituents also consist for the most part of water vapor; however, they also contain aromatic constituents and substances volatile under the conditions of the reddening and / or ripening process.
  • the reddening and ripening of raw sausage occurs at temperatures not above 40 ° C, as a rule at around 20 ° C.
  • the reddening and ripening occurs quite slowly during the course of a few days up to several months. Some types of raw sausages are also smoked. In the reddening an d ripening process for others, as for instance, salami, muldew (mold) is expected to form.
  • original sausage making procedures the bulk sausage was injected into a natural intestine and subsequently subjected to the treatment required by a particular type of sausage.
  • Artificial intestines made of various materials have been known for quite some time. Most of the natural and artificial intestines used for sausage casings are ined ible and must be removed before consumption. Therefore, it has become the practice to peel the sausage casing right at the production plant.
  • caseless sausages are produced continuously by a machine that is provided with numerous molds, which after removal of the formed and cooked sausage, and after cleaning, can be used again.
  • One by one these molds pass through a fill station in the machine; a boiling or, as the case may be, a cooking oven; a cooling station; and a mold removal station, whereby between the mold removal station and the following fill station preferably a wash and / or cleaning station is provided.
  • the molds are preferably made of a material having a low coefficient of friction, for instance
  • tetrafluoroethylene This designation is obviously to mean “polytetrafluoroethylene” (PTFE). It is believed these PTFE molds are impermeable to gas and water vapor.
  • German Patent Publication DE-OS 27 56 995 refers to a process and apparatus for the production of a skinless, chord-like sausage by means of a hüll designed as a chord-shaped hollow body which is designated expressly as “practically medium-tight” or “practically medium-tight sealable”.
  • the inside of the hollow body may have a smooth anti-sticking layer which, for instance, could be a coating of polytetrafluoroethylene.
  • the raw bulk sausage is filled into the casing, then heated, possibly followed by cooling, and finally divided into suitable lengths.
  • the pressure created during heating due .to the expansion of the bulk sausage causes a pressure seal which prevents vapor evolved during cooking from reaching the casing exit.
  • viscose a viscous solution of cellulosexanthogenate, which is used for the production of viscose rayon, viscose staple fibers, viscose cellophane and viscose sponges
  • viscose impregnated paper tubes can be used for sausages that are to be smoked, because their permeability allows for some penetration of smoke, at least to a degree that exceeds the smoke penetration of most other known sausage casings.
  • the filled casings were lined up on a spit and then one after an other subjected in the smoke chambers to, in sequence: reddening drying smoking cooking or parboiling cooling After leaving the heat treatment, smoking and cooling chambers, the sausage casings were removed by peel machines in order to produce "skinless" sausages. For this process a relatively large amount of manual labor was required.
  • the present invention includes improvements to the process disclosed in US 4,371,554.
  • the production of parboil sausage according to the process invention disclosed in US 4,371,554 proceeds as follows: a) The raw bulk sausage can first be pre-reddened in a mixing machine under exclusion of oxygen. While not required to provide an integral, skinless sausage product, reddening is highly commercially desirable as the attractiveness of the final product is improved many-fold. b) The bulk sausage is filled into reusable casings and / or devices that are formed by a steam and water-vapor permeable membrane that is pliable, heat stable and non-adherent to bulk sausage by means of fill machines, paste fill machines or dividing machines.
  • the filled casings or devices can then be heated to approximately 35 ° C to attain a final desired degree of redness in a continuous reddening apparatus as, for example, by convection heating. Again, as with prereddening, this step is non-essential but highly commercially desirable. However, as this reddening step must be carried out with the sausage material in the casing, it adds to the casing cycle time and decreases the cost effectiveness of the process. d) Subsequently the filled casings or devices are heated for the coagulation step to about 60 ° C to
  • the filled casings or devices are cooled, for example, by means of cold water, cold air, etc.
  • the casings or devices are opened by automatic removal of the end caps, after which the sausage is ejected, for instance, by compressed air.
  • the empty casings are returned in a closed cycle to the fill station, whereby in suitable intervals cleaning takes place, as for instance by ultrasonic waves.
  • the sausages subsequently can be either continuously or intermittently smoked, on appropriate conveyors or Special racks having only a small contact area with each sausage.
  • the tanning effect of the smoke further contributes to the integrity of the final sausage product and the inclusion of the smoking step re Jerusalem the time required for heating-coagulating prior to removal of the sausage from the casing.
  • the sausages are cooled and are ready for shipment.
  • the present invention involves the discovery that the cycle time for the individual casings can be sub stantially reduced by the addition of a high temperature initial heating step before the reddening and / or coagulating steps.
  • the high temperature heating is ap plied to the sausage through the casing, preferably by a hot air circulating oven to cause coagulation and drying of the sausage protein layer immediately adjacent the casing to rapidly provide the integral thin skin-like layer completely surrounding the forming sausage .
  • the skin-like layer formed by the improved process was found to be stable enough and of sufficient durability to allow a significant reduction in the amount of coagulation of the bulk, inner sausage material necessary for ejection.
  • the remainder of the coagulating heating step was accomplished after ejection and in parallel with other process steps. Also, it was found practical to delay the final reddening step üntil after ejection, without a degradation in product appearance.
  • the present invention also involves the additional discovery that, for vapor-permeable casings, the inventive process disclosed above can be further improved by the step of deliberately plugging the pores of the casing with fat (lipids) prior to the filling step. It has been determined that the fat (lipids) in the pores prevents migration of undesirable protein matter into the pores during the filling step but that the high temperature initial heating step melts the fat allowing the gas and water vapor pressure to pneumatically open the pores to provide radial venting.
  • the addition of the plugging step to the inventive process described above has surprisingly allowed the use of porous casing materials having larger average pore sizes and larger casing thicknesses than the materials previously preferred, as in US 4,371,554, due to the "valve" effect of the fat (lipids) in the pores.
  • the present invention also encompasses the porous reusable casing having fat (lipids) plugging the pores.
  • the present invention also includes the still further discovery that some types and sizes of parboil and raw sausages can best be prepared by a high temperature initial heating process using reusable tubular casings formed of a material substantially impermeable to the flow of gas.
  • the ability to produce these types of caseless sausages without the need for a material capable of radially venting water vapor and other gas evolved during the fnitial heating step should enable the use of wider ranks of casing materials (non-porous, marginally porous, as well as porous) for making reusable casings for certain sausage types and sizes, and possible cost savings.
  • the process for the production of caseless parboil or raw sausages using multiple-reusable tubular casings comprises the Steps of filling reusable casings with sausage material containing protein and fat (lipids), initially heating the outside surfaces of the filled casings to a high temperature for a time suffi cient to coagulate substantially only the sausage material protein immediately adjacent the inner surfaces of the casings to rapidly form a skin-like layer, and release the fat (lipids) from the sausage material in the skin-like layer, the released fat (lipids) flowing to, and collecting at, the inner surface of the casing; and removing the sausage material from the tubular casing, the integrity of the casing being maintained during the removing step, wherein the time and temperature of the initial heating step are seiected to provide a continuous skin-like layer of coagulated protein sufficiently cohesive to retain the removed sausage material
  • Fig. 1 is a schematic diagram of one emodiment of the process of the invention for making skinless sausages
  • FIG. 2 is a schematic diagram of another emodiment of the present invention.
  • Fig. 2 is a schematic diagram of yet another emodiment of the present invention for making skinless sausages
  • the improved process of the present invention is best described in relation to the processes disclosed in U.S. 4,371,554 which is set forth above.
  • the Becker process yielded skinless sausages of acceptable quality, and at a production rate suitable for commercial operation. Tests had shown that the cycle time for an individual reusable casing in the Becker process was about 45 minutes, that is, from filling, through in-casing processing, to refilling. This was believed to be the minimum time necessary to achieve a self-supporting sausage product witn sufficient internal cohesion to allow further processing (such as smoking) outside the reusable casing.
  • sausage material such as raw meat and fat pieces or sausage emulsion is loaded into a radially porous reusable casing, for example the pliable microporous expanded PTFE casing such as disclosed in US 4,371,554.
  • a radially porous reusable casing for example the pliable microporous expanded PTFE casing such as disclosed in US 4,371,554.
  • the sausage material can be first prereddened, as explained previ ously.
  • the filled casing is initially heated by exposing the outer surface of the casing to a high temperature heat source which coagulates and dries substantially only the sausage material immediately adjacent the casing inner surface.
  • the high rate of heat transfer in the process of the present invention results in the rapid formation of skin-like region of approximately 1 mm in thickness. This 1 mm skin enables the subsequent in-casing heating for reddening and coagulating to he drastically curtailed and still result in a sausage that maintains sufficient integrity to withstand ejection and further processing in a "naked" condition.
  • the filled casings are placed in a circulating hot air chamber at about 175 ° C for approximately 2 minutes, during which time the "skin" forms.
  • the 175 ° C was the maximum temperature obtainable in the apparatus used to test the disclosed process, and higher temperatures were considered within the scope of that invention. It is anticipated that higher temperatures would allow shorter heating times than the 2 minutes to achieve the same degree of "skin" formation, while temperatures lower than 175 ° C would require longer heating times.
  • the upper temperature limit if one exists, may be dictated by the limitation of the casing material.
  • the softening temperature of the PTFE used in the casing disclosed in US 4,371,554 is about 270 ° C.
  • the casing is showered or immersed in cold water for about 30 seconds and the sausage ejected.
  • the empty casing then proceeds along process path 12, as shown in Fig. 1, for refilling.
  • the "naked" sausages can then be further heated for increased redness and / or coagulation and smoked, cooled, packed and shipped, as depicted in Fig. 1 along parallel process path 14.
  • the casing support structure should consist of perforated synthetic materials like polyamide or sintered unstretched polytetrafluoroethylene.
  • the process of the present invention as shown in the Fig. 1 embodiment include the step of pre-wetting the casings to deposit water on the inside surface of the porous PTFE layer prior to the filling step.
  • the casings are either simply showered or immersed in water, and it was found that a small but adequate amount of water adhered to the inner surface for purposes of the invention. It is believed that the water residue immediately adjacent the sausage outer layer quickly vaporizes during the high temperature heating step and provided increased heat transfer. This theory per se is not considered part of the present invention but merely an attempt to explain the observed phenomenon.
  • the present invention also involves the further discovery that vapor-permeable casing materials having average pore sizes larger than those recommended in US 4,371,554 can also be used in the above-described process if an additional, preliminary step is taken, namely to deliberately fill or plug the pores of the porous material casing layer which contacts the sausage material with fat (lipids) before filling the casing with the sausage material and applying the initial heating step.
  • the embodiment of the present invention depicted in Fig. 2 includes such a pore-filling step. Further testing revealed that the aforementioned accumulation of fat (lipids) enters the pores, solidifies, and fills up the casing pores before the permeable casing is refilled with meat emulsions.
  • this accumulation does not hinder the ability of the casing to radially vent water vapor and other gases because the temperature and water vapor pressures achieved during the high temperature initial heating step first melts the fat (lipids) in the pores and then pneumatically create a gas flow path through the pores.
  • Fat which normally are used for sausage production are: a) Backfat and belly from pork b) Fat enclosed by or enclosing meat muscle (inter-muscular or surface fats) from pork and beef
  • connective tissue consist of connective tissue (collagen), in which fat (lipids) - composed of about 98-99% of triglycerides - are embodied.
  • fat lipids
  • lipids composed of about 98-99% of triglycerides - are embodied.
  • lipid soluble components such as fatty acids, fat soluble vitamins, colesterols and substances which together account for less than 1%.
  • the release of the fat from the connective tissue is greater the longer the period of heating or the higher the temperature.
  • the meat emulsions used in the tests were prepared from meat muscle (lean meat), connective tissue (such as murs and pork skin, etc.), and fat tissue containing the fats, as well as certain ingredients.
  • the emulsifying procedure was done by cutting down the materials to very small particles with a bowlcutter or an emulsifier. During this procedure the fat tissue as well as the meat tissue is broken down to very small particles but the fat is still contained within the fat-bearing tissue pieces.
  • the cutting causes a release of water soluble proteins. These water soluble proteins surround the fat particles fixing them during the smoking and coagulating steps and thereby preventing subsequent separation.
  • polytetrafluoroethylene is lipophilic, the pores readily fill up with the meat lipids. At low temperatures these meat fats are solid and thus close off the pores during the filling of the permeable casings with meat emulsions. At higher temperatures, the fat (lipids) becomes fluid and then, when water vapor pressure develops inside the casings, the water vapor opens the pores by ejecting the fluid fat. During cooling, the fat again closes the pores so that a penetration of water soluble protein into the pores is prevented.
  • the total pore volume normally fills up very slowly during sausage production because there are only small amounts of fat released from the bulk sausage. It was found that about 10-20 cycles are needed to achieve saturation. But it was also found that the portions of the pores adjacent to the bulk sausage can take up sufficient fat to close after the first cycle.
  • casings made from porous PTFE tubes having an average pore size of about 1-2 m commercially available from Chemplast, Inc., Wayne, NJ, under the designation Zitex G-100. Before their initial use, some of these casings were coated on the inside surface with a vegetable oil-based food release agent (PAM, sold by Boyle Midway Inc., New York, NY) while others were rinsed with heated fat, tallow, pore fat, etc. (normally solid at room temperature) which solidified within the casing pores during cooling. The casings were then filled with unprocessed sausage material and initially heated by placing them in a hot air oven at 200-220oC for about 2 minutes.
  • PAM vegetable oil-based food release agent
  • the filled casings were cooled without further in-casing heating, the formed sausages axially ejected, and the casings simply rinsed and then refilled, etc.
  • the sausage could be successfully ejected immediately after the initial heating step, that is, without either addi tional heating or subsequent cooling.
  • the first formed sausage from each casing could be ejected with slight pressure, in each case the sausages formed subsequently were ejected more easily and, in most in stances, could be slid out by gravity alone.
  • the inside surface of the permeable casing can be initially coated with saturated lipids such as liquified animal fat before the initial filling, or before the first filling following a thorough cleaning.
  • the sausage surface temperatures had not been actually measured in these additional tests, it was believed that in the initial heating step of the present process the temperatures on the surface of the bulk sausages approach 100 ° C, with the exact surface temperature depending on the thickness of the casing, time of the heat treatment, and the oven temperature. It was believed that the sausage surface temperature should be high enough to cause the fat to melt out from the fat tissue, penetrate through the meat proteins, and migrate into the porous casing.
  • this preferential migration of fat (lipids) to the sausage surface may enable porous organo-polymeric materials different from porous PTFE to be utilized in the skinless sausage making process, as the accumulation of fat (lipids) between the formed sausäge and the casing inner surface would be expected to counteract the differences in the food release properties exhibited by the non-PTFE materials when compared to porous PTFE.
  • these porous non-PTFE materials must have the capability of withstanding the temperatures used in the processing and be compatible with foodstuffs.
  • this embodiment of the improved process of the present invention depicted schematically therein includes a step 20 requiring, before filling, plugging casing pores with fat (lipids) to be applied to new casings or casings having been thoroughly cleaned, that is, the fat (lipids) having been cleaned from the pores (alternative process path 22). Otherwise, as shown by process path 12, the empty casings are simply rinsed and then refilled, the pores remaining plugged with fat (lipids) from the previous cycle.
  • Alternative path 24 in Fig. 2 depicts, schematically, the variation in the process of this embodiment of the. present invention, of which uses porous materials with large pore sizes, wherein the separate cooling of the filled casing, such as by immersion or spraying with ice water, is eliminated.
  • Alternative path 26 in Fig. 2 depicts the variation wherein both the separate partial coagulation step (eg microwave heating) and the quick cooling step are eliminated.
  • the additional testing showed that these separate process steps were not required for making skinless sausages of the frankfurteresize. However, for larger sausage size (eg bologna, etc.) it may be preferred to have a separate partial coagulation step, using microwave heating, for instance, and / or a quick cooling step.
  • the process of the present invention for using a high temperature initial heating step with a gas-impermeable casing includes the steps of filling the impermeable casings with sausage material, then initially heating the outside surface of the casing for a time and high temperature sufficient to create a skin-like layer of coagulated protein on the surface of the sausage and an accumulation on the casing inner surface of fat (lipids) released from the sausage skin-like layer, which layer will enable the formed sausage to be self-supporting during the subsequent ejection step.
  • fat lipids
  • PTFE polytetrafluoroethylene
  • Fig. 3 The preferred overall process for using the reusable impermeable casings is depicted in the embodiment shown in Fig. 3.
  • the Fig. 3 process for the most part follows the earlier discussion of the Fig. 2 process, which utilizes a porous casing material.
  • initially coating the new (and thoroughly cleaned) casings with fat (lipids) may provide better initial release properties.
  • Lipophilic materials such as PTFE that are able to retairi the fat (lipids) can be used in the process of the present invention.
  • the sausages should be ejected from the casings before any substantial coagulation of the sausage material is effected because the impermeable casings will not allow the release of the steam, water vapor, and other gases released during the coagulation process. It has been found that the gases and water vapor released during the coagulation of the small amount of material to form the skin-like layer can be accommodated within the casing and sausage material itself. This accommodation, together with the fact that the sausage material remains stationary within the casing during the high temperature initial heating step, permits the formation of a skin-like layer sufficiently strong to allow ejection and handling (smoking, coagulating, etc.) outside the casing. As with the process of the embodiment shown in Fig. 2, it may be possible to avoid the quick cooling step and eject immediately after removable from the apparatus used to accomplish high temperature surface heating. This is shown as alternative path 24 in the Fig. 3 schematic.
  • the Chemloy® tubes used for the frankfurter sausage had an I.D. of 25 mm, a wall thickness of about 1 mm, and a length of about 15 cm.
  • the PTFE material was stated to have a density of between about 2.14 and 2.20 g / cc.
  • the tubes were filled with sausage mixture con sisting of an emulsion of meat (pork), fat, and water which leaves the cutter at about 14-16 ° C with a water content of about 60%.
  • the filled tubes were then closed with non-porous PTFE end caps.
  • Some of the filled tubes were placed in a circulating hot air oven at 175 ° C for about 3 minutes and others were similarly treated but at 250 ° C for between about 1 minute 45 seconds and 2 minutes.
  • the skins formed by the high temperature initial heating step averaged less than 1 mm and were about 1.3 mm in thickness, and it appeared that higher temperature and shorter duration initial heating conditions provide thinner skins, possibly due to the steeper temperature gradient into the sausage.
  • the formed sausages were smolced in a smoking chamber for 30 minutes at 55oC and about 65-70% relative humidity (RH).
  • the sausages were dried for 15 minutes at a very low relative humidity (zero setting on the smokehouse humidity control), and then reddened at 55 ° C in the same smoking chamber for 30 minutes at 70% RH.
  • the sausages were then finally coagulated by heating for an additional 10-15 minutes but at 100% RH. After cooling by a water shower, the sausages were found to have an acceptable appearance, texture and flavor.
  • the smoking and drying steps can be tailored to influence the final skin thickness. For instance, lower relative humidities during the smoking step will, in general, result in a thicker skin.
  • the same size Chemloy® tubes were used.
  • the tubes were filled with a mixture of meat and fat which exits the cutter at -4 ° C, and then end caps applied.
  • the filled tubes were then subjected to the same initial heating conditions as the frankfurter type. Again, the formed sausages could be ejected as an integral shaped-mass and held their shape during subsequent handling.
  • the minisalami sausages were smoked at 26 ° C and about 65-70% RH for 30 minutes and then allowed to stabilize for about 24 hours at 35 ° C and RH between about 50-60% with the lower RH values occurring toward the end of the stabilizing period. During this period a moisture loss of about 1/3 occurs; the original moisture content of the sausage mixture was about 40%.
  • the completed minisalami sausages made by the disclosed initial high temperature heating process of the present invention using impermeable casings were acceptable from the standpoint of appearance, texture and flavor.
  • Minisalami type sausages are conventionally cured (dried) in the casings and at room temperature to avoid rendering the fat and spoiling the sausage.
  • the drying times can be reduced by the present process because the sausages can be dried outside the casing.
  • These same new sausage types were also made using the initial high temperature heating step but with porous tube casings from Chemplast (20 mm ID, about 1 mm in thickness).
  • the finished sausages were also acceptable, and no significant difference between tHese and the sausages made using the impermeable tube casings was observed.
  • impermeable plastic materials were used during the overall course of the experiments and tests.
  • impermeable PTFE tubes 24 mm ID
  • a green epoxy resin material having an embedded fiber glass backing were used.
  • End caps of impermeable PTFE, Delrin® (DuPont Trademark for an acetal resin-type plastic material), clear polyethylene, and PVC were used so that frankfurter and minisalami types could be ejected, with a continuous coagulated protein skin and a substantially uncoagulated interior, from all three tube materials.
  • the sausages did not eject as easily from the polypropylene tubes as from the PTFE tubes. Sausages could be ejected from both tubes more easily after several cycles with only water rinse between cycles.
  • the sausages made using the epoxy tubes had an off-odor and taste, possibly making the use of this material not commercially attractive.
  • casing materials should be heat resistant, lipophilic, non-polar and be compatible with foodstuffs. So, the casing materials should be resistant to swelling in the presence of fats (lipids), and be resistant to any solvents used in the thorough cleaning process.
  • various casing cross-sectional shapes (round, square, etc.) and different casing constructions can be used in the process of the present inventions as, for instance, a metal tube having liner of, eg, PTFE bonded to the inner surface of the tube.
  • the metal outer layer eg, stainless steel
  • This con struction could allow the use of "clam-shell" -type casing wherein the sausage material could be removed from the casing without ejection along the longitudinal axis.
  • the new improved process of the invention provides a sausage that, such as the sausages produced by the process disclosed in U.S. 4,371,554 has far superior re resistance to bacterial contamination than sausages produced in the usüal water-vapor-impervious, one-use, cellulosic casings, which is the present industry standard for frankfurter production.
  • the procress of the present invention also is markedly superior to the process disclosed in U.S. 4,371,554 utilizing pliable porous reusable PTFE casings in that the sausage material spends less time in the casing permitting parallel processing and reduces cycle times for the casings.
  • the process disclosed in permits the use of substantially impermeable casing materials which, in turn, allows the use of stronger, more durable casings to be employed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Meat, Egg Or Seafood Products (AREA)
  • Processing Of Meat And Fish (AREA)

Abstract

Une enveloppe tubulaire réutilisable en matériau poreux ou imperméable compatible avec un produit alimentaire est utilisée pour la fabrication de "saucisses sans peau" par un procédé consistant à remplir l'enveloppe avec un matériau non-coagulé pour saucisses contenant des protéines et des matières grasses (lipides) et à chauffer l'enveloppe au départ à une température élevée pendant une courte période de temps (p.ex. environ 175-250oC pendant 2-3 minutes) dans le but de coaguler de préférence le matériau protéinique adjacent à l'enveloppe et former une couche de cohésion ressemblant à une peau. La saucisse est alors extraite par éjection pour effectuer des traitements ultérieurs tels que le fumage, séchage, le rougeoiement et la coagulation finale, l'enveloppe étant simplement rincée et remplie de nouveau. Du polytétrafluoroéthylène imperméable est utilisé comme matériau d'enveloppe réutilisable.A reusable tubular casing made of porous or impermeable material compatible with a food product is used for the manufacture of "skinless sausages" by a process consisting in filling the casing with a non-coagulated sausage material containing proteins and fats ( lipids) and to heat the envelope initially at a high temperature for a short period of time (eg around 175-250oC for 2-3 minutes) in order to preferably coagulate the proteinaceous material adjacent to the envelope and form a skin-like cohesive layer. The sausage is then extracted by ejection to carry out further treatments such as smoking, drying, glowing and final coagulation, the envelope being simply rinsed and refilled. Waterproof polytetrafluoroethylene is used as the reusable envelope material.

Description

PROCESS FOR USING MULTIPLE REUSABLE TUBULAR CASINGS BACKGROUND OF THE INVENTION PROCESS FOR USING MULTIPLE REUSABLE TUBULAR CASINGS BACKGROUND OF THE INVENTION
1. Field of the Invention:1. Field of the Invention:
This invention relates to an improved process for making caseless (skinless) sausage. In particular, this invention relates to a particular improved process for using reusable tubular casings for making parboil or raw sausage.This invention relates to an improved process for making caseless (skinless) sausage. In particular, this invention relates to a particular improved process for using reusable tubular casings for making parboil or raw sausage.
2. Description of the Prior Art:2. Description of the Prior Art:
In general, the art recognized three types of sausages: cooking sausage, parboil sausage, and raw sausage. Cooking sausage has a high fat and protein content and accordingly contains a smaller amount of water than the parboil sausage. For this reason cooking sausage releases practically no water during the heating process, and can therefore be produced in casings that are impenetrable by water vapor and steam evolved during the sausage-making process. For example, many organic polymeric materials that are impervious to water and steam can be used with cooking sausage.In general, the art recognized three types of sausages: cooking sausage, parboil sausage, and raw sausage. Cooking sausage has a high fat and protein content and accordingly contains a smaller amount of water than the parboil sausage. For this reason cooking sausage releases practically no water during the heating process, and can therefore be produced in casings that are impenetrable by water vapor and steam evolved during the sausage-making process. For example, many organic polymeric materials that are impervious to water and steam can be used with cooking sausage.
On the other hand, a larger amount of water is released during reddening and coagulation of the parboil sausage, and during the reddening and ripening process for raw sausage.On the other hand, a larger amount of water is released during reddening and coagulation of the parboil sausage, and during the reddening and ripening process for raw sausage.
Parboil sausage is produced from an emulsion in water of a protein and fat. During the formation of this emulsion in high capacity grinding or cutting machines, ice is used for cooling. For this reason, the bulk sausage contains more water than is permissible for the perservation of the sausage. Therefore, the bulk sausage must release about 5 to 50% (as an average about 10%) gaseous constituents, in relation to the raw (unprocessed sausage meat) weight during the entire sausage-making process. Generally speaking, a higher percentage of water is removed from the sausage material at the outside surface of the formed sausage to produce a cohesive, skin-like layer which promotes sausage integrity. The gaseous constituents consist for the most part of water vapor or steam, but also contain aromatic constituents and other volatile substances released during the heating steps for reddening and/or coagulation.Parboil sausage is produced from an emulsion in water of a protein and fat. During the formation of this emulsion in high capacity grinding or cutting machines, ice is used for cooling. For this reason, the bulk sausage contains more water than is permissible for the perservation of the sausage. Therefore, the bulk sausage must release about 5 to 50% (as an average about 10%) gaseous constituents, in relation to the raw (unprocessed sausage meat) weight during the entire sausage-making process. Generally speaking, a higher percentage of water is removed from the sausage material at the outside surface of the formed sausage to produce a cohesive, skin-like layer which promotes sausage integrity. The gaseous constituents consist for the most part of water vapor or steam, but also contain aromatic constituents and other volatile substances released during the heating steps for reddening and / or coagulation.
The reddening of parboil sausage occurs as a rule at about 35°C within approximately 15 minutes; the coagulation must be carried out at temperatures above 45ºC and takes place in conventional processes as a rule by heating in water or steam at temperatures between 70 and 100ºC, usually at about 80°C in about another 45 minutes.The reddening of parboil sausage occurs as a rule at about 35 ° C within approximately 15 minutes; the coagulation must be carried out at temperatures above 45ºC and takes place in conventional processes as a rule by heating in water or steam at temperatures between 70 and 100ºC, usually at about 80 ° C in about another 45 minutes.
Almost all parboil sausages are smoked. It is a general practice to complete the smoking process after reddening, but before coagulation. Since the artificial sausage casings in use at the present time have little permeability for smoke, the smoking process normally takes a long time, up to about an additional 45 minutes.Almost all parboil sausages are smoked. It is a general practice to complete the smoking process after reddening, but before coagulation. Since the artificial sausage casings in use at the present time have little permeability for smoke, the smoking process normally takes a long time, up to about an additional 45 minutes.
Raw sausage is produced from bulk sausage which contains fat and meat pieces of various size. During the reddening and ripening process the bulk sausage releases gaseous constituents from about 10 to 50%, as related to the raw (unprocessed bulk) weight. These gaseous constituents also consist for the most part of water vapor; however, they also contain aromatic constituents and substances volatile under the conditions of the reddening and/or ripening process.Raw sausage is produced from bulk sausage which contains fat and meat pieces of various size. During the reddening and ripening process the bulk sausage releases gaseous constituents from about 10 to 50%, as related to the raw (unprocessed bulk) weight. These gases constituents also consist for the most part of water vapor; however, they also contain aromatic constituents and substances volatile under the conditions of the reddening and / or ripening process.
The reddening and ripening of raw sausage occurs at temperatures not above 40°C, as a rule at around 20°C. The reddening and ripening occurs quite slowly during the course of a few days up to several months. Some types of raw sausages are also smoked. In the reddening and ripening process for others, as for instance, salami, muldew (mold) is expected to form. In original sausage making procedures, the bulk sausage was injected into a natural intestine and subsequently subjected to the treatment required by a particular type of sausage. Artificial intestines made of various materials have been known for quite some time. Most of the natural and artificial intestines used for sausage casings are ined ible and must be removed before consumption. Therefore, it has become the practice to peel the sausage casing right at the production plant.The reddening and ripening of raw sausage occurs at temperatures not above 40 ° C, as a rule at around 20 ° C. The reddening and ripening occurs quite slowly during the course of a few days up to several months. Some types of raw sausages are also smoked. In the reddening an d ripening process for others, as for instance, salami, muldew (mold) is expected to form. In original sausage making procedures, the bulk sausage was injected into a natural intestine and subsequently subjected to the treatment required by a particular type of sausage. Artificial intestines made of various materials have been known for quite some time. Most of the natural and artificial intestines used for sausage casings are ined ible and must be removed before consumption. Therefore, it has become the practice to peel the sausage casing right at the production plant.
Another technique has been used in sausage making, namely the production of so-called caseless sausages (also designated as skinless sausages), in order to re duce the expense incurred in peeling the sausage casings, the loss of sausage material because the sausages break when the casings are peeled away, and, in addition, tne quite sizable cost of the casings themselves.Another technique has been used in sausage making, namely the production of so-called caseless sausages (also designated as skinless sausages), in order to re duce the expense incurred in peeling the sausage casings, the loss of sausage material because the sausages break when the casings are peeled away, and, in addition, tne quite sizable cost of the casings themselves.
According to German Patent Publication De-OS-25 23 506, caseless sausages are produced continuously by a machine that is provided with numerous molds, which after removal of the formed and cooked sausage, and after cleaning, can be used again. One by one these molds pass through a fill Station in the machine; a boiling or, as the case may be, a cooking oven; a cooling station; and a mold removal station, whereby between the mold removal Station and the following fill station preferably a wash and/or cleaning station is provided. The molds are preferably made of a material häving a low coefficient of friction, for instanceAccording to German Patent Publication De-OS-25 23 506, caseless sausages are produced continuously by a machine that is provided with numerous molds, which after removal of the formed and cooked sausage, and after cleaning, can be used again. One by one these molds pass through a fill station in the machine; a boiling or, as the case may be, a cooking oven; a cooling station; and a mold removal station, whereby between the mold removal station and the following fill station preferably a wash and / or cleaning station is provided. The molds are preferably made of a material having a low coefficient of friction, for instance
"tetrafluoroethylene". This designation obviously is to mean "polytetrafluoroethylene" (PTFE). It is believed these PTFE molds are impermeable to gas and water vapor. German Patent Publication DE-OS 27 56 995 refers to a process and apparatus for the production of a skinless, chord-like sausage by means of a hüll designed as a chord-shaped hollow body which is designated expressly as "practically medium-tight" or "practically medium-tight sealable". The inside of the hollow body may have a smooth anti-sticking layer which, for instance, could be a coating of polytetrafluoroethylene. According to the process described in DE-OS 27 56 995, the raw bulk sausage is filled into the casing, then heated, possibly followed by cooling, and finally divided into suitable lengths. The pressure created during heating due .to the expansion of the bulk sausage causes a pressure seal which prevents vapor evolved during cooking from reaching the casing exit."tetrafluoroethylene". This designation is obviously to mean "polytetrafluoroethylene" (PTFE). It is believed these PTFE molds are impermeable to gas and water vapor. German Patent Publication DE-OS 27 56 995 refers to a process and apparatus for the production of a skinless, chord-like sausage by means of a hüll designed as a chord-shaped hollow body which is designated expressly as "practically medium-tight" or "practically medium-tight sealable". The inside of the hollow body may have a smooth anti-sticking layer which, for instance, could be a coating of polytetrafluoroethylene. According to the process described in DE-OS 27 56 995, the raw bulk sausage is filled into the casing, then heated, possibly followed by cooling, and finally divided into suitable lengths. The pressure created during heating due .to the expansion of the bulk sausage causes a pressure seal which prevents vapor evolved during cooking from reaching the casing exit.
It is also known that a special paper made into an endless tube can be impregnated with viscose (a viscous solution of cellulosexanthogenate, which is used for the production of viscose rayon, viscose staple fibers, viscose cellophane and viscose sponges), to form a tubular casing which has a degree of porosity which permits the exchange of mositure and steam. Such viscose impregnated paper tubes can be used for sausages that are to be smoked, because their permeability allows for some penetration of smoke, at least to a degree that exceeds the smoke penetration of most other known sausage casings.It is also known that a special paper made into an endless tube can be impregnated with viscose (a viscous solution of cellulosexanthogenate, which is used for the production of viscose rayon, viscose staple fibers, viscose cellophane and viscose sponges), to form a tubular casing which has a degree of porosity which permits the exchange of mositure and steam. Such viscose impregnated paper tubes can be used for sausages that are to be smoked, because their permeability allows for some penetration of smoke, at least to a degree that exceeds the smoke penetration of most other known sausage casings.
Expeirience has shown that all known multiple reusable but nonporous casings are not suitable for use with Convention processes for the production of sausage types which must release water vapor, steam and other gaseous constituents, because it is not possible to remove the water vapor, steam and other gaseous constituents from the surface of the sausage material.Expeirience has shown that all known multiple reusable but nonporous casings are not suitable for use with Convention processes for the production of sausage types which must release water vapor, steam and other gaseous constituents, because it is not possible to remove the water vapor, steam and other gaseous constituents from the surface of the sausage material.
Also, a previous effort to use a finely perforated sausage wrapper having a large number of holes per square centimeter proved to have severe shortcomings with respect to providing a smooth outer surface, and presented cleaning problems. In the U.S. Patent 4,371,554 of H. Becker, there is disclosed a novel reusable casing made from highly porous polytetrafluoroethylene, and associated apparatus and process for making skinless sausages. Prior to the invention described in U.S. 4,371,554, the only commer cially practical way to produce "skinless" sausages was to use disposable cellulosic or other artificial casings, capable of only a single use. Machines were used to fill the casings with the bulk sausage. The filled casings were lined up on a spit and then one after an other subjected in the smoke chambers to, in sequence: reddening drying smoking cooking or parboiling cooling After leaving the heat treatment, smoking and cooling chambers, the sausage casings were removed by peel machines in order to produce "skinless" sausages. For this process a relatively large amount of manual labor was required.Also, a previous effort to use a finely perforated sausage wrapper having a large number of holes per square centimeter proved to have severe shortcomings with respect to providing a smooth outer surface, and presented cleaning problems. In US Patent 4,371,554 of H. Becker, there is disclosed a novel reusable casing made from highly porous polytetrafluoroethylene, and associated apparatus and process for making skinless sausages. Prior to the invention described in US 4,371,554, the only commer cially practical way to produce "skinless" sausages was to use disposable cellulosic or other artificial casings, capable of only a single use. Machines were used to fill the casings with the bulk sausage. The filled casings were lined up on a spit and then one after an other subjected in the smoke chambers to, in sequence: reddening drying smoking cooking or parboiling cooling After leaving the heat treatment, smoking and cooling chambers, the sausage casings were removed by peel machines in order to produce "skinless" sausages. For this process a relatively large amount of manual labor was required.
SUMMARY OF THE INVENTION The present invention includes improvements to the process disclosed in U.S. 4,371,554. The production of parboil sausage according to the process invention disclosed in U.S. 4,371,554 proceeds as follows: a) The raw bulk sausage can first be pre-reddened in a mixing machine under exclusion of oxygen. While not required to provide an integral, skinless sausage product, reddening is highly commercially desirable as the attractiveness of the final product is improved many-fold. b) The bulk sausage is filled into reusable casings and/or devices that are formed by a steam and water-vapor permeable membrane that is pliable, heat stable and non-adherent to bulk sausage by means of fill machines, paste fill machines or dividing machines. c) The filled casings or devices can then be heated to approximately 35°C to attain a final desired degree of redness in a continuous reddening apparatus as, for example, by convection heating. Again, as with prereddening, this step is non-essential but highly commercially desirable. However, as this reddening step must be carried out with the sausage material in the casing, it adds to the casing cycle time and decreases the cost effectiveness of the process. d) Subsequently the filled casings or devices are heated for the coagulation step to about 60°C toSUMMARY OF THE INVENTION The present invention includes improvements to the process disclosed in US 4,371,554. The production of parboil sausage according to the process invention disclosed in US 4,371,554 proceeds as follows: a) The raw bulk sausage can first be pre-reddened in a mixing machine under exclusion of oxygen. While not required to provide an integral, skinless sausage product, reddening is highly commercially desirable as the attractiveness of the final product is improved many-fold. b) The bulk sausage is filled into reusable casings and / or devices that are formed by a steam and water-vapor permeable membrane that is pliable, heat stable and non-adherent to bulk sausage by means of fill machines, paste fill machines or dividing machines. c) The filled casings or devices can then be heated to approximately 35 ° C to attain a final desired degree of redness in a continuous reddening apparatus as, for example, by convection heating. Again, as with prereddening, this step is non-essential but highly commercially desirable. However, as this reddening step must be carried out with the sausage material in the casing, it adds to the casing cycle time and decreases the cost effectiveness of the process. d) Subsequently the filled casings or devices are heated for the coagulation step to about 60 ° C to
80°C, as, for instance, in the customary way by steam or hot air or specially advantageously by means of microwave energy. In this step, a thin skin-like layer is formed surrounding the sausage material, in addition to bulk sausage material itself by the coagulation. This skin-like layer helps to maintain the integrity of the sausarge during the ejection step (to be discussed hereinafter) even though the sausage material has not yet been smoked. The ability to smoke the sausages outside the casing understandably results in decreased smoking time. e) Next, the filled casings or devices are cooled, for example, by means of cold water, cold air, etc. f) Now the casings or devices are opened by automatic removal of the end caps, after which the sausage is ejected, for instance, by compressed air. The empty casings are returned in a closed cycle to the fill station, whereby in suitable intervals cleaning takes place, as for instance by ultrasonic waves. g) The sausages subsequently can be either continuously or intermittently smoked, on appropriate conveyors or Special racks having only a small contact area with each sausage. The tanning effect of the smoke further contributes to the integrity of the final sausage product and the inclusion of the smoking step re duces the time required for heating-coagulating prior to removal of the sausage from the casing. h) Subsequently, the sausages are cooled and are ready for shipment.80 ° C, as, for instance, in the customary way by steam or hot air or specially suitable by means of microwave energy. In this step, a thin skin-like layer is formed surrounding the sausage material, in addition to bulk sausage material itself by the coagulation. This skin-like layer helps to maintain the integrity of the sausarge during the ejection step (to be discussed below) even though the sausage material has not yet been smoked. The ability to smoke the sausages outside the casing understandably results in decreased smoking time. e) Next, the filled casings or devices are cooled, for example, by means of cold water, cold air, etc. f) Now the casings or devices are opened by automatic removal of the end caps, after which the sausage is ejected, for instance, by compressed air. The empty casings are returned in a closed cycle to the fill station, whereby in suitable intervals cleaning takes place, as for instance by ultrasonic waves. g) The sausages subsequently can be either continuously or intermittently smoked, on appropriate conveyors or Special racks having only a small contact area with each sausage. The tanning effect of the smoke further contributes to the integrity of the final sausage product and the inclusion of the smoking step re duces the time required for heating-coagulating prior to removal of the sausage from the casing. h) Subsequently, the sausages are cooled and are ready for shipment.
The present invention involves the discovery that the cycle time for the individual casings can be sub stantially reduced by the addition of a high temperature initial heating step before the reddening and/or coagulating steps. The high temperature heating is ap plied to the sausage through the casing, preferably by a hot air circulating oven to cause coagulation and drying of the sausage protein layer immediately adjacent the casing to rapidly provide the integral thin skin-like layer completely surrounding the forming sausage. The skin-like layer formed by the improved process was found to be stable enough and of sufficient durability to allow a significant reduction in the amount of coagulation of the bulk, inner sausage material necessary for ejection. The remainder of the coagulating heating step was accomplished after ejection and in parallel with other process steps. Also, it was found practical to delay the final reddening step üntil after ejection, without a degradation in product appearance.The present invention involves the discovery that the cycle time for the individual casings can be sub stantially reduced by the addition of a high temperature initial heating step before the reddening and / or coagulating steps. The high temperature heating is ap plied to the sausage through the casing, preferably by a hot air circulating oven to cause coagulation and drying of the sausage protein layer immediately adjacent the casing to rapidly provide the integral thin skin-like layer completely surrounding the forming sausage . The skin-like layer formed by the improved process was found to be stable enough and of sufficient durability to allow a significant reduction in the amount of coagulation of the bulk, inner sausage material necessary for ejection. The remainder of the coagulating heating step was accomplished after ejection and in parallel with other process steps. Also, it was found practical to delay the final reddening step üntil after ejection, without a degradation in product appearance.
The present invention also involves the additional discovery that, for vapor-permeable casings, the inventive process disclosed above can be further improved by the step of deliberately plugging the pores of the casing with fat (lipids) prior to the filling step. It has been determined that the fat ( lipids ) in the pores prevents migration of undesirable protein matter into the pores during the filling step but thät the high temperature initial heating step melts the fat allowing the gas and water vapor pressure to pneumatically open the pores to provide radial venting. The addition of the plugging step to the inventive process described above has surprisingly allowed the use of porous casing materials having larger average pore sizes and larger casing thicknesses than the materials previously preferred, as in U.S. 4,371,554, due to the "valve" effect of the fat (lipids) in the pores. The present invention also encompasses the porous reusable casing having fat (lipids) plugging the pores.The present invention also involves the additional discovery that, for vapor-permeable casings, the inventive process disclosed above can be further improved by the step of deliberately plugging the pores of the casing with fat (lipids) prior to the filling step. It has been determined that the fat (lipids) in the pores prevents migration of undesirable protein matter into the pores during the filling step but that the high temperature initial heating step melts the fat allowing the gas and water vapor pressure to pneumatically open the pores to provide radial venting. The addition of the plugging step to the inventive process described above has surprisingly allowed the use of porous casing materials having larger average pore sizes and larger casing thicknesses than the materials previously preferred, as in US 4,371,554, due to the "valve" effect of the fat (lipids) in the pores. The present invention also encompasses the porous reusable casing having fat (lipids) plugging the pores.
The capital Investment of an installation for the production of sausages with multiple reusable casings, utilizing the processes disclosed in U.S. 4,371,554 or the improved process of the present invention, depends mainly on the period of time required for the sausage to remain in the casing. Therefore this time must be kept to a minimum. It has been found that the high temperature initial heating step provides a thin integral skin on the sausage which, together with partial coagulation of the sausage interior, enables the partially formed sausage to be handled. The release of water vapor, steam and other gaseous constituents from the surface region of the sausage, however, still occurs in the high temperature initial heating step while the sausage is in the casing. However, the amount of gas and water vapor release can be significantly reduced if the amount of partial coagulation is minimized.The capital investment of an installation for the production of sausages with multiple reusable casings, utilizing the processes disclosed in U.S. 4,371,554 or the improved process of the present invention, depends mainly on the period of time required for the sausage to remain in the casing. Therefore this time must be kept to a minimum. It has been found that the high temperature initial heating step provides a thin integral skin on the sausage which, together with partial coagulation of the sausage interior, enables the partially formed sausage to be handled. The release of water vapor, steam and other gaseous constituents from the surface region of the sausage, however, still occurs in the high temperature initial heating step while the sausage is in the casing. However, the amount of gas and water vapor release can be significantly reduced if the amount of partial coagulation is minimized.
The present invention also includes the still further discovery that some types and sizes of parboil and raw sausages can advantageously be prepared by a high temperature initial heating process using reusable tubular casings formed of a material substantially impermeable to the flow of gas. The ability to produce these types of caseless sausages without the need for a material capable of radially venting water vapor and other gas evolved during the fnitial heating step should enable the use of wider ränge of casing materials (non-porous, marginally porous, as well as porous) for making reusable casings for certain sausage types and sizes, and possible cost savings.The present invention also includes the still further discovery that some types and sizes of parboil and raw sausages can best be prepared by a high temperature initial heating process using reusable tubular casings formed of a material substantially impermeable to the flow of gas. The ability to produce these types of caseless sausages without the need for a material capable of radially venting water vapor and other gas evolved during the fnitial heating step should enable the use of wider ranks of casing materials (non-porous, marginally porous, as well as porous) for making reusable casings for certain sausage types and sizes, and possible cost savings.
In accordance with the present invention, as embodied and disclosed herein, the process for the production of caseless parboil or raw sausages using multiple-reusable tubular casings, the casings being formed of a material which can be substantially porous, marginally porous or even substantially impermeable to gas, comprises the Steps of filling reusable casings with sausage material containing protein and fat (lipids), initially heating the outside surfaces of the filled casings to a high temperature for a time suffi cient to coagulate substantially only the sausage material protein immediately adjacent the inner surfaces of the casings to rapidly form a skin-like layer, and release the fat (lipids) from the sausage material in the skin-like layer, the released fat (lipids) flowing to, and collecting at, the inner surface of the casing; and removing the sausage material from the tubular casing, the integrity of the casing being maintained during the removing step, wherein the time and temperature of the initial heating step are seiected to provide a continuous skin-like layer of coagulated protein sufficiently cohesive to retain the removed sausage material in the shape of the tubular casing after removal, and wherein the sausage material in the casing is substantially uncoagulated at the start of the initial heating step.In accordance with the present invention, as embodied and disclosed in, the process for the production of caseless parboil or raw sausages using multiple-reusable tubular casings, the casings being formed of a material which can be substantially porous, marginally porous or even substantially impermeable to gas, comprises the Steps of filling reusable casings with sausage material containing protein and fat (lipids), initially heating the outside surfaces of the filled casings to a high temperature for a time suffi cient to coagulate substantially only the sausage material protein immediately adjacent the inner surfaces of the casings to rapidly form a skin-like layer, and release the fat (lipids) from the sausage material in the skin-like layer, the released fat (lipids) flowing to, and collecting at, the inner surface of the casing; and removing the sausage material from the tubular casing, the integrity of the casing being maintained during the removing step, wherein the time and temperature of the initial heating step are seiected to provide a continuous skin-like layer of coagulated protein sufficiently cohesive to retain the removed sausage material in the shape of the tubular casing after removal, and wherein the sausage material in the casing is substantially uncoagulated at the start of the initial heating step.
The accompanying drawing, which is incorporated in, and constitutes a part of, this specification illustrates the invention and, together with the description serve to explain the principles of the invention. BRIEF DESCRIPTION OF THE DRAWINGThe accompanying drawing, which is incorporated in, and constitutes a part of, this specification illustrates the invention and, together with the description serve to explain the principles of the invention. LETTER DESCRIPTION OF THE DRAWING
Fig. 1 is a schematic diagram of one emodiment of the process of the invention for making skinless sausages;Fig. 1 is a schematic diagram of one emodiment of the process of the invention for making skinless sausages;
Fig. 2 is a schematic diagram of another emodiment of the present invention; and2 is a schematic diagram of another emodiment of the present invention; and
Fig. 2 is a schematic diagram of yet another emodiment of the present invention for making skinless sausages;Fig. 2 is a schematic diagram of yet another emodiment of the present invention for making skinless sausages;
DESCRIPTION OF THE PREFERRED EMBODIMEKTSDESCRIPTION OF THE PREFERRED EMBODIMEKTS
The improved process of the present invention is best described in relation to the processes disclosed in U.S. 4,371,554 which is set forth above. The Becker process yielded skinless sausages of acceptable quality, and at a production rate suitable for commercial Operation. Tests had shown that the cycle time for an individual reusable casing in the Becker process was about 45 minutes, that is, from filling, through in-casing processing, to refilling. This was believed to be the minimum time necessary to achieve a self-supporting sausage product witn sufficient internal cohesion to allow further processing (such as smoking) outside the reusable casing. The smoking of "naked" sausages, of course, can be accomplished in much shorter time compared to a process wherein sausages are held in disposable cellulosic casings which tend to act like a filter. And, the fact that a process step could be performed outside the casing allowed parallel processing resulting in a more efficient operation.The improved process of the present invention is best described in relation to the processes disclosed in U.S. 4,371,554 which is set forth above. The Becker process yielded skinless sausages of acceptable quality, and at a production rate suitable for commercial operation. Tests had shown that the cycle time for an individual reusable casing in the Becker process was about 45 minutes, that is, from filling, through in-casing processing, to refilling. This was believed to be the minimum time necessary to achieve a self-supporting sausage product witn sufficient internal cohesion to allow further processing (such as smoking) outside the reusable casing. The smoking of "naked" sausages, of course, can be accomplished in much shorter time compared to a process wherein sausages are held in disposable cellulosic casings which tend to act like a filter. And, the fact that a process step could be performed outside the casing allowed parallel processing resulting in a more efficient operation.
It has been discovered that improvements to the process disclosed in U.S. 4,371,554 can result in greater than a 10 fold reduction in the cycle time for the casings, from about 45 minutes to approximately 3 minutes. The improvements, which constitute the present invention are expected to allow approximately 20 sausages to be produced per casing per hour, so that a nominal 30,000 sausage/hour frankfurter production line would require only about 1500 casings, instead of approximately 23,000 casings, a significant cost reduc tion.It has been discovered that improvements to the process disclosed in US 4,371,554 can result in greater than a 10 fold reduction in the cycle time for the casings, from about 45 minutes to approximately 3 minutes. The improvements, which constitute the present invention are expected to allow approximately 20 sausages to be produced per casing per hour, so that a nominal 30,000 sausage / hour frankfurter production line would require only about 1500 casings, instead of approximately 23,000 casings, a significant cost reduction.
With reference to Fig. 1 wherein a preferred em bodiment 10 of the present invention is shown, sausage material such as raw meat and fat pieces or sausage emulsion is loaded into a radially porous reusable casing, for example the pliable microporous expanded PTFE casing such as disclosed in U.S. 4,371,554. As depicted by the broken lines in Fig. 1, the sausage material can be first prereddened, as explained previ ously.With reference to Fig. 1 wherein a preferred em bodiment 10 of the present invention is shown, sausage material such as raw meat and fat pieces or sausage emulsion is loaded into a radially porous reusable casing, for example the pliable microporous expanded PTFE casing such as disclosed in US 4,371,554. As depicted by the broken lines in Fig. 1, the sausage material can be first prereddened, as explained previ ously.
In accordance with the present invention, the filled casing is initially heated by exposing the outer surface of the casing to a high temperature heat source which coagulates and dries substantially only the sausage material immediately adjacent the casing inner surface. The high rate of heat transfer in the process of the present invention results in the rapid formation of skin-like region of approximately 1 mm in thickness. This 1 mm skin enables the subsequent in-casing heating for reddening and coagulating to he drastically curtailed and still result in a sausage that maintains sufficient integrity to withstand ejection and further processing in a "naked" condition.In accordance with the present invention, the filled casing is initially heated by exposing the outer surface of the casing to a high temperature heat source which coagulates and dries substantially only the sausage material immediately adjacent the casing inner surface. The high rate of heat transfer in the process of the present invention results in the rapid formation of skin-like region of approximately 1 mm in thickness. This 1 mm skin enables the subsequent in-casing heating for reddening and coagulating to he drastically curtailed and still result in a sausage that maintains sufficient integrity to withstand ejection and further processing in a "naked" condition.
In the embodiment of Fig. 1, the filled casings are placed in a circulating hot air chamber at about 175°C for approximately 2 minutes, during which time the "skin" forms. The 175°C was the maximum temperature obtainable in the apparatus used to test the disclosed process, and higher temperatures were considered within the scope of that invention. It is anticipated that higher temperatures would allow shorter heating times than the 2 minutes to achieve the same degree of "skin" formation, while temperatures lower than 175°C would require longer heating times. The upper temperature limit, if one exists, may be dictated by the limitation of the casing material. The softening temperature of the PTFE used in the casing disclosed in U.S. 4,371,554 is about 270°C. Other apparatus or casing materials such as that used in the casing support structure may have even lower softening points. However, the rela tively short duration of the initial heating step may allow these temperature limits to be briefly exceeded without degrading the casing or support apparatus. It is thought that temperatures below about 130°C would be commercially impracticable.In the embodiment of Fig. 1, the filled casings are placed in a circulating hot air chamber at about 175 ° C for approximately 2 minutes, during which time the "skin" forms. The 175 ° C was the maximum temperature obtainable in the apparatus used to test the disclosed process, and higher temperatures were considered within the scope of that invention. It is anticipated that higher temperatures would allow shorter heating times than the 2 minutes to achieve the same degree of "skin" formation, while temperatures lower than 175 ° C would require longer heating times. The upper temperature limit, if one exists, may be dictated by the limitation of the casing material. The softening temperature of the PTFE used in the casing disclosed in US 4,371,554 is about 270 ° C. Other apparatus or casing materials such as that used in the casing support structure may have even lower softening points. However, the rela tively short duration of the initial heating step may allow these temperature limits to be briefly exceeded without degrading the casing or support apparatus. It is thought that temperatures below about 130 ° C would be commercially impracticable.
As evidence of the preferential coagulation and drying of the surface layer caused by the high temperature initial heating step of the present invention, analysis of a sample sausage cross section showed the interior of the sausage to have a water content of about 60%, approximately that of the starting emulsion. However, the 1 mm skin had a water content of only about 40%, that is, about one-third less than the interior, showing the effects of the high gradient in temperature caused by heating through the casing. It was believed that, contrary to the process in U.S. 4,371,554 where microwave heating was the preferred mode of heating for all the coagulation, the initial high temperature heating step of the present invention should employ hot, dry circulating air impinging on the casing.As evidence of the preferential coagulation and drying of the surface layer caused by the high temperature initial heating step of the present invention, analysis of a sample sausage cross section showed the interior of the sausage to have a water content of about 60%, approximately that of the starting emulsion. However, the 1 mm skin had a water content of only about 40%, that is, about one-third less than the interior, showing the effects of the high gradient in temperature caused by heating through the casing. It was believed that, contrary to the process in U.S. 4,371,554 where microwave heating was the preferred mode of heating for all the coagulation, the initial high temperature heating step of the present invention should employ hot, dry circulating air impinging on the casing.
Thereafter, and further in accordance with the present invention, as depicted in the embodiment of Fig. 1, because the inner part of the sausage is soft and uncoagulated, the filled and initially heated casins is briefly heated in a microwave oven for approximately 15 seconds to partially coagulate the bulk inner sausage material. The substitution of a partial coagulating step for the füll coagulating step disclosed in U.S. 4,371,554 that must be carried out while the sausage is in the casing, was largely responsible for the reduction in casing cycle time and was the direct result of the initial high temperature heating step.Thereafter, and further in accordance with the present invention, as depicted in the embodiment of Fig. 1, because the inner part of the sausage is soft and uncoagulated, the filled and initially heated casins is briefly heated in a microwave oven for approximately 15 seconds to partially coagulate the bulk inner sausage material. The substitution of a partial coagulating step for the filling coagulating step disclosed in US 4,371,554 that must be carried out while the sausage is in the casing, was largely responsible for the reduction in casing cycle time and was the direct result of the initial high temperature heating step.
In accordance with the present invention as depicted in the embodiment of Fig. 1, after the partial coagulating step the casing is showered or immersed in cold water for about 30 seconds and the sausage ejected. The empty casing then proceeds along process path 12, as shown in Fig. 1, for refilling. The "naked" sausages can then be further heated for increased redness and/or coagulation and smoked, cooled, packed and shipped, as depicted in Fig. 1 along parallel process path 14.In accordance with the present invention as depicted in the embodiment of Fig. 1, after the partial coagulating step the casing is showered or immersed in cold water for about 30 seconds and the sausage ejected. The empty casing then proceeds along process path 12, as shown in Fig. 1, for refilling. The "naked" sausages can then be further heated for increased redness and / or coagulation and smoked, cooled, packed and shipped, as depicted in Fig. 1 along parallel process path 14.
Should the partial coagulation step take place by means of microwave energy, the casings and/or devices used must not contain any metallic constituents. The casing support structure should advantageously consist of perforated synthetic materials like polyamide or sintered unstretched polytetrafluoroethylene.Should the partial coagulation step take place by means of microwave energy, the casings and / or devices used must not contain any metallic constituents. The casing support structure should consist of perforated synthetic materials like polyamide or sintered unstretched polytetrafluoroethylene.
The selection of power outputs of the microwave sources is of great importance for fast and even coagulation. Although the speed of coagulation is accelerated by increased power output, the evenness of the coagulation decreases. On the other hand, too small a power output is uneconomical on account of too slow a production speed. However, it is easily possible for an expert to determine the proper parameters. Rotation of the filled casings and/or devices during the microwave heating process is advisable since adjoining casings shield or block each other from the microwaves.The selection of power outputs of the microwave sources is of great importance for fast and even coagulation. Although the speed of coagulation is accelerated by increased power output, the evenness of the coagulation decreases. On the other hand, too small a power output is uneconomical on account of too slow a production speed. However, it is easily possible for an expert to determine the proper parameters. Rotation of the filled casings and / or devices during the microwave heating process is advisable since adjoining casings shield or block each other from the microwaves.
It is also preferred that the process of the present invention as shown in the Fig. 1 embodiment include the step of pre-wetting the casings to deposit water on the inside surface of the porous PTFE layer prior to the filling step. As embodied herein, the casings are either simply showered or immersed in water, and it was found that a small but adequate amount of water adhered to the inner surface for purposes of the invention. It is believed that the water residue immediately adjacent the sausage outer layer quickly vaporizes during the high temperature heating step and provided increased heat transfer. This theory per se is not considered part of the present invention but merely an attempt to explain the observed phenomenon.It is also preferred that the process of the present invention as shown in the Fig. 1 embodiment include the step of pre-wetting the casings to deposit water on the inside surface of the porous PTFE layer prior to the filling step. As embodied in, the casings are either simply showered or immersed in water, and it was found that a small but adequate amount of water adhered to the inner surface for purposes of the invention. It is believed that the water residue immediately adjacent the sausage outer layer quickly vaporizes during the high temperature heating step and provided increased heat transfer. This theory per se is not considered part of the present invention but merely an attempt to explain the observed phenomenon.
It was also found that simple rinsing could preferably be employed in place of the thorough cleanxng, such as by the ultrasonic methods advocated in U.S. 4,371,554, at least for a significant number of filling cases, and this is reflected in Fig. 1. It was found that a small but significant layer of fat material, but not protein, could advantageously be allowed to build-up on the inner surface of the PTFE casing and in the pores. The fat build-up was found to facilitate ejection without causing an unacceptable decrease in porosity. The fat build-up was found to increase up to about 20 cycles and thereafter remain constant. It is contemplated that the casing must be thoroughly cleaned periodically to comply with health standards and to prevent the retained fat from turning rancid. It is believed that the casing would have to be cleaned only once per eight hour shift, or after approximately 160 filling cycles. This decreased cleaning frequency may result in further production cost savings and increased efficiencies.It was also found that simple rinsing could preferably be employed in place of the thorough cleanxng, such as by the ultrasonic methods advocated in U.S. 4,371,554, at least for a significant number of filling cases, and this is reflected in Fig. 1. It was found that a small but significant layer of fat material, but not protein, could be allowed to build-up on the inner surface of the PTFE casing and in the pores. The fat build-up was found to facilitate ejection without causing an unacceptable decrease in porosity. The fat build-up was found to increase up to about 20 cycles and thereafter remain constant. It is contemplated that the casing must be thoroughly cleaned periodically to comply with health standards and to prevent the retained fat from turning rancid. It is believed that the casing would have to be cleaned only once per eight hour shift, or after approximately 160 filling cycles. This decreased cleaning frequency may result in further production cost savings and increased efficiencies.
The present invention also involves the further discovery that vapor-permeable casing materials having average pore sizes larger than those recommended in U. S. 4,371,554 can advantageously be used in the above-described process if an additional, preliminary step is taken, namely to deliberately fill or plug the pores of the porous material casing layer which contacts the sausage material with fat (lipids) before filling the casing with the sausage material and applying the initial heating step. The embodiment of the present invention depicted in Fig. 2 includes such a pore-filling step. Further testing revealed that the aforementioned accumulation of fat (lipids) enters the pores, solidifies, and fills up the casing pores before the permeable casing is refilled with meat emulsions. However, this accumulation does not hinder the ability of the casing to radially vent water vapor and other gases because the temperature and water vapor pressures achieved during the high temperature initial heating step first melts the fat (lipids) in the pores and then pneumatically create a gas flow path through the pores.The present invention also involves the further discovery that vapor-permeable casing materials having average pore sizes larger than those recommended in US 4,371,554 can also be used in the above-described process if an additional, preliminary step is taken, namely to deliberately fill or plug the pores of the porous material casing layer which contacts the sausage material with fat (lipids) before filling the casing with the sausage material and applying the initial heating step. The embodiment of the present invention depicted in Fig. 2 includes such a pore-filling step. Further testing revealed that the aforementioned accumulation of fat (lipids) enters the pores, solidifies, and fills up the casing pores before the permeable casing is refilled with meat emulsions. However, this accumulation does not hinder the ability of the casing to radially vent water vapor and other gases because the temperature and water vapor pressures achieved during the high temperature initial heating step first melts the fat (lipids) in the pores and then pneumatically create a gas flow path through the pores.
Fat (lipids) which normally are used for sausage production are: a) Backfat and belly from pork b) Fat enclosed by or enclosing meat muscle ( inter-muscular or surface fats) from pork and beefFat (lipids) which normally are used for sausage production are: a) Backfat and belly from pork b) Fat enclosed by or enclosing meat muscle (inter-muscular or surface fats) from pork and beef
These materials consist of connective tissue (collagen), in which fat (lipids) — composed of about 98-99% of triglycerides — are embodied. During heating of the fat containing tissue, there is a release of pure fats and of fat soluble components such as fatty acids, fat soluble vitamins, colesterols and substances which together account for less than 1%. The release of the fat from the connective tissue is greater the longer the period of heating or the higher the temperature.These materials consist of connective tissue (collagen), in which fat (lipids) - composed of about 98-99% of triglycerides - are embodied. During heating of the fat containing tissue, there is a release of pure fats and of fat soluble components such as fatty acids, fat soluble vitamins, colesterols and substances which together account for less than 1%. The release of the fat from the connective tissue is greater the longer the period of heating or the higher the temperature.
The meat emulsions used in the tests were prepared from meat muscle (lean meat), connective tissue (such as tenues and pork skin, etc.), and fat tissue containing the fats, as well as certain ingredients. The emulsifying procedure was done by cutting down the materials to very small particles with a bowlcutter or an emulsifier. During this procedure the fat tissue as well as the meat tissue is broken down to very small particles but the fat is still contained within the fat-bearing tissue pieces. The cutting, on the other hand, causes a release of water soluble proteins. These water soluble proteins surround the fat particles fixing them during the smoking and coagulating steps and thereby preventing subsequent separation.The meat emulsions used in the tests were prepared from meat muscle (lean meat), connective tissue (such as tenues and pork skin, etc.), and fat tissue containing the fats, as well as certain ingredients. The emulsifying procedure was done by cutting down the materials to very small particles with a bowlcutter or an emulsifier. During this procedure the fat tissue as well as the meat tissue is broken down to very small particles but the fat is still contained within the fat-bearing tissue pieces. The cutting, on the other hand, causes a release of water soluble proteins. These water soluble proteins surround the fat particles fixing them during the smoking and coagulating steps and thereby preventing subsequent separation.
Because polytetrafluoroethylene is lipophilic, the pores readily fill up with the meat lipids. At low temperatures these meat fats are solid and thus close off the pores during the filling of the permeable casings with meat emulsions. At higher temperatures, the fat (lipids) becomes fluid and then, when water vapor pressure develops inside the casings, the water vapor opens the pores by ejecting the fluid fat. During cooling, the fat again closes the pores so that a penetration of water soluble protein into the pores is prevented. The total pore volume normally fills up very slowly during sausage production because there are only small amounts of fat released from the bulk sausage. It was found that about 10-20 cycles are needed to achieve saturation. But it was also found that the portions of the pores adjacent to the bulk sausage can take up sufficient fat to close after the first cycle.Because polytetrafluoroethylene is lipophilic, the pores readily fill up with the meat lipids. At low temperatures these meat fats are solid and thus close off the pores during the filling of the permeable casings with meat emulsions. At higher temperatures, the fat (lipids) becomes fluid and then, when water vapor pressure develops inside the casings, the water vapor opens the pores by ejecting the fluid fat. During cooling, the fat again closes the pores so that a penetration of water soluble protein into the pores is prevented. The total pore volume normally fills up very slowly during sausage production because there are only small amounts of fat released from the bulk sausage. It was found that about 10-20 cycles are needed to achieve saturation. But it was also found that the portions of the pores adjacent to the bulk sausage can take up sufficient fat to close after the first cycle.
The additional testing was carried out using casings made from porous PTFE tubes having an average pore size of about 1-2 m commercially available from Chemplast, Inc., Wayne, N.J., under the designation Zitex G-100. Before their initial use, some of these casings were coated on the inside surface with a vegetable oil-based food release agent (PAM, sold by Boyle Midway Inc., New York, N.Y. ) while others were rinsed with heated fat, tallow, pore fat, etc. (normally solid at room temperature) which solidified within the casing pores during cooling. The casings were then filled with unprocessed sausage material and initially heated by placing them in a hot air oven at 200-220ºC for about 2 minutes. In some cases, the filled casings were cooled without further in-casing heating, the formed sausages axially ejected, and the casings simply rinsed and then refilled, etc. In other cases, it was found that the sausage could be successfully ejected immediately after the initial heating step, that is, without either addi tional heating or subsequent cooling. Although the first formed sausage from each casing could be ejected with slight pressure, in each case the sausages formed subsequently were ejected more easily and, in most in stances, could be slid out by gravity alone.The additional testing was carried out using casings made from porous PTFE tubes having an average pore size of about 1-2 m commercially available from Chemplast, Inc., Wayne, NJ, under the designation Zitex G-100. Before their initial use, some of these casings were coated on the inside surface with a vegetable oil-based food release agent (PAM, sold by Boyle Midway Inc., New York, NY) while others were rinsed with heated fat, tallow, pore fat, etc. (normally solid at room temperature) which solidified within the casing pores during cooling. The casings were then filled with unprocessed sausage material and initially heated by placing them in a hot air oven at 200-220ºC for about 2 minutes. In some cases, the filled casings were cooled without further in-casing heating, the formed sausages axially ejected, and the casings simply rinsed and then refilled, etc. In other cases, it was found that the sausage could be successfully ejected immediately after the initial heating step, that is, without either addi tional heating or subsequent cooling. Although the first formed sausage from each casing could be ejected with slight pressure, in each case the sausages formed subsequently were ejected more easily and, in most in stances, could be slid out by gravity alone.
This testing confirmed that the fat (lipids) plugging the pores appears to function like a valve, that is, melting and opening under the effect of the evolving steam and water vapor during the high temperature initial heating step, and then closing by solidifying after the ejection step. Although the oil-based food release agent used to initially coat some of the casings did not contain meat lipids, the fat (lipids) in the sausage mixture, primarily meat lipids which are predominantly saturated triglycerides, dissolved in the unsaturated oil lipids and then migrated into the pores of the casings providing a solid plug in subsequent cycles. As stated previously, it was found that the inside surface of the permeable casing can be initially coated with saturated lipids such as liquified animal fat before the initial filling, or before the first filling following a thorough cleaning. These observations are significant because previous tests without the pores being filled with fat (lipids) and using a process not including a high temperature initial heating step demonstrated that water soluble proteins and other protein matter could migrate into pores of 1-2 m average size during processing and coagulating, thereby preventing radial venting of water vapor and other gases, and hindering or preventing ejection and causing unwanted sausage surface roughness. It thus appears that materials having larger average pore sizes could be used successfully in the process of the present invention when compared to the microporous polytetrafluoroethylene casing materials preferred in U.S. 4,371,554 which had an average pore size of about 0.2 m. Thicker walled and thus stronger casings can be employed while retaining an acceptable level of permeability to provide adequate radial venting. The 1-2 m porous PTFE tubes used in the additional tests were about 12 cm in length and had an I.D. of about 2 cm and an average thickness of about 1 mm. The tubes were relatively stiff-walled and held their shape during filling without the need for an external support.This testing confirmed that the fat (lipids) plugging the pores appears to function like a valve, that is, melting and opening under the effect of the evolving steam and water vapor during the high temperature initial heating step, and then closing by solidifying after the ejection step. Although the oil-based food release agent used to initially coat some of the casings did not contain meat lipids, the fat (lipids) in the sausage mixture, primarily meat lipids which are predominantly saturated triglycerides, dissolved in the unsaturated oil lipids and then migrated into the pores of the casings providing a solid plug in subsequent cycles. As stated previously, it was found that the inside surface of the permeable casing can be initially coated with saturated lipids such as liquified animal fat before the initial filling, or before the first filling following a thorough cleaning. These observations are significant because previous tests without the pores being filled with fat (lipids) and using a process not including a high temperature initial heating step demonstrated that water soluble proteins and other protein matter could migrate into pores of 1-2 m average size during processing and coagulating, thereby preventing radial venting of water vapor and other gases, and hindering or preventing ejection and causing unwanted sausage surface roughness. It thus appears that materials having larger average pore sizes could be used successfully in the process of the present invention when compared to the microporous polytetrafluoroethylene casing materials preferred in US 4,371,554 which had an average pore size of about 0.2 m. Thicker walled and thus stronger casings can be employed while retaining an acceptable level of permeability to provide adequate radial venting. The 1-2 m porous PTFE tubes used in the additional tests were about 12 cm in length and had an ID of about 2 cm and an average thickness of about 1 mm. The tubes were relatively stiff-walled and held their shape during filling without the need for an external support.
Although the sausage surface temperatures had not been actually measured in these additional tests, it was believed that in the initial heating step of the present process the temperatures on the surface of the bulk sausages approach 100°C, with the exact surface temperature depending on the thickness of the casing, time of the heat treatment, and the oven temperature. It was believed that the sausage surface temperature should be high enough to cause the fat to melt out from the fat tissue, penetrate through the meat proteins, and migrate into the porous casing.Although the sausage surface temperatures had not been actually measured in these additional tests, it was believed that in the initial heating step of the present process the temperatures on the surface of the bulk sausages approach 100 ° C, with the exact surface temperature depending on the thickness of the casing, time of the heat treatment, and the oven temperature. It was believed that the sausage surface temperature should be high enough to cause the fat to melt out from the fat tissue, penetrate through the meat proteins, and migrate into the porous casing.
It further appeared from the additional testing that after the plugged pores are opened by the water vapor released by the sausage material adjacent the casing inner surface during the high temperature heating step, any fat (lipids) removed from the pores is replaced by fat (lipids) migrating from the sausage material. It also was believed that the high temperatures used in the initial heating step cause preferen tial migration of the meat lipids, while suppressing the migration of protein matter, including water soluble proteins, into the pores. Again, this theory per se should not be considered a part of the present invention but merely an attempt to explain the observed phenome non. However, this preferential migration of fat (lipids) to the sausage surface may enable porous organo-polymeric materials different from porous PTFE to be utilized in the skinless sausage making process, as the accumulation of fat (lipids) between the formed sausäge and the casing inner surface would be expected to counteract the differences in the food release properties exhibited by the non-PTFE materials when compared to porous PTFE. Of course, these porous non-PTFE materials must have the capability of withstanding the temperatures used in the processing and be compatible with foodstuffs.It further appeared from the additional testing that after the plugged pores are opened by the water vapor released by the sausage material adjacent the casing inner surface during the high temperature heating step, any fat (lipids) removed from the pores is replaced by fat (lipids) migrating from the sausage material. It also was believed that the high temperatures used in the initial heating step cause preferen tial migration of the meat lipids, while suppressing the migration of protein matter, including water soluble proteins, into the pores. Again, this theory per se should not be considered a part of the present invention but merely an attempt to explain the observed phenome non. However, this preferential migration of fat (lipids) to the sausage surface may enable porous organo-polymeric materials different from porous PTFE to be utilized in the skinless sausage making process, as the accumulation of fat (lipids) between the formed sausäge and the casing inner surface would be expected to counteract the differences in the food release properties exhibited by the non-PTFE materials when compared to porous PTFE. Of course, these porous non-PTFE materials must have the capability of withstanding the temperatures used in the processing and be compatible with foodstuffs.
With reference to Fig. 2, this embodiment of the improved process of the present invention depicted schematically therein includes a step 20 requiring, before filling, plugging casing pores with fat (lipids) to be applied to new casings or casings having been thoroughly cleaned, that is, the fat (lipids) having been cleaned from the pores (alternative process path 22). Otherwise, as shown by process path 12, the empty casings are simply rinsed and then refilled, the pores remaining plugged with fat (lipids) from the previous cycle. Alternative path 24 in Fig. 2 depicts, schematically, the variation in the process of this embodiment of the. present invention, of which uses porous materials with large pore sizes, wherein the separate cooling of the filled casing, such as by immersion or spraying with ice water, is eliminated. Alternative path 26 in Fig. 2 depicts the variation wherein both the separate partial coagulation step (e.g. microwave heating) and the quick cooling step are eliminated. The additional testing showed that these separate process steps were not required for making skinless sausages of the frankfurteresize. However, for larger sausage size (e.g. bologna, etc.) it may be preferred to have a separate partial coagulation step, using microwave heating, for instance, and/or a quick cooling step.With reference to Fig. 2, this embodiment of the improved process of the present invention depicted schematically therein includes a step 20 requiring, before filling, plugging casing pores with fat (lipids) to be applied to new casings or casings having been thoroughly cleaned, that is, the fat (lipids) having been cleaned from the pores (alternative process path 22). Otherwise, as shown by process path 12, the empty casings are simply rinsed and then refilled, the pores remaining plugged with fat (lipids) from the previous cycle. Alternative path 24 in Fig. 2 depicts, schematically, the variation in the process of this embodiment of the. present invention, of which uses porous materials with large pore sizes, wherein the separate cooling of the filled casing, such as by immersion or spraying with ice water, is eliminated. Alternative path 26 in Fig. 2 depicts the variation wherein both the separate partial coagulation step (eg microwave heating) and the quick cooling step are eliminated. The additional testing showed that these separate process steps were not required for making skinless sausages of the frankfurteresize. However, for larger sausage size (eg bologna, etc.) it may be preferred to have a separate partial coagulation step, using microwave heating, for instance, and / or a quick cooling step.
Further research has shown additional, surprising advantages and benefits of the initial high temperature heating step explained previously, in terms of the preferential coagulation of protein material in the surface layer of the sausage material and the release of fat (lipids) from the surface, skin-like layer. It was determined that some types and sizes of parboil and raw sausages can advantageously be prepared using reusable tubular casings formed of a material substantially impermeable to the flow of gas. The ability to produce these types of caseless sausages without the need for a material capable of radially venting water vapor and other gases evolved during the initial heating step should enable the use of a wider ränge of casing materials (non-porous, marginally porous, as well as porous) for making reusable casings for certain sausage types and sizes, with possible attendant cost savings.Further research has shown additional, surprising advantages and benefits of the initial high temperature heating step explained previously, in terms of the preferential coagulation of protein material in the surface layer of the sausage material and the release of fat (lipids) from the surface, skin -like layer. It was determined that some types and sizes of parboil and raw sausages can best be prepared using reusable tubular casings formed of a material substantially impermeable to the flow of gas. The ability to produce these types of caseless sausages without the need for a material capable of radially venting water vapor and other gases evolved during the initial heating step should enable the use of a wider ränge of casing materials (non-porous, marginally porous, as well as porous) for making reusable casings for certain sausage types and sizes, with possible attendant cost savings.
The process of the present invention for using a high temperature initial heating step with a gas-impermeable casing includes the steps of filling the impermeable casings with sausage material, then initially heating the outside surface of the casing for a time and high temperature sufficient to create a skin-like layer of coagulated protein on the surface of the sausage and an accumulation on the casing inner surface of fat (lipids) released from the sausage skin-like layer, which layer will enable the formed sausage to be self-supporting during the subsequent ejection step. The accumulation of fat (lipids) at the inner casing surface promotes ejection and, in a preferred casing made of polytetrafluoroethylene (PTFE), will be absorbed into the impermeable PTFE material itself and facilitate ejection during subsequent cycles, if not removed by cleaning.The process of the present invention for using a high temperature initial heating step with a gas-impermeable casing includes the steps of filling the impermeable casings with sausage material, then initially heating the outside surface of the casing for a time and high temperature sufficient to create a skin-like layer of coagulated protein on the surface of the sausage and an accumulation on the casing inner surface of fat (lipids) released from the sausage skin-like layer, which layer will enable the formed sausage to be self-supporting during the subsequent ejection step. The accumulation of fat (lipids) at the inner casing surface promotes ejection and, in a preferred casing made of polytetrafluoroethylene (PTFE), will be absorbed into the impermeable PTFE material itself and facilitate ejection during subsequent cycles, if not removed by cleaning.
The preferred overall process for using the reusable impermeable casings is depicted in the embodiment shown in Fig. 3. The Fig. 3 process for the most part follows the earlier discussion of the Fig. 2 process, which utilizes a porous casing material. However, as there are no pores, it may not be necessary to coat new (and thoroughly cleaned — see path 32) casings with fat (lipids) prior to the initial filling, particularly for casings like PTFE materials having a low coefficient of friction in respect to the sausage material. For other materials, initially coating the new (and thoroughly cleaned) casings with fat (lipids) may provide better initial release properties. Lipophilic materials such as PTFE that are able to retairi the fat (lipids) can advantageously be used in the process of the present invention.The preferred overall process for using the reusable impermeable casings is depicted in the embodiment shown in Fig. 3. The Fig. 3 process for the most part follows the earlier discussion of the Fig. 2 process, which utilizes a porous casing material. However, as there are no pores, it may not be necessary to coat new (and thoroughly cleaned - see path 32) casings with fat (lipids) prior to the initial filling, particularly for casings like PTFE materials having a low coefficient of friction in respect to the sausage material. For other materials, initially coating the new (and thoroughly cleaned) casings with fat (lipids) may provide better initial release properties. Lipophilic materials such as PTFE that are able to retairi the fat (lipids) can be used in the process of the present invention.
As further distinguished from the process of the embodiment shown in Fig. 2, the sausages should be ejected from the casings before any substantial coagulation of the sausage material is effected because the impermeable casings will not allow the release of the steam, water vapor, and other gases released during the coagulation process. It has been found that the gases and water vapor released during the coagulation of the small amount of material to form the skin-like layer can be accommodated within the casing and sausage material itself. This accommodation, together with the fact that the sausage material remains stationary within the casing during the high temperature initial heating step, permits the formation of a skin-like layer sufficiently strong to allow ejection and handling (smoking, coagulating, etc.) outside the casing. As with the process of the embodiment shown in Fig. 2, it may be possible to avoid the quick cooling step and eject immediately after removable from the apparatus used to accomplish high temperature surface heating. This is shown as alternative path 24 in the Fig. 3 schematic.As further distinguished from the process of the embodiment shown in Fig. 2, the sausages should be ejected from the casings before any substantial coagulation of the sausage material is effected because the impermeable casings will not allow the release of the steam, water vapor, and other gases released during the coagulation process. It has been found that the gases and water vapor released during the coagulation of the small amount of material to form the skin-like layer can be accommodated within the casing and sausage material itself. This accommodation, together with the fact that the sausage material remains stationary within the casing during the high temperature initial heating step, permits the formation of a skin-like layer sufficiently strong to allow ejection and handling (smoking, coagulating, etc.) outside the casing. As with the process of the embodiment shown in Fig. 2, it may be possible to avoid the quick cooling step and eject immediately after removable from the apparatus used to accomplish high temperature surface heating. This is shown as alternative path 24 in the Fig. 3 schematic.
With reference to the path 14 of the sausage following ejection from the reusable casing, it is believed preferable to first smoke the sausage in order to immediately provide a tanning effect that will further safeguard the integrity of the skin-like layer formed on the sausage, and then to accomplish reddening and coagulation. This is shown in the Fig. 3 schematic. In order to utilize the present invention to its füllest capability with impermeable casings, it is believed that no pre-reddening of the sausage material should be done before filling the casings. The pre-reddening step takes time which means the meat emulsion must be prepared long before the filling step and as a consequence of the elapsed time, can suffer a decrease in the water binding capacity. Minimizing the amount of gases evolved from the surface area of the sausage during the skin-like layer formation would be expected to provide for better process control and a more uniform sausage product.With reference to the path 14 of the sausage following ejection from the reusable casing, it is believed preferable to first smoke the sausage in order to immediately provide a tanning effect that will further safeguard the integrity of the skin-like layer formed on the sausage, and then to accomplish reddening and coagulation. This is shown in the Fig. 3 schematic. In order to utilize the present invention to its fillest capability with impermeable casings, it is believed that no pre-reddening of the sausage material should be done before filling the casings. The pre-reddening step takes time which means the meat emulsion must be prepared long before the filling step and as a consequence of the elapsed time, can suffer a decrease in the water binding capacity. Minimizing the amount of gases evolved from the surface area of the sausage during the skin-like layer formation would be expected to provide for better process control and a more uniform sausage product.
The above-described process was used to make two differeπt types of sausage, a frankfurter type and a "minisalami" type more commonly known as "beer sticks". The casings used were solid PTFE Chemloy® tubes from Crane Packing Co., Morton Grove, Illinois.The above-described process was used to make two different types of sausage, a frankfurter type and a "mini salami" type more commonly known as "beer sticks". The casings used were solid PTFE Chemloy® tubes from Crane Packing Co., Morton Grove, Illinois.
The Chemloy® tubes used for the frankfurter sausage had an I.D. of 25 mm, a wall thickness of about 1 mm, and a length of about 15 cm. The PTFE material was stated to have a density of between about 2.14 and 2.20 g/cc. The tubes were filled with sausage mixture con sisting of an emulsion of meat (pork), fat, and water which leaves the cutter at about 14-16°C with a water content of about 60%. The filled tubes were then closed with non-porous PTFE end caps. Some of the filled tubes were placed in a circulating hot air oven at 175°C for about 3 minutes and others were similarly treated but at 250°C for between about 1 minute 45 seconds and 2 minutes. The filled casings were then uncapped without deliberate cooling. and the sausages allowed to slide out. Visual observation and handling confirmed that the ejection sausage could retain their own integrity. Upon cutting some of the sausages, it was found that only a small amount of coagulation had occurred in the interior of the sausage, away from the skin-like layer. This indicated that the skin-like layer was predominantly responsible for the integrity of the sausages.The Chemloy® tubes used for the frankfurter sausage had an I.D. of 25 mm, a wall thickness of about 1 mm, and a length of about 15 cm. The PTFE material was stated to have a density of between about 2.14 and 2.20 g / cc. The tubes were filled with sausage mixture con sisting of an emulsion of meat (pork), fat, and water which leaves the cutter at about 14-16 ° C with a water content of about 60%. The filled tubes were then closed with non-porous PTFE end caps. Some of the filled tubes were placed in a circulating hot air oven at 175 ° C for about 3 minutes and others were similarly treated but at 250 ° C for between about 1 minute 45 seconds and 2 minutes. The filled casings were then uncapped without deliberate cooling. and the sausages allowed to slide out. Visual observation and handling confirmed that the ejection sausage could retain their own integrity. Upon cutting some of the sausages, it was found that only a small amount of coagulation had occurred in the interior of the sausage, away from the skin-like layer. This indicated that the skin-like layer was predominantly responsible for the integrity of the sausages.
The skins formed by the high temperature initial heating step averaged less than 1 mm and were about 1.3 mm in thickness, and it appeared that higher temperature and shorter duration initial heating conditions provide thinner skins, possibly due to the steeper temperature gradient into the sausage.The skins formed by the high temperature initial heating step averaged less than 1 mm and were about 1.3 mm in thickness, and it appeared that higher temperature and shorter duration initial heating conditions provide thinner skins, possibly due to the steeper temperature gradient into the sausage.
Thereafter the formed sausages were smolced in a smoking chamber for 30 minutes at 55ºC and about 65-70% relative humidity (RH). Next, the sausages were dried for 15 minutes at a very low relative humidity (zero setting on the smokehouse humidity control), and then reddened at 55°C in the same smoking chamber for 30 minutes at 70% RH. The sausages were then finally coagulated by heating for an additional 10-15 minutes but at 100% RH. After cooling by a water shower, the sausages were found to have an acceptable appearance, texture and flavor.Thereafter the formed sausages were smolced in a smoking chamber for 30 minutes at 55ºC and about 65-70% relative humidity (RH). Next, the sausages were dried for 15 minutes at a very low relative humidity (zero setting on the smokehouse humidity control), and then reddened at 55 ° C in the same smoking chamber for 30 minutes at 70% RH. The sausages were then finally coagulated by heating for an additional 10-15 minutes but at 100% RH. After cooling by a water shower, the sausages were found to have an acceptable appearance, texture and flavor.
The smoking and drying steps can be tailored to influence the final skin thickness. For instance, lower relative humidities during the smoking step will, in general, result in a thicker skin.The smoking and drying steps can be tailored to influence the final skin thickness. For instance, lower relative humidities during the smoking step will, in general, result in a thicker skin.
For the minisalami sausages, the same size Chemloy® tubes were used. The tubes were filled with a mixture of meat and fat which exits the cutter at -4°C, and then end caps applied. The filled tubes were then subjected to the same initial heating conditions as the frankfurter type. Again, the formed sausages could be ejected as an integral shaped-mass and held their shape during subsequent handling.For the minisalami sausages, the same size Chemloy® tubes were used. The tubes were filled with a mixture of meat and fat which exits the cutter at -4 ° C, and then end caps applied. The filled tubes were then subjected to the same initial heating conditions as the frankfurter type. Again, the formed sausages could be ejected as an integral shaped-mass and held their shape during subsequent handling.
Following ejection, the minisalami sausages were smoked at 26°C and about 65-70% RH for 30 minutes and then allowed to stabilize for about 24 hours at 35°C and RH between about 50-60% with the lower RH values occurring toward the end of the stabilizing period. During this period a moisture loss of about 1/3 occurs; the original moisture content of the sausage mixture was about 40%. As with the frankfurter type sausages, the completed minisalami sausages made by the disclosed initial high temperature heating process of the present invention using impermeable casings were acceptable from the standpoint of appearance, texture and flavor.Following ejection, the minisalami sausages were smoked at 26 ° C and about 65-70% RH for 30 minutes and then allowed to stabilize for about 24 hours at 35 ° C and RH between about 50-60% with the lower RH values occurring toward the end of the stabilizing period. During this period a moisture loss of about 1/3 occurs; the original moisture content of the sausage mixture was about 40%. As with the frankfurter type sausages, the completed minisalami sausages made by the disclosed initial high temperature heating process of the present invention using impermeable casings were acceptable from the standpoint of appearance, texture and flavor.
Minisalami type sausages are conventionally cured (dried) in the casings and at room temperature to avoid rendering the fat and spoiling the sausage. The drying times can be advantageously reduced by the present process because the sausages can be dried outside the casing. These same new sausage types were also made using the initial high temperature heating step but with porous tube casings from Chemplast (20 mm I.D., about 1 mm in thickness). The finished sausages were also acceptable, and no significant difference between tHese and the sausages made using the impermeable tube casings was observed. It is believed, however, that for larger sausage sizes than about 50 mm diameter, porous casings probably must be used to allow radial venting of gases and water vapor, in that a greater degree of partial coagulation of the inner sausage material must be accomplished in the casing to provide sufficient firmness and integrity for ejection. This is particu larly true for emulsion-type sausage mixtures having an initial moisture content of about 60%.Minisalami type sausages are conventionally cured (dried) in the casings and at room temperature to avoid rendering the fat and spoiling the sausage. The drying times can be reduced by the present process because the sausages can be dried outside the casing. These same new sausage types were also made using the initial high temperature heating step but with porous tube casings from Chemplast (20 mm ID, about 1 mm in thickness). The finished sausages were also acceptable, and no significant difference between tHese and the sausages made using the impermeable tube casings was observed. It is believed, however, that for larger sausage sizes than about 50 mm diameter, porous casings probably must be used to allow radial venting of gases and water vapor, in that a greater degree of partial coagulation of the inner sausage material must be accomplished in the casing to provide sufficient firmness and integrity for ejection. This is particu larly true for emulsion-type sausage mixtures having an initial moisture content of about 60%.
As with the tests using a porous tubular casing, it was determined that sausages made using new or thoroughly cleaned impermeable casings were slightly more difficult to eject than sausages from subsequent cycles reusing the same casing, for instances where no fat (lipid) coating was applied to the new casing. Although not porous to gas, the impermeable PTFE casing were found to absorb significant amounts of fat (lipids) as was evidenced by measured weight increases of 17 mg for small size tubes, and about 22 mg for the larger sizes. Also, the initially white opaque tubular casings were observed to become progressively more translucent owing to absorbed fat (lipids).As with the tests using a porous tubular casing, it was determined that sausages made using new or thoroughly cleaned impermeable casings were slightly more difficult to eject than sausages from subsequent cycles reusing the same casing, for instances where no fat (lipid) coating was applied to the new casing. Although not porous to gas, the impermeable PTFE casing were found to absorb significant amounts of fat (lipids) as was evidenced by measured weight increases of 17 mg for small size tubes, and about 22 mg for the larger sizes. So, the initially white opaque tubular casings were observed to become progressively more translucent owing to absorbed fat (lipids).
Several different types of impermeable plastic materials were used during th overall course of the experiments and tests. In addition to impermeable PTFE tubes (24 mm I.D.) and a green epoxy resin material having an embedded fiber glass backing were used. End caps of impermeable PTFE, Delrin® (DuPont Trademark for an acetal resin-type plastic material), clear polyethylene, and PVC were used so that frankfurter and minisalami types could be ejected, with a continuous coagulated protein skin and a substantially uncoagulated interior, from all three tube materials. However, the sausages did not eject as easily from the polypropylene tubes as from the PTFE tubes. Sausages could be ejected from both tubes more easily after several cycles with only water rinse between cycles. And the sausages made using the epoxy tubes had an off-odor and taste, possibly making the use of this material not commercially attractive.Several different types of impermeable plastic materials were used during the overall course of the experiments and tests. In addition to impermeable PTFE tubes (24 mm ID) and a green epoxy resin material having an embedded fiber glass backing were used. End caps of impermeable PTFE, Delrin® (DuPont Trademark for an acetal resin-type plastic material), clear polyethylene, and PVC were used so that frankfurter and minisalami types could be ejected, with a continuous coagulated protein skin and a substantially uncoagulated interior, from all three tube materials. However, the sausages did not eject as easily from the polypropylene tubes as from the PTFE tubes. Sausages could be ejected from both tubes more easily after several cycles with only water rinse between cycles. And the sausages made using the epoxy tubes had an off-odor and taste, possibly making the use of this material not commercially attractive.
Based on the Performance of the end caps, it is expected that polyethylene tubes (as well as PTFE and polypropylene) would perform satisfactorily, but probably not tubes of acetal resin plastic or PVC. The PVC caps melted in the 175°C oven possibly indicating temperature limitations for this material. Also PVC may not be allowed by the government in the preparation of heated foodstuffs because of the possible release of unbonded vinyl chloride.Based on the Performance of the end caps, it is expected that polyethylene tubes (as well as PTFE and polypropylene) would perform satisfactorily, but probably not tubes of acetal resin plastic or PVC. The PVC caps melted in the 175 ° C oven possibly indicating temperature limitations for this material. Also PVC may not be allowed by the government in the preparation of heated foodstuffs because of the possible release of unbonded vinyl chloride.
In regard to acetal resin plastic material, the sausage material stuck to the Delrin® end caps and caused partial rupture of the formed skin-like layer at the ends of the sausages. It is currently believed that strongly polar materials such as acetal resin plastic would not perform satisfactorily as some of the protein material would become bonded to the casing during coagulation of the skin layer. Non-polar or weakly polar materials such as PTFE, polyethylene, and polypropylene would be expected to perform satisfactorily under this theory, although the theory per se is not to be considered a part of the claimed invention.In regard to acetal resin plastic material, the sausage material stuck to the Delrin® end caps and caused partial rupture of the formed skin-like layer at the ends of the sausages. It is currently believed that strongly polar materials such as acetal resin plastic would not perform satisfactorily as some of the protein material would become bonded to the casing during coagulation of the skin layer. Non-polar or weakly polar materials such as PTFE, polyethylene, and polypropylene would be expected to perform satisfactorily under this theory, although the theory per se is not to be considered a part of the claimed invention.
In summary, it appears that casing materials should be heat resistant, lipophilic, non-polar and be compatible with foodstuffs. Also, the casing materials should be resistant to swelling in the presence of fats (lipids), and be resistant to any solvents used in the thorough cleaning process. It is further understood that various casing cross-sectional shapes (round, square, etc.) and different casing constructions can be used in the process of the present inventions as, for instance, a metal tube having liner of, e.g., PTFE bonded to the inner surface of the tube. The metal outer layer (e.g., stainless steel) would be expected to provide strength and better heat transfer. This con struction could allow the use of "clam-shell"-type casing wherein the sausage material could be removed from the casing without ejection along the longitudinal axis.In summary, it appears that casing materials should be heat resistant, lipophilic, non-polar and be compatible with foodstuffs. So, the casing materials should be resistant to swelling in the presence of fats (lipids), and be resistant to any solvents used in the thorough cleaning process. It is further understood that various casing cross-sectional shapes (round, square, etc.) and different casing constructions can be used in the process of the present inventions as, for instance, a metal tube having liner of, eg, PTFE bonded to the inner surface of the tube. The metal outer layer (eg, stainless steel) would be expected to provide strength and better heat transfer. This con struction could allow the use of "clam-shell" -type casing wherein the sausage material could be removed from the casing without ejection along the longitudinal axis.
The new improved process of the invention provides a sausage that, such as the sausages produced by the process disclosed in U.S. 4,371,554 has far superior re sistance to bacterial contamination than sausages produced in the usüal water-vapor-impervious, one-use, cellulosic casings, which is the present industry standard for frankfurter production. The procress of the present invention also is markedly superior to the process disclosed in U.S. 4,371,554 utilizing pliable porous reusable PTFE casings in that the sausage material spends less time in the casing permitting parallel processing and reduces cycle times for the casings. Additionally, the process disclosed herein permits the use of substantially impermeable casing materials which, in turn, allows the use of stronger, more durable casings to be employed.The new improved process of the invention provides a sausage that, such as the sausages produced by the process disclosed in U.S. 4,371,554 has far superior re resistance to bacterial contamination than sausages produced in the usüal water-vapor-impervious, one-use, cellulosic casings, which is the present industry standard for frankfurter production. The procress of the present invention also is markedly superior to the process disclosed in U.S. 4,371,554 utilizing pliable porous reusable PTFE casings in that the sausage material spends less time in the casing permitting parallel processing and reduces cycle times for the casings. Additionally, the process disclosed in permits the use of substantially impermeable casing materials which, in turn, allows the use of stronger, more durable casings to be employed.
While the invention has been disclosed herein in connection with certain embodiraents and certain structural and procedural details, it is clear that changes, modifications or equivalents can be used by those skilled in the art. Accordingly, such changes within the principles of the invention are intended to be included within the scope of the following Claims. While the invention has been disclosed in in connection with certain embodiraents and certain structural and procedural details, it is clear that changes, modifications or equivalents can be used by those skilled in the art. Accordingly, such changes within the principles of the invention are intended to be included within the scope of the following claims.

Claims

WHAT IS CLAIMED IS: WHAT IS CLAIMED IS:
1. A process for the production of caseless parboil or raw sausages using multiple-reusable tubular casings, the casing being formed of a foodstuff-compatible material, the process comprising the steps of: a) filling the reusable casings with sausage material containing protein and fat (lipids); b) initially heating the outside surface of the filled casings to a high temperature for a time sufficient to i) coagulate substantially only the sausage material protein immediately adjacent the inner surfaces of the casings to rapidly form a skin-like layer, and ii) release the fat (lipids) from the sausage material in the skin-like layer, the release fat (lipids) flowing to, and collecting at, the inner surface of the casing; and c) removing the sausage material from the tubular casing, the integrity of the casing being maintained during the removing step, wherein the time and temperature of the initial heating step are selected to provide a continuous skin-like layer of coagulated protein sufficiently cohesive to retain the removed sausage material in the shape of the tubular casing after removal, and wherein the sausage material in the casing is substantially uncoagulated at the start of the initial heating step. 1. A process for the production of caseless parboil or raw sausages using multiple-reusable tubular casings, the casing being formed of a foodstuff-compatible material, the process comprising the steps of: a) filling the reusable casings with sausage material containing protein and fat (lipids); b) initially heating the outside surface of the filled casings to a high temperature for a time sufficient to i) coagulate substantially only the sausage material protein immediately adjacent the inner surfaces of the casings to rapidly form a skin-like layer, and ii) release the fat (lipids) from the sausage material in the skin-like layer, the release fat (lipids) flowing to, and collecting at, the inner surface of the casing; and c) removing the sausage material from the tubular casing, the integrity of the casing being maintained during the removing step, wherein the time and temperature of the initial heating step are selected to provide a continuous skin-like layer of coagulated protein sufficiently cohesive to retain the removed sausage material in the shape of the tubular casing after removal, and wherein the sausage material in the casing is substantially uncoagulated at the start of the initial heating step.
2. Process as in Claim 1 wherein the casing material is lipophilic, relatively non-polar, heat resistant, compatible with foodstuffs, resistant to swelling the presence of fats (lipids), and resistant to solvents.2. Process as in Claim 1 wherein the casing material is lipophilic, relatively non-polar, heat resistant, compatible with foodstuffs, resistant to swelling the presence of fats (lipids), and resistant to solvents.
3. Process as in claim 1 wherein the material is polytetrafluoroethylene.3. Process as in claim 1 wherein the material is polytetrafluoroethylene.
4. Process as in claim 1 wherein the casing material is substantially impermeable to gas, and wherein the diameter of the formed sausage is less than about 50 mm.4. Process as in claim 1 wherein the casing material is substantially impermeable to gas, and wherein the diameter of the formed sausage is less than about 50 mm.
5. Process as in claim 1 wherein the casing material is substantially impermeable to gas, and wherein the water content of the sausage material filled into the casing is less than or equal to about 60%.5. Process as in claim 1 wherein the casing material is substantially impermeable to gas, and wherein the water content of the sausage material filled into the casing is less than or equal to about 60%.
6. Process as in claim 1 wherein the temperature of the initial heating step is greater than about 100°C.6. Process as in claim 1 wherein the temperature of the initial heating step is greater than about 100 ° C.
7. Process as in claim 1 wherein the temperature of the initial heating step is greater than about 130°C.7. Process as in claim 1 wherein the temperature of the initial heating step is greater than about 130 ° C.
8. Process as in claim 1 wherein the temperature of the initial heating step is greater than about 175°C.8. Process as in claim 1 wherein the temperature of the initial heating step is greater than about 175 ° C.
9. Process as in claim 1 wherein the temperature of the initial heating step is between about 175ºC and about 250ºC.9. Process as in claim 1 wherein the temperature of the initial heating step is between about 175 ° C and about 250 ° C.
10. Process as in claim 1 wherein the temperature of the initial heating step is about 175°C and the time duration of said initial heating step is about 3 minutes.10. Process as in claim 1 wherein the temperature of the initial heating step is about 175 ° C and the time duration of said initial heating step is about 3 minutes.
11. Process as in claim 1 wherein the temperature of the initial heating step is about 250°C, and the time duration of said initial heating step is about 2 minutes.11. Process as in claim 1 wherein the temperature of the initial heating step is about 250 ° C, and the time duration of said initial heating step is about 2 minutes.
12. Process as in claim 1 including the further step of smoking the removed sausage. 12. Process as in claim 1 including the further step of smoking the removed sausage.
13. Process as in claim 1 including the further step of heating the removed sausage to finally coagulate the interior portion of the sausage.13. Process as in claim 1 including the further step of heating the removed sausage to finally coagulate the interior portion of the sausage.
14. Process as in claim 1 including the further step of heating the removed sausage to redden the interior portion.14. Process as in claim 1 including the further step of heating the removed sausage to redden the interior portion.
15. Process as in claim 1 wherein the interior of the sausage is substantially uncoagulated at the time of the removal step.15. Process as in claim 1 wherein the interior of the sausage is substantially uncoagulated at the time of the removal step.
16. Process as in claim 1 wherein the initial heating step is carried out in a circulating hot air oven.16. Process as in claim 1 wherein the initial heating step is carried out in a circulating hot air oven.
17. Process as in claim 13 including the additional step of, prior to the final coagulation step, heating the removed sausage to a lower temperature than in the final coagulation step to redden the sausage.17. Process as in claim 13 including the additional step of, prior to the final coagulation step, heating the removed sausage to a lower temperature than in the final coagulation step to redden the sausage.
18. Process as in claim 1 wherein the removal step includes ejecting the sausage material from one end of the tubular casing.18. Process as in claim 1 wherein the removal step includes ejecting the sausage material from one end of the tubular casing.
19. Process as in claim 2 wherein the casing is multi- layered with the innermost layer having the properties set forth in claim 2, and wherein an outer layer is metal.19. Process as in claim 2 wherein the casing is multi-layered with the innermost layer having the properties set forth in claim 2, and wherein an outer layer is metal.
20. Process as in claim 1 wherein the tubular casing is formed on a split "clam shell"-type casing and the sausage is removed from the side of the casing by opening the clam shell.20. Process as in claim 1 wherein the tubular casing is formed on a split "clam shell" -type casing and the sausage is removed from the side of the casing by opening the clam shell.
21. The process as in claim 1 wherein the moisture content of the skin-like layer is significantly lower than that of the interior sausage material after the initial heating step.21. The process as in claim 1 wherein the moisture content of the skin-like layer is significantly lower than that of the interior sausage material after the initial heating step.
22. The process as in claim 21 wherein the skin-like layer has a moisture content about one-third less than the interior sausage material. 22. The process as in claim 21 wherein the skin-like layer has a moisture content about one-third less than the interior sausage material.
23. The process as in claim 2 including the additional step of pre-wetting the inside surface of the casing prior to filling.23. The process as in claim 2 including the additional step of pre-wetting the inside surface of the casing prior to filling.
24. Process as in claim 1 wherein the casing is formed of a vapor-permeable porous material, and wherein the process includes the preliminary step of plugging the pores in the inside surface of the vapor-permeable layer with fat (lipids) prior to the filling step, said fat (lipids) having a melting point below said high temperature.24. Process as in claim 1 wherein the casing is formed of a vapor-permeable porous material, and wherein the process includes the preliminary step of plugging the pores in the inside surface of the vapor-permeable layer with fat (lipids) prior to the filling step, said fat (lipids) having a melting point below said high temperature.
25. Process as in claim 24 wherein the plugging step includes the step of initially coating the sausage-contacting surface of the vapor-permeable layer with fat (lipids).25. Process as in claim 24 wherein the plugging step includes the step of initially coating the sausage-contacting surface of the vapor-permeable layer with fat (lipids).
26. Process as in claim 24 wherein the plugging step includes the step of setting the time interval between thorough cleanings of the casing to be suffi ciently long to allow accumulation in the pores of fat (lipids) migrating from the sausage material during the initial heating step.26. Process as in claim 24 wherein the plugging step includes the step of setting the time interval between thorough cleanings of the casing to be suffi ciently long to allow accumulation in the pores of fat (lipids) migrating from the sausage material during the initial heating step.
27. Process as in claim 24 including the additional step of pre-wetting the inside surface of the plugged vapor- permeable layer with water.27. Process as in claim 24 including the additional step of pre-wetting the inside surface of the plugged vapor- permeable layer with water.
28. Process as in Claim 1 wherein the sausage material is coagulated during the initial heating step sufficiently to permit ejection without further heating of the sausage material while in the casing.28. Process as in Claim 1 wherein the sausage material is coagulated during the initial heating step sufficiently to permit ejection without further heating of the sausage material while in the casing.
29. Process as in claim 24 wherein the vapor-permeable porous material is porous polytetrafluoroethylene.29. Process as in claim 24 wherein the vapor-permeable porous material is porous polytetrafluoroethylene.
30. Process as in claim 1 wherein said coagulating step is carried out at a time and temperature wherein the inner sausage material is only partially coagulated when it is ejected from the casing. 30. Process as in claim 1 wherein said coagulating step is carried out at a time and temperature wherein the inner sausage material is only partially coagulated when it is ejected from the casing.
31. Process as in claim 1 wherein the moisture content of the skin-like layer is significantly lower than that of the interior sausage material after the initial heating step.31. Process as in claim 1 wherein the moisture content of the skin-like layer is significantly lower than that of the interior sausage material after the initial heating step.
32. Process as in claim 1 including the additional step of cooling the filled casing after the initial heating step and prior to the ejection step.32. Process as in claim 1 including the additional step of cooling the filled casing after the initial heating step and prior to the ejection step.
33. Process as in claim 1 wherein the time and temperature of said initial heating step are set to provide a skin-like sausage layer of about 1 mm in thickness.33. Process as in claim 1 wherein the time and temperature of said initial heating step are set to provide a skin-like sausage layer of about 1 mm in thickness.
34. Process as in claim 1 wherein the casing material is vapor-permeable, and wherein the process includes the additional step of pre-reddening the sausage material prior to filling.34. Process as in claim 1 wherein the casing material is vapor-permeable, and wherein the process includes the additional step of pre-reddening the sausage material prior to filling.
35. An improved reusable tubular casing of the type having a layer of a porous polymeric vapor-permeable material positioned for contacting and confining the sausage material for the production of caseless sausages in a process having an initial heating step wherein the outside surface of the casing filled with unprocessed sausage material is raised to a high temperature for a time sufficient to coagulate and dry substantially only the sausage material protein immediately adjacent the casing inner surface to rapidly form a skin-like layer, the improvement comprising: the pores of said vapor-permeable layer adjacent the sausage material being filled with fat (lipids) having a melting temperature less than said high temperature.35. An improved reusable tubular casing of the type having a layer of a porous polymeric vapor-permeable material positioned for contacting and confining the sausage material for the production of caseless sausages in a process having an initial heating step wherein the outside surface of the casing filled with unprocessed sausage material is raised to a high temperature for a time sufficient to coagulate and dry substantially only the sausage material protein immediately adjacent the casing inner surface to rapidly form a skin-like layer, the improvement comprising: the pores of said vapor- permeable layer adjacent the sausage material being filled with fat (lipids) having a melting temperature less than said high temperature.
36. The improved casing as in claim 35 wherein the porous vapor-permeable polymeric material is porour polytetra fluoroethylene. 36. The improved casing as in claim 35 wherein the porous vapor-permeable polymeric material is porour polytetra fluoroethylene.
37. The improved casing as in claim 35 or 36 wherein the average pore size of the vapor-permeable material is about .02 to 2 m.37. The improved casing as in claim 35 or 36 wherein the average pore size of the vapor-permeable material is about .02 to 2 m.
38. The improved casing as in claim 35 or 36 wherein said vapor-permeable layer is self-supporting.38. The improved casing as in claim 35 or 36 wherein said vapor-permeable layer is self-supporting.
39. The improved casing as in Claim 35 wherein said porous vapor-permeable layer is porous polytetrafluoroethylene having a pore size of about39. The improved casing as in Claim 35 wherein said porous vapor-permeable layer is porous polytetrafluoroethylene having a pore size of about
1-2 m and wherein said layer is self-supporting with a thickness of about 1 mm.1-2 m and wherein said layer is self-supporting with a thickness of about 1 mm.
40. The improved casing as in claim 35 or 36 wherein the fat (lipids) consists substantially of saturated triglycerides.40. The improved casing as in claim 35 or 36 wherein the fat (lipids) consists of substantially of saturated triglycerides.
41. The improved casing as in Claim 35 or 36 wherein the fat (lipids) has a melting point below about 100°C. 41. The improved casing as in Claim 35 or 36 wherein the fat (lipids) has a melting point below about 100 ° C.
EP19830901923 1982-06-16 1983-06-16 Process for using multiple reusable tubular casings Withdrawn EP0111527A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US38894682A 1982-06-16 1982-06-16
US388946 1982-06-16
US41006282A 1982-08-19 1982-08-19
US410062 1982-08-19
US43784882A 1982-10-29 1982-10-29
US437848 1989-11-16

Publications (1)

Publication Number Publication Date
EP0111527A1 true EP0111527A1 (en) 1984-06-27

Family

ID=27409871

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19830901923 Withdrawn EP0111527A1 (en) 1982-06-16 1983-06-16 Process for using multiple reusable tubular casings

Country Status (2)

Country Link
EP (1) EP0111527A1 (en)
WO (1) WO1984000001A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713336A (en) * 1984-09-27 1987-12-15 Research Corporation Technologies, Inc. Gene for lignin degradation and uses thereof
DE4015059A1 (en) * 1990-05-10 1991-11-14 Wfm World Food Machinery Trust METHOD FOR PRODUCING BREW SAUSAGES WITH ITS SKIN
FR2795923A1 (en) * 1999-07-07 2001-01-12 Act Ind Manufacture of skinless sausages by cooking sausage meat in a mould, which gives good quality sausages in a simple process

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE259140C (en) *
DE1204507B (en) * 1960-11-01 1965-11-04 Union Carbide Corp Continuous process and device for rapid cooking of a sausage product, which is surrounded by an artificial casing based on cellulose, coagulable by heat and consists of minced meat
DE1207234B (en) * 1961-12-08 1965-12-16 Paul Helmut Hilgeland Process for the production of a strand of beef roast
DE2756995A1 (en) * 1977-12-21 1979-06-28 Riedel Technik Gmbh Skinless sausage mfr. - with infrared heating of strand moving along tube and slicing cutter
AU6373880A (en) * 1979-11-09 1981-05-14 Ashland Food Technology Holdings S.A. Sausage making
CH640703A5 (en) * 1979-11-21 1984-01-31 Hoegger & Cie Ag C METHOD FOR PRODUCING SLEEVELESS SAUSAGES.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8400001A1 *

Also Published As

Publication number Publication date
WO1984000001A1 (en) 1984-01-05

Similar Documents

Publication Publication Date Title
KR830001098B1 (en) Process for manufacturing of caseless sausage
RU2168902C2 (en) Ready-to-eat extruded meat product (versions), meat product preparing method (versions) and apparatus
US4997663A (en) Process for using multiple reusable tubular casings in the production of caseless (skinless) parboil or raw sausages
US3078172A (en) Prepared frozen food for cooking and method of preparing the same
US3399423A (en) Apparatus for forming collagen fiber coated products
CA1229762A (en) Method of coating a shirred casing strand with smoke flavor and casing so produced
AU2004226792B2 (en) Textile skin impregnated with food additive
CA1335549C (en) Process for the manufacture of reformed fish products
US2477767A (en) Food casing
RU2295863C9 (en) Food product packaging film
US4476609A (en) Reusable casing and carrier for use in producing sausage
US3604339A (en) Apparatus for making formed cooked meat
US1964011A (en) Method of making and marketing sausage products
EP0111527A1 (en) Process for using multiple reusable tubular casings
RU2727423C1 (en) Method for treatment of food product, which is in insulating container or insulating shell or will be placed in them, by means of non-standard ohmic heating
US3473190A (en) Collagen fiber coated product and method and apparatus for forming same
US3306754A (en) Method of preparing a collagen-coated sausage product
US2507486A (en) Smoked food product and method of preparing same
US2181886A (en) Sausage casing
US2181887A (en) Method of making casings for sausages or other meat products
US3275452A (en) Preparation of meat products
JP2622184B2 (en) Processed meat
FR2615070A1 (en) PROCESS FOR THE PREPARATION OF CARNED FOOD PRODUCTS IN WHICH THE PRODUCT IS PREPARED TO BE CONSUMED OF A FINISHING COATING
JPH0622477B2 (en) Bag-shaped collagen-made roe coating
RU2211598C1 (en) Uncooked smoked cut and packaged braunschweiger sausage and method of producing the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI LU NL SE

17P Request for examination filed

Effective date: 19840627

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19851012

RIN1 Information on inventor provided before grant (corrected)

Inventor name: POTTHAST, KARL