EP0110803B1 - Single acting hydraulic fishing jar - Google Patents
Single acting hydraulic fishing jar Download PDFInfo
- Publication number
- EP0110803B1 EP0110803B1 EP19830630168 EP83630168A EP0110803B1 EP 0110803 B1 EP0110803 B1 EP 0110803B1 EP 19830630168 EP19830630168 EP 19830630168 EP 83630168 A EP83630168 A EP 83630168A EP 0110803 B1 EP0110803 B1 EP 0110803B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tubular
- chamber
- valve
- tubular members
- mandrel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012530 fluid Substances 0.000 claims description 74
- 244000182067 Fraxinus ornus Species 0.000 claims 1
- 230000007246 mechanism Effects 0.000 description 13
- 241000251468 Actinopterygii Species 0.000 description 12
- 238000005553 drilling Methods 0.000 description 10
- 230000002706 hydrostatic effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000005381 potential energy Methods 0.000 description 2
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B31/00—Fishing for or freeing objects in boreholes or wells
- E21B31/107—Fishing for or freeing objects in boreholes or wells using impact means for releasing stuck parts, e.g. jars
- E21B31/113—Fishing for or freeing objects in boreholes or wells using impact means for releasing stuck parts, e.g. jars hydraulically-operated
Definitions
- This invention relates to new and useful improvements in fishing jars and more particularly to single acting hydraulic fishing jars and the like.
- a fishing job in oilfield terminology, means removing something from the well bore that does not belong there. What is removed is called a "fish" and may be part of a drilling string which has become stuck when drilling an oil or gas well, or may be production equipment being removed from an existing well bore during a workover or repair operation.
- the accepted method of retrieving a fish is to grab it by some means and push or pull an axial strain on it until something gives.
- a jar is a tool employed when either drilling or production equipment has become stuck to such a degree that a straight push or pull from the surface is unsufficient to dislodge it.
- the jar is normally placed in the pipe string in the region of the stuck object and allows the drilling rig operator at the surface to deliver an impact blow at the fish through manipulation of the drill pipe string.
- Jars contain a spline joint which allows relative axial movement between an inner mandrel or housing and an outer housing without allowing relative rotational movement.
- the mandrel, or inner housing contains an impact surface or hammer, which contacts a similar impact surface or anvil on the housing when the jar has reached the limit of axial travel. If these impact surfaces are brought together at high velocity, they transmit a very substantial impact to the fish due to the mass of the pipe above the jar.
- Prior art jars of three distinct forms viz. hydraulic jars, mechanical jars and bumper jars.
- the bumper jar is used primarily to provide a downwardly directed impact blow.
- the bumper jar is usually a splined joint with sufficient axial travel allowed so that the pipe can be lifted and dropped, causing the impact surfaces inside the jar to come together to deliver a downward impact blow to the fish.
- Mechanical and hydraulic jars differ from the bumper jar in that they contain a tripping mechanism which retards the motion of the impact surfaces relative to each other until an axial strain has been applied to the pipe.
- the pipe is stretched by an axial tensile pull applied at the surface. This tensile force is resisted by the tripping mechanism of the jar long enough to allow the pipe to stretch and store potential energy.
- Hydraulic and mechanical jars are much more efficient than bumper jars because they allow a much greater impact at the fish for a given pipe strain.
- Mechanical jars are generally less versatile and reliable than hydraulic jars.
- One design of mechanical tripping mechanism requires that the tripping load be selected and preset at the surface to trip at one specific load. If it is desired to increase or decrease the tripping load, it is necessary to pull the pipe from the well bore, a costly and time consuming procedure.
- Another mechanical tripping mechanism of known configuration requires that torque be applied from the surface through the pipe to the tripping mechanism and that this torque be maintained while the jar trips. This can be dangerous to personnel on the rig floor and makes the tripping load difficult to control in deviated well bores.
- Another weakness of mechanical tripping devices is that they must be run in the cocked or detent position.
- the tripping mechanism is subjected to stresses during the normal course of drilling if it is run as a part of the bottom hole assembly.
- Mechanical tripping mechanisms have the additional disadvantage that the metallic parts must move relative to each other while under a high compressive load. This causes rapid wear and frequent failure of the moving parts.
- Hydraulic tripping mechanisms are more desirable because they afford the versatility of a variable hitting load controlled only by the amount of axial strain applied at the surface. Also, hydraulic tripping mechanisms are less subject to mechanical deformation and wear than mechanical tripping mechanisms and therefore will work for a longer time under the same conditions.
- U.S.-A-3,349,858 discloses a single acting (upward) hydraulic drilling jar in which the oil flow through the piston is controlled by a constant flow regulator valve.
- U.S.-A-3,735,827 discloses a hydraulic fishing jar requiring a compressible hydraulic fluid. The mandrel is moved until the hydraulic fluid is compressed to a selected degree at which point a control valve engages an adjustable tripping abutment which opens the valve and dumps the pressurized fluid through a bypass to permit rapid movement of the hammer relative to the anvil surface.
- U.S.-A-3,797,591 discloses a hydraulic fishing jar similar to US-A-3,735,827 but including a different adjustable trigger mechanism.
- U.S.-A-3,851,717 discloses a hydraulic fishing jar having a constant flow bypass for a tripping piston and arranged so that the tripping piston is moved down until the main bypass valve is opened and the device trips.
- U.S.-A-4,059,167 discloses a fishing jar similar to U.S.-A-3,851,717 and incorporating a tandem piston arrangement to lower the internal operating pressure.
- U.S.-A-3,285,353 discloses a fishing jar having telescoping mandrels, one connected to the drill string and the other to the drill fish, surrounded by an outer housing.
- a piston valve is arranged to dump pressure after a selected degree of movement and to move the housing to impact a hammer surface against an anvil su rface.
- U.S.-A-3,087,559 discloses a hydraulic fishing jar having mechanical trip fingers with a hydraulic delay.
- GB-A-2,089,400 discloses a double acting drilling jar having telescoping members with a hammer member on one of them and an anvil member on the other of the telescoping members.
- a piston operatively connected to one of said telescoping members is provided to close a chamber formed therebetween and to be movable in said chamber for pressurization thereof.
- Valve means are provided for closing a valve opening in one of said telescoping members and moveable to open same to release fluid from the chamber, as well as means for actuating said valve means.
- the object of the invention is to provide an improved fishing jar useful in earth drilling operations for removing stuck objects or "fish" from a drill hole.
- a single acting fishing jar 1 which is of substantial length necessitating that it be shown in four successive longitudinally broken quarter sectional views, viz. Figs. 1A, 1B, 1C and 1D. Each of these views is shown in longitudinal section extending from the center line of the jar to the outer periphery thereof.
- Fishing jar 1 comprises inner tubular mandrel 2 telescopingly supported inside outer tubular housing 3.
- Mandrel 2 and housing 3 each consist of a plurality of segments or parts which must be described in further detail.
- Mandrel 2 consists of an upper tubular portion 4 (in Figs. 1A and 1 B) having an inner longitudinal passage 5 extending therethrough.
- the upper end of upper portion 4 is enlarged as indicated at 6. and is internally threaded at 7 for connection to a drill string or the like.
- the lower end of mandrel portion 4 is provided with a counterbore ending in internal shoulder 8 and internally threaded as indicated at 9.
- An intermediate portion of mandrel 2 consists of tubular sleeve member 10 (in Figs. 1B and 1C) which has its upper end threaded as indicated at 11 for connection inside threaded portion 9 of member 4 with the upper end portion abutting shoulder 8.
- the lower end of sleeve member 10 is threaded externally as indicated at 12 (Fig. 1C) and is provided with an internal bore or passage 13 which is a continuation of passage 5 in mandrel portion 4.
- the lower end of mandrel 2 consists of tubular member 14 (in Figs. 1C and 1D) which is provided with a counterbore ending in shoulder 15 and internally threaded as indicated at 16.
- Tubular portion 14 is threadedly assembled on the lower end of tubular member 10 with the lower end thereof abutting shoulder 15.
- tubular member 14 is of reduced diameter as indicated at 17 defining an annular stop shoulder 18.
- Tubular portion 14 has an internal longitudinal passage 19 which is an extension of passages 5 and 13.
- the three portions 4, 10 and 14 are threadedly assembled, as shown, into a single tubular mandrel 2 which is longitudinally movable inside tubular housing 3 as will be subsequently described.
- Tubular housing 3 is formed in several sections, for purposes of assembly, somewhat similarly to mandrel 2.
- the upper end of tubular housing 3 consists of tubular member 20 (in Fig. 1A) which has a smooth inner bore 21 at its upper end in which the exterior surface 22 of upper mandrel tubular member 4 is positioned for longitudinal sliding movement.
- the lower end portion of tubular housing member 20 has a portion of reduced diameter forming an annular shoulder 23 and having an exterior threaded 'portion 24.
- Tubular housing 3 is provided with an intermediate tubular portion 25 (in Figs. 1A and 1B) which is internally threaded as indicated at 26 at its upper end "for threaded connection to the threaded portion 24 of tubular housing member 20.
- the upper end of the intermediate tubular portion 25 abuts shoulder 23 when the threaded connection is made up tight.
- the lower end portion of tubular member 25 has a portion of reduced diameter (Fig. 1B) forming shoulder 27 and externally threaded as indicated at 28.
- tubular housing 3 consists of tubular member 29 (in Figs. 1B, 1C and 1D) which is internally threaded as indicated at 30 at its upper end for threaded connection to the threaded portion 28 of intermediate housing portion 25.
- the upper end of the lower tubular housing portion 29 abuts shoulder 27 when the threaded connection is made up tight.
- the lower end of tubular housing portion 29 is internally threaded as indicated at 31 (in Fig. 1D).
- tubular housing 2 At the lower end of tubular housing 2, there is provided an elongated tubular connecting member or sub 32 which is externally threaded, as indicated at 33, at its upper end and has a shoulder 34 against which the lower end of tubular housing member 29 abuts when the threaded connection 31/33 is made up tight.
- Connecting sub 32 has an inner longitudinal passage 35 which is a continuation of the passages through mandrel 2 and which also communicates with the annular space between mandrel portion 14 and the inner surfaces of housing portion 29 and sub 32.
- the lower end of sub 32 is of reduced diameter as indicated at 36 and has a threaded surface 37 for connection to a fish, or the like, for operation as a fishing jar.
- mandrel 2 and housing 3 are each formed of several threadedly connected sections for purposes of assembly.
- Mandrel 2 is arranged for sliding movement inside housing 3.
- the apparatus will be charged with a suitable operating fluid, e.g. hydraulic fluid, as will be subsequently described, and it is therefore necessary to provide seals against leakage from several points of assembly and also from the points of sliding engagement between mandrel 2 and housing 3.
- the exterior surface of the upper mandrel portion 4 has a sliding fit in the bore 21 of the upper tubular portion 20 of housing 3.
- Tubular member 20 is provided with an internal annular groove 38 in which there is positioned an O-ring 39 which seals that sliding joint against leakage of hydraulic fluid.
- the threaded connection between tubular housing portions 20 and 25 is sealed against leakage by an O-ring 40 (in Fig. 1A) which is positioned in external peripheral groove 41 in the lower end of tubular housing member 20.
- the threaded connection between tubular housing members 25 and 29 is similarly sealed against fluid leakage by an 0-ring 42 (in Fig. 1B) which is positioned in peripheral groove 43 in the lower end portion of housing member 25.
- the threaded connection between the lower end of tubular housing member 29 and connecting sub 32 is similarly sealed against leakage in fluid by 0-ring 44 (in Fig. 1D) positioned in annular groove 45 in the upper end of sub 32.
- the space between the inner bore of the various components of housing 3 and the external surface of mandrel 2 provides an enclosed chamber and passages for flow of hydraulic fluid (or other suitable operating fluid) through this fishing jar.
- hydraulic fluid or other suitable operating fluid
- Various additional components are provided as will be subsequently described.
- the space between the inner bore 50 thereof and the external surface 22 of mandrel tubular member 4 provides an annular space or chamber 52.
- the upper end of chamber 52 is provided with a threaded opening 53 in which a threaded plug member 54 is secured. Threaded opening 53 provides for the introduction of hydraulic fluid (or other suitable operating fluid) as will be subsequently described.
- tubular mandrel member 4 is of slightly reduced diameter at the lower end portion 55 thereof and is provided with a plurality of longitudinally extending grooves 56 with splines 57 therebetween (in Figs. 1A and 2).
- the lower end portion of housing tubular member 20 is provided with an inner bore 58 of reduced diameter forming an upper beveled shoulder 59 and having a plurality of' longitudinally extending grooves 60 therein circumferentially spaced to define a plurality of splines 61 which fit into grooves 56 in upper tubular mandrel member 4 (in Figs. 1A and 2).
- the grooves 56 and 60 in tubular housing member 20 and in tubular mandrel member 4 are of greater depth than the height of the splines 57 and 61 positioned in those grooves. As a result, passages are provided which extend longitudinally of the respective grooves in mandrel member 4 and housing member 20 as indicated at 62 and 63 (in Figs. 1A and 2).
- tubular housing member 20 and on tubular mandrel member 4 provides a guide for longitudinal movement of mandrel 2 in housing 3 without permitting rotary movement therebetween.
- the passages 62 and 63 in the clearance between the splines and grooves provide for flow of hydraulic fluid between chamber 52 and the lower portions of the apparatus as will be subsequently described.
- tubular housing member 25 In Fig. 1 B, it is seen that the clearance between tubular housing member 25 and mandrel member 4 is such that there is provided a hydraulic chamber 64 of substantially enlarged size relative to hydraulic chamber 52 and communicating therewith.
- the lower end of tubular housing member 20 provides an anvil surface 65 which is utilized when this apparatus jars in an upward direction for fishing an object from a well.
- the inner surface 66 of tubular housing member 25 constitutes a counterbore which produces an internal circumferential shoulder 67 at the lower end of hydraulic chamber 64 which is a stop limiting downward movement of the mandrel into the housing.
- the lower end portion 68 of mandrel member 4 has the external surface 55 thereof threaded as indicated at 69.
- a hollow cylindrical hammer 70 having internal threads 71, is threadedly secured on the threaded portion 69 of tubular mandrel member 4 and may be secured against loosening during operation by a set screw or the like (not shown).
- the upper end portion 72 of hammer 70 is engageable during operation with the anvil surface 65 on housing member 20.
- the lower hammer surface 73 of hammer member 70 engages stop shoulder 67 at the limit of downward operation of the apparatus.
- Housing member 25 has an upper counterbore 74 and a lower counter-bore 75 which end a short distance apart and define an intermediate portion 76 forming a guide for movement of the mandrel.
- Tubular mandrel portion 10 is provided with a plurality of longitudinally extending grooves 77 (in Figs. 1B, 1C and 3). Grooves 77 provide flow passages for flow of hydraulic fluid as will be subsequently described.
- Tubular sleeve member 78 fits tightly on tubular mandrel member 10 overlying the upper end portions of grooves 77.
- the lower end portion of sleeve member 78 has an enlarged portion 79 with a beveled surface forming a valve seat 80 (in Figs. 1B and 3).
- Tubular sleeve member 78 is provided with apertures 81 at its upper end which open from counterbore 74 into grooves 77. It is also provided with apertures 82 which open from the lower ends of grooves 77 into hydraulic chamber 83, controlled by a tripping valve 84, as described below.
- the upper end of tubular sleeve member 78 abuts the lower end of tubular mandrel member 4.
- the lower end of tubular member 78, below valve seat 80 abuts the upper end of a tubular sleeve member 85 which fits tightly over the mandrel member 10 covering the lower end portions of grooves 77.
- Sleeve members 78 and 85 therefore enclose the grooves 77 and define a system of longitudinally extending passages.
- the lower end of sleeve 85 is enlarged, as indicated at 86 and has a plurality of apertures 87 opening from the lower ends of grooves or passages 77.
- the inner surface 88 of housing member 29 and the outer surfaces of tubular sleeve members 78 and 85 are spaced apart to define a hydraulic chamber 83.
- the outer surface of sleeve member 85 is a smooth cylindrical surface permitting free movement of a pressure piston 89 and a tripping valve 84 supported therebetween.
- the lower end portion of sleeve member 85 is enlarged, as indicated at 90, and is provided with slots 91 in the outer surface thereof.
- the upper end of hydraulic chamber 83, at guide portion 76 of housing member 25 is sealed by O-ring 92 positioned in annular groove 93.
- Tripping valve 84 is a tubular valve member having a smooth cylindrical bore 94 fitting the outer surface of tubular sleeve 85 for sliding movement thereon.
- Valve member 84 is sealed on its inner surface by O-ring 95 fitting in annular groove 96.
- Valve member 84 has an enlarged tubular extension 97 having a counterbore 98. Apertures 99 open from counterbore 98 into hydraulic chamber 83.
- Valve member 84 has a beveled valve seat surface 100, connecting smooth cylindrical bore 94 and counterbore 98, which has an initially closed position against valve seat 80.
- An annular pressure piston 89 is positioned at the lower end of hydraulic chamber 83 (in Fig. 1C).
- Piston 89 has a sliding fit between tubular member 85 and the inner surface 88 of housing member 29 and is sealed on the outside by O-ring 101 positioned in groove 102.
- Piston 89 has a longitudinal passageway 103 with an orifice 104 therein.
- a coil spring 106 is positioned between piston 89 and tripping valve member 84 which urges valve member 84 to a seated position and hydraulic piston member 89 toward an initial position seated on shoulder 107.
- fluid chamber 108 (in Fig. 1C) formed by the outer surface 109 of mandrel portion 14 and the inner surface 110 of housing portion 29.
- the lower end of fluid chamber 108 is closed by annular piston 111 positioned for sliding movement therein.
- Piston 111 is sealed against fluid leakage by O-rings 112 and 113 positioned in grooves 114 and 115, respectively.
- Piston 111 abuts and is urged upward by spring 116 which is supported on the upper end 117 of connecting sub 32.
- a threaded opening 118, closed by plug 119 provides for filling chamber 108 with fluid.
- the apparatus described above is a single acting hydraulic fishing jar which can be used to apply upwardly directed impact or jarring forces to an object stuck in a well, i.e. a "fish".
- this fishing jar for jarring in the upward direction, the drill pipe is stretched by an axial tensile pull applied at the surface. The application of this tensile force is resisted by the tripping mechanism of the jar long enough for the pipe to stretch and store potential energy.
- the stored energy in the stretched pipe is converted to kinetic energy which causes the impact surfaces, i.e. hammer and anvil, of the jar to move together and strike at a high velocity, thus applying a very high impact force.
- the fishing jar 1 When the fishing jar 1 is assembled, as described above, it is filled with a hydraulic fluid through opening 53 in the upper tubular housing member 20 and opening 118 in the lower housing member 29.
- the hydraulic fluid used is preferably a non-compressible fluid since the apparatus operates utilizing the leakage of fluid past the pressure piston. With certain adjustments in operating clearances, the apparatus can be operated using the well drilling fluid. While non-compressible fluids are preferred, it is possible to use a compressible hydraulic fluid or a high pressure gas, but this would require a longer tool in order to allow for the additional travel required to pressurize a compressible fluid.
- hydraulic fluid When the hydraulic fluid is introduced into the fishing jar 1 through openings 53 and 118, it flows to the bottom of hydraulic fluid chamber 108 which is closed by pressure balancing piston 111.
- the hydraulic fluid fills the space in hydraulic chamber 108 and hydraulic chamber 83 which is located between the pressure piston 89 and O-ring seal 92.
- the hydraulic fluid also fills the various passages including passage 77 and counterbore 74 leading to hydraulic fluid chamber 64. This chamber is filled with fluid on up into hydraulic fluid chamber 52 in which the fluid extends up to the level of the filling opening 53.
- the apparatus can be inclined somewhat to work out air bubbles in the filling so that it is completely filled with fluid up to the opening 53. At this point, filling plugs 54 and 119 are inserted and the apparatus is ready for use.
- the pressure balancing piston 111 allows for thermal expansion of the fluid and also allows the hydrostatic pressure of the fluid in the well bore which surrounds the jar to keep the fluid in the jar under sufficient pressure to cause it to complete its path of flow fron one section of the apparatus to another.
- the apparatus is in the initial or starting position from which it can be moved upward to produce an upward jarring force to facilitate loosening a "fish".
- the hammer 70 is positioned against stop shoulder 73.
- the pressure piston 89 is held against shoulder 107 by the force of spring 106.
- the spring 106 also holds tripping valve 84 in closed position against valve seat 80 (in Fig. 1B).
- the apparatus will be first described in providing an upward jarring action for loosening a "fish".
- This last rapid movement is the movement between the position where the tripping valve 84 starts to open and the position shown in Figs. 5A to 5D.
- This movement is one in which the tripping valve has been opened wide, as seen in Figs. 5B and 5C, and mandrel 2 has moved upward to the point where the upper surface 72 of hammer 70 has engaged anvil shoulder 65 with a hammer or impact blow.
- This last rapid movement releases the tensile energy in mandrel 2 and the drill string in the form of kinetic energy moving hammer 70 at a very high speed into jarring impact with anvil shoulder 65.
- the apparatus has reached the point of maximum upward movement.
- the movement of mandrel 2 is thus limited in an upward direction by engagement of hammer 70 with anvil shoulder 65 and in a downward direction by engagement of hammer 70 with stop shoulder 67, as previously described.
- the apparatus is recocked for further use by releasing the tension of the drill string to allow the mandrel 2 to move back to the initial or starting position of Figs. 1A-1D.
- hammer 70 moves away from anvil surface 65.
- Pressure piston 89 moves downward along with mandrel 2.
- Fluid chamber 83 is filled with hydraulic fluid forced by the downward movement of pressure piston 89 through opening 87, passages 77, apertures 82, and the open tripping valve 84.
- tripping valve 84 closes.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Engineering & Computer Science (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Marine Sciences & Fisheries (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
- Forging (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Glass Compositions (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US44360582A | 1982-11-22 | 1982-11-22 | |
US443605 | 1982-11-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0110803A1 EP0110803A1 (en) | 1984-06-13 |
EP0110803B1 true EP0110803B1 (en) | 1986-12-30 |
Family
ID=23761476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19830630168 Expired EP0110803B1 (en) | 1982-11-22 | 1983-10-13 | Single acting hydraulic fishing jar |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0110803B1 (enrdf_load_stackoverflow) |
JP (1) | JPS5996389A (enrdf_load_stackoverflow) |
CA (1) | CA1220779A (enrdf_load_stackoverflow) |
DE (1) | DE3368716D1 (enrdf_load_stackoverflow) |
MX (1) | MX157609A (enrdf_load_stackoverflow) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6278494A (ja) * | 1985-10-02 | 1987-04-10 | Hitachi Ltd | スクロ−ル流体機械 |
US4844183A (en) * | 1987-10-28 | 1989-07-04 | Dailey Petroleum Services, Corp. | Accelerator for fishing jar with hydrostatic assist |
RU2166550C2 (ru) * | 1999-03-26 | 2001-05-10 | Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина | Способ производства низкокремнистой стали |
GB2362904B (en) * | 2000-05-12 | 2004-08-11 | Bd Kendle Engineering Ltd | Improved jar mechanism |
CA2460660C (en) | 2001-11-27 | 2007-06-26 | Weatherford/Lamb, Inc. | Hydraulic-mechanical jar tool |
CN108468524B (zh) * | 2018-05-21 | 2023-10-03 | 中国石油天然气集团有限公司 | 连续管打捞节流器用铅印和判断节流器能否打捞的方法 |
CN113338832B (zh) * | 2021-05-18 | 2023-10-20 | 四川伟创石油装备制造有限公司 | 一种液压双向震击器 |
CN117823072B (zh) * | 2024-03-04 | 2024-05-03 | 四川职业技术学院 | 一种随钻液压式主被动震击器 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3735827A (en) * | 1972-03-15 | 1973-05-29 | Baker Oil Tools Inc | Down-hole adjustable hydraulic fishing jar |
US3797591A (en) * | 1973-02-06 | 1974-03-19 | Baker Oil Tools Inc | Trigger mechanism for down-hole adjustable hydraulic fishing jar |
US3851717A (en) * | 1973-11-15 | 1974-12-03 | Baker Oil Tools Inc | Substantially constant time delay fishing jar |
US4059167A (en) * | 1977-02-04 | 1977-11-22 | Baker International Corporation | Hydraulic fishing jar having tandem piston arrangement |
US4361195A (en) * | 1980-12-08 | 1982-11-30 | Evans Robert W | Double acting hydraulic mechanism |
-
1983
- 1983-09-16 CA CA000436923A patent/CA1220779A/en not_active Expired
- 1983-10-13 DE DE8383630168T patent/DE3368716D1/de not_active Expired
- 1983-10-13 EP EP19830630168 patent/EP0110803B1/en not_active Expired
- 1983-10-28 MX MX19925583A patent/MX157609A/es unknown
- 1983-10-31 JP JP20464283A patent/JPS5996389A/ja active Granted
Also Published As
Publication number | Publication date |
---|---|
EP0110803A1 (en) | 1984-06-13 |
DE3368716D1 (en) | 1987-02-05 |
JPS5996389A (ja) | 1984-06-02 |
JPH0459436B2 (enrdf_load_stackoverflow) | 1992-09-22 |
MX157609A (es) | 1988-12-05 |
CA1220779A (en) | 1987-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4566546A (en) | Single acting hydraulic fishing jar | |
US4361195A (en) | Double acting hydraulic mechanism | |
EP0597885B1 (en) | A double-acting accelerator for use with hydraulic drilling jars | |
EP0695391B1 (en) | Reduced waiting time hydraulic drilling jar | |
US5624001A (en) | Mechanical-hydraulic double-acting drilling jar | |
HK1007787B (en) | A double-acting accelerator for use with hydraulic drilling jars | |
CA1107714A (en) | Temperature compensated sleeve valve hydraulic jar tool | |
US4059167A (en) | Hydraulic fishing jar having tandem piston arrangement | |
EP0110803B1 (en) | Single acting hydraulic fishing jar | |
US4161224A (en) | Fluid dump mechanism | |
US6135217A (en) | Converted dual-acting hydraulic drilling jar | |
CA1114360A (en) | Temperature compensating hydraulic jarring tool | |
EP1021635B1 (en) | Gas-filled accelerator | |
US6263986B1 (en) | Hydraulic drilling jar | |
US5217070A (en) | Drill string jarring and bumping tool | |
AU5769801A (en) | Converted dual-acting hydraulic drilling jar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19840726 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: EVANS, ROBERT W. |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: EVANS, ROBERT W. |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 3368716 Country of ref document: DE Date of ref document: 19870205 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20001010 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020628 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20021009 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20021017 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20031012 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 |