EP0107686B1 - Method and device for producing photons in the ultraviolet wavelength range - Google Patents

Method and device for producing photons in the ultraviolet wavelength range Download PDF

Info

Publication number
EP0107686B1
EP0107686B1 EP83901325A EP83901325A EP0107686B1 EP 0107686 B1 EP0107686 B1 EP 0107686B1 EP 83901325 A EP83901325 A EP 83901325A EP 83901325 A EP83901325 A EP 83901325A EP 0107686 B1 EP0107686 B1 EP 0107686B1
Authority
EP
European Patent Office
Prior art keywords
matrix
photons
gas
ions
bombardment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83901325A
Other languages
German (de)
French (fr)
Other versions
EP0107686A1 (en
Inventor
Amand A. Lucas
Jack Clark Rife
Stephen Eastwood Donnelly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT83901325T priority Critical patent/ATE22180T1/en
Publication of EP0107686A1 publication Critical patent/EP0107686A1/en
Application granted granted Critical
Publication of EP0107686B1 publication Critical patent/EP0107686B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J63/00Cathode-ray or electron-stream lamps

Definitions

  • the present invention relates to a process for the production of photons, in the range of ultraviolet wavelengths, comprising the implantation in a solid matrix of ions of inert gas or respectively insoluble with respect to the matrix, l excitation of the trapped gas in the form of extended defects of the solid matrix, and the emission of said photons by the excited gas, as well as to a device for the implementation of this process.
  • Common light sources for the near, far, and extreme ultraviolet wavelength ranges are generally discharge sources where light is produced by passing an electrical discharge through a capillary containing noble or other gases at pressures included between 10 and a few tens of thousands of Pa.
  • a commonly used gas a continuous emission spectrum results from the formation in the discharge and the subsequent radiative decay, of excited helium molecules He 2 *.
  • synchrotron Another important source of radiation in this spectrum range is the synchrotron, which is a complicated and expensive installation, accessible only in a few places in the world.
  • low energy ions (with energies from 1 to 15 keV) of the 3 He isotope are implanted in a monocrystalline solid of Nb at various doses.
  • the amount of 3 He actually captured and retained by the target is then determined by means of the reaction.
  • the spectra observed by electron bombardment consist of resonant transpositions from the first excited atomic state plus an emission of molecular continuum at longer wavelengths.
  • the authors discuss the mechanisms of excitation energy transfers and the kinetics of molecular reactions based on the time course of fluorescence intensities.
  • the object of the present invention is to point of a process and a device for producing photons in the range of ultraviolet wavelengths which are simple and inexpensive while giving results comparable to discharge sources.
  • ion bombardment of a surface of the solid matrix is carried out with low-energy ions of at least one gas as mentioned above, so as to obtain implantation over a depth not exceeding not some 10- 1 m (thousands of A) of gas in the solid matrix, and then an electron bombardment, of an energy lower than or equal to 20 keV, of the solid matrix, with excitation of the trapped gas and emission of photons above.
  • the method comprises the implantation of gas ions by one face of a solid matrix in mass and the electron bombardment of this same face with emission of the aforementioned photons induced from this face. .
  • the method comprises the implantation of gas ions in a solid lamellar matrix with a thickness less than 1 fJ.m, and the above-mentioned electronic bombardment of one of the faces of this matrix with emission of the aforementioned photons induced from the other face of the matrix.
  • a device for implementing the method according to the invention comprising a vacuum envelope, a solid matrix in which are implanted ions of at least one inert gas or respectively insoluble vis -with respect to the matrix, this matrix being mounted on a support inside the vacuum envelope, as well as an output for the photons produced provided in the envelope, this device being characterized in that it includes an electron production device capable of subjecting the matrix to electronic bombardment with an energy less than or equal to 20 keV and an electrical connection connecting the matrix to the outside making it possible to measure the electric current in the matrix, the ions aforementioned gas is implanted to a depth not exceeding a few 10- 1 m (thousands of a).
  • the device illustrated in FIG. 1 comprises a solid matrix 1 which is prepared by implantation of low energy He ions in an Al sheet with a thickness less than 1 f.Lm.
  • a He ion bombardment at low energy in the range of 5 keV, allows the implantation of a high concentration (locally greater than 10 atomic%) of He at a depth of tens to 10- 1 m ( thousands of A).
  • Helium naturally agglomerates in the gaps in the matrix produced by bombardment and forms large defects, such as gap agglomerates or microbubbles 2 which remain stable at room temperature and can withstand temperature rises of up to at a few hundred ° C, for example up to 300 ° C.
  • the device illustrated in FIG. 1 also includes a device for producing low-energy electrons 3, such as an electronic gun, this device projecting an electron beam 4 onto one of the faces 5, called the rear face, of the matrix 1.
  • the electrons in the electron beam 4 have an energy less than or equal to 20 keV, preferably between 1 and 5 keV.
  • fluorescence of the target is induced from the front face 6 of the matrix, the emission of photons being represented by the arrows in wavy lines 7.
  • the lamellar matrix 1 is in the form of a continuous strip, wound at one end in a reserve roll 20 and at its other end in a discharge roller 21.
  • the matrix can be moved in the direction of arrow 22, by rotating said rollers 20 and 21, and bring before the electron beam a new part of the matrix not yet subjected to electron bombardment.
  • This movement can be carried out manually or automatically, and it can be continuous or intermittent during the operation of the device according to the invention.
  • the matrix is a bulk substrate 8.
  • the implantation of the He ions is carried out in the same manner as for the lamellar matrix 1, proceeding so as to obtain a maximum concentration of microbubbles 2 of He at a depth, preferably less than 5. 10- 1 m (5000 A).
  • the electron gun 3 projects a beam of low energy electrons on the same surface as that by which the He ions were implanted, and a fluorescence of the target is then induced through this surface 9, the emission of photons being represented by the arrows in wavy lines 10.
  • the device illustrated in FIG. 3 represents in a more detailed way a device implementing an electronic bombardment of the front face of the matrix.
  • This device comprises an envelope 11 maintained under vacuum in which the matrix 8 is mounted on a support 12 which can be cooled by a cooling circuit 13, for example with water, in the event of use. of the high intensity device.
  • An electron gun 3 emitting a low energy electron beam of adjustable intensity is mounted on the envelope so as to direct this beam on the matrix.
  • the angle of incidence between the beam and the plane of the matrix is calculated so that the emitted photons can propagate through the exit opening 14 formed at one of the front ends of the envelope 11.
  • This end is provided with a flange 15 which is used to connect the device according to the invention to an apparatus in which ultraviolet light will be used.
  • An electrical connection 16 makes it possible in particular to measure the electronic current in the matrix.
  • An electronic screen 17 can be provided in the outlet opening 14 intended to prevent any exit of electrons through this opening, this electronic screen 17 then also being connected to the outside by an electrical connection 18.
  • the casing 11 is maintained under vacuum, either by a pumping device, not shown, connected to the casing by the flange connection 19, or by the pumping device now holding the vacuum device, not shown, connected to the flange 15 .
  • the matrix material must meet two main conditions: the insolubility of the gas in the matrix and relatively low absorption by the matrix of the gas emission continuum.
  • the material of the matrix must preferably have optical properties such that the depth of escape of the photons produced is compatible with the depth of implantation. Therefore, the penetration depth of the electron beam need not exceed this photon escape depth, and electron energies in the range of 0.1 to 20 keV are sufficient, even for surface bombardment. before, with a relatively grazing incidence.
  • This property of the photon source makes it possible to avoid the high costs necessary for carrying out high energy ionic and electronic bombardments, such as those used in known methods and devices.
  • Excitement can notably be produced by the use of a low energy electronic gun.
  • materials chosen from the group comprising metals, such as Sn, Mg, AI, semiconductors, such as Si, Ge or certain insulators, such as LiF, NaCl, can advantageously be used.
  • the source is substantially planar and the surface and the shape of the source can be simply adjusted by structuring the electron beam.
  • an effectively point source can be obtained; by scanning or spreading the beam, it is possible to obtain an extended source compatible, for example, with the slit geometry used in certain spectroscopic work.
  • a time-varying fluorescence intensity can easily be obtained by modulating the electron beam in pulses, which allows the use of the source in servo-control techniques (of the “lock in •” type).
  • the duration of existence of the fluorescence is less than 10 nsec.
  • a source of photons based on AI / He is prepared in the manner described above and implemented according to the invention under an electron bombardment having an energy of 3 800 V.
  • This source produces, as can be seen from FIG. 4, a continuous spectrum of fluorescence which extends from 5.8 to 9 10-8 m (from 580 to 900 A), which is similar to that that we get with conventional discharge sources.
  • the production of photons from the matrix was compared with the synchrotron source SURF II and this comparison indicates an efficiency greater than or equal to 10- 4 photons per electron. With sufficient electronic current, the brightness can reach that obtained by discharge lamps.
  • photon source for example for photoelectron spectroscopy in the ultraviolet, for studies of reflectivity, adsorption and photoconductivity. etc.
  • the methods and devices according to the invention have the advantage of not requiring differential pumping, gas replacement and cryogenic cooling. In addition, they are very easy to implement and flexible in operation.
  • the source according to the invention offers the advantage of a brightness, which can vary by six orders of magnitude or more, by modification of the intensity of the electron beam. It allows a specific geometry by concentration. Finally, its implementation is relatively inexpensive.

Landscapes

  • Physical Vapour Deposition (AREA)
  • Particle Accelerators (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Luminescent Compositions (AREA)

Abstract

Method and device for the production of photons (7), in the ultraviolet wavelength range, comprising the implantation in a solid matrix of inert or respectively matrix-insoluble gas ions, the excitation of the gas imprisoned (2) in the solid matrix, and the emission of said photons (7) by the excited gas, as well as in particular the ionic bombardment of a surface of the solid matrix by low energy ions of at least one gas such as afore-mentioned, and the low energy electronic bombardment (4) of the solid matrix with emission of the photons (7).

Description

La présente invention est relative à un procédé de production de photons, dans la gamme des longueurs d'ondes ultraviolettes, comprenant l'implantation dans une matrice solide d'ions de gaz inerte ou respectivement insoluble vis-à-vis de la matrice, l'excitation du gaz emprisonné sous la forme de défauts étendus de la matrice solide, et l'émission desdits photons par le gaz excité, ainsi qu'à un dispositif pour la mise en oeuvre de ce procédé.The present invention relates to a process for the production of photons, in the range of ultraviolet wavelengths, comprising the implantation in a solid matrix of ions of inert gas or respectively insoluble with respect to the matrix, l excitation of the trapped gas in the form of extended defects of the solid matrix, and the emission of said photons by the excited gas, as well as to a device for the implementation of this process.

Les sources de lumière courantes pour les gammes de longueurs d'ondes ultraviolettes proches, lointaines et extrêmes, sont généralement des sources à décharge où la lumière est produite en faisant passer une décharge électrique dans un capillaire contenant des gaz nobles ou autres à des pressions comprises entre 10 et quelques dizaines de milliers de Pa. Pour He, un gaz communément utilisé, un spectre continu d'émission résulte de la formation dans la décharge et la décroissance radiative subséquente, de molécules d'hélium excitées He2 *. Common light sources for the near, far, and extreme ultraviolet wavelength ranges are generally discharge sources where light is produced by passing an electrical discharge through a capillary containing noble or other gases at pressures included between 10 and a few tens of thousands of Pa. For He, a commonly used gas, a continuous emission spectrum results from the formation in the discharge and the subsequent radiative decay, of excited helium molecules He 2 *.

Une autre source importante de rayonnement dans cette gamme du spectre est le synchroton, qui est une installation compliquée et coûteuse, accessible uniquement en quelques endroits du monde.Another important source of radiation in this spectrum range is the synchrotron, which is a complicated and expensive installation, accessible only in a few places in the world.

On a également envisagé d'utiliser la fluorescence de l'hélium liquide comme source de rayonnement dans la gamme ultraviolette, mais ce procédé demande un refroidissement cryogénique, donc à très basses températures, ainsi qu'un pompage différentiel, et sa mise en oeuvre est donc très coûteuse (v. C.M. Surko, R.E. Packard, G.J. Dick et F. Reif, Spectroscopic Study of the luminescence of liquid helium in the vacuum ultraviolet, dans Physical Review Letters, Vol. 24, N° 12, (1970), p. 657 et suiv.).It has also been envisaged to use the fluorescence of liquid helium as a source of radiation in the ultraviolet range, but this process requires cryogenic cooling, therefore at very low temperatures, as well as differential pumping, and its implementation is therefore very costly (see CM Surko, RE Packard, GJ Dick and F. Reif, Spectroscopic Study of the luminescence of liquid helium in the vacuum ultraviolet, in Physical Review Letters, Vol. 24, N ° 12, (1970), p . 657 et seq.).

Il est connu par ailleurs de préparer des matrices solides présentant des défauts étendus, tels que des agglomérats de lacunes, ou des bulles contenant un gaz inerte ou insoluble vis-à-vis de la matrice. On obtient, par exemple, une telle matrice avec microbulles d'hélium par bombardement au moyen d'ions He énergétiques. La matrice AI/He a fait l'objet d'études en spectroscopies d'absorption optique et de perte d'énergie électronique (v. J.C. Rife, S.E. Donnelly, A.A. Lucas, J.M. Gilles et J.J. Ritsko, Optical absorption and electron-energy-loss spectra of helium microbubbles in Aluminum, Physical Review Letters, vol. 46, n° 18 (1981), p. 1220 et suiv.).It is also known to prepare solid matrices having wide defects, such as vacancy agglomerates, or bubbles containing an inert gas or insoluble with respect to the matrix. One obtains, for example, such a matrix with microbubbles of helium by bombardment by means of energetic He ions. The AI / He matrix has been the subject of studies in optical absorption and electronic energy loss spectroscopy (see JC Rife, SE Donnelly, AA Lucas, JM Gilles and JJ Ritsko, Optical absorption and electron-energy -loss spectra of helium microbubbles in Aluminum, Physical Review Letters, vol. 46, n ° 18 (1981), p. 1220 et seq.).

On a aussi observé qu'une matrice solide bombardée au moyen d'ions hélium à grande énergie (200-600 keV) émet, à partir d'une certaine dose d'He un spectre continu dans la gamme des ultraviolets (v. R.S. Bhattacharya, K.G. Lang, A. Scharman et K.H. Schartner, Continuous emission in the vacuum ultraviolet under energetic inert gas ion bombardment of aluminium, dans J. Phys. D, vol. 11 (1978), p. 1935 et suiv.). Il faut noter que l'implantation d'ions hélium à grande énergie est un procédé relativement coûteux et que, les ions hélium étant implantés à grande profondeur dans la matrice, l'intensité de l'émission des ultraviolets est faible.It has also been observed that a solid matrix bombarded with high-energy helium ions (200-600 keV) emits, from a certain dose of He, a continuous spectrum in the ultraviolet range (see RS Bhattacharya , KG Lang, A. Scharman and KH Schartner, Continuous emission in the vacuum ultraviolet under energetic inert gas ion bombardment of aluminum, in J. Phys. D, vol. 11 (1978), p. 1935 et seq.). It should be noted that the implantation of high energy helium ions is a relatively expensive process and that, since the helium ions are implanted at great depth in the matrix, the intensity of the emission of ultraviolet rays is low.

On notera encore que l'interaction entre un plasma chaud, tel que rencontré dans les réacteurs à fusion deutérium-tritium, et la surface solide des parois du réacteur, est décrite par R. Behrish et al., Trapping of low-energy helium ions in niobium, dans Journal of Nuclear Materials, volume 56, n° 3, pages 365-367, North Holl. Publishing Company, Amsterdam (NL).It will also be noted that the interaction between a hot plasma, as encountered in deuterium-tritium fusion reactors, and the solid surface of the walls of the reactor, is described by R. Behrish et al., Trapping of low-energy helium ions in niobium, in Journal of Nuclear Materials, volume 56, n ° 3, pages 365-367, North Holl. Publishing Company, Amsterdam (NL).

A cette fin, des ions de basse énergie (avec des énergies de 1 à 15 keV) de l'isotope 3He sont implantés dans un solide monocristallin de Nb à diverses doses. La quantité d'3He effectivement capturée et retenue par la cible est ensuite déterminée au moyen de la réaction

Figure imgb0001
3He(d, p) 4He dans laquelle un deutéron (d) de 5LI keV transforme un atome cHe en isotope 4He avec émission d'un proton (r) de 3,5 MeV qui est détecté. La mesure du courant de protons donne accès à la quantité d'3He implantée. Le résultat central de ces mesures est présenté sous forme de courbes de capture donnant la quantité d'3He retenue par le solide en ;onction de la dose d'ions 3He+ implantés et pour plusieurs énergies d'implantation. La conclusion des auteurs est que le maximum de concentration d'He implanté à basse énergie dans le Nb est situé entre 50 et 100 % atomique et que le processus de saturation est atteint lorsqu'un atome d'3He s'échappe par diffusion pour chaque nouvel ion 3He' implanté. Aucune réémission substantielle d'3He n'est observée pour la dose critique qui provoque le cloquage superficiel, ce qui entraîne certaines implications pour les modèles de cloquages.To this end, low energy ions (with energies from 1 to 15 keV) of the 3 He isotope are implanted in a monocrystalline solid of Nb at various doses. The amount of 3 He actually captured and retained by the target is then determined by means of the reaction.
Figure imgb0001
3 He (d, p) 4 He in which a deuteron (d) of 5LI keV transforms a c He atom into a 4 He isotope with emission of a proton (r) of 3.5 MeV which is detected. Measuring the proton current gives access to the quantity of 3 He implanted. The central result of these measurements is presented in the form of capture curves giving the quantity of 3 He retained by the solid in; anointing of the dose of implanted 3 He + ions and for several implantation energies. The authors conclude that the maximum concentration of He implanted at low energy in Nb is between 50 and 100 atomic% and that the saturation process is reached when a 3 He atom escapes by diffusion to each new 3 He 'ion implanted. No substantial 3 He reemission is observed for the critical dose that causes surface blistering, which has certain implications for blistering models.

Enfin, on a également déjà étudié l'émission de rayonnement ultraviolet lointain (1 000-1 300 Â) du gaz argon excitée par un faisceau d'électrons de 250 keV, le faisceau étant pulsé afin de caractériser la dépendance temporelle de l'émission fluorescente (v. Physical Review A, volume 5, n° 3, mars 1972, Inst. of Phys. New York (US), N. Thonnard et al., Time-dependent study of vacuum-ultraviolet emission in Argon, pages 1110-1121). L'échantillon d'argon bombardé est contenu sous forme gazeuse dans une cellule de réaction où-le gaz est constamment remplacé par pompage. La pression du gaz varie entre 1 333 et 133 322 Pa (entre quelques dizaines de torr et 1 000 torr). Comme pour l'émission des gaz rares observée dans les décharges, étincelles, sources à micro-ondes ou bombardement par protons, les spectres observés par bombardement d'électrons consistent en transpositions résonnantes depuis le premier état excité atomique plus une émission de continuum moléculaire à plus grandes longueurs d'onde. Les auteurs discutent les mécanismes de transferts d'énergie d'excitation et la cinétique des réactions moléculaires sur la base de l'évolution temporelle des intensités de fluorescence.Finally, we have also already studied the emission of far ultraviolet radiation (1,000-1,300 Å) from argon gas excited by an electron beam of 250 keV, the beam being pulsed in order to characterize the time dependence of the emission. fluorescent (v. Physical Review A, volume 5, n ° 3, March 1972, Inst. of Phys. New York (US), N. Thonnard et al., Time-dependent study of vacuum-ultraviolet emission in Argon, pages 1110 -1121). The bombarded argon sample is contained in gaseous form in a reaction cell where the gas is constantly replaced by pumping. The gas pressure varies between 1,333 and 133,322 Pa (between a few tens of torr and 1,000 torr). As for the emission of rare gases observed in discharges, sparks, microwave sources or proton bombardment, the spectra observed by electron bombardment consist of resonant transpositions from the first excited atomic state plus an emission of molecular continuum at longer wavelengths. The authors discuss the mechanisms of excitation energy transfers and the kinetics of molecular reactions based on the time course of fluorescence intensities.

La présente invention a pour but la mise au point d'un procédé et d'un dispositif de production de photons dans la gamme des longueurs d'ondes ultraviolettes qui soient simples et peu coûteux tout en donnant des résultats comparables aux sources à décharge.The object of the present invention is to point of a process and a device for producing photons in the range of ultraviolet wavelengths which are simple and inexpensive while giving results comparable to discharge sources.

A cet effet, suivant l'invention, on réalise un bombardement ionique d'une surface de la matrice solide par des ions à faible énergie d'au moins un gaz tel que précité, de manière à obtenir une implantation sur une profondeur n'excédant pas quelques 10-1 m (milliers d'A) de gaz dans la matrice solide, et ensuite un bombardement électronique, d'une énergie inférieure ou égale à 20 keV, de la matrice solide, avec excitation du gaz emprisonné et émission des photons susdits. Suivant un mode de réalisation de l'invention, le procédé comprend l'implantation d'ions de gaz par une face d'une matrice solide en masse et le bombardement électronique de cette même face avec émission des photons susdits induits à partir de cette face.To this end, according to the invention, ion bombardment of a surface of the solid matrix is carried out with low-energy ions of at least one gas as mentioned above, so as to obtain implantation over a depth not exceeding not some 10- 1 m (thousands of A) of gas in the solid matrix, and then an electron bombardment, of an energy lower than or equal to 20 keV, of the solid matrix, with excitation of the trapped gas and emission of photons above. According to one embodiment of the invention, the method comprises the implantation of gas ions by one face of a solid matrix in mass and the electron bombardment of this same face with emission of the aforementioned photons induced from this face. .

Suivant un autre mode de réalisation de l'invention, le procédé comprend l'implantation d'ions de gaz dans une matrice solide lamellaire d'une épaisseur inférieure à 1 fJ.m, et le bombardement électronique susdit de l'une des faces de cette matrice avec émission des photons susdits induits à partir de l'autre face de la matrice.According to another embodiment of the invention, the method comprises the implantation of gas ions in a solid lamellar matrix with a thickness less than 1 fJ.m, and the above-mentioned electronic bombardment of one of the faces of this matrix with emission of the aforementioned photons induced from the other face of the matrix.

Il est également prévu, suivant l'invention, un dispositif pour la mise en oeuvre du procédé suivant l'invention, comprenant une enveloppe sous vide, une matrice solide dans laquelle sont implantés des ions d'au moins un gaz inerte ou respectivement insoluble vis-à-vis de la matrice, cette matrice étant montée sur un support à l'intérieur de l'enveloppe sous vide, ainsi qu'une sortie pour les photons produits prévue dans l'enveloppe, ce dispositif étant caractérisé en ce qu'il comprend un appareil de production d'électrons capables de soumettre la matrice à un bombardement électronique d'une énergie inférieure ou égale à 20 keV et une connexion électrique reliant la matrice à l'extérieur permettant de mesurer le courant électrique dans la matrice, les ions de gaz précités étant implantés sur une profondeur n'excédant pas quelques 10-1 m (milliers d'A).According to the invention, there is also provided a device for implementing the method according to the invention, comprising a vacuum envelope, a solid matrix in which are implanted ions of at least one inert gas or respectively insoluble vis -with respect to the matrix, this matrix being mounted on a support inside the vacuum envelope, as well as an output for the photons produced provided in the envelope, this device being characterized in that it includes an electron production device capable of subjecting the matrix to electronic bombardment with an energy less than or equal to 20 keV and an electrical connection connecting the matrix to the outside making it possible to measure the electric current in the matrix, the ions aforementioned gas is implanted to a depth not exceeding a few 10- 1 m (thousands of a).

D'autres détails et particularités de l'invention ressortiront de la description donnée ci-après, à titre non limitatif et avec référence aux dessins annexés.Other details and particularities of the invention will emerge from the description given below, without implied limitation and with reference to the attached drawings.

  • La figure 1 illustre, de manière schématique, un dispositif mettant en oeuvre un procédé de production de photons suivant l'invention.FIG. 1 schematically illustrates a device implementing a method for producing photons according to the invention.
  • La figure 2 illustre, de manière schématique, un dispositif mettant en oeuvre une variante de réalisation suivant l'invention.FIG. 2 schematically illustrates a device implementing an alternative embodiment according to the invention.
  • La figure 3 représente, de manière plus détaillée, une vue partiellement en coupe axiale à travers un dispositif suivant l'invention.FIG. 3 shows, in more detail, a view partially in axial section through a device according to the invention.
  • La figure 4 représente le spectre de fluorescence obtenu par l'utilisation d'un dispositif suivant l'invention. Les unités portées en abscisse représentent les longueurs d'onde du spectre de fluorescence et en ordonnées sont portées des unités arbitraires d'intensité d'émission.FIG. 4 represents the fluorescence spectrum obtained by the use of a device according to the invention. The units plotted on the abscissa represent the wavelengths of the fluorescence spectrum and on the ordinate plots are arbitrary emission intensity units.

Sur les figures, les éléments identiques ou analogues sont désignés par les mêmes références.In the figures, identical or analogous elements are designated by the same references.

Le dispositif illustré sur la figure 1 comprend une matrice solide 1 qui est préparée par implantation d'ions He à faible énergie dans une feuille d'Al d'une épaisseur inférieure à 1 f.Lm. Un bombardement d'ions He à faible énergie, de l'ordre de 5 keV, permet l'implantation d'une haute concentration (localement supérieure à 10 atomes %) de He sur une profondeur de quelques dizaines à quelques 10-1 m (milliers d'A). L'hélium s'agglomère naturellement dans les lacunes de la matrice produites par le bombardement et forme des défauts étendus, tels qu'agglomérats de lacune ou microbulles 2 qui restent stables à la température ambiante et peuvent résister à des élévations de températures allant jusqu'à quelques centaines de °C, par exemple jusqu'à 300 °C.The device illustrated in FIG. 1 comprises a solid matrix 1 which is prepared by implantation of low energy He ions in an Al sheet with a thickness less than 1 f.Lm. A He ion bombardment at low energy, in the range of 5 keV, allows the implantation of a high concentration (locally greater than 10 atomic%) of He at a depth of tens to 10- 1 m ( thousands of A). Helium naturally agglomerates in the gaps in the matrix produced by bombardment and forms large defects, such as gap agglomerates or microbubbles 2 which remain stable at room temperature and can withstand temperature rises of up to at a few hundred ° C, for example up to 300 ° C.

Le dispositif illustré sur la figure 1 comprend également un appareil de production d'électrons à faible énergie 3, tel qu'un canon électronique, cet appareil projetant un faisceau électronique 4 sur une des faces 5, appelée face arrière, de la matrice 1. Les électrons du faisceau électronique 4 présentent une énergie inférieure ou égale à 20 keV, de préférence comprise entre 1 et 5 keV. Une fluorescence de la cible est induite dans ce cas à partir de la face avant 6 de la matrice, l'émission de photons étant représentée par les flèches en traits ondulés 7.The device illustrated in FIG. 1 also includes a device for producing low-energy electrons 3, such as an electronic gun, this device projecting an electron beam 4 onto one of the faces 5, called the rear face, of the matrix 1. The electrons in the electron beam 4 have an energy less than or equal to 20 keV, preferably between 1 and 5 keV. In this case, fluorescence of the target is induced from the front face 6 of the matrix, the emission of photons being represented by the arrows in wavy lines 7.

Il est représenté sur cette figure 1, en traits interrompus, une variante de forme de réalisation, dans laquelle la matrice lamellaire 1 se présente sous la forme d'une bande continue, enroulée à une extrémité en un rouleau de réserve 20 et à son autre extrémité en un rouleau d'évacuation 21. De cette manière, si la partie de la matrice soumise au bombardement électronique est accidentellement altérée, après une certaine durée de fonctionnement, on peut déplacer la matrice dans le sens de la flèche 22, en faisant tourner lesdits rouleaux 20 et 21, et amener devant le faisceau électronique une nouvelle partie de matrice non encore soumise au bombardement électronique. Ce déplacement peut être effectué manuellement ou automatiquement, et il peut être continu ou intermittent pendant le fonctionnement du dispositif suivant l'invention.There is shown in this FIG. 1, in broken lines, an alternative embodiment, in which the lamellar matrix 1 is in the form of a continuous strip, wound at one end in a reserve roll 20 and at its other end in a discharge roller 21. In this way, if the part of the matrix subjected to electronic bombardment is accidentally altered, after a certain period of operation, the matrix can be moved in the direction of arrow 22, by rotating said rollers 20 and 21, and bring before the electron beam a new part of the matrix not yet subjected to electron bombardment. This movement can be carried out manually or automatically, and it can be continuous or intermittent during the operation of the device according to the invention.

Dans le dispositif illustré sur la figure 2, la matrice est un substrat en masse 8. L'implantation des ions He est effectuée de la même manière que pour la matrice lamellaire 1, en procédant de manière à obtenir un maximum de concentration de microbulles 2 de He sous une profondeur, de préférence, inférieure à 5 . 10-1 m (5000 A). Dans ce cas, le canon électronique 3 projette un faisceau d'électrons à faible énergie sur la même surface que celle par laquelle les ions He ont été implantés, et une fluorescence de la cible est induite alors à travers cette surface 9, l'émission de photons étant représentée par les flèches en traits ondulés 10. On a donc dans ce dernier cas ce que l'on appellera un bombardement électronique de la face avant de la matrice, par opposition au bombardement électronique de la face arrière de la matrice illustré sur la figure 1.In the device illustrated in FIG. 2, the matrix is a bulk substrate 8. The implantation of the He ions is carried out in the same manner as for the lamellar matrix 1, proceeding so as to obtain a maximum concentration of microbubbles 2 of He at a depth, preferably less than 5. 10- 1 m (5000 A). In this case, the electron gun 3 projects a beam of low energy electrons on the same surface as that by which the He ions were implanted, and a fluorescence of the target is then induced through this surface 9, the emission of photons being represented by the arrows in wavy lines 10. We therefore have in this last case what will be called electronic bombardment of the front face of the matrix, as opposed to electronic bombardment of the rear face of the matrix illustrated in FIG. 1.

Le dispositif illustré sur la figure 3 représente d'une manière plus détaillée un dispositif mettant en oeuvre un bombardement électronique de la face avant de la matrice.The device illustrated in FIG. 3 represents in a more detailed way a device implementing an electronic bombardment of the front face of the matrix.

Ce dispositif suivant la figure 3 comprend une enveloppe 11 maintenue sous vide dans laquelle la matrice 8 est montée sur un support 12 qui peut être refroidi par un circuit de refroidissement 13, par exemple à l'eau, dans l'éventualité d'une utilisation du dispositif à haute intensité. Un canon électronique 3 émettant un faisceau d'électrons à faible énergie et d'intensité réglable est monté sur l'enveloppe de manière à diriger ce faisceau sur la matrice. L'angle d'incidence entre le faisceau et le plan de la matrice est calculé de façon que les photons émis puissent se propager par l'ouverture de sortie 14 formée à l'une des extrémités frontales de l'enveloppe 11. Cette extrémité est munie d'une bride 15 qui sert au raccordement du dispositif suivant l'invention à un appareil dans lequel la lumière ultraviolette sera utilisée.This device according to FIG. 3 comprises an envelope 11 maintained under vacuum in which the matrix 8 is mounted on a support 12 which can be cooled by a cooling circuit 13, for example with water, in the event of use. of the high intensity device. An electron gun 3 emitting a low energy electron beam of adjustable intensity is mounted on the envelope so as to direct this beam on the matrix. The angle of incidence between the beam and the plane of the matrix is calculated so that the emitted photons can propagate through the exit opening 14 formed at one of the front ends of the envelope 11. This end is provided with a flange 15 which is used to connect the device according to the invention to an apparatus in which ultraviolet light will be used.

Une connexion électrique 16 permet notamment de mesurer le courant électronique dans la matrice. On peut prévoir, dans l'ouverture de sortie 14, un écran électronique 17 destiné à empêcher toute sortie d'électrons par cette ouverture, cet écran électronique 17 étant alors lui aussi relié à l'extérieur par une connexion électrique 18.An electrical connection 16 makes it possible in particular to measure the electronic current in the matrix. An electronic screen 17 can be provided in the outlet opening 14 intended to prevent any exit of electrons through this opening, this electronic screen 17 then also being connected to the outside by an electrical connection 18.

L'enveloppe 11 est maintenue sous vide, soit par un dispositif de pompage, non représenté, raccordé à l'enveloppe par le raccord à bride 19, soit par le dispositif de pompage maintenant sous vide l'appareil non représenté raccordé à la bride 15.The casing 11 is maintained under vacuum, either by a pumping device, not shown, connected to the casing by the flange connection 19, or by the pumping device now holding the vacuum device, not shown, connected to the flange 15 .

La matière de la matrice doit remplir deux conditions principales : l'insolubilité du gaz dans la matrice et une relativement faible absorption par la matrice du continuum d'émission du gaz. La matière de la matrice doit préférentiellement avoir des propriétés optiques telles que la profondeur d'échappement des photons produits soit compatible avec la profondeur d'implantation. Par conséquent, il n'est pas nécessaire que la profondeur de pénétration du faisceau électronique dépasse cette profondeur d'échappement des photons et des énergies d'électron dans une gamme de 0,1 à 20 keV sont suffisantes, même pour un bombardement de surface avant, avec une incidence relativement rasante. Cette propriété de la source de photons permet d'éviter les coûts élevés nécessaires à la réalisation de bombardements ioniques et électroniques à grande énergie, tels que ceux utilisés dans les procédés et dispositifs connus. L'excitation peut notamment être produite par l'utilisation d'un canon électronique à faible énergie.The matrix material must meet two main conditions: the insolubility of the gas in the matrix and relatively low absorption by the matrix of the gas emission continuum. The material of the matrix must preferably have optical properties such that the depth of escape of the photons produced is compatible with the depth of implantation. Therefore, the penetration depth of the electron beam need not exceed this photon escape depth, and electron energies in the range of 0.1 to 20 keV are sufficient, even for surface bombardment. before, with a relatively grazing incidence. This property of the photon source makes it possible to avoid the high costs necessary for carrying out high energy ionic and electronic bombardments, such as those used in known methods and devices. Excitement can notably be produced by the use of a low energy electronic gun.

Comme matière de matrice on peut utiliser avantageusement des matières choisies parmi le groupe comprenant des métaux, tels que Sn, Mg, AI, des semi-conducteurs, tels que Si, Ge ou certains isolants, tels que LiF, NaCI.As matrix material, materials chosen from the group comprising metals, such as Sn, Mg, AI, semiconductors, such as Si, Ge or certain insulators, such as LiF, NaCl, can advantageously be used.

Comme la profondeur d'émission de la soùrce est très petite, la source est sensiblement plane et la surface et la forme de la source peuvent être simplement ajustées par structuration du faisceau électronique. Par concentration du faisceau, on peut obtenir une source effectivement ponctuelle ; par balayage ou étalement du faisceau, on peut obtenir une source étendue compatible, par exemple, avec la géométrie de fente utilisée dans certains travaux spectroscopiques. De plus, une intensité de fluorescence variable dans le temps peut aisément être obtenue en modulant le faisceau électronique par impulsions, ce qui permet l'utilisation de la source dans des techniques d'asservissement (de type « lock in •). La durée d'existence de la fluorescence est inférieure à 10 nsec.As the emission depth of the source is very small, the source is substantially planar and the surface and the shape of the source can be simply adjusted by structuring the electron beam. By concentrating the beam, an effectively point source can be obtained; by scanning or spreading the beam, it is possible to obtain an extended source compatible, for example, with the slit geometry used in certain spectroscopic work. In addition, a time-varying fluorescence intensity can easily be obtained by modulating the electron beam in pulses, which allows the use of the source in servo-control techniques (of the “lock in •” type). The duration of existence of the fluorescence is less than 10 nsec.

Suivant un exemple non limitatif de mise en œuvre du procédé suivant l'invention une source de photons à base d'AI/He est préparée de la manière décrite précédemment et mise en oeuvre suivant l'invention sous un bombardement électronique présentant une énergie de 3 800 V. Cette source produit, ainsi qu'il ressort de la figure 4, un spectre continu de fluorescence qui s'étend de 5,8 à 9 10-8 m (de 580 à 900 À), ce qui est semblable à ce que l'on obtient avec les sources à décharge conventionnelles. La production de photons de la matrice a été comparée à la source synchrotron SURF Il et cette comparaison indique une efficacité supérieure ou égale à 10-4 photons par électron. A courant électronique suffisant, la brillance peut atteindre celle obtenue par des lampes à décharge.According to a nonlimiting example of implementation of the method according to the invention, a source of photons based on AI / He is prepared in the manner described above and implemented according to the invention under an electron bombardment having an energy of 3 800 V. This source produces, as can be seen from FIG. 4, a continuous spectrum of fluorescence which extends from 5.8 to 9 10-8 m (from 580 to 900 A), which is similar to that that we get with conventional discharge sources. The production of photons from the matrix was compared with the synchrotron source SURF II and this comparison indicates an efficiency greater than or equal to 10- 4 photons per electron. With sufficient electronic current, the brightness can reach that obtained by discharge lamps.

A la différence des sources à décharge conventionnelles, il existe la possibilité, à l'aide du procédé suivant l'invention, de mettre au point une source composite multi-gaz en vue d'étendre la largeur de la bande spectrale de 5,8 à 30 . 10-8 m (de 580 à 3 000 A). En effet, il est évident qu'outre l'hélium d'autres gaz inertes vis-à-vis de la matrice peuvent être utilisés, par exemple des gaz rares ou autres, comme Ne, Ar,...., H2, N2, ... Si l'on implante dans la matrice des ions de plusieurs de ces gaz, on peut ainsi obtenir ladite source composite multi-gaz.Unlike conventional discharge sources, there is the possibility, using the method according to the invention, of developing a multi-gas composite source in order to extend the width of the spectral band by 5.8 to 30. 10-8 m (from 580 to 3000 A). Indeed, it is obvious that in addition to helium, other gases inert with respect to the matrix can be used, for example rare or other gases, such as Ne, Ar, ...., H 2 , N 2 , ... If we implant in the matrix of ions of several of these gases, we can thus obtain said composite multi-gas source.

Les applications d'une source de photons suivant l'invention sont nombreuses. On peut l'utiliser dans n'importe quelle application où les sources à décharge sont à présent utilisées, par exemple pour la spectroscopie photoélectroni- que dans l'ultraviolet, pour des études de réflectivité, d'adsorption et de photoconductivité. etc.The applications of a photon source according to the invention are numerous. It can be used in any application where discharge sources are now used, for example for photoelectron spectroscopy in the ultraviolet, for studies of reflectivity, adsorption and photoconductivity. etc.

En plus de l'utilisation du dispositif suivant l'invention comme simple moyen de produire des photons dans la gamme des ultraviolets proches, lointains et extrêmes, la source suivant l'invention peut être incorporée dans un grand nombre de nouveaux systèmes plus complexes. On peut entre autres citer :

  • a) détecteurs de particules, par la détection de la fluorescence induite dans le dispositif par le passage de particules chargées ;
  • b) lithographie de contact dans l'ultraviolet, par implantation d'un circuit intégré au moyen d'un faisceau d'ions de gaz inerte sur un masque sous forme de film mince et par impression ultérieure du circuit, par placement du film en contact avec un revêtement photorésistant, sensible aux photons UV, et par bombardement avec un faisceau électronique pour activer la fluorescence aux ultraviolets ;
  • c) source d'émission stimulée d'ultraviolets extrêmes (laser à excimère), grâce au choix d'un mécanisme de pompage approprié et d'une cavité résonnante appropriée.
In addition to the use of the device according to the invention as a simple means of producing photons in the range of near, far and extreme ultraviolet rays, the source according to the invention can be incorporated into a large number of new, more complex systems. Among others, we can cite:
  • a) particle detectors, by detecting the fluorescence induced in the device by the passage of charged particles;
  • b) contact lithography in the ultraviolet, by implantation of an integrated circuit by means of a beam of inert gas ions on a mask in the form of thin film and by subsequent printing of the circuit, by placing the film in contact with a photoresist coating, sensitive to UV photons, and by bombardment with an electron beam to activate ultraviolet fluorescence;
  • c) source of stimulated emission of extreme ultraviolet light (excimer laser), thanks to the choice of an appropriate pumping mechanism and an appropriate resonant cavity.

Les procédés et dispositifs suivant l'invention présentent l'avantage de ne pas nécessiter de pompage différentiel, de remplacement du gaz et de refroidissement cryogénique. De plus, ils sont très aisés à mettre en oeuvre et d'un fonctionnement souple. La source suivant l'invention offre l'avantage d'une brillance, qui peut varier de six ordres de grandeur ou davantage, par modification de l'intensité du faisceau électronique. Elle permet une géométrie ponctuelle par concentration. Enfin, sa mise en oeuvre est relativement bon marché.The methods and devices according to the invention have the advantage of not requiring differential pumping, gas replacement and cryogenic cooling. In addition, they are very easy to implement and flexible in operation. The source according to the invention offers the advantage of a brightness, which can vary by six orders of magnitude or more, by modification of the intensity of the electron beam. It allows a specific geometry by concentration. Finally, its implementation is relatively inexpensive.

Il doit être entendu que la présente invention n'est en aucune façon limitée aux formes de réalisation décrites ci-dessus et que bien des modifications peuvent y être apportées sans sortir du cadre du présent brevet.It should be understood that the present invention is in no way limited to the embodiments described above and that many modifications can be made without departing from the scope of this patent.

Claims (24)

1. Method for producing photons (7), in the UV-wavelength range, comprising planting in a solid matrix, ions from a gas which is inert or insoluble relative to the matrix, excitating the captive gas (2) in the solid matrix, and radiating said photons (7) by the excitated gas, characterized in that it comprises performing an ionic bombardment of one surface from the solid matrix with low-energy ions from at least one gas as defined above, in such a way as to obtein a planting over a depth which does not exceed a few 10-7 m (thousands A) of gas (2) in the solid matrix, and thereafter an electronic bombardment (4), of an energy which is lower thai or equal to 20 keV, of the solid matrix, with excitating of the captive gas and emission of said photons (7).
2. Method according to the claim 1, characterized In t' at it comprises planting. of gas ions through the one side (9) of a mass solid matrix (8), and performing the electronic bombardment (4) of this same side with emission of said photons (10) being induced from this side (9).
3. Method according to the claim 1, characterized in that it comprises planting of gas ions in a laminated solid matrix (1) with a thickness smaller than 1 wm, and performing said electronic bombardment (4) of the one side (5, 6) of this matrix (1) with emission of said photons (7) being induced from the other side of the matrix (1
4. Method according to any one of the claims 1 or 3, characterized in that it comprises intermittently or continuously moving the matrix (1, 8) in which the gas ions have been planted, from a supply position to a bombardment position where same undergoes said electronic bombardment, then to a discharge position, the matrix (1, 8) being in the shape of a continuous substrate.
5. Method according to any one of the claims 1 to 4, characterized in that the ionic bombardment is performed with ions from said gas or gases having an energy allowing to obtain a high gas concentration in the form of extended faults (2) of the matrix (1, 8), over the above-mentioned depth.
6. Method according to the claim 5, characterized in that the energy of said gas ions is in the range of 5 keV.
7. Method according to any one of the claims 1 to 6, characterized in that it comprises planting in the matrix (1, 8) of ions from a plurality of gases which are inert or insoluble relative to the matrix.
8. Method according to any one of the claims 1 to 7, characterized in that it comprises planting ions from rare gases, particularly helium.
9. Method according to any one of the claims 1 to 8, characterized in that the electronic bombardment (4) is performed with electrons having an energy which is comprised between 1 and 5 keV.
10. Method according to any one of claims 1 to 9, characterized in that it comprises during the electronic bombardment (4) focalizing an electron beam on the matrix (1, 8) so as to form a pinpoint source of photons (7, 10).
11. Method according to any one of claims 1 to 9, characterized in that it comprises during the electronic bombardment (4) scanning the matrix with an electron beam so as to form an extended source of photons (7, 10).
12. Method according to any one of claims 1 to 9, characterized in that it comprises during the electronic bombardment (4) spreading an electron beam so as to form an extended source of photons (7, 10).
13. Method according to any one of claims 1 to 12, characterized in that it comprises during the electronic bombardment (4) modulating the intensity of the electron beam so as to form a varying-intensity source of photons (7, 10).
14. Method according to any one of claims 1 to 13, characterized in that the matrix (1, 8) being used is from a material having a low absorption of the continuous emission spectrum of the excitated gas, contained inside the matrix.
15. Method according to the claim 14, characterized in that the matrix (1, 8) being used is from a material selected in the group comprising metals, such as Sn, Mg, Al, semi-conductors, such as Si, Ge, or insulating materials, such as LiF, NaCl.
16. Device with a solid matrix (1, 8) into which are planted ions from at least one gas which is inert or insoluble relative to the matrix, for the production of photons in the UV-wavelength range according to any one of claims 1 to 15, comprising a vacuum enclosure (11), this matrix being mounted on a support (12) inside the vacuum enclosure, as well as an outlet (14) for the resulting photons, provided in the enclosure, said device being characterized in that it comprises a low-energy electron-producing apparatus (3) capable of subjecting the matrix to an electronic bombardment of an energy whim is lower than or equal to 20 keV and an electronic connection (16) connecting the matrix to the ouside allowing to measure the electric current in the matrix, said gas ions being planted over a depth which does not exceed a few 10-7 m (thousands A).
17. Device according to the claim 16, characterized in that it comprises a mass solid matrix (8) the one surface of which contains planted-in gas ions, the electron-producing apparatus (3) being so arranged as to perform said electronic bombardment of this surface, with emission of said induced photons from this surface.
18. Device according to the claim 16, characterized in that it comprises a laminated solid material (1) with a thickness smaller than 1 µm, the electron-producing apparatus being so arranged as to perform said electronic bombardment of the one side of the matrix, with emission of said induced photons from the other side of the matrix.
19. Device according to any one of claims 16 or 18, characterized in that it comprises a matrix (1, 8) in the shape of a continuous substrate, movable inside the enclosure in an intermittent or continuous way between a supply position, a matrix-bombardment position, and a discharge position.
20. Device according to any one of claims 16 to 19, characterized in that it comprises a cooling circuit (13) for the matrix support (12).
21. Device according to any one of claims 16 to 20, characterized in that the enclosure (11) has a connecting flange (15) about the outlet (14) for the resulting photons, to mount a vacuum apparatus on the device, and in that possibly the device has across this outlet, an electron screen (17) connected to the outside.
22. Device according to any one of claims 16 to 21, characterized in that the electron-producing apparatus (3) with low-energy, is an electron gun generating electrons having an energy lower than or equal to 5 keV.
23. Device according to any one of claims 16 to 22, characterized in that it comprises a vacuum pump connected to the vacuum endps-ure.
EP83901325A 1982-05-07 1983-05-05 Method and device for producing photons in the ultraviolet wavelength range Expired EP0107686B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83901325T ATE22180T1 (en) 1982-05-07 1983-05-05 PROCESS AND DEVICE FOR THE PRODUCTION OF PHOTONS IN THE ULTRAVIOLET PHOTON WAVELENGTH REGION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU84136A LU84136A1 (en) 1982-05-07 1982-05-07 METHOD AND DEVICE FOR PRODUCING PHOTONS IN THE ULTRAVIOLET WAVELENGTH RANGE
LU84136 1982-05-07

Publications (2)

Publication Number Publication Date
EP0107686A1 EP0107686A1 (en) 1984-05-09
EP0107686B1 true EP0107686B1 (en) 1986-09-10

Family

ID=19729876

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83901325A Expired EP0107686B1 (en) 1982-05-07 1983-05-05 Method and device for producing photons in the ultraviolet wavelength range

Country Status (6)

Country Link
US (1) US4574198A (en)
EP (1) EP0107686B1 (en)
JP (1) JPS59500838A (en)
DE (1) DE3366001D1 (en)
LU (1) LU84136A1 (en)
WO (1) WO1983004099A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851725A (en) * 1993-01-26 1998-12-22 The United States Of America As Represented By The Secretary Of Commerce Exposure of lithographic resists by metastable rare gas atoms
US6031241A (en) 1997-03-11 2000-02-29 University Of Central Florida Capillary discharge extreme ultraviolet lamp source for EUV microlithography and other related applications
US6576917B1 (en) 1997-03-11 2003-06-10 University Of Central Florida Adjustable bore capillary discharge
JP2000097837A (en) * 1998-09-25 2000-04-07 Inst Of Physical & Chemical Res Variable-wavelength light source
US6998785B1 (en) 2001-07-13 2006-02-14 University Of Central Florida Research Foundation, Inc. Liquid-jet/liquid droplet initiated plasma discharge for generating useful plasma radiation

Also Published As

Publication number Publication date
EP0107686A1 (en) 1984-05-09
JPS59500838A (en) 1984-05-10
US4574198A (en) 1986-03-04
LU84136A1 (en) 1984-03-07
DE3366001D1 (en) 1986-10-16
WO1983004099A1 (en) 1983-11-24
JPS644307B2 (en) 1989-01-25

Similar Documents

Publication Publication Date Title
Porter et al. Nanosecond flash photolysis
Dixon et al. Resonance charge transfer and population inversion following C 5+ and C 6+ interactions with carbon atoms in a laser-generated plasma
Pitts et al. Wavelength dependence of the I (52P12, 32) branching ratio from ICN Ã state photolysis
Nugent-Glandorf et al. A laser-based instrument for the study of ultrafast chemical dynamics by soft x-ray-probe photoelectron spectroscopy
EP0013345A1 (en) Method and device for fixing chips by energy beams
Connerade et al. Structure in the Hgi absorption spectrum from 20 to 120 Å associated with the excitation of the 4f and 5s subshells
EP0107686B1 (en) Method and device for producing photons in the ultraviolet wavelength range
Rosenberg et al. Deposition of carbon on gold using synchrotron radiation
Monchicourt et al. Resonant electron emission of silver spheroids induced by laser surface plasmon excitation
Flesch et al. A pump-probe photoionization mass spectrometer utilizing tunable extreme ultraviolet laser-produced-plasma radiation
Elton et al. X-ray laser experiments using laser-vaporized copper-foil plasmas
Astrov et al. New photographic system for investigating characteristics of infrared laser radiation
Skurat et al. Vacuum ultraviolet radiation in sources of hyperthermal atomic oxygen. Photodestruction of polytetrafluoroethylene (PTFE) and teflon FEP for hdication of this radiation
Kawasaki et al. Transition of particle growth region in SiH4 RF discharges
Coon et al. Photoproduct characterization and dynamics in the 248 nm photolysis of CH3I thin films on Ag (111)
FR2551615A1 (en) X-MOUSE RAY SOURCE USING PLASMA MICROCANAL OBTAINED BY PHOTO-IONIZATION OF A GAS
Savchenko et al. Formation of (Xe2H)* centers in solid Xe via recombination: nonstationary luminescence and internal electron emission
FR2713768A1 (en) Method and apparatus for optical measurement of the temperature of a gas mixture
Hamza et al. Characterization of the n= 1 image state on Ni (111) with two‐photon photoemission
Lee et al. Oxygen sticking coefficient and sputtering yields at an Al (1 1 1) surface by ion bombardment
Katto et al. Development of Ultrashort Pulsed VUV Laser and its Applications
Gumenchuk et al. Photon-stimulated recombination of self-trapped holes with electrons in pre-irradiated solid Ar
Moulin et al. Techniques d'analyses d'actinides et de radioéléments d'intérêt par spectroscopie laser
Gumenchuk et al. Laser light-stimulated exoelectron emission from solid Ar pre-irradiated by an electron beam
Baev et al. High-sensitivity spectroscopy with the aid of dye lasers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI NL SE

17P Request for examination filed

Effective date: 19840329

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19860910

REF Corresponds to:

Ref document number: 22180

Country of ref document: AT

Date of ref document: 19860915

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19860930

REF Corresponds to:

Ref document number: 3366001

Country of ref document: DE

Date of ref document: 19861016

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890403

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890430

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890510

Year of fee payment: 7

Ref country code: BE

Payment date: 19890510

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890531

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890629

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900531

Ref country code: CH

Effective date: 19900531

Ref country code: BE

Effective date: 19900531

BERE Be: lapsed

Owner name: LUCAS AMAND A.

Effective date: 19900531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19901201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST