EP0105867B1 - Apparatus for defining the position of the cutting head of a boring or mining machine - Google Patents

Apparatus for defining the position of the cutting head of a boring or mining machine Download PDF

Info

Publication number
EP0105867B1
EP0105867B1 EP83890168A EP83890168A EP0105867B1 EP 0105867 B1 EP0105867 B1 EP 0105867B1 EP 83890168 A EP83890168 A EP 83890168A EP 83890168 A EP83890168 A EP 83890168A EP 0105867 B1 EP0105867 B1 EP 0105867B1
Authority
EP
European Patent Office
Prior art keywords
cutting head
cutting
reference point
transmitter
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83890168A
Other languages
German (de)
French (fr)
Other versions
EP0105867A3 (en
EP0105867A2 (en
Inventor
Eduard Dipl.-Ing. Schellenberg
Alfred Zitz
Bernhard Dipl.-Ing. Dröscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine AG
Original Assignee
Voestalpine AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine AG filed Critical Voestalpine AG
Publication of EP0105867A2 publication Critical patent/EP0105867A2/en
Publication of EP0105867A3 publication Critical patent/EP0105867A3/en
Application granted granted Critical
Publication of EP0105867B1 publication Critical patent/EP0105867B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/003Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/08Guiding the machine
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices

Definitions

  • the invention relates to a device for detecting the position of the cutting head of a tunneling or extraction machine.
  • a device for detecting the position of the cutting head of a tunneling or extraction machine In order to detect the position of the cutting head of a tunneling or extraction machine relative to a target profile to be cut, it has already become known to arrange radiation receivers on the frame of the cutting machine, which, together with the signals of a transmitter fixed in the path, allow the spatial coordinates of the longitudinal axis of the cutting machine to be determined.
  • additional devices for determining the pivoting position of the cutting arm relative to the cutting machine were now based on the coordinates of the cutting head with the aid of additional signals and, above all, using signals closed.
  • the device according to the invention is characterized by a receiver which is oriented relative to the longitudinal axis and can be attached in a distance, a transmitter for electromagnetic radiation in the wavelength range from 111 m to 10 cm on the cutting head and / or a cutting arm and a range finder for determining the distance at least a reference point on the cutting head and / or cutting arm from the receiver, and preferably a display device for the position of the cutting head relative to a desired profile to be cut.
  • a transmitter for electromagnetic radiation is now provided directly on the head or a reference point on the cutting arm, while taking into account the distance of this point from the receiver which is fixedly arranged in the route, allows an exact representation of the position of the cutting head in polar coordinates by means of a single angle determination express and use in a display device or as a control signal for automatic control of the tunneling or mining machine.
  • radiation is chosen for this purpose which shows less scatter than visible light and has a higher penetration capacity, etc. preferably electromagnetic radiation in a wave range of 1 .mu.m to 10 cm, which is longer than visible light.
  • the heat development can be exploited during the cutting work, since the chisels and the cutting head have a significantly higher temperature than the surroundings and thus act as infrared radiation transmitters.
  • the large temperature difference between the hot chisels of the cutting heads and the environment enables the use of relatively insensitive receivers, and there is usually no need for complex cooling of the receiver.
  • the receiver is preferably designed as a thermal imaging camera which is arranged in a fixed manner in the route and is aligned with the longitudinal axis of the route, for example using the laser beam guide beam which is usually used.
  • thermal imagers have a line scan and the video signal obtained in this way can be used directly with known electronic devices, displayed on screens and / or fed to a control device.
  • the design can also be such that the receiver is arranged pivotably and can be aligned to at least one reference point of the cutting head formed by the transmitter for determining the angle between a parallel line to the longitudinal axis of the line and the reference point of the cutting head.
  • the servo-motoric tracking of such a swiveling receiver and alignment with the transmitter immediately gives a measure of the angle to be measured. Together with the distance measured in a known manner, for example using infrared rays, the position of the cutting head can be displayed directly.
  • the transmitter it is advisable to arrange it near the axis of rotation of the cutting head, because then, based on the known geometry of the head and the known dimension of a head, together with the measured distance, the exact position of the cutting head in any rotational position of the same can be determined.
  • the distance can also be measured between the stationary receiver and the face itself, since the cutting head is in engagement with the face.
  • the transmitter designed as an infrared radiation transmitter is itself formed by the cutting head which is at the operating temperature.
  • the entire contour of the hot cutting head is detected with the receiver, and the distance measurement could in this case be carried out by measuring the contour larger or smaller with a given dimension of the cutting head at different distances between the cutting head and the thermal imaging camera.
  • a reduction in the cutting head contour measured at a fixed focal length of the thermal imager corresponds to a greater distance from the thermal imager.
  • the display device advantageously contains a screen on which the position of the cutting head relative to the target profile can be displayed, the target profile display or the cutting head display depending on the distance of the cutting head from an infrared radiation receiver or the thermal imaging camera being changeable in size.
  • the scale representation on the screen can be maintained. This can be done in a simple manner in that the thermal imaging camera has a zoom lens which can be adjusted in focal length as a function of the distance of the cutting head.
  • the preferred embodiment of the device according to the invention is that the thermal imager is arranged in a fixed manner in the route, that the thermal image is scanned line by line in a manner known per se, and that the video signal obtained in this way is from the display device and / or a control device for the movement the cutting head is fed.
  • FIG. 1 shows a schematic representation of the arrangement of the device in a distance
  • FIGS. 2 and 3 show a representation of the geometric conditions applicable for determining the spatial coordinates
  • FIG. 4 shows a schematic side view of the device according to FIGS. 1 and 5 the picture of a display device which is connected to the arrangement according to FIG. 1
  • FIG. 6 shows a schematic representation of the circuit arrangement required for the evaluation of the signals received.
  • a partial cutting machine 1 is shown within the route 2.
  • the cutting arm of this partial cutting cutting machine is designated 3 and has at its end two rotating cutting heads 4 which are rotatably mounted about the axis 5 extending transversely to the axis of the cutting arm.
  • a reference point 6 formed by an infrared transmitter is arranged on the cutting arm 3 near this axis 5.
  • a thermal imager 8, which is aligned in a corresponding manner on the laser path guide beam 9, is arranged in a stationary manner on an expansion frame 7.
  • the fixed receiver 8 determines the distance between the reference point 6 on the cutting arm formed by an infrared transmitter and the receiver 8.
  • the Cartesian coordinates of the reference system of the receiver are indicated by x, y and z, and two angles are measured relative to this coordinate system, as is the case here is explained in Figs. 2 and 3.
  • Fig. 2 the Cartesian reference system is shown with the origin at the measuring point of the thermal imager 8.
  • the x-y plane of this reference system is oriented in a simple manner parallel to the route guide beam 9.
  • the reference point 6 of the cutting arm or cutting head is now expressed in polar coordinates by the angles 9, (p and the distance r. Two angles and the distance between the origin of the reference system of the thermal imaging camera 8 are thus expressed and the reference point 6 on the cutting head 4 or cutting arm 3.
  • the outer contour of the cutting heads, designated 10 in FIG. 1 can also be scanned in its entirety by a thermal imager.
  • the angles 3, (p are shown in FIG. 3 drawn.
  • the receiver 8 is again fixed and oriented relative to the longitudinal axis on a frame 7.
  • the angle 8 1 is measured in relation to the xy plane of the reference system of the receiver and therefore appears to be 90 ° less than the angle 9 in FIG. 3.
  • the angle cp results from the x-axis of the reference system of the receiver.
  • the distance a from the receiver 8 to the face 11 can be measured, since this distance is only slightly different from the distance r when the receiver 8 is at a greater distance from the reference point 6 .
  • the entire outer contour 10 of the cutting heads 4 is captured by the thermal imaging camera 8, the video signal of the thermal imaging camera obtained in FIG achieve the screen display shown.
  • the screen of the monitor 12 is designated 13 and shows the target profile 14 of the route to be covered. Within this Target profile 14 shows the images of the cutting heads 4, the traces of the rotating chisels being clearly shown as essentially vertical lines.
  • FIG. 6 A circuit suitable for scanning the video signal of the thermal imaging camera is shown schematically in FIG. 6.
  • the thermal imaging camera is also designated 8 here, as is the receiver. Signals for the vertical and horizontal deflection are fed to the camera 8 via lines 15 and 16, respectively.
  • the video signal reaches a comparator 19 via a line 17 and a differentiator 18 and can be fed directly to the monitor 12.
  • this signal can also be fed to an image evaluation circuit 20.
  • Separate control signals can be obtained via lines 21 for the three spatial coordinates of the position of the cutting head.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Radiation Pyrometers (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Laser Beam Processing (AREA)

Description

Die Erfindung bezieht sich auf eine Einrichtung zur Erfassung der Position des Schrämkopfes einer Vortriebs- oder Gewinnungsmaschine. Zur Erfassung der Position des Schrämkopfes einer Vortriebs- oder Gewinnungsmaschine relativ zu einem zu schrämenden Sollprofil ist es bereits bekannt geworden, am Rahmen der Schrämmaschine Strahlungsempfänger anzuordnen, welche zusammen mit den Signalen eines ortsfest in der Strecke festgelegten Senders die Ermittlung der Raumkoordinaten der Schrämmaschinenlängsachse erlauben. Ausgehend von den auf diese weise bestimmten Raumkoordinaten des Rahmens der Schrämmaschine bzw. der Längsachse der Schrämmaschine, wurde nun noch unter Zuhilfenahme zusätzlicher Signale und vor allen Dingen unter Hinzuziehung von Signalen weiterer Einrichtungen zur Bestimmung der Schwenklage des Schrämarmes relativ zur Schrämmaschine auf die Koordinaten des Schrämkopfes geschlossen. Es ist bereits bekannt, bei derartigen Maschinen Anzeigevorrichtungen vorzusehen, bei welchen die Abbildung des Schrämkopfes relativ zum Sollprofil in räumlicher oder ebener Darstellung erfolgte (vgl. DE-A-29 01 598). Gemeinsam ist den bekannten Konstruktionen, daß die Position des Schrämkopfes selbst nie unmittelbar bestimmt werden konnte, und daß vielmehr aus den horizontalen und vertikalen Parallelabweichungen, der Schrägstellung und Neigung zur Streckenachse, sowie dem Rollwinkel der Maschine, unter beträchtlichem technischen Aufwand auf die tatsächlichen Raumkoordinaten des Schrämkopfes geschlossen wird. Bedingt durch die große Anzahl der hiefür erforderlichen Bauteile, ergab sich auch eine erhöhte Störanfälligkeit derartiger Einrichtungen.The invention relates to a device for detecting the position of the cutting head of a tunneling or extraction machine. In order to detect the position of the cutting head of a tunneling or extraction machine relative to a target profile to be cut, it has already become known to arrange radiation receivers on the frame of the cutting machine, which, together with the signals of a transmitter fixed in the path, allow the spatial coordinates of the longitudinal axis of the cutting machine to be determined. On the basis of the spatial coordinates of the frame of the cutting machine or the longitudinal axis of the cutting machine determined in this way, additional devices for determining the pivoting position of the cutting arm relative to the cutting machine were now based on the coordinates of the cutting head with the aid of additional signals and, above all, using signals closed. It is already known to provide display devices in such machines in which the cutting head is depicted in spatial or planar representation relative to the desired profile (cf. DE-A-29 01 598). Common to the known constructions is that the position of the cutting head itself could never be determined directly, and that rather from the horizontal and vertical parallel deviations, the inclination and inclination to the line axis, and the roll angle of the machine, with considerable technical effort to the actual spatial coordinates of the Schrämkopfes is closed. Due to the large number of components required for this, there was also an increased susceptibility to malfunction of such devices.

Die Erfindung zielt nun darauf ab, die Position eines Schrämkopfes bzw. der Schrämköpfe von Teilschnittschrämmaschinen unmittelbar und ohne Ermittlung der Lage des Fahrwerkes der Schrämmaschine relativ zur Strecke zu erfassen. Zur Lösung dieser Aufgabe ist die erfindungsgemäße Einrichtung gekennzeichnet durch einen relativ zur Streckenlängsachse orientierten, in einer Strecke anbringbaren Empfänger, einen Sender für elektromagnetische Strahlung im wellenlängenbereich von 111m bis 10 cm am Schrämkopf und/oder einem Schrämarm und einen Entfernungsmesser für die Ermittlung des Abstandes wenigstens eines Bezugspunktes am Schrämkopf und/oder Schrämarm von dem Empfänger, sowie vorzugsweise eine Anzeigevorrichtung für die Position des Schrämkopfes relativ zu einem zu schrämenden Sollprofil. Dadurch, daß nun ein Sender für elektromagnetische Strahlung unmittelbar am Kopf oder einem Bezugspunkt am Schrämarm vorgesehen ist, läßt sich bei gleichzeitiger Berücksichtigung des Abstandes dieses Punktes von dem in der Strecke ortsfest angeordneten Empfänger durch eine einzige Winkelbestimmung eine exakte Darstellung der Position des Schrämkopfes in Polarkoordinaten ausdrücken und in einer Anzeigevorrichtung bzw. als Steuersignal für eine automatische Steuerung der Vortriebs- oder Gewinnungsmaschine verwerten. Mit Rücksicht auf die im Bereich der Ortsbrust und damit in unmittelbarer Nähe des Schrämkopfes vorherrschende staubbeladene Atmosphäre, werden zu diesem Zweck Strahlungen gewählt, welche eine geringere Streuung als sichtbares Licht zeigen und ein höheres Durchdringungsvermögen aufweisen, u.zw. vorzugsweise elektromagnetische Strahlung in einem gegenüber sichtbarem Licht längeren Wellenbereich von 1 um bis 10 cm. In besonders vorteilhafter Weise kann hiebei die Wärmeentwicklung bei der Schrämarbeit ausgenutzt werden, da hiebei die Meißel und der Schrämkopf eine wesentlich höhere Temperatur als die Umgebung aufweisen und somit als Infrarotstrahlensender wirken. Die große Temperaturdifferenz zwischen den heißen Meißeln der Schrämköpfe und der Umgebung ermöglicht die Verwendung relativ unempfindlicher Empfänger, wobei auch eine aufwendige Kühlung des Empfängers in der Regel entfallen kann.The invention now aims to detect the position of a cutting head or the cutting heads of partial cut cutting machines directly and without determining the position of the chassis of the cutting machine relative to the route. To achieve this object, the device according to the invention is characterized by a receiver which is oriented relative to the longitudinal axis and can be attached in a distance, a transmitter for electromagnetic radiation in the wavelength range from 111 m to 10 cm on the cutting head and / or a cutting arm and a range finder for determining the distance at least a reference point on the cutting head and / or cutting arm from the receiver, and preferably a display device for the position of the cutting head relative to a desired profile to be cut. The fact that a transmitter for electromagnetic radiation is now provided directly on the head or a reference point on the cutting arm, while taking into account the distance of this point from the receiver which is fixedly arranged in the route, allows an exact representation of the position of the cutting head in polar coordinates by means of a single angle determination express and use in a display device or as a control signal for automatic control of the tunneling or mining machine. In view of the dust-laden atmosphere prevailing in the area of the working face and thus in the immediate vicinity of the cutting head, radiation is chosen for this purpose which shows less scatter than visible light and has a higher penetration capacity, etc. preferably electromagnetic radiation in a wave range of 1 .mu.m to 10 cm, which is longer than visible light. In a particularly advantageous manner, the heat development can be exploited during the cutting work, since the chisels and the cutting head have a significantly higher temperature than the surroundings and thus act as infrared radiation transmitters. The large temperature difference between the hot chisels of the cutting heads and the environment enables the use of relatively insensitive receivers, and there is usually no need for complex cooling of the receiver.

Vorzugsweise ist der Empfänger hiebei als Wärmebildkamera ausgebildet, welche ortsfest in der Strecke angeordnet ist und zur Streckenlängsachse, beispielsweise an Hand des üblicherweise verwendeten Laserstrahlenleitstrahles ausgerichtet wird. Derartige Wärmebildkameras weisen eine Zeilenabtastung auf und es kann das auf diese Weise erhaltene Videosignal unmittelbar mit bekannten elektronischen Einrichtungen verwertet, auf Bildschirmen angezeigt und/oder einer Steuereinrichtung zugeführt werden. Die Ausbildung kann aber auch so getroffen sein, daß der Empfänger schwenkbar angeordnet ist und auf wenigstens einen von dem Sender gebildeten Bezugspunkt des Schrämkopfes zur Bestimmung des Winkels zwischen einer Parallelen zur Streckenlängsachse und dem Bezugspunkt des Schrämkopfes ausrichtbar ist. Die servomotorische Nachführung eines derartig schwenkbar ausgeführten Empfängers und Ausrichtung auf den Sender, ergibt hiebei unmittelbar ein Maß für den zu messenden Winkel. Zusammen mit der in bekannter Weise, beispielsweise unter Verwendung von Infrarotstrahlen, gemessenen Entfernung läßt sich die Position des Schrämkopfes unmittelbar darstellen.The receiver is preferably designed as a thermal imaging camera which is arranged in a fixed manner in the route and is aligned with the longitudinal axis of the route, for example using the laser beam guide beam which is usually used. Such thermal imagers have a line scan and the video signal obtained in this way can be used directly with known electronic devices, displayed on screens and / or fed to a control device. However, the design can also be such that the receiver is arranged pivotably and can be aligned to at least one reference point of the cutting head formed by the transmitter for determining the angle between a parallel line to the longitudinal axis of the line and the reference point of the cutting head. The servo-motoric tracking of such a swiveling receiver and alignment with the transmitter immediately gives a measure of the angle to be measured. Together with the distance measured in a known manner, for example using infrared rays, the position of the cutting head can be displayed directly.

Wenn lediglich ein Bezugspunkt als Sender gewählt wird, empfiehlt es sich, diesen nahe der Drehachse des Schrämkopfes anzuordnen, da dann auf Grund der bekannten Geometrie des Kopfes und der bekannten Dimension eines Kopfes zusammen mit der gemessenen Entfernung die exakte Position des Schrämkopfes in jeder Drehlage desselben ermittelt werden kann. Die Entfernung kann auch zwischen dem ortsfest angeordneten Empfänger und der Ortsbrust selbst gemessen werden, da ja der Schrämkopf mit der Ortsbrust in Eingriff steht.If only one reference point is selected as the transmitter, it is advisable to arrange it near the axis of rotation of the cutting head, because then, based on the known geometry of the head and the known dimension of a head, together with the measured distance, the exact position of the cutting head in any rotational position of the same can be determined. The distance can also be measured between the stationary receiver and the face itself, since the cutting head is in engagement with the face.

Insbesondere bei Verwendung einer Wärmebildkamera ist es jedoch besonders vorteilhaft, wenn der als Infrarotstrahlensender ausgebildete Sender von dem auf Betriebstemperatur befindlichen Schrämkopf selbst gebildet ist. In diesem Fall wird mit dem Empfänger die gesamte Kontur des heißen Schrämkopfes erfaßt und die Entfernungsmessung könnte in diesem Fall dadurch erfolgen, daß bei gegebener Dimension des Schrämkopfes bei unterschiedlichem Abstand des Schrämkopfes von der Wärmebildkamera die Kontur größer bzw. kleiner gemessen wird. Eine Verkleinerung der bei fester Brennweite der Wärmebildkamera gemessenen Schrämkopfkontur entspricht einem größeren Abstand von der Wärmebildkamera.Particularly when using a thermal imaging camera, however, it is particularly advantageous if the transmitter designed as an infrared radiation transmitter is itself formed by the cutting head which is at the operating temperature. In this case, the entire contour of the hot cutting head is detected with the receiver, and the distance measurement could in this case be carried out by measuring the contour larger or smaller with a given dimension of the cutting head at different distances between the cutting head and the thermal imaging camera. A reduction in the cutting head contour measured at a fixed focal length of the thermal imager corresponds to a greater distance from the thermal imager.

In vorteilhafter Weise enthält die Anzeigevorrichtung einen Bildschirm, auf welchem die Lage des Schrämkopfes relativ zum Sollprofil darstellbar ist, wobei die Sollprofildarstellung oder die Schrämkopfdarstellung in Abhängigkeit vom Abstand des Schrämkopfes von einem Infrarotstrahlungsempfänger bzw. der Wärmebildkamera in der Größe veränderbar ist. Auf diese Weise kann die maßstäbliche Darstellung am Bildschirm beibehalten werden. In einfacher Weise kann dies dadurch geschehen, daß die Wärmebildkamera ein in Abhängigkeit von der Entfernung des Schrämkopfes in seiner Brennweite verstellbares Varioobjektiv aufweist.The display device advantageously contains a screen on which the position of the cutting head relative to the target profile can be displayed, the target profile display or the cutting head display depending on the distance of the cutting head from an infrared radiation receiver or the thermal imaging camera being changeable in size. In this way, the scale representation on the screen can be maintained. This can be done in a simple manner in that the thermal imaging camera has a zoom lens which can be adjusted in focal length as a function of the distance of the cutting head.

Die bevorzugte Ausführung der erfindungsgemäßen Einrichtung besteht darin, daß die Wärmebildkamera ortsfest in der Strecke orientiert angeordnet ist, daß das Wärmebild in an sich bekannter weise zeilenweise abgetastet wird, und daß das auf diese Weise erhaltene Videosignal der Anzeigevorrichtung und/oder einer Steuereinrichtung für die Bewegung des Schrämkopfes zugeführt ist.The preferred embodiment of the device according to the invention is that the thermal imager is arranged in a fixed manner in the route, that the thermal image is scanned line by line in a manner known per se, and that the video signal obtained in this way is from the display device and / or a control device for the movement the cutting head is fed.

Die Erfindung wird nachfolgend an Hand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. In dieser zeigen Fig. 1 eine schematische Darstellung der Anordnung der Einrichtung in einer Strecke, Fig. 2 und 3 eine Darstellung der für die Ermittlung der Raumkoordinaten geltenden geometrischen Bedingungen, Fig. 4 eine schematische Seitenansicht der Einrichtung nach Fig. 1, Fig. 5 das Bild einer Anzeigevorrichtung, welche an die Anordnung nach Fig. 1 angeschlossen ist, und Fig. 6 eine schematische Darstellung der für die Auswertung der erhaltenen Signale erforderlichen Schaltungsanordnung.The invention is explained in more detail below with reference to exemplary embodiments shown in the drawing. 1 shows a schematic representation of the arrangement of the device in a distance, FIGS. 2 and 3 show a representation of the geometric conditions applicable for determining the spatial coordinates, FIG. 4 shows a schematic side view of the device according to FIGS. 1 and 5 the picture of a display device which is connected to the arrangement according to FIG. 1, and FIG. 6 shows a schematic representation of the circuit arrangement required for the evaluation of the signals received.

In Fig. 1 ist eine Teilschnittschrämmaschine 1 innerhalb der Strecke 2 dargestellt. Der Schrämarm dieser Teilschnittschrämmaschine ist mit 3 bezeichnet und weist an seinem Ende zwei rotierbar gelagerte Schrämköpfe 4 auf, welche um die sich quer zur Achse des Schrämarmes erstreckende Achse 5 rotierbar gelagert sind. Ein von einem Infrarotsender gebildeter Bezugspunkt 6 ist nahe dieser Achse 5 am Schrämarm 3 angeordnet. An einem Ausbaurahmen 7 ist ortsfest eine Wärmebildkamera 8 angeordnet, welche in entsprechender Weise am Laserstreckenleitstrahl 9 ausgerichtet ist. Der ortsfeste Empfänger 8 ermittelt die Distanz zwischen von einem Infrarotsender gebildeten Bezugspunkt 6 am Schrämarm und dem Empfänger 8. Die cartesischen Koordinaten des Bezugssystems des Empfängers sind mit x, y und z angedeutet, und es werden zwei Winkel relativ zu diesem Koordinatensystem gemessen, wie dies in Fig. 2 und 3 erläutert ist.In Fig. 1 a partial cutting machine 1 is shown within the route 2. The cutting arm of this partial cutting cutting machine is designated 3 and has at its end two rotating cutting heads 4 which are rotatably mounted about the axis 5 extending transversely to the axis of the cutting arm. A reference point 6 formed by an infrared transmitter is arranged on the cutting arm 3 near this axis 5. A thermal imager 8, which is aligned in a corresponding manner on the laser path guide beam 9, is arranged in a stationary manner on an expansion frame 7. The fixed receiver 8 determines the distance between the reference point 6 on the cutting arm formed by an infrared transmitter and the receiver 8. The Cartesian coordinates of the reference system of the receiver are indicated by x, y and z, and two angles are measured relative to this coordinate system, as is the case here is explained in Figs. 2 and 3.

In Fig. 2 ist hiebei das cartesische Bezugssystem mit dem Ursprung am Meßpunkt der Wärmebildkamera 8 dargestellt. Die x-y-Ebene dieses Bezugssystems wird hiebei in einfacher Weise parallel zum Streckenleitstrahl 9 orientiert. Ausgehend von einer derartigen Orientierung des Bezugssystems der Wärmebildkamera wird nun der Bezugspunkt 6 des Schrämarmes bzw. Schrämkopfes in Polarkoordinaten durch die Winkel 9, (p und den Abstand r ausgedrückt. Es werden somit zwei Winkel und die Strecke zwischen dem Ursprung des Bezugssystems der Wärmebildkamera 8 und dem Bezugspunkt 6 am Schrämkopf 4 bzw. Schrämarm 3 gemessen. Ebenso gut kannt aber auch die in Fig. 1 mit 10 bezeichnete Außenkontur der Schrämköpfe in ihrer Gesamtheit durch eine Wärmebildkamera abgetastet werden. Die zu messenden Winkel 3, (p sind in Fig. 3 eingezeichnet.In Fig. 2 the Cartesian reference system is shown with the origin at the measuring point of the thermal imager 8. The x-y plane of this reference system is oriented in a simple manner parallel to the route guide beam 9. Starting from such an orientation of the reference system of the thermal imaging camera, the reference point 6 of the cutting arm or cutting head is now expressed in polar coordinates by the angles 9, (p and the distance r. Two angles and the distance between the origin of the reference system of the thermal imaging camera 8 are thus expressed and the reference point 6 on the cutting head 4 or cutting arm 3. However, the outer contour of the cutting heads, designated 10 in FIG. 1, can also be scanned in its entirety by a thermal imager. The angles 3, (p are shown in FIG. 3 drawn.

In Fig. 4 ist wiederum der Empfänger 8 ortsfest und relativ zur Streckenlängsachse orientiert an einem Ausbaurahmen 7 festgelegt. Der winkel 81 ist hiebei zur x-y-Ebene des Bezugssystems des Empfängers gemessen und erscheint daher gegenüber dem winkel 9 in Fig. 3 um 90° verringert. In analoger Weise ergibt sich in der nicht dargestellten Draufsicht der Winkel cp ausgehend von der x-Achse des Bezugssystems des Empfängers. Anstelle des Abstandes r zwischen dem Bezugspunkt 6 am Schrämarm 3 und dem Meßpunkt des Empfängers 8 kann der Abstand a vom Empfänger 8 zur Ortsbrust 11 gemessen werden, da dieser Abstand bei größerem Abstand des Empfängers 8 vom Bezugspunkt 6 nur unwesentlich von der Distanz r verschieden ist.In Fig. 4, the receiver 8 is again fixed and oriented relative to the longitudinal axis on a frame 7. The angle 8 1 is measured in relation to the xy plane of the reference system of the receiver and therefore appears to be 90 ° less than the angle 9 in FIG. 3. Analogously, in the top view, not shown, the angle cp results from the x-axis of the reference system of the receiver. Instead of the distance r between the reference point 6 on the cutting arm 3 and the measuring point of the receiver 8, the distance a from the receiver 8 to the face 11 can be measured, since this distance is only slightly different from the distance r when the receiver 8 is at a greater distance from the reference point 6 .

Wenn nun abweichend von den für einen bestimmten, von einem Infrarotsender gebildeten Bezugspunkt 6 am Schrämarm 3 oder Schrämkopf 4, die gesamte Außenkontur 10 der Schrämköpfe 4 von der Wärmebildkamera 8 erfaßt wird, läßt sich unmittelbar aus dem erhaltenen Videosignal der Wärmebildkamera die in Fig. 5 gezeigte Bildschirmdarstellung erzielen. Der Bildschirm des Monitors 12 ist hiebei mit 13 bezeichnet und zeigt das Sollprofil 14 der aufzufahrenden Strecke. Innerhalb dieses Sollprofils 14 sind die Abbildungen der Schrämköpfe 4 ersichtlich, wobei die Spuren der rotierenden Meißel deutlich als im wesentlichen vertikal verlaufende Striche abgebildet sind.If, in deviation from the reference point 6 on the cutting arm 3 or cutting head 4 formed by a infrared transmitter, the entire outer contour 10 of the cutting heads 4 is captured by the thermal imaging camera 8, the video signal of the thermal imaging camera obtained in FIG achieve the screen display shown. The screen of the monitor 12 is designated 13 and shows the target profile 14 of the route to be covered. Within this Target profile 14 shows the images of the cutting heads 4, the traces of the rotating chisels being clearly shown as essentially vertical lines.

Eine für die Abtastung des Videosignals der Wärmebildkamera geeignete Schaltung ist in Fig. 6 schematisch dargestellt. Die Wärmebildkamera ist hiebei ebenso wie der Empfänger mit 8 bezeichnet. Der Kamera 8 werden Signale für die vertikale und horizontale Ablenkung über Leitungen 15 bzw. 16 zugeführt. Das Videosignal gelangt über eine Leitung 17 und ein Differenzierglied 18 zu einem Komparator 19 und kann unmittelbar dem Monitor 12 zugeführt werden.A circuit suitable for scanning the video signal of the thermal imaging camera is shown schematically in FIG. 6. The thermal imaging camera is also designated 8 here, as is the receiver. Signals for the vertical and horizontal deflection are fed to the camera 8 via lines 15 and 16, respectively. The video signal reaches a comparator 19 via a line 17 and a differentiator 18 and can be fed directly to the monitor 12.

Zum Zwecke der automatischen Steuerung der Arbeitsbewegung des Schrämkopfes bzw. Schrämarmes kann dieses Signal aber auch einer Bildauswertungsschaltung 20 zugeführt werden. Für die drei Raumkoordinaten der Position des Schrämkopfes können hiebei gesonderte Stellsignale über Leitungen 21 erhalten werden.However, for the purpose of automatically controlling the working movement of the cutting head or cutting arm, this signal can also be fed to an image evaluation circuit 20. Separate control signals can be obtained via lines 21 for the three spatial coordinates of the position of the cutting head.

Claims (8)

1. Apparatus for determining the position of the cutting head of a boring or mining machine, characterised by a sensor (8), which is oriented relative to the longitudinal axis of the drift and which may be mounted in a drift a transmitter (6) for transmitting electromagnetic radiation in the wave-length range of 1 um to 10 cm on the cutting head (4) and/or on a cutting arm (3), and a telemeter for determining the distance (r) of at least one reference point on the cutting head (4) and/or cutting arm from the sensor (8), and preferably an indicator (12) for indicating the position of the cutting head (4) relative to a required profile (14) to be cut.
2. Apparatus according to claim 1, characterised in that the sensor (8) takes the form of a heat-imaging camera.
3. Apparatus according to claim 1 or 2, characterised in that the sensor (8) is pivotably mounted and may be directed at at least one reference point of the cutting head (4) formed by the transmitter (6) for determining the angle (9) between the parallel to the longitudinal axis of the span and the reference point of the cutting head (4).
4. Apparatus according to claim 3, characterised in that the reference point on the cutting head (4) is located near to the axis of rotation (5) of the cutting head (4).
5. Apparatus according to one of claims 1 to 4, characterised in that the transmitter (6) takes the form of an infra-red ray transmitter and is preferably formed by the cutting head (4) at operating temperature.
6. Apparatus according to one of claims 1 to 5, characterised in that the indicator (12) comprises a screen (13) on which the position of the cutting head (4) relative to the required profile (14) may be shown,.and in that the size of the images of the required profile or the cutting head may change as a function of the distance (r) of the cutting head (4) from an infra-red ray sensor (8) or the heat imaging camera.
7. Apparatus according to claim 2 or 6, characterised in that the heat imaging camera (8) has a varioobjective, the focal length of which is adjustable as a function of the distance (r) from the cutting head (4).
8. Apparatus according to claim 2, 6 or 7, characterised in that the heat imaging camera (8) is stationary in the drift (2), in that the heat imaging diagram is read in lines, in a known manner, and in that the video signal thus obtained is supplied to the indicator (12) and/or a control device for the movement of the cutting head (4).
EP83890168A 1982-09-23 1983-09-22 Apparatus for defining the position of the cutting head of a boring or mining machine Expired EP0105867B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0354882A AT375153B (en) 1982-09-23 1982-09-23 DEVICE FOR DETECTING THE POSITION OF THE CUTTING HEAD OF A PITCHING OR RECOVERY MACHINE
AT3548/82 1982-09-23

Publications (3)

Publication Number Publication Date
EP0105867A2 EP0105867A2 (en) 1984-04-18
EP0105867A3 EP0105867A3 (en) 1985-12-27
EP0105867B1 true EP0105867B1 (en) 1988-02-03

Family

ID=3552036

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83890168A Expired EP0105867B1 (en) 1982-09-23 1983-09-22 Apparatus for defining the position of the cutting head of a boring or mining machine

Country Status (12)

Country Link
EP (1) EP0105867B1 (en)
JP (1) JPS5980899A (en)
AT (1) AT375153B (en)
AU (1) AU563232B2 (en)
CA (1) CA1229675A (en)
CS (1) CS687583A2 (en)
DE (1) DE3375595D1 (en)
HU (1) HU191876B (en)
IN (1) IN159093B (en)
PL (1) PL142733B1 (en)
RO (1) RO89261A (en)
ZA (1) ZA836472B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103314271A (en) * 2011-01-10 2013-09-18 莱卡地球系统公开股份有限公司 Geodesic measuring device comprising a thermographic camera

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3806224A1 (en) * 1988-02-26 1989-09-07 Siemens Ag Device for tracking the movement of a moving object, especially of a getter machine in mining
KR930007231A (en) * 1991-09-13 1993-04-22 강진구 Object tracking device and method of camcorder
PL2307669T3 (en) 2008-07-28 2017-10-31 Eickhoff Bergbautechnik Gmbh Method for controlling a cutting extraction machine
CN102587911B (en) * 2012-03-08 2014-04-23 三一重型装备有限公司 Tunneling control system and method for tunneling machine and tunneling machine
CN103195433B (en) * 2013-03-20 2015-02-18 中国矿业大学(北京) Method for speedy drivage in large section coal road
CN108655821B (en) * 2018-05-20 2019-11-29 李君毅 Centralizer and application method
CN109356653B (en) * 2018-11-01 2023-10-24 云南昆钢电子信息科技有限公司 Drop shaft depth measuring device and method
CN109538208A (en) * 2018-12-21 2019-03-29 冀中能源峰峰集团有限公司 A kind of compound positioning system of cutting head of roadheader and method
CN111472841B (en) * 2020-03-05 2021-11-05 天地科技股份有限公司 Fully mechanized coal mining face equipment group pose unifying method
CN112963165B (en) * 2021-03-17 2022-01-04 大连理工大学 Design method of full-face rock tunnel boring machine cutter system guiding positioning interface based on machine operation
CN114658429B (en) * 2022-03-01 2023-05-23 河海大学 High-temperature high-pressure fluid hole internal circulation impact energy release advanced pre-cracking rock breaking device and method
CN115711157B (en) * 2022-11-14 2023-08-01 北京科技大学 Mining magnetic field distributed monitoring-based coal seam outburst dangerous area identification method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2901598C2 (en) * 1979-01-17 1986-03-20 Gebr. Eickhoff Maschinenfabrik U. Eisengiesserei Mbh, 4630 Bochum Device for checking the position of a partial cutting machine
DE3016592A1 (en) * 1980-04-30 1981-11-05 Gewerkschaft Eisenhütte Westfalia, 4670 Lünen METHOD AND DEVICE FOR PROFILE-PRECISION CUTTING OF THE DRIVE CROSS SECTION IN DRIVING UNDERGROUND CONSTRUCTIONS
DE3120010A1 (en) * 1981-05-20 1982-12-09 Ed. Züblin AG, 7000 Stuttgart METHOD FOR DETERMINING THE POSITION OF A PREPRESSED HOLLOW PROFILE STRAND AND DEVICE FOR IMPLEMENTING THE METHOD

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103314271A (en) * 2011-01-10 2013-09-18 莱卡地球系统公开股份有限公司 Geodesic measuring device comprising a thermographic camera

Also Published As

Publication number Publication date
AT375153B (en) 1984-07-10
PL142733B1 (en) 1987-11-30
JPS5980899A (en) 1984-05-10
AU563232B2 (en) 1987-07-02
CA1229675A (en) 1987-11-24
HU191876B (en) 1987-04-28
DE3375595D1 (en) 1988-03-10
IN159093B (en) 1987-03-21
ATA354882A (en) 1983-11-15
ZA836472B (en) 1984-04-25
PL243526A1 (en) 1984-04-09
EP0105867A3 (en) 1985-12-27
AU1842883A (en) 1984-03-29
RO89261A (en) 1986-03-15
CS687583A2 (en) 1988-09-16
EP0105867A2 (en) 1984-04-18

Similar Documents

Publication Publication Date Title
EP0105867B1 (en) Apparatus for defining the position of the cutting head of a boring or mining machine
DE3322683C2 (en) Device for harvesting fruits with a photoelectric fruit layer detector
DE112012005524B4 (en) Method for mechanically transmitting a command to control the operation of a laser tracker
EP1549909B1 (en) Electronic display and control device for a measuring device
DE3426505C2 (en)
EP2005112B1 (en) Apparatus and method for three-dimensional coverage of a spatial area
DE60305779T2 (en) microscope
DE69734623T2 (en) surveying system
CH616228A5 (en)
DE10235888A1 (en) Automatically collimating measurement device has image processing unit for detecting measurement point for image, devices for indicating measurement point, automatic collimation unit
CH700023B1 (en) Scanning device.
DE2544975A1 (en) FIRE CONTROL SYSTEM
DE102013102749A1 (en) X-ray measuring device
DE102004037296A1 (en) Method of focusing the taking lens of a motion picture or video camera
DE3417666A1 (en) IMAGE GENERATOR
DE19603267A1 (en) Device for determining the distance and / or position
DE102016200877A1 (en) System for measuring a three-dimensional position
DE4032657A1 (en) METHOD AND MEASURING DEVICE FOR DETERMINING THE POSITION OF SPACE POINTS
DE3007893C2 (en) Thermal imaging device
DE3928244C1 (en)
DE19543299A1 (en) Measuring of objects especially static objects such as buildings and machines or similar
DE102017100885B4 (en) METHOD AND DEVICE FOR GENERATING AND PROJECTING A 3D THERMOGRAM COMPLETE WITH DATA ON THE RECORDING CONDITIONS
DE102010020537A1 (en) Passive water surface detector for use in autonomous system of self-propelled lawn mower moved over area of golf course, has sensor elements connected to data evaluation device and generating image with different polarizations from scene
EP0403908A2 (en) Procedure and device to measure the contours of an object
DE10227299A1 (en) Scanner for optical object detection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19860120

17Q First examination report despatched

Effective date: 19870604

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3375595

Country of ref document: DE

Date of ref document: 19880310

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19880922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19880930

Ref country code: CH

Effective date: 19880930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83890168.4

Effective date: 19890712