EP0103172B1 - Device for determining the viscosity of liquids, especially of blood plasma - Google Patents

Device for determining the viscosity of liquids, especially of blood plasma Download PDF

Info

Publication number
EP0103172B1
EP0103172B1 EP83107905A EP83107905A EP0103172B1 EP 0103172 B1 EP0103172 B1 EP 0103172B1 EP 83107905 A EP83107905 A EP 83107905A EP 83107905 A EP83107905 A EP 83107905A EP 0103172 B1 EP0103172 B1 EP 0103172B1
Authority
EP
European Patent Office
Prior art keywords
capillary tube
tube branch
capillary
branch
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83107905A
Other languages
German (de)
French (fr)
Other versions
EP0103172A1 (en
Inventor
Friedrich Jung
Holger Dr. Kiesewetter
Hans-Günther Roggenkamp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT83107905T priority Critical patent/ATE28362T1/en
Publication of EP0103172A1 publication Critical patent/EP0103172A1/en
Application granted granted Critical
Publication of EP0103172B1 publication Critical patent/EP0103172B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/26Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring pressure differences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/02Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
    • G01N11/04Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture
    • G01N11/06Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture by timing the outflow of a known quantity

Definitions

  • the invention relates to a device for determining the viscosity of liquids, in particular blood plasma, according to the preamble of claim 1.
  • Blood can be regarded as an independent, moving organ, which is a suspension of various cells in the plasma as a continuous phase. It is said to essentially carry the blood cells and the plasma through all parts of the vessel bed. Fats, electrolytes and especially proteins are found in this plasma.
  • the blood is used by mass and heat transport to maintain a so-called.
  • Flow equilibrium which is adapted to the respective organs or their cells. For example, the increased need for energy is met by increasing blood flow and thus increasing the supply of oxygen, glucose or fatty acids, while at the same time taking care of the removal of metabolic intermediates and end products. If for some reason such a steady state cannot be maintained over a long period of time, the organism is not viable.
  • the apparent viscosity of the blood which is a non-Newtonian fluid, is essentially determined by the following factors, namely the plasma viscosity, the hematocrit value (volume fraction of the blood cells in the whole blood), the aggregation of the erythrocytes and the deformability of the erythrocytes.
  • the plasma viscosity plays an important role in the detection of diseases in the blood and should therefore be determined as simply and precisely as possible in routine medical operation.
  • the following types of viscometers are essentially known for quantifying the plasma viscosity, namely the falling ball, the rotating and the capillary viscometer, the measuring devices currently used being only poorly suited for routine medical operation for the reasons explained below.
  • the design of the falling ball viscometer is based on Stokes' theoretical approach, according to which the following applies to the resistance of a flow around a ball:
  • the ball sinks at a constant speed in the fluid.
  • the gravity of the ball with the density 9K is kept in balance by the buoyancy force and the friction force F w .
  • the viscosity results: usually, the term 2/9 r K 2/1 g included in the experimentally determined device constant K, so that the empirical viscosity can be determined.
  • the second method to determine plasma viscosity is rotary viscometry.
  • the plasma viscosity results from the following formula in which
  • the device constant which depends on the type of measuring chamber used, represents a multitude of sources of error that can be traced back to the type and processing of the measuring chamber.
  • the first group of such viscometers consists of an arrangement of coaxial cylinders , for example the GDM viscometer (Gilinson-Dauwalter-Merrill), while the second group has a plate-cone arrangement, for example the Wells-Brookfield viscometer.
  • a frequently used rotary viscometer uses both of the chamber arrangements mentioned, namely the so-called. Mooney configuration. These are coaxial cylinders that are designed as a plate and cone system on the top and bottom. Other designs of the chamber geometry are, for example, the Rhombo-Spheroid Viscometer from Dintensburg or the Rheogoniometer from Weissenberg.
  • the speed is specified via a manual transmission and the torque that is removed, which is set as a function of the plasma viscosity, is measured.
  • the Deer rotational rheometer (Mooney configuration) works with a specified torque, whereby the speed output is measured.
  • the inner and outer cylinders have to be manufactured very precisely in order to ensure good reproducibility of the measurements.
  • the chamber must be cleaned carefully after each measurement without leaving any residues of the cleaning agent in the chamber. Because such residues of the measuring solution and the cleaning agent change the wettability of the surfaces of the measuring chamber, which is directly involved in the measurement.
  • about 15 ml of plasma are required per measurement, which corresponds to about 30 ml of whole blood. Since several measurements are usually carried out to determine the mean, this means that larger amounts of blood have to be taken from the patient, which is an increased burden for him and is therefore undesirable.
  • the best-known method for measuring the viscosity of plasmas consists in determining the outflow time or the volume flow V, which is measured in a capillary viscometer. According to Hagen-Poiseuille, the following applies to the average speed in a capillary: in which
  • the Harkness capillary viscometer specifies a constant differential pressure Ap via a vacuum pump in a horizontally arranged capillary.
  • the Ubbelohde viscometer is also known, in which the weight of the plasma column is used as the driving pressure.
  • the Ostwald capillary viscometer which is often used in technology, consists of a U-tube capillary with vertically arranged legs and is characterized by a precisely reproducible measurement volume with pressures that can also be precisely adjusted.
  • capillary viscometers have in common that they require a complex apparatus structure, which is due to the often only very short measuring time and thus an extensive detector device.
  • the capillaries used are difficult to manufacture, so that measurement errors arise as a result of the manufacturing tolerances, and since they consist regularly of glass, they have to be thermostatted over a longer period of time, so that they are only available to a limited extent.
  • the cleaning of such a measuring capillary represents a further disadvantage since it has to be carried out very precisely and only completely residue-free capillaries can be used.
  • a device for determining the viscosity which has a vertical capillary tube, to which a liquid reservoir designed as a horizontal tube piece is connected at the top and a measuring chamber at the bottom.
  • a liquid reservoir designed as a horizontal tube piece is connected at the top and a measuring chamber at the bottom.
  • the driving pressure does not remain the same in this vertical arrangement, since the content of the liquid reservoir and, moreover, the liquid column present in the capillary constantly change.
  • a solid material ie usually glass
  • the measuring capillary which, on the one hand, is difficult to manufacture with the necessary precision and, on the other hand, cannot be produced once due to the high manufacturing costs can be thrown away after use.
  • a capillary must be cleaned after each measurement. The residues that inevitably occur in this case often lead to a falsification of the subsequent measurement results, so that such a capillary is then not suitable for determining precise viscosity values.
  • the invention is based on the object of developing the device of the type mentioned at the outset such that even fast-flowing liquids in relatively wide capillaries can be determined precisely and reproducibly in their viscosity in relatively short time intervals, cleaning work being dispensed with.
  • the device according to the invention also allows the viscosity of fast-flowing liquids, such as blood plasma, to be measured, since on the one hand the driving height is relatively low and on the other hand the length of the horizontal capillary tube portions, which slows down the flow velocity, is relatively large.
  • the measuring arrangement according to the invention is designed in such a way that the driving height remains constant during the measuring process, which leads to a constant flow speed within the measuring capillaries and to constant measured values.
  • Disposable capillaries are used, i.e. the capillary is manufactured as a cheap item and is thrown away after use.
  • a flexible plastic hose that can be manufactured with the required tolerances is suitable for these purposes.
  • Such plastic materials advantageously do not interact with the liquids to be examined in the measurement time, that is to say they do not give any plasticizers or the like. to the liquid.
  • Such a capillary tube is inserted into a groove of a plate which is shaped in accordance with the desired capillary guide and holds the capillary tube securely.
  • the preferred capillary guide is that the capillary tube is placed in at least two capillary tube parts, the respective capillary tube parts being arranged essentially parallel and horizontally.
  • the radius between the capillary tube parts is dimensioned in such a way that pinching or kinking of the capillary tube is reliably prevented.
  • the diameter of the capillary is selected so that the column of the liquid to be examined neither tears off when it flows through the capillary, nor closes the capillary due to the surface tension and does not flow through it.
  • the inlet end of the capillary is advantageously designed as a so-called acceleration section and designed in such a way that a substantially vertical branch is guided from the upper horizontal branch to the inlet opening.
  • the liquid After passing through this acceleration section, in which the static friction of the fluid in the tube is surely overcome at the start of the measurement, the liquid enters the horizontally arranged capillary tube part, the first part of which is advantageously designed as a flow or calming section. After passing through the calming section, it is ensured that there is a steady flow in the tube capillary, which can be subjected to the actual measurement.
  • the tube capillary has an ascending section at its end, which prevents the liquid to be examined from flowing out and / or that outflowing liquid forms drops which falsify the measuring times, as explained above.
  • the tube is removed from the groove of the plate and either kept for further determinations of the liquid or thrown away. There are therefore no leakage effects. Furthermore, no cleaning of the tube capillary is necessary, so that the negative effects mentioned at the outset can be completely avoided.
  • the first embodiment shown in FIG. 1 essentially consists of a housing 10 which has an inclined or preferably vertically arranged front plate 12.
  • the electronic control device and the like are in the housing 10. arranged.
  • the front side 14 of the front plate has a groove 16 machined therein, which extends from an inlet end 18 to an outlet end 20.
  • the groove extends from the inlet end 18 into a substantially vertically arranged capillary tube part 22, which serves as an acceleration area.
  • This capillary tube part 22 is adjoined by a first horizontal capillary tube part 24, which is divided into a calming section labeled A and a measuring section labeled B.
  • This capillary tube part 24 merges into a curved capillary tube part 26, which is continued in a second capillary tube part 28, which in turn is advantageously arranged horizontally.
  • the capillary tube part 28 is followed by a second curved capillary tube part 30, which in turn is continued in a substantially horizontally arranged third capillary tube part 32.
  • This capillary tube part 32 is considerably longer than the capillary tube parts 24 and 28 and advantageously dimensioned such that its length corresponds approximately to the length of the capillary tube parts 22, 24 and 28 and of the curved capillary tube part 26.
  • the capillary tube part 32 is followed by a capillary tube part 34 which is essentially designed as a rising path and which is returned to the outlet end 20.
  • capillary tube parts 22 and 34 are only present in a preferred embodiment, i.e. that the capillary tube parts 24 and 32 can also run out substantially horizontally to the inlet and outlet ends.
  • FIG. 1 is not limited to an arrangement of two curved capillary tube parts 26 and 30. Rather, it can also have only one curved capillary tube part 26, so that the capillary tube part 28 already represents the outlet branch. However, this embodiment is less preferred, since the length of the groove is only sufficient to effectively measure the viscosity due to the miniaturization of the device.
  • the groove 16 is worked in such a way that a hose 36 can be inserted with a precise fit, as can be seen from the enlarged perspective sectional view shown in FIG. 1.
  • the hose 36 runs from the inlet end 18 to the outlet end 20 in the groove 16 in such a precise manner that there are no kinks or constrictions in it, that is to say the cross section of the hose remains essentially unchanged over its entire length.
  • the depth and the width of the groove 36 essentially correspond to the hose diameter. It has proven to be advantageous that the tube has an essentially circular cross section, the inner diameter being approximately 0.5-2 mm, preferably approximately 0.7-1.0 mm.
  • the wall thickness of the hose is approximately 0.2-0.5 mm, preferably 0.3-0.4 mm.
  • a transparent plastic material which is translucent is advantageously used as the hose material, so that the liquid fronts occurring in the hose can be detected with the aid of optical sensors.
  • Polyurethane and polyethylene which are essentially free of plasticizers, are used as preferred plastic materials. Particularly preferred is polyurethane, which can be delivered in the desired tolerances and which provides reproducible measurement results to a high degree.
  • a bead can be provided at its beginning, which can be inserted into a recess 38 in the front plate 12, which is arranged in the region of the inlet end 18. This enables exact insertion of the hose as well as facilitating the filling of the measuring liquid into the hose.
  • Two detectors 40 and 42 are provided in the front plate 12 in the area of the capillary tube part 24 of the groove 16, which detectors are preferably designed as light sensors.
  • these light sensors are each inserted into an opening provided in the capillary tube part 24 and do not hinder the insertion of the tube 36 into this capillary tube part 24.
  • These sensors 40 and 42 are so sensitive that they respond to the occurrence of a fluid meniscus and the resulting change in light.
  • a fill mark 44 is provided in the capillary tube part 28 downstream of the sensor 42, in the immediate vicinity of which a further sensor 46 is provided.
  • This sensor 46 corresponds in type and structure and arrangement to sensors 40 and 42.
  • This sensor 46 controls a locking magnet 48, which is arranged in the vicinity of the outlet end 20, via a line (not shown).
  • the closure magnet 48 When a signal occurs at the sensor 46, the closure magnet 48 is activated and closes the tube 36 inserted into the groove 16 for a certain time, preferably approximately 0.5-4 min., In particular 1-2 min. This time serves to bring the liquid in the hose 36 to the temperature in the front plate 12 and accordingly in the hose 36, which corresponds to a dry thermostat.
  • the front plate 12 is equipped with two connections 50 and 52 for thermostatting, which are designed as electrical connections or as pipe connections for the supply of a correspondingly heated liquid originating from a reservoir (not shown). Electrical heating by means of a heating spiral (not shown) provided in the front plate 12, which is connected to the connections 50 and 52, is preferred. These connections 50 and 52 can of course also be accommodated within the housing 10. If blood plasma is to be measured in its viscosity, the front plate 12 and thus the tube 36 are adjusted to the body temperature, i.e. tempered to approx. 37 ° C. When using other liquids, of course, any temperatures can be presented in the front panel, which is preferably made of aluminum.
  • the front plate 12 has at its lower end a preferably foldable cover 54, which is advantageously made of a transparent plastic material.
  • the display 58 can be deleted so that a new value can be measured.
  • the viscosity measurement is carried out with the device according to the invention according to the following rules and in the following way:
  • the time t that the liquid, in particular the blood plasma, takes to cover the defined measuring distance B in the tube 36 is measured.
  • the measurement error possible due to this simplifying assumption is certainly less than ⁇ 3%.
  • the measurement is carried out in such a way that the hose 36 is first inserted into the groove 16 in the front plate 12.
  • the liquid to be examined in particular plasma, which was obtained from the anticoagulated blood taken from the patient, is then in an amount of about 200-400, max. 500 ⁇ l introduced into the tube.
  • a 2 ml syringe is preferably used for this purpose, the cannula of which is inserted into the capillary of the tube 36. This cannula closes the capillary tightly so that the liquid only moves forward in the capillary due to the pressure on the plunger of the syringe.
  • the filling of the capillary is completed when the liquid front reaches the filling mark 44.
  • the cannula of the syringe remains in the capillary until the filled liquid has warmed to the temperature of the front plate 12, or the cannula is preferably pulled out after filling, so that the liquid front moves up to the sensor 46.
  • the sensor 46 is actuated, which in turn triggers the closure magnet 48, which squeezes the hose 36, so that the liquid column in the hose 36 can no longer move.
  • the temperature is controlled for a certain time of about 0.4-4 minutes, in particular 1-2 minutes, and the result is a dry thermostatting of the plasma used to about 37 ° C. After this time, the locking magnet 48 opens automatically and the actual measuring process begins.
  • the capillary tube part 22 initially serves as an acceleration path in which the static friction of the fluid in the tube 36 is overcome.
  • the liquid then enters the settling section A of the capillary tube part 40, in which an essentially stationary flow is achieved.
  • the first sensor 40 that is, when entering the measuring section B
  • the measuring process is started, which is then ended, when the liquid front has reached the second sensor 42.
  • the measured time is then output on the display 58 and corresponds to a viscosity value which can be read off on a calibration curve.
  • the cover 54 which had closed the front plate 12 during the measurement, is then opened and the tube 36 is removed from the groove 16.
  • the plasma contained in the tube can either be reused or thrown away together with the tube 36. It has proven to be particularly advantageous for the measurement of blood plasma that the measurement section B is approximately 30-200 mm, in particular approximately 80-120 mm long and the geometrically predetermined driving height, that is the vertical distance between the capillary tube part 24 and the capillary tube part 32 , about 40-160, in particular 90-120 mm.
  • the device can of course also have a programmed calibration curve, so that the display 58 shows the automatically calculated viscosity value. This display advantageously remains until the next measurement.
  • a new capillary tube is used for each further measurement. This saves all the cleaning processes that are otherwise required and, because of the same wettability in every case, ensures reproducible measurements in an error range of max. ⁇ 2%.
  • the device Since the device is very handy, it takes a long time to load, insert and fill the hose, max. about 1 min.
  • all subsequent measurement processes including the preheating of the plasma, take place automatically and do not require any special operation or presence.
  • This means that the device can be used again for a measurement every 2-3 minutes; Due to its small dimensions, its dry thermostatting and its simple and time-saving handling, it is portable and can therefore be used directly for bedside diagnostics. After a short introduction, it can be operated correctly by any assistant and does not require any cleaning work, so that any number of measurements can be carried out in a short time. Since only an extremely small measuring volume (max. 200 j.tl) is required, the device can be used for daily therapy control without a large patient load.
  • FIG. 2 Another embodiment is shown in Fig. 2, in which like reference numerals represent like parts.
  • the device shown in FIG. 2 allows the determination of the dynamic and kinematic viscosity, since this device is additionally equipped with a density measuring device.
  • this device has in its right area the device for determining the viscosity explained above, so that it is no longer explained in detail.
  • the capillary tube part 34 merges again at 60 into a lower, essentially horizontal capillary tube portion 62, which in turn merges into a curved capillary tube part 64, to which a vertical capillary tube part 66 adjoins.
  • this capillary tube part is connected to a further, essentially horizontal capillary tube section 70 containing a three-way shut-off element 72.
  • This three-way shut-off device 72 arranged laterally on the front plate 12 can, however, also be accommodated in the housing 10, the hose 36 being connected accordingly.
  • the groove 16 and the hose 36 extend to the three-way shut-off device 72, which either releases the hose 36 for ventilation or else establishes a fluid connection with a suction pump 76 via a line 74.
  • This three-way shut-off device 72 is set to “venting” during the viscosity measurement described above.
  • the three-way shut-off device 72 is automatically switched over, the connection to the suction pump 76 being established.
  • the density measurement is carried out as follows: A negative pressure is applied to the plasma column in the tube 36, which pulls it up into the left part of the measuring arrangement, ie into the capillary tube parts 34, 62, 66 and the like. 70. For this purpose, an increasing vacuum is required with increasing height, which is supplied by the suction pump 76.
  • the driving height which is determined by the vertical distance between the capillary tube sections 62 u. 70 is determined, chosen to be significantly larger than the driving height used for viscosity measurement. It is, for example, about 60-120, in particular 80-100 mm.
  • the liquid column located in the capillary tube part 34 is sucked into the capillary tube portion 62 by means of negative pressure, in which a sensor 78 is arranged, which is preferably designed as an optoelectronic sensor.
  • This sensor 78 is used to determine a first pressure value P1 ' which is either output on the display 58 or is stored in a corresponding electronic holding circuit.
  • the liquid is then sucked into the upper capillary tube section 70 with an increased suction pressure, in which a sensor 82 is in turn arranged, which has the same configuration as the sensor 78 mentioned above.
  • These sensors 78 and 82 advantageously correspond to sensors 40, 42 and 46.
  • the second measured value P2 measured at the sensor 82 is also determined, the difference between these measured values according to the following equation (12) leads to the desired density ⁇ .
  • the advantage of the greater driving height is the significantly lower influence of the wettability of the hose 36, which is otherwise eliminated in the above difference formation.
  • the height h j -h 2 represents the distance of the capillary tube section 62 or 70 from the meniscus of the liquid, which is located in the capillary tube 34. This meniscus height is determined by the entire arrangement of the hose and the feeding of the liquid up to the filling mark.
  • the outlet end 20 is connected to the three-way shut-off device 72, which is connected to a pressure pump, not shown.
  • the liquid column in the capillary tube part 28 u. 24 driven back by excess pressure, the sensors 46 or 42 and 40 being used to determine the pressure values P1 or P2 .
  • this embodiment is not preferred over the embodiment described above.
  • FIG. 3 shows another particularly preferred embodiment of a viscometer according to the invention at 80, this embodiment being essentially similar to the embodiment shown in FIG. 1. In this respect, reference is made to the above statements relating to FIG. 1.
  • the viscometer 80 according to FIG. 3 essentially consists of a housing 82 which has an advantageously inclined front plate 84.
  • This front plate 84 corresponds essentially to the front plate 12 of FIG. 1. Accordingly, a groove 86 is again provided in this front plate 84, which extends from the inlet end 88 to the outlet end 90.
  • This groove 86 includes a first horizontal capillary tube part 92, a capillary tube part 94 adjoining it, bent by a substantially right angle, a capillary tube part 96 adjoining the capillary tube part 94, again bent by a substantially right angle, a capillary tube part 96 96 subsequent capillary tube part 98 bent at a right angle, a capillary tube part 100 adjoining the capillary tube part 98, essentially bent at a right angle, and a capillary tube part 102 adjoining the capillary tube part 100, essentially bent at a right angle
  • Capillary tube parts 92 to 100 have an S-shape, while the capillary tube part 102 rises at least up to the height of the capillary tube part 92.
  • the capillary tube parts 92, 96 and 100 and the capillary tube parts 94, 98 and 102 are arranged essentially parallel to one another.
  • the capillary tube parts 94 and 98 can also assume an essentially semicircular shape, that is to say a loop shape. It is only important here that the essentially rectangular transitions of the groove 86 do not kink the capillary tube 104 to be inserted into this groove, which corresponds to the capillary tube 36.
  • a slightly enlarged groove 106 is arranged upstream of this groove 86, into which a syringe 108 can be inserted.
  • This syringe 108 is advantageously connected to the capillary tube 104 and, filled with the plasma, is inserted into these grooves 86 and 106.
  • This embodiment too, in turn has a calming section denoted by A, which essentially extends in the capillary tube parts 94 and 96.
  • the measuring section B which corresponds in length to the capillary tube part 32 according to FIG. 1, is located in the l (apillary tube part 100).
  • the capillary tube part 102 in turn represents an ascending section and thus corresponds to the capillary tube part 34 according to FIG. 1.
  • detectors 112, 114 and 116 are again provided in the front plate 84, the de tector 112 in the capillary tube part 98, advantageously at its lower end, provided and the detectors 114 u. 116 are provided in the capillary tube part 100.
  • These detectors 114, 116 are preferably again designed as light sensors and are correspondingly located in the capillary tube parts 98 u. 100 inserted into the provided openings and thus do not hinder the insertion of the tubular capillary tube 104. Otherwise, these detectors correspond in design and arrangement to detectors 40, 42 and 46, so that reference is again made to the description of FIG. 1.
  • Detector 112 is preferably electronically coupled to the syringe drive and stops this syringe drive as soon as the plasma pumped into capillary tube 104 has reached detector 112. Accordingly, the filling process started when the cover 54 is closed according to FIG. 1 is interrupted for a certain time during which the plasma is in the capillary tube parts 94, 96 and. 98 located. With regard to the interruption times, reference is made to the description of FIG. 1.
  • a tube cutting tool 118 is actuated, which is arranged on the capillary tube 92 and cuts through the capillary tube 104 contained in the groove 86.
  • the plasma contained in the calming section A can continue to flow due to gravity and thus reaches the measuring section B.
  • this measuring path B is formed between the detectors 114 and 116 and thus corresponds to the measuring path B of FIG. 1, which is formed between the detectors 40 and 42. Otherwise, the thermostatting and the measurement of the viscosity also correspond to the embodiment according to FIG. 1, so that reference is made to this.

Abstract

An apparatus for determining the viscosity of fluids, particularly blood plasma, includes an outer housing including a front surface having a groove therein; a disposable capillary tube removably mounted in the groove and including at least one loop, each of the loops having two substantially horizontal branches including an upper branch and a lower branch for flowing the fluid under the influence of gravity through a predetermined path, and a device for measuring the rate of flow of the fluid along the path in one of the horizontal branches. Also disclosed is a flexible disposable capillary tube for the fluid viscosity measuring apparatus.

Description

Die Erfindung betrifft eine Vorrichtung zur Bestimmung der Viskosität von Flüssigkeiten, insbesondere des Blutplasmas, gemäss dem Oberbegriff des Anspruchs 1.The invention relates to a device for determining the viscosity of liquids, in particular blood plasma, according to the preamble of claim 1.

Aus der FR-A 775 672 ist eine Vorrichtung der eingangs erwähnten Art bekannt, mit der die Viskositäten von Flüssigkeiten bestimmt werden können.From FR-A 775 672 a device of the type mentioned at the outset is known with which the viscosities of liquids can be determined.

Als ein eigenständiges, bewegtes Organ kann Blut angesehen werden, das eine Aufschwemmung von verschiedenen Zellen im Plasma als kontinuierliche Phase ist. Es soll im wesentlichen die Blutzellen und das Plasma durch sämtliche Teile des Gefässbettes befördern. In diesem Plasma befinden sich Fette, Elektrolyte und insbesondere Eiweisse. Dabei dient das Blut durch Massen- und Wärmetransport der Aufrechterhaltung eines sogen. Fliessgleichgewichtes, das den jeweiligen Organen bzw. deren Zellen angepasst ist. So wird der Mehrbedarf an Energie beispielsweise durch die Steigerung des Blutflusses und damit durch eine Erhöhung des Angebotes an Sauerstoff, Glukose oder Fettsäuren gedeckt, während gleichzeitig für den Abtransport von Stoffwechselzwischenprodukten und -endprodukten gesorgt wird. Kann aus irgendwelchen Gründen ein solches Fliessgleichgewicht über längere Zeit nicht eingehalten werden, so ist der Organismus nicht lebensfähig.Blood can be regarded as an independent, moving organ, which is a suspension of various cells in the plasma as a continuous phase. It is said to essentially carry the blood cells and the plasma through all parts of the vessel bed. Fats, electrolytes and especially proteins are found in this plasma. The blood is used by mass and heat transport to maintain a so-called. Flow equilibrium, which is adapted to the respective organs or their cells. For example, the increased need for energy is met by increasing blood flow and thus increasing the supply of oxygen, glucose or fatty acids, while at the same time taking care of the removal of metabolic intermediates and end products. If for some reason such a steady state cannot be maintained over a long period of time, the organism is not viable.

Zur Aufrechterhaltung dieses lebensnotwendigen Fliessgleichgewichts muss ein den jeweiligen Erfordernissen angepasster Volumenstrom

Figure imgb0001
To maintain this vital flow equilibrium, a volume flow must be adapted to the respective requirements
Figure imgb0001

Hierzu wird der treibende Druck Ap letztlich durch die Pumpleistung des Herzens vorgegeben, während die Vollblutviskosität ηBlut und die Gefässgeometrie (I = Länge, r = Gefässradius) den hydrodynamischen Widerstand des Strömungskanals bestimmen.For this purpose, the driving pressure Ap is ultimately determined by the pumping power of the heart, while the whole blood viscosity η blood and the vessel geometry (I = length, r = vessel radius) determine the hydrodynamic resistance of the flow channel.

Eine in den letzten Jahren erfolgte intensive Untersuchung des Einflusses von Vollblutviskosität auf das Fliessverhalten von Blut hat eindeutig gezeigt, dass unter pathologischen Bedingungen gerade diese Grösse der limitierende Faktor für die Perfusion sein kann.An intensive investigation of the influence of whole blood viscosity on the flow behavior of blood in recent years has clearly shown that under pathological conditions this size can be the limiting factor for perfusion.

Die scheinbare Viskosität des Blutes, das eine nicht Newtonsche Flüssigkeit ist, wird im wesentlichen von folgenden Faktoren bestimmt, nämlich der Plasmaviskosität, dem Hämatokritwert (Volumenanteil der Blutzellen am Gesamtblut), der Aggregation der Erythrozyten und der Verformbarkeit der Erythrozyten. Jeder dieser Faktoren, also auch die Plasmaviskosität, spielt eine wichtige Rolle bei der Erkennung von Krankheiten im Blut und soll demzufolge möglichst einfach und genau im medizinischen Routinebetrieb bestimmt werden.The apparent viscosity of the blood, which is a non-Newtonian fluid, is essentially determined by the following factors, namely the plasma viscosity, the hematocrit value (volume fraction of the blood cells in the whole blood), the aggregation of the erythrocytes and the deformability of the erythrocytes. Each of these factors, including the plasma viscosity, plays an important role in the detection of diseases in the blood and should therefore be determined as simply and precisely as possible in routine medical operation.

Zur Quantifizierung der Plasmaviskosität sind im wesentlichen folgende Typen von Viskosimetern bekannt, nämlich das Kugelfall-, das Rotations- und das Kapillarviskosimeter, wobei die derzeit eingesetzten Messgeräte aus den nachstehend erläuterten Gründen für den medizinischen Routinebetrieb nur schlecht geeignet sind.The following types of viscometers are essentially known for quantifying the plasma viscosity, namely the falling ball, the rotating and the capillary viscometer, the measuring devices currently used being only poorly suited for routine medical operation for the reasons explained below.

Die Konstruktion des Kugelfallviskosimeters basiert auf dem theoretischen Ansatz von Stokes, nach dem für die Widerstandskraft einer umströmten Kugel folgendes gilt:

Figure imgb0002
The design of the falling ball viscometer is based on Stokes' theoretical approach, according to which the following applies to the resistance of a flow around a ball:
Figure imgb0002

Die Kugel sinkt dabei nach kurzer Anlaufstrekke mit konstanter Geschwindigkeit im Fluid. Dabei wird die Schwerkraft der Kugel mit der Dichte 9K im Gleichgewicht gehalten durch die Auftriebskraft und die Reibungskraft Fw. Aus der Gleichung

Figure imgb0003
und der Zeit t, die die Kugel benötigt, um eine definierte Strecke I zurückzulegen, wobei die mittlere Geschwindigkeit VK = I/t ist, ergibt sich die Viskosität:
Figure imgb0004
üblicherweise wird der Ausdruck 2/9 rK 2/1 g in die experimentell bestimmte Gerätekonstante K einbezogen, so dass sich empirisch die Viskosität bestimmen lässt.After a short start-up distance, the ball sinks at a constant speed in the fluid. The gravity of the ball with the density 9K is kept in balance by the buoyancy force and the friction force F w . From the equation
Figure imgb0003
and the time t that the ball needs to travel a defined distance I, where the average speed VK = I / t, the viscosity results:
Figure imgb0004
usually, the term 2/9 r K 2/1 g included in the experimentally determined device constant K, so that the empirical viscosity can be determined.

Allerdings sind die Messungenauigkeiten bei diesem Verfahren durch die visuelle Zeitnahme relativ gross und können durch opto-elektronische Massnahmen vermieden werden.However, the measurement inaccuracies in this method are relatively large due to the visual timing and can be avoided by opto-electronic measures.

Weiterhin ist zu berücksichtigen, dass die diesem Verfahren zugrunde liegende Theorie die Einhaltung der schleichenden Strömung fordert und daher den Einsatz relativ grosser Kugeln voraussetzt. Damit verbunden ist ein Füllvolumen von wenigstens 50 ml Plasma, was einem erforderlichen Blutvolumen von etwa 100 ml entspricht. Eine derartige Blutentnahme stellt in aller Regel für den Patienten eine unzumutbare Belastung dar, insbesondere dann, wenn die häufig notwendige Durchführung mehrerer Messungen (Messung weiterer Parameter; Therapieüberwachung) notwendig sein sollte.It must also be taken into account that the theory on which this method is based requires that the creeping flow be maintained and therefore requires the use of relatively large balls. Associated with this is a filling volume of at least 50 ml of plasma, which corresponds to a required blood volume of approximately 100 ml. Such a blood sample usually represents an unreasonable burden for the patient, especially if the frequently necessary performance of several measurements (measurement of further parameters; therapy monitoring) should be necessary.

Das zweite Verfahren zur Bestimmung der Plasmaviskosität ist die Rotationsviskosimetrie. Dabei ergibt sich die Plasmaviskosität nach folgender Formel

Figure imgb0005
wobei
Figure imgb0006
The second method to determine plasma viscosity is rotary viscometry. The plasma viscosity results from the following formula
Figure imgb0005
in which
Figure imgb0006

Dabei stellt die Gerätekonstante, die abhängig ist von der Art der verwendeten Messkammer, eine Vielzahl von Fehlerquellen dar, die auf die Art und Bearbeitung der Messkammer zurückzuführen ist.The device constant, which depends on the type of measuring chamber used, represents a multitude of sources of error that can be traced back to the type and processing of the measuring chamber.

So besteht die erste Gruppe derartiger Viskosimeter aus einer Anordnung von koaxialen Zylindern, beispielsweise das GDM-Viskosimeter (Gilinson-Dauwalter-Merrill), während die zweite Gruppe eine Platte-Kegel-Anordnung aufweist, beispielsweise das Wells-Brookfield-Viskosimeter.The first group of such viscometers consists of an arrangement of coaxial cylinders , for example the GDM viscometer (Gilinson-Dauwalter-Merrill), while the second group has a plate-cone arrangement, for example the Wells-Brookfield viscometer.

Ein häufig benutztes Rotationsviskosimeter verwendet beide genannten Kammeranordnungen, nämlich die sogen. Mooney-Konfiguration. Es handelt sich dabei um koaxiale Zylinder, die an der Ober- und Unterseite als Platte-Kegel-System ausgeführt sind. Weitere Ausführungen der Kammergeometrie sind etwa das Rhombo-Sphäroid-Viskosimeter von Dintenfass oder das Rheogoniometer von Weissenberg.A frequently used rotary viscometer uses both of the chamber arrangements mentioned, namely the so-called. Mooney configuration. These are coaxial cylinders that are designed as a plate and cone system on the top and bottom. Other designs of the chamber geometry are, for example, the Rhombo-Spheroid Viscometer from Dintenfass or the Rheogoniometer from Weissenberg.

Bei den meisten Rotationsviskosimetern wird die Drehzahl über ein Schaltgetriebe vorgegeben und das abgeführte Drehmoment, das sich in Abhängigkeit von der Plasmaviskosität einstellt, gemessen. Im Gegensatz dazu arbeitet das Rotationsrheometer von Deer (Mooney-Konfiguration) mit vorgegebenem Drehmoment, wobei die abgegebene Drehzahl gemessen wird.For most rotary viscometers, the speed is specified via a manual transmission and the torque that is removed, which is set as a function of the plasma viscosity, is measured. In contrast, the Deer rotational rheometer (Mooney configuration) works with a specified torque, whereby the speed output is measured.

Da die Theorie des Rotationsviskosimeters eine stationäre Scherströmung im Ringspalt voraussetzt, müssen Innen- und Aussenzylinder sehr genau gefertigt sein, um eine gute Reproduzierbarkeit der Messungen zu gewährleisten. Ausserdem muss die Kammer nach jeder Messung sorgfältig gereinigt werden, ohne dass Rückstände des Reinigungsmittels in der Kammer zurückbleiben. Denn derartige Rückstände der Messlösung und des Reinigungsmittels verändern die Benetzbarkeit der Oberflächen der Messkammer, was direkt in die Messung mit eingeht. Überdies werden je Messung etwa 15 ml Plasma benötigt, was etwa 30 ml Vollblut entspricht. Da üblicherweise zur Mittelwertbestimmung mehrere Messungen durchgeführt werden, bedeutet dies, dass dem Patienten grössere Blutmengen abgenommen werden müssen, was für ihn eine erhöhte Belastung darstellt und insofern unerwünscht ist.Since the theory of the rotary viscometer presupposes a stationary shear flow in the annular gap, the inner and outer cylinders have to be manufactured very precisely in order to ensure good reproducibility of the measurements. In addition, the chamber must be cleaned carefully after each measurement without leaving any residues of the cleaning agent in the chamber. Because such residues of the measuring solution and the cleaning agent change the wettability of the surfaces of the measuring chamber, which is directly involved in the measurement. In addition, about 15 ml of plasma are required per measurement, which corresponds to about 30 ml of whole blood. Since several measurements are usually carried out to determine the mean, this means that larger amounts of blood have to be taken from the patient, which is an increased burden for him and is therefore undesirable.

Das bekannteste Verfahren zur Viskositätsmessung von Plasmen besteht in der Bestimmung der Ausflusszeit oder des Volumenstroms V, das in einem Kapillarviskosimeter gemessen wird. Für die mittlere Geschwindigkeit in einer Kapillare gilt nach Hagen-Poiseuille:

Figure imgb0007
wobei
Figure imgb0008
The best-known method for measuring the viscosity of plasmas consists in determining the outflow time or the volume flow V, which is measured in a capillary viscometer. According to Hagen-Poiseuille, the following applies to the average speed in a capillary:
Figure imgb0007
in which
Figure imgb0008

Nach diesem Gesetz bestimmen alle Typen von Kapillarviskosimetern die Plasmaviskosität. Dabei wird die mittlere Geschwindigkeit v = I/t über eine Messung der Zeit bestimmt, die das Plasma benötigt, um eine definierte Strecke I zurückzulegen. Da die Geometrie der Kapillare (r;, I) festliegt, kann bei bekanntem Ap die Viskosität berechnet werden.According to this law, all types of capillary viscometers determine the plasma viscosity. The average speed v = I / t is determined by measuring the time it takes for the plasma to travel a defined distance I. Since the geometry of the capillary (r;, I) is fixed, at a known Ap, the viscosity can be calculated.

So gibt das Kapillarviskosimeter von Harkness einen konstanten Differenzdruck Ap über eine Vakuumpumpe in einer waagerecht angeordneten Kapillare vor.The Harkness capillary viscometer, for example, specifies a constant differential pressure Ap via a vacuum pump in a horizontally arranged capillary.

Weiterhin ist das Viskosimeter von Ubbelohde bekannt, bei dem das Gewicht der Plasmasäule als treibender Druck eingesetzt wird.The Ubbelohde viscometer is also known, in which the weight of the plasma column is used as the driving pressure.

Ein weiteres Viskosimeter mit kontinuierlich veränderbarem Druck wurde von Martin et al. entwickelt.Another viscometer with continuously variable pressure was developed by Martin et al. developed.

Das in der Technik häufig eingesetzte Kapillarviskosimeter nach Ostwald besteht aus einer U-Rohr-Kapillare mit vertikal angeordneten Schenkeln und zeichnet sich durch ein genau reproduzierbares Messvolumen bei ebenfalls genau einstellbaren Drücken aus.The Ostwald capillary viscometer, which is often used in technology, consists of a U-tube capillary with vertically arranged legs and is characterized by a precisely reproducible measurement volume with pressures that can also be precisely adjusted.

Allen diesen Kapillarviskosimetern ist gemeinsam, dass sie einen aufwendigen apparativen Aufbau benötigen, was auf die häufig nur sehr kurze Messzeit und damit eine umfangreiche Detektoreinrichtung zurückzuführen ist. Überdies sind die eingesetzten Kapillaren schwierig herzustellen, so dass infolge der Herstellungstoleranzen Messfehler entstehen, und müssen, da sie regelmässig aus Glas bestehen, über eine längere Zeitspanne thermostatisiert werden, so dass sie nur beschränkt zur Verfügung stehen. Darüber hinaus stellt die Reinigung einer derartigen Messkapillare, wie bereits schon vorstehend erläutert, einen weiteren Nachteil dar, da diese sehr genau durchgeführt werden muss, und nur vollständig rückstandsfreie Kapillaren zum Einsatz kommen können. Des weiteren besteht bei vertikal angeordneten Kapillaren der Nachteil, dass am Auslaufende eine Tropfenbildung einsetzen kann, die die Messzeit der die Kapillare durchlaufenden Flüssigkeitssäule durch die entgegenwirkende Oberflächenspannung des Tropfens verfälscht, so dass eine derartige Kapillare besondere, schwer herzustellende Anschlussstücke aufweisen muss.All these capillary viscometers have in common that they require a complex apparatus structure, which is due to the often only very short measuring time and thus an extensive detector device. In addition, the capillaries used are difficult to manufacture, so that measurement errors arise as a result of the manufacturing tolerances, and since they consist regularly of glass, they have to be thermostatted over a longer period of time, so that they are only available to a limited extent. In addition, the cleaning of such a measuring capillary, as already explained above, represents a further disadvantage since it has to be carried out very precisely and only completely residue-free capillaries can be used. Furthermore, with vertically arranged capillaries there is the disadvantage that drop formation can occur at the outlet end, which falsifies the measuring time of the liquid column passing through the capillary due to the counteracting surface tension of the drop, so that such a capillary must have special, difficult-to-manufacture connecting pieces.

Aus der schon erwähnten FR-A 775 672 ist eine Vorrichtung zur Bestimmung der Viskosität bekannt, die ein senkrecht stehendes Kapillarrohr aufweist, an das sich nach oben ein als waagerechtes Rohrstück ausgebildetes Flüssigkeitsreservoir und nach unten ein Messraum anschliesst. Infolge der senkrechten Anordnung der Kapillare muss diese sehr eng ausgeführt sein, um ein zu schnelles Strömen der Flüssigkeit in der Kapillare zu verhindern. Dies führt zwangsläufig zu besonderen Strömungsverhältnissen in der Kapillare, da die Strömungsgeschwindigkeit im wesentlichen von den Kapillar- und Adhäsionskräften in der Kapillare bestimmt wird.From the already mentioned FR-A 775 672 a device for determining the viscosity is known, which has a vertical capillary tube, to which a liquid reservoir designed as a horizontal tube piece is connected at the top and a measuring chamber at the bottom. As a result of the vertical arrangement of the capillary, it must be made very narrow in order to prevent the liquid in the capillary from flowing too quickly. This inevitably leads to special flow conditions in the capillary, since the flow speed is essentially determined by the capillary and adhesive forces in the capillary.

Des weiteren bleibt bei dieser senkrechten Anordnung der treibende Druck nicht gleich, da sich stetig der Inhalt des Flüssigkeitsreservoirs und darüber hinaus die in der Kapillare vorliegende Flüssigkeitssäule verändern.Furthermore, the driving pressure does not remain the same in this vertical arrangement, since the content of the liquid reservoir and, moreover, the liquid column present in the capillary constantly change.

Schliesslich wird als Messkapillare ein festes Material, d.h. üblicherweise Glas, eingesetzt, das zum einen mit der notwendigen Präzision schwierig herzustellen ist und zum anderen infolge der hohen Herstellungskosten nicht nach einmaligem Gebrauch weggeworfen werden kann. Insofern muss also eine derartige Kapillare nach jeder Messung gereinigt werden. Die dabei zwangsläufig auftretenden Rückstände führen häufig zu einer Verfälschung der nachfolgenden Messergebnisse, so dass sich eine derartige Kapillare dann nicht zur Bestimmung genauer Viskositätswerte eignet.Finally, a solid material, ie usually glass, is used as the measuring capillary, which, on the one hand, is difficult to manufacture with the necessary precision and, on the other hand, cannot be produced once due to the high manufacturing costs can be thrown away after use. In this respect, such a capillary must be cleaned after each measurement. The residues that inevitably occur in this case often lead to a falsification of the subsequent measurement results, so that such a capillary is then not suitable for determining precise viscosity values.

Aus der US-A 4083 363 ist es bekannt, bei einer Vorrichtung zur Bestimmung der Viskosität von Blut ein elastisches, als Wegwerfartikel konzipiertes Kapillarrohr als Ansaugrohr zu benutzen.From US-A 4083 363 it is known to use an elastic capillary tube designed as a disposable article as a suction tube in a device for determining the viscosity of blood.

Der Erfindung liegt die Aufgabe zugrunde, die Vorrichtung der eingangs erwähnten Art so fortzubilden, dass auch schnellfliessende Flüssigkeiten in relativ weiten Kapillaren genau und reproduzierbar in ihrer Viskosität in relativ kurzen Zeitabständen bestimmt werden können, wobei Reinigungsarbeiten entfallen.The invention is based on the object of developing the device of the type mentioned at the outset such that even fast-flowing liquids in relatively wide capillaries can be determined precisely and reproducibly in their viscosity in relatively short time intervals, cleaning work being dispensed with.

Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.This object is achieved by the characterizing features of claim 1.

Die erfindungsgemässe Vorrichtung lässt auch die Messung der Viskosität von schnellfliessenden Flüssigkeiten, wie Blutplasma, zu, da einerseits die treibende Höhe relativ gering ist und andererseits die Länge der waagerechten Kapillarrohranteile, die die Strömungsgeschwindigkeit verlangsamt, relativ gross ist. Dabei ist die erfindungsgemässe Messanordnung so ausgelegt, dass die treibende Höhe während des Messvorgangs konstant bleibt, was zu einer konstanten Fliessgeschwindigkeit innerhalb der Messkapillaren und zu konstanten Messwerten führt.The device according to the invention also allows the viscosity of fast-flowing liquids, such as blood plasma, to be measured, since on the one hand the driving height is relatively low and on the other hand the length of the horizontal capillary tube portions, which slows down the flow velocity, is relatively large. The measuring arrangement according to the invention is designed in such a way that the driving height remains constant during the measuring process, which leads to a constant flow speed within the measuring capillaries and to constant measured values.

Erfindungsgemäss können sogen. Einmalkapillaren verwendet werden, d.h., dass die Kapillare als Billigartikel hergestellt und nach Gebrauch weggeworfen wird. Für diese Zwecke eignet sich ein flexibler Kunststoffschlauch, der mit den geforderten Toleranzen hergestellt werden kann. Derartige Kunststoffmaterialien gehen vorteilhafterweise mit den zu untersuchenden Flüssigkeiten in der Messzeit im wesentlichen keine Wechselwirkungen ein, geben also keine Weichmacher u.dgl. an die Flüssigkeit ab.According to the so-called. Disposable capillaries are used, i.e. the capillary is manufactured as a cheap item and is thrown away after use. A flexible plastic hose that can be manufactured with the required tolerances is suitable for these purposes. Such plastic materials advantageously do not interact with the liquids to be examined in the measurement time, that is to say they do not give any plasticizers or the like. to the liquid.

Ein derartiges Kapillarrohr wird in eine der gewünschten Kapillarenführung entsprechend geformte Nut einer Platte eingelegt, die das Kapillarrohr sicher hält. Dabei besteht die bevorzugte Kapillarenführung darin, dass das Kapillarrohr in wenigstens zwei Kapillarrohrteile gelegt wird, wobei die jeweiligen Kapillarrohrteile im wesentlichen parallel und waagerecht angeordnet sind. Dabei ist der Radius zwischen den Kapillarrohrteilen so dimensioniert, dass ein Abquetschen oder Abknicken des Kapillarrohrs sicher verhindertwird.Such a capillary tube is inserted into a groove of a plate which is shaped in accordance with the desired capillary guide and holds the capillary tube securely. The preferred capillary guide is that the capillary tube is placed in at least two capillary tube parts, the respective capillary tube parts being arranged essentially parallel and horizontally. The radius between the capillary tube parts is dimensioned in such a way that pinching or kinking of the capillary tube is reliably prevented.

Der Durchmesser der Kapillare ist so gewählt, dass die Säule der zu untersuchenden Flüssigkeit beim Durchströmen der Kapillare weder abreisst noch infolge der Oberflächenspannung die Kapillare zusetzt und nicht durch sie fliesst. Zu letzterem Zweck ist vorteilhafterweise das Einlaufende der Kapillare als sog. Beschleunigungsstrecke ausgebildet und derart gestaltet, dass vom oberen waagerechten Ast ein im wesentlichen senkrechter Ast zur Einlauföffnung geführt wird. Nach dem Durchlaufen dieser Beschleunigungsstrekke, in dem die Hafttreibung des Fluids zu Beginn der Messung im Schlauch sicher überwunden wird, tritt die Flüssigkeit in den horizontal angeordneten Kapillarrohrteil ein, dessen erster Teil vorteilhafterweise als Vorlauf- oder Beruhigungsstrecke ausgebildet ist. Nach dem Durchlaufen der Beruhigungsstrecke ist sichergestellt, dass eine stationäre Strömung in der Schlauchkapillare vorliegt, die der eigentlichen Messung unterzogen werden kann.The diameter of the capillary is selected so that the column of the liquid to be examined neither tears off when it flows through the capillary, nor closes the capillary due to the surface tension and does not flow through it. For the latter purpose, the inlet end of the capillary is advantageously designed as a so-called acceleration section and designed in such a way that a substantially vertical branch is guided from the upper horizontal branch to the inlet opening. After passing through this acceleration section, in which the static friction of the fluid in the tube is surely overcome at the start of the measurement, the liquid enters the horizontally arranged capillary tube part, the first part of which is advantageously designed as a flow or calming section. After passing through the calming section, it is ensured that there is a steady flow in the tube capillary, which can be subjected to the actual measurement.

Infolge der in Schlaufen angeordneten Messstrecke, die im wesentlichen in einer Horizontalebene angeordnet ist, liegt während der Messung eine konstante treibende Druckdifferenz Ap vor, die auf den Höhenunterschied zwischen den einzelnen waagerecht angeordneten Ästen zurückgeht. Während beim Stand der Technik eine im wesentlichen senkrechte Kapillare eingesetzt wird, die innerhalb kürzester Zeit durchströmt wird, liegt demgegenüber erfindungsgemäss eine Kapillarenanordnung vor, die sowohl aus einem senkrecht angeordneten als auch einem waagerecht angeordneten Teil besteht, wobei beide Teile auf geringster Fläche untergebracht sind. Dies wird dadurch erreicht, dass die Schlauchkapillare mäanderförmig oder in gegenläufig angeordneten Schlaufen angeordnet ist. Somit überlagern sich die Strömung einer Flüssigkeit in einem im wesentlichen waagerechten Rohr und die Strömung einer Flüssigkeit in einem im wesentlichen senkrecht angeordneten Rohr. Dies hat zur Folge, dass die Messzeiten in einer derartigen Anordnung erheblich grösser sind als die Messzeiten in einer ausschliesslich senkrecht angeordneten Messstrecke. Hierdurch werden die Messfehler erheblich vermindert und die Messzeiten wesentlich besser und genauer messbar als bei einer senkrechten Anordnung.As a result of the measuring section arranged in loops, which is arranged essentially in a horizontal plane, there is a constant driving pressure difference Ap during the measurement, which is due to the height difference between the individual horizontally arranged branches. While in the prior art an essentially vertical capillary is used, which is flowed through in the shortest possible time, in contrast, according to the invention, there is a capillary arrangement which consists of both a vertically arranged and a horizontally arranged part, both parts being accommodated in the smallest area. This is achieved in that the tube capillary is arranged in a meandering shape or in loops arranged in opposite directions. Thus, the flow of a liquid in a substantially horizontal tube and the flow of a liquid in a substantially vertical tube overlap. The consequence of this is that the measuring times in such an arrangement are considerably longer than the measuring times in an exclusively vertically arranged measuring section. This significantly reduces the measurement errors and the measurement times can be measured much better and more precisely than with a vertical arrangement.

In einer weiteren vorteilhaften Ausführung weist die Schlauchkapillare an ihrem Ende eine Steigstrecke auf, die verhindert, dass die zu untersuchende Flüssigkeit ausfliesst, und/oder dass ausfliessende Flüssigkeit Tropfen bildet, die die Messzeiten, wie vorstehend erläutert, verfälschen.In a further advantageous embodiment, the tube capillary has an ascending section at its end, which prevents the liquid to be examined from flowing out and / or that outflowing liquid forms drops which falsify the measuring times, as explained above.

Nach der Messung wird der Schlauch aus der Nut der Platte entnommen und entweder für weitere Bestimmungen der Flüssigkeit aufbewahrt oder aber weggeworfen. Somit treten keine Auslaufeffekte auf. Weiterhin ist keine Säuberung der Schlauchkapillare nötig, so dass die eingangs erwähnten negativen Effekte vollständig vermieden werden können.After the measurement, the tube is removed from the groove of the plate and either kept for further determinations of the liquid or thrown away. There are therefore no leakage effects. Furthermore, no cleaning of the tube capillary is necessary, so that the negative effects mentioned at the outset can be completely avoided.

Eine weitere Erläuterung der Erfindung erfolgt durch die nachfolgende Beschreibung von drei Ausführungsbeispielen unter Bezugnahme auf die Zeichnung. Es zeigen:

  • Fig. 1 eine schematische Vorderansicht einer ersten Ausführungsform der erfindungsgemässen Vorrichtung,
  • Fig. 2 eine schematische Vorderansicht einer zweiten Ausführungsform der erfindungsgemässen Vorrichtung und
  • Fig. 3 eine schematische Vorderansicht einer weiteren Ausführungsform, die im wesentlichen der in Fig. 1 gezeigten Vorrichtung ähnelt.
A further explanation of the invention is given by the following description of three exemplary embodiments with reference to the drawing. Show it:
  • 1 is a schematic front view of a first embodiment of the device according to the invention,
  • Fig. 2 is a schematic front view of a second embodiment of the device according to the invention and
  • Fig. 3 is a schematic front view of another embodiment which is substantially similar to the device shown in Fig. 1.

Die in Fig. 1 gezeigte erste Ausführungsform besteht im wesentlichen aus einem Gehäuse 10, das eine geneigt oder vorzugsweise senkrecht angeordnete Frontplatte 12 aufweist. In dem Gehäuse 10 sind die elektronische Regeleinrichtung u.dgl. angeordnet.The first embodiment shown in FIG. 1 essentially consists of a housing 10 which has an inclined or preferably vertically arranged front plate 12. The electronic control device and the like are in the housing 10. arranged.

Die Vorderseite 14 der Frontplatte weist eine darin eingearbeitete Nut 16 auf, die sich von einem Einlaufende 18 bis zu einem Auslaufende 20 erstreckt.The front side 14 of the front plate has a groove 16 machined therein, which extends from an inlet end 18 to an outlet end 20.

In der in Fig. 1 gezeigten Ausführungsform erstreckt sich die Nut vom Einlaufende 18 in einen im wesentlichen senkrecht angeordneten Kapillarrohrteil 22, der als Beschleunigungsbereich dient.In the embodiment shown in FIG. 1, the groove extends from the inlet end 18 into a substantially vertically arranged capillary tube part 22, which serves as an acceleration area.

An diesen Kapillarrohrteil 22 schliesst sich ein erster waagerechter Kapillarrohrteil 24 an, der in eine mit A bezeichnete Beruhigungsstrecke und in eine mit B bezeichnete Messstrecke eingeteilt ist.This capillary tube part 22 is adjoined by a first horizontal capillary tube part 24, which is divided into a calming section labeled A and a measuring section labeled B.

Dieser Kapillarrohrteil 24 geht in einen gekrümmten Kapillarrohrteil 26 über, der in einem zweiten Kapillarrohrteil 28 fortgeführt wird, der wiederum vorteilhafterweise waagerecht angeordnet ist.This capillary tube part 24 merges into a curved capillary tube part 26, which is continued in a second capillary tube part 28, which in turn is advantageously arranged horizontally.

In der in Fig. 1 gezeigten besonders bevorzugten Ausführungsform schliesst sich an den Kapillarrohrteil 28 ein zweiter gekrümmter Kapillarrohrteil 30 an, der wiederum in einem im wesentlichen waagerecht angeordneten dritten Kapillarrohrteil 32 fortgeführt ist. Dieser Kapillarrohrteil 32 ist erheblich länger als die Kapillarrohrteile 24 und 28 und vorteilhafterweise so dimensioniert, dass seine Länge in etwa der Länge der Kapillarrohrteile 22, 24 und 28 sowie des gekrümmten Kapillarrohrteils 26 entspricht.In the particularly preferred embodiment shown in FIG. 1, the capillary tube part 28 is followed by a second curved capillary tube part 30, which in turn is continued in a substantially horizontally arranged third capillary tube part 32. This capillary tube part 32 is considerably longer than the capillary tube parts 24 and 28 and advantageously dimensioned such that its length corresponds approximately to the length of the capillary tube parts 22, 24 and 28 and of the curved capillary tube part 26.

Gemäss einer bevorzugten Ausführungsform schliesst sich an den Kapillarrohrteil 32 ein im wesentlichen als Steigstrecke ausgeführter Kapillarrohrteil 34 an, der zum Auslaufende 20 zurückgeführt ist.According to a preferred embodiment, the capillary tube part 32 is followed by a capillary tube part 34 which is essentially designed as a rising path and which is returned to the outlet end 20.

Hinzuzufügen ist, dass die Kapillarrohrteile 22 und 34 nur in einer bevorzugten Ausführungsform vorhanden sind, d.h. dass die Kapillarrohrteile 24 und 32 auch im wesentlichen waagerecht zu den Einlauf- bzw. Auslaufenden auslaufen können.It should be added that the capillary tube parts 22 and 34 are only present in a preferred embodiment, i.e. that the capillary tube parts 24 and 32 can also run out substantially horizontally to the inlet and outlet ends.

Weiterhin ist die in Fig. 1 gezeigte Ausführungsform nicht auf eine Anordnung von zwei gekrümmten Kapillarrohrteilen 26 und 30 beschränkt. Vielmehr kann sie auch nur einen gekrümmten Kapillarrohrteil 26 aufweisen, so dass der Kapillarrohrteil 28 bereits den Auslaufast darstellt. Diese Ausführungsform ist jedoch weniger bevorzugt, da die Länge der Nut infolge der Miniaturisierung des Geräts nur bedingt für eine wirksame Messung der Viskosität ausreicht.Furthermore, the embodiment shown in FIG. 1 is not limited to an arrangement of two curved capillary tube parts 26 and 30. Rather, it can also have only one curved capillary tube part 26, so that the capillary tube part 28 already represents the outlet branch. However, this embodiment is less preferred, since the length of the groove is only sufficient to effectively measure the viscosity due to the miniaturization of the device.

Die Nut 16 ist so gearbeitet, dass in sie passgenau ein Schlauch 36 eingelegt werden kann, wie dies aus dem vergrösserten, in Fig. 1 gezeigten perspektivischen Schnittbild ersichtlich ist.The groove 16 is worked in such a way that a hose 36 can be inserted with a precise fit, as can be seen from the enlarged perspective sectional view shown in FIG. 1.

Dabei verläuft der Schlauch 36 vom Einlaufende 18 bis zum Auslaufende 20 in der Nut 16 derart passgenau, dass weder Knickungen noch Verengungen in ihm auftreten, dass also der Querschnitt des Schlauchs im wesentlichen über seine gesamte Länge unverändert bleibt.The hose 36 runs from the inlet end 18 to the outlet end 20 in the groove 16 in such a precise manner that there are no kinks or constrictions in it, that is to say the cross section of the hose remains essentially unchanged over its entire length.

Somit entspricht die Tiefe und die Breite der Nut 36 im wesentlichen dem Schlauchdurchmesser. Es hat sich als vorteilhaft herausgestellt, dass der Schlauch einen im wesentlichen kreisförmigen Querschnitt besitzt, wobei der Innendurchmesser etwa 0,5-2 mm, vorzugsweise etwa 0,7-1,0 mm, betragen soll.Thus, the depth and the width of the groove 36 essentially correspond to the hose diameter. It has proven to be advantageous that the tube has an essentially circular cross section, the inner diameter being approximately 0.5-2 mm, preferably approximately 0.7-1.0 mm.

Um einen möglichst guten Temperaturausgleich zwischen der vorteilhafterweise thermostatisierten Frontplatte 12, was nachstehend erläutert ist, zu erhalten, beträgt die Wandstärke des Schlauchs etwa 0,2-0,5 mm, vorzugsweise 0,3-0,4 mm.In order to obtain the best possible temperature compensation between the advantageously thermostatted front plate 12, which is explained below, the wall thickness of the hose is approximately 0.2-0.5 mm, preferably 0.3-0.4 mm.

Als Schlauchmaterial wird vorteilhafterweise ein durchsichtiges Kunststoffmaterial eingesetzt, das lichtdurchlässig ist, so dass die im Schlauch auftretenden Flüssigkeitsfronten mit Hilfe von optischen Sensoren erfasst werden können. Als bevorzugte Kunststoffmaterialien werden Polyurethan und Polyethylen eingesetzt, die im wesentlichen frei von Weichmachern sind. Besonders bevorzugt ist Polyurethan, das in den gewünschten Toleranzen geliefert werden kann, und im hohen Masse reproduzierbare Messergebnisse liefert.A transparent plastic material which is translucent is advantageously used as the hose material, so that the liquid fronts occurring in the hose can be detected with the aid of optical sensors. Polyurethane and polyethylene, which are essentially free of plasticizers, are used as preferred plastic materials. Particularly preferred is polyurethane, which can be delivered in the desired tolerances and which provides reproducible measurement results to a high degree.

Zum genauen Einlegen des Schlauchs in die Nut 16 kann an seinem Anfang ein Wulst vorgesehen sein, der in eine Ausnehmung 38 in der Frontplatte 12 eingelegt werden kann, die im Bereich des Einlaufendes 18 angeordnet ist. Hierdurch wird sowohl ein exaktes Einlegen des Schlauchs ermöglicht als auch das Einfüllen der Messflüssigkeit in den Schlauch erleichtert.For the exact insertion of the hose into the groove 16, a bead can be provided at its beginning, which can be inserted into a recess 38 in the front plate 12, which is arranged in the region of the inlet end 18. This enables exact insertion of the hose as well as facilitating the filling of the measuring liquid into the hose.

In der Frontplatte 12 sind im Bereich des Kapillarrohrteils 24 der Nut 16 zwei Detektoren 40 und 42 vorgesehen, die vorzugsweise als Lichtsensoren ausgebildet sind. Vorteilhafterweise sind diese Lichtsensoren jeweils in eine im Kapillarrohrteil 24 vorgesehene Öffnung eingesetzt und behindern nicht das Einsetzen des Schlauchs 36 in diesen Kapillarrohrteil 24. Diese Sensoren 40 und 42 sind derart empfindlich, dass sie auf das Auftreten eines Flüssigkeitsmeniskus und die hierdurch bedingte Lichtveränderung ansprechen.Two detectors 40 and 42 are provided in the front plate 12 in the area of the capillary tube part 24 of the groove 16, which detectors are preferably designed as light sensors. Advantageously, these light sensors are each inserted into an opening provided in the capillary tube part 24 and do not hinder the insertion of the tube 36 into this capillary tube part 24. These sensors 40 and 42 are so sensitive that they respond to the occurrence of a fluid meniscus and the resulting change in light.

Stromab des Sensors 42 ist im Kapillarrohrteil 28 eine Füllmarke 44 vorgesehen, in deren unmittelbarer Nähe stromab ein weiterer Sensor 46 vorgesehen ist. Dieser Sensor 46 entspricht in Art und Aufbau sowie Anordnung den Sensoren 40 und 42. Dieser Sensor 46 steuert über eine nicht gezeigte Leitung einen Verschlussmagneten 48, der in der Nähe des Auslaufendes 20 angeordnet ist.A fill mark 44 is provided in the capillary tube part 28 downstream of the sensor 42, in the immediate vicinity of which a further sensor 46 is provided. This sensor 46 corresponds in type and structure and arrangement to sensors 40 and 42. This sensor 46 controls a locking magnet 48, which is arranged in the vicinity of the outlet end 20, via a line (not shown).

Beim Auftreten eines Signals am Sensor 46 wird der Verschlussmagnet 48 aktiviert und verschliesst den in die Nut 16 eingelegten Schlauch 36 für eine bestimmte Zeit, vorzugsweise etwa 0,5-4 Min., insbesondere 1-2 Min. Diese Zeit dient dazu, dass die im Schlauch 36 vorhandene Flüssigkeit auf die in der Frontplatte 12 und dementsprechend im Schlauch 36 vorhandene Temperatur temperiert wird, was einer trockenen Thermostatisierung entspricht.When a signal occurs at the sensor 46, the closure magnet 48 is activated and closes the tube 36 inserted into the groove 16 for a certain time, preferably approximately 0.5-4 min., In particular 1-2 min. This time serves to bring the liquid in the hose 36 to the temperature in the front plate 12 and accordingly in the hose 36, which corresponds to a dry thermostat.

Die Frontplatte 12 ist für die Thermostatisierung mit zwei Anschlüssen 50 und 52 ausgestattet, die als elektrische Anschlüsse oder als Rohranschlüsse für die Zuleitung einer entsprechend erwärmten, aus einem nichtgezeigten Reservoir stammenden Flüssigkeit ausgebildet sind. Bevorzugt ist eine elektrische Erwärmung mittels einer nichtgezeigten, in der Frontplatte 12 vorgesehenen Heizspirale, die mit den Anschlüssen 50 und 52 in Verbindung steht. Diese Anschlüsse 50 und 52 können natürlich auch innerhalb des Gehäuses 10 untergebracht sein. Sofern Blutplasma in seiner Viskosität gemessen werden soll, wird die Frontplatte 12 und damit der Schlauch 36 auf die Körpertemperatur, d.h. auf ca. 37°C temperiert. Bei dem Einsatz anderer Flüssigkeiten können natürlich beliebige Temperaturen in der Frontplatte, die vorzugsweise aus Aluminium besteht, vorgelegt werden.The front plate 12 is equipped with two connections 50 and 52 for thermostatting, which are designed as electrical connections or as pipe connections for the supply of a correspondingly heated liquid originating from a reservoir (not shown). Electrical heating by means of a heating spiral (not shown) provided in the front plate 12, which is connected to the connections 50 and 52, is preferred. These connections 50 and 52 can of course also be accommodated within the housing 10. If blood plasma is to be measured in its viscosity, the front plate 12 and thus the tube 36 are adjusted to the body temperature, i.e. tempered to approx. 37 ° C. When using other liquids, of course, any temperatures can be presented in the front panel, which is preferably made of aluminum.

Weiterhin weist die Frontplatte 12 an ihrem unteren Ende einen vorzugsweise klappbaren Dekkel 54 auf, der vorteilhafterweise aus einem durchsichtigen Kunststoffmaterial hergestellt ist. Beim Schliessen des Deckels kann die Anzeige 58 gelöscht werden, so dass ein neuer Wert gemessen werden kann.Furthermore, the front plate 12 has at its lower end a preferably foldable cover 54, which is advantageously made of a transparent plastic material. When the lid is closed, the display 58 can be deleted so that a new value can be measured.

Die Viskositätsmessung wird mit der erfindungsgemässen Vorrichtung nach folgenden Regeln und auf folgende Weise durchgeführt:The viscosity measurement is carried out with the device according to the invention according to the following rules and in the following way:

Gemessen wird die Zeit t, die die Flüssigkeit, insbesondere das Blutplasma benötigt, um im Schlauch 36 die definierte Messstrecke B zurückzulegen.The time t that the liquid, in particular the blood plasma, takes to cover the defined measuring distance B in the tube 36 is measured.

Unter der Annahme einer Hagen-Poiseuilleschen Strömung in der Kapillare ergibt sich für den Volumenstrom nach der folgenden Gleichung

Figure imgb0009
wobei Vpi, = Plasmavolumenstrom, rs = Radius des Kapillarschlauches, I = Länge der Plasmasäule und ηPI = dynamische Viskosität des Plasmas bedeuten. Mit VP, = V/t und V = πrs2 Im ergibt sich die dynamische Viskosität nach Gleichung:
Figure imgb0010
wobei IM = Länge der Messstrecke (B) und t = gemessene Durchflusszeit bedeuten.Assuming a Hagen-Poiseuille flow in the capillary, the volume flow results from the following equation
Figure imgb0009
where V pi , = plasma volume flow, r s = radius of the capillary tube, I = length of the plasma column and η PI = dynamic viscosity of the plasma. With V P , = V / t and V = πr s 2 Im, the dynamic viscosity results from the equation:
Figure imgb0010
where IM = length of the measuring section (B) and t = measured flow time.

Der treibende Druck Ap ist dabei der hydrostatische Druck der Plasmasäule, der rein geometrisch durch die Überhöhung der Messstrecke gegenüber dem Kapillarrohrteil 32 gegeben ist. Daraus folgt als Bestimmungsgleichung für die dynamische Viskosität ηPI:

Figure imgb0011
wobei g = Erdbeschleunigung, Ah = konstruktiv gegebene treibende Höhendifferenz und ζPI = Dichte des Plasmas bedeuten.The driving pressure Ap is the hydrostatic pressure of the plasma column, which is given purely geometrically by the elevation of the measuring section compared to the capillary tube part 32. From this follows as the equation for determining the dynamic viscosity η PI :
Figure imgb0011
where g = acceleration due to gravity, Ah = constructive driving height difference and ζ PI = density of the plasma.

Alle Konstanten werden zu einer Gerätekonstanten K zusammengefasst. Daraus ergibt sich:

Figure imgb0012
All constants are combined into one device constant K. This results in:
Figure imgb0012

Aus dieser Formel ist ersichtlich, dass die kinematische Viskosität Vpl = ηPIPI direkt durch die Messung der Ausflusszeit bestimmt und angezeigt werden kann. Da die Dichte des Plasmas nur in engen Grenzen schwankt (max. ±3%), kann in einer einfachen Ausführungsform - unter Annahme einer mittleren Plasmadichte

Figure imgb0013
auch die dynamische Viskosität nach folgender Formel (11) berechnet und als Wert ausgegeben werden:
Figure imgb0014
It can be seen from this formula that the kinematic viscosity V p l = η PI / ζ PI can be determined and displayed directly by measuring the outflow time. Since the density of the plasma fluctuates only within narrow limits (max. ± 3%), in a simple embodiment - assuming an average plasma density
Figure imgb0013
The dynamic viscosity is also calculated according to the following formula (11) and output as a value:
Figure imgb0014

Der durch diese vereinfachende Annahme mögliche Messfehler ist sicher geringer als ±3%.The measurement error possible due to this simplifying assumption is certainly less than ± 3%.

Die Messung wird so durchgeführt, dass der Schlauch 36 zunächst in die Nut 16 der Frontplatte 12 eingelegt wird. Anschliessend wird die zu untersuchende Flüssigkeit, insbesondere Plasma, das aus dem dem Patienten entnommenen antikoagulierten Blut gewonnen wurde, in einer Menge von etwa 200-400, max. 500 µl in den Schlauch eingeführt. Vorzugsweise wird hierzu eine 2 ml-Spritze verwendet, deren Kanüle in die Kapillare des Schlauchs 36 eingeführt wird. Diese Kanüle schliesst die Kapillare dicht ab, so dass die Flüssigkeit sich nur durch den Druck auf den Kolben der Spritze in der Kapillare vorbewegt. Die Füllung der Kapillare wird abgeschlossen, wenn die Flüssigkeitsfront die Füllmarke 44 erreicht.The measurement is carried out in such a way that the hose 36 is first inserted into the groove 16 in the front plate 12. The liquid to be examined, in particular plasma, which was obtained from the anticoagulated blood taken from the patient, is then in an amount of about 200-400, max. 500 µl introduced into the tube. A 2 ml syringe is preferably used for this purpose, the cannula of which is inserted into the capillary of the tube 36. This cannula closes the capillary tightly so that the liquid only moves forward in the capillary due to the pressure on the plunger of the syringe. The filling of the capillary is completed when the liquid front reaches the filling mark 44.

Anschliessend verbleibt entweder die Kanüle der Spritze solange in der Kapillare, bis die eingefüllte Flüssigkeit auf die Temperatur der Frontplatte 12 erwärmt ist, oder man zieht die Kanüle vorzugsweise nach dem Einfüllen heraus, so dass sich die Flüssigkeitsfront bis zum Sensor 46 fortbewegt. Hierdurch wird der Sensor 46 betätigt, der wiederum den Verschlussmagneten 48 auslöst, der den Schlauch 36 abquetscht, so dass sich die Flüssigkeitssäule im Schlauch 36 nicht mehr fortbewegen kann.Subsequently, either the cannula of the syringe remains in the capillary until the filled liquid has warmed to the temperature of the front plate 12, or the cannula is preferably pulled out after filling, so that the liquid front moves up to the sensor 46. As a result, the sensor 46 is actuated, which in turn triggers the closure magnet 48, which squeezes the hose 36, so that the liquid column in the hose 36 can no longer move.

Man temperiert über eine bestimmte Zeit von etwa 0,4-4 Min., insbesondere 1-2 Min., und erreicht hierdurch eine trockene Thermostatisierung des eingesetzten Plasmas auf etwa 37°C. Nach dieser Zeit öffnet sich automatisch der Verschlussmagnet 48, und es setzt der eigentliche Messvorgang ein.The temperature is controlled for a certain time of about 0.4-4 minutes, in particular 1-2 minutes, and the result is a dry thermostatting of the plasma used to about 37 ° C. After this time, the locking magnet 48 opens automatically and the actual measuring process begins.

Dabei dient der Kapillarrohrteil 22 zunächst als Beschleunigungsstrecke, in dem die Haftreibung des Fluids im Schlauch 36 überwunden wird. Anschliessend tritt die Flüssigkeit in die Beruhigungsstrecke A des Kapillarrohrteils 40 ein, in dem eine im wesentlichen stationäre Strömung erreicht wird. Beim Passieren des ersten Sensors 40, also beim Eintreten in die Messstrecke B, wird der Messvorgang gestartet, der dann beendet ist, wenn die Flüssigkeitsfront den zweiten Sensor 42 erreicht hat. Die gemessene Zeit wird dann auf der Anzeige 58 ausgegeben und entspricht einem Viskositätswert, der auf einer Eichkurve abgelesen werden kann.The capillary tube part 22 initially serves as an acceleration path in which the static friction of the fluid in the tube 36 is overcome. The liquid then enters the settling section A of the capillary tube part 40, in which an essentially stationary flow is achieved. When passing the first sensor 40, that is, when entering the measuring section B, the measuring process is started, which is then ended, when the liquid front has reached the second sensor 42. The measured time is then output on the display 58 and corresponds to a viscosity value which can be read off on a calibration curve.

Nach Durchlaufen der Messstrecke B setzt sich die Strömung der Flüssigkeit im unteren Kapillarrohrteil 32 solange fort, bis sie durch den Aufstieg im Kapillarrohrteil 34 abgebremst wird und zum Stillstand kommt.After passing through the measuring section B, the flow of the liquid in the lower capillary tube part 32 continues until it is braked by the rise in the capillary tube part 34 and comes to a standstill.

Anschliessend wird der Deckel 54, der bei der Messung die Frontplatte 12 verschlossen hatte, geöffnet und der Schlauch 36 aus der Nut 16 entnommen. Dabei kann das im Schlauch enthaltene Plasma entweder wiederverwendet oder zusammen mit dem Schlauch 36 weggeworfen werden. Für die Messung von Blutplasma hat es sich als besonders vorteilhaft herausgestellt, dass die Messstrecke B etwa 30-200 mm, insbesondere etwa 80-120 mm lang ist und die geometrisch vorgegebene treibende Höhe, also der senkrechte Abstand zwischen dem Kapillarrohrteil 24 und dem Kapillarrohrteil 32, etwa 40-160, insbesondere 90-120 mm ist.The cover 54, which had closed the front plate 12 during the measurement, is then opened and the tube 36 is removed from the groove 16. The plasma contained in the tube can either be reused or thrown away together with the tube 36. It has proven to be particularly advantageous for the measurement of blood plasma that the measurement section B is approximately 30-200 mm, in particular approximately 80-120 mm long and the geometrically predetermined driving height, that is the vertical distance between the capillary tube part 24 and the capillary tube part 32 , about 40-160, in particular 90-120 mm.

Die Vorrichtung kann natürlich auch eine einprogrammierte Eichkurve aufweisen, so dass die Anzeige 58 den selbsttätig errechneten Viskositätswert angibt. Diese Anzeige bleibt vorteilhafterweise bis zur nächsten Messung bestehen.The device can of course also have a programmed calibration curve, so that the display 58 shows the automatically calculated viscosity value. This display advantageously remains until the next measurement.

Bei jeder weiteren Messung wird ein neuer Kapillarschlauch benutzt. Dies erspart alle sonst erforderlichen Reinigungsvorgänge und gewährleistet wegen der in jedem Fall gleichen Benetzbarkeit gut reproduzierbare Messungen in einem Fehlerbereich von max. ±2%.A new capillary tube is used for each further measurement. This saves all the cleaning processes that are otherwise required and, because of the same wettability in every case, ensures reproducible measurements in an error range of max. ± 2%.

Da das Gerät sehr handlich ist, dauert seine Bestückung, das Einlegen und Füllen des Schlauchs, max. etwa 1 Min. Vorteilhafterweise geschehen sämtliche anschliessenden Messvorgänge, einschliesslich des Vortemperierens des Plasmas, automatisch und erfordern keinerlei besondere Bedienung oder Anwesenheit. Somit ist das Gerät etwa alle 2-3 Min. für eine Messung erneut einsetzbar; es ist aufgrund seiner kleinen Abmessungen, seiner trockenen Thermostatisierung und seiner einfachen und zeitsparenden Handhabung transportabel und kann so beispielsweise direkt zur bedside Diagnostik verwendet werden. Es kann nach kurzer Einführung von jeder Hilfskraft fehlerfrei bedient werden und erfordert keinerlei Reinigungsarbeiten, so dass in kurzer Zeitfolge eine beliebige Anzahl von Messungen durchgeführt werden kann. Da nur ein äusserst geringes Messvolumen (max. 200 j.tl) benötigt wird, kann das Gerät zur täglichen Therapiekontrolle ohne grosse Patientenbelastung eingesetzt werden.Since the device is very handy, it takes a long time to load, insert and fill the hose, max. about 1 min. Advantageously, all subsequent measurement processes, including the preheating of the plasma, take place automatically and do not require any special operation or presence. This means that the device can be used again for a measurement every 2-3 minutes; Due to its small dimensions, its dry thermostatting and its simple and time-saving handling, it is portable and can therefore be used directly for bedside diagnostics. After a short introduction, it can be operated correctly by any assistant and does not require any cleaning work, so that any number of measurements can be carried out in a short time. Since only an extremely small measuring volume (max. 200 j.tl) is required, the device can be used for daily therapy control without a large patient load.

Eine weitere Ausführungsform ist in Fig. 2 gezeigt, in der gleiche Bezugszeichen gleiche Teile darstellen. Die in dieser Fig. 2 dargestellte Vorrichtung erlaubt die Bestimmung der dynamischen und kinematischen Viskosität, da diese Vorrichtung zusätzlich mit einer Dichtemesseinrichtung ausgerüstet ist.Another embodiment is shown in Fig. 2, in which like reference numerals represent like parts. The device shown in FIG. 2 allows the determination of the dynamic and kinematic viscosity, since this device is additionally equipped with a density measuring device.

Wie aus Fig. 2 ersichtlich, weist diese Vorrichtung in ihrem rechten Bereich die vorstehend erläuterte Vorrichtung zur Bestimmung der Viskosität auf, so dass diese nicht mehr eingehend erläutert wird. Gegenüber der in Fig. 1 geschilderten Ausführung geht der Kapillarrohrteil 34 bei 60 erneut in einen unteren, im wesentlichen waagerechten Kapillarrohrteilabschnitt 62 über, der wiederum in einen gekrümmten Kapillarrohrteil 64 übergeht, an den sich ein senkrechter Kapillarrohrteil 66 anschliesst. Über einen gekrümmten Kapillarrohrteil 68 ist dieser Kapillarrohrteil mit einem weiteren, im wesentlichen waagerechten, ein Dreiwegeabsperrorgan 72 enthaltenden Kapillarrohrteilabschnitt 70 in Verbindung. Dieses seitlich an der Frontplatte 12 angeordnete Dreiwegeabsperrorgan 72 kann jedoch auch im Gehäuse 10 untergebracht sein, wobei der Schlauch 36 entsprechend damit verbunden wird.As can be seen from FIG. 2, this device has in its right area the device for determining the viscosity explained above, so that it is no longer explained in detail. Compared to the embodiment described in FIG. 1, the capillary tube part 34 merges again at 60 into a lower, essentially horizontal capillary tube portion 62, which in turn merges into a curved capillary tube part 64, to which a vertical capillary tube part 66 adjoins. Via a curved capillary tube part 68, this capillary tube part is connected to a further, essentially horizontal capillary tube section 70 containing a three-way shut-off element 72. This three-way shut-off device 72 arranged laterally on the front plate 12 can, however, also be accommodated in the housing 10, the hose 36 being connected accordingly.

Somit erstrecken sich die Nut 16 und der Schlauch 36 entsprechend dieser zweiten Ausführungsform bis zu dem Dreiwegeabsperrorgan 72, das entweder den Schlauch 36 zur Belüftung freigibt oder aber über eine Leitung 74 eine Fluidverbindung mit einer Saugpumpe 76 herstellt. Dieses Dreiwegeabsperrorgan 72 ist während der vorstehend geschilderten Viskositätsmessung auf «Entlüftung» gestellt.Thus, according to this second embodiment, the groove 16 and the hose 36 extend to the three-way shut-off device 72, which either releases the hose 36 for ventilation or else establishes a fluid connection with a suction pump 76 via a line 74. This three-way shut-off device 72 is set to “venting” during the viscosity measurement described above.

Soll jedoch die Dichte der Flüssigkeit gemessen werden, wird, nachdem der Viskositätswert bestimmt worden ist, das Dreiwegeabsperrorgan 72 automatisch umgeschaltet, wobei die Verbindung mit der Saugpumpe 76 hergestellt wird.However, if the density of the liquid is to be measured, after the viscosity value has been determined, the three-way shut-off device 72 is automatically switched over, the connection to the suction pump 76 being established.

Die Dichtemessung erfolgt folgendermassen: An die Plasmasäule im Schlauch 36 wird ein Unterdruck angelegt, der diese in den linken Teil der Messanordnung hochzieht, also in die Kapillarrohrteile 34, 62, 66 u. 70. Hierzu ist mit steigender Höhe ein steigender Unterdruck nötig, der von der Saugpumpe 76 geliefert wird. Um eine sichere Messung zu gewährleisten, wird die treibende Höhe, die durch den senkrechten Abstand zwischen den Kapillarrohrteilabschnitten 62 u. 70 bestimmt wird, erheblich grösser gewählt als die treibende Höhe, die zur Viskositätsmessung eingesetzt wird. Sie liegt beispielsweise bei etwa 60-120, insbesondere 80-100 mm.The density measurement is carried out as follows: A negative pressure is applied to the plasma column in the tube 36, which pulls it up into the left part of the measuring arrangement, ie into the capillary tube parts 34, 62, 66 and the like. 70. For this purpose, an increasing vacuum is required with increasing height, which is supplied by the suction pump 76. In order to ensure a reliable measurement, the driving height, which is determined by the vertical distance between the capillary tube sections 62 u. 70 is determined, chosen to be significantly larger than the driving height used for viscosity measurement. It is, for example, about 60-120, in particular 80-100 mm.

Zunächst wird die im Kapillarrohrteil 34 befindliche Flüssigkeitssäule mittels Unterdruck in den Kapillarrohrteilabschnitt 62 gesaugt, in dem ein Sensor 78 angeordnet ist, der vorzugsweise als optoelektronischer Sensor ausgebildet ist. Dieser Sensor 78 dient zur Feststellung eines ersten Druckwertes P1' der entweder auf der Anzeige 58 ausgegeben oder aber in einem entsprechenden elektronischen Haltekreis gespeichert wird. Anschliessend wird die Flüssigkeit mit einem erhöhten Saugdruck in den oberen Kapillarrohrteilabschnitt 70 gesaugt, in dem wiederum ein Sensor 82 angeordnet ist, der die gleiche Ausgestaltung wie der vorstehend erwähnte Sensor 78 besitzt. Vorteilhafterweise entsprechen diese Sensoren 78 und 82 den Sensoren 40,42 und 46.First, the liquid column located in the capillary tube part 34 is sucked into the capillary tube portion 62 by means of negative pressure, in which a sensor 78 is arranged, which is preferably designed as an optoelectronic sensor. This sensor 78 is used to determine a first pressure value P1 ' which is either output on the display 58 or is stored in a corresponding electronic holding circuit. The liquid is then sucked into the upper capillary tube section 70 with an increased suction pressure, in which a sensor 82 is in turn arranged, which has the same configuration as the sensor 78 mentioned above. These sensors 78 and 82 advantageously correspond to sensors 40, 42 and 46.

Der am Sensor 82 gemessene zweite Messwert P2 wird ebenfalls festgestellt, wobei die Differenz dieser Messwerte nach folgender Gleichung (12)

Figure imgb0015
zu der gewünschten Dichte ζ führt.The second measured value P2 measured at the sensor 82 is also determined, the difference between these measured values according to the following equation (12)
Figure imgb0015
leads to the desired density ζ.

Der Vorteil der grösseren treibenden Höhe ist der wesentlich geringere Einfluss der Benetzbarkeit des Schlauchs 36, der sich im übrigen bei der vorstehenden Differenzbildung eliminiert. Dabei stellt die Höhe hj-h2 jeweils den Abstand des Kapillarrohrteilabschnitts 62 bzw. 70 von dem Meniskus der Flüssigkeit dar, der sich im Kapillarrohr 34 befindet. Diese Meniskushöhe ist durch die gesamte Anordnung des Schlauchs und die Einspeisung der Flüssigkeit bis zur Füllmarke vorgegeben.The advantage of the greater driving height is the significantly lower influence of the wettability of the hose 36, which is otherwise eliminated in the above difference formation. The height h j -h 2 represents the distance of the capillary tube section 62 or 70 from the meniscus of the liquid, which is located in the capillary tube 34. This meniscus height is determined by the entire arrangement of the hose and the feeding of the liquid up to the filling mark.

In einer weiteren Ausführungsform, die sich im wesentlichen an die der Fig. 1 anlehnt, ist das Auslaufende 20 mit dem Dreiwegeabsperrorgan 72 in Verbindung, das mit einer nichtgezeigten Überdruckpumpe verbunden ist. Bei dieser Dichtemessung wird die Flüssigkeitssäule in den Kapillarrohrteil 28 u. 24 durch Überdruck zurückgetrieben, wobei die Sensoren 46 bzw. 42 und 40 zur Bestimmung der Druckwerte P1 bzw. P2 herangezogen werden. Diese Ausführungsform ist jedoch gegenüber der vorstehend beschriebenen Ausführungsform nicht bevorzugt.In a further embodiment, which is essentially based on that of FIG. 1, the outlet end 20 is connected to the three-way shut-off device 72, which is connected to a pressure pump, not shown. In this density measurement, the liquid column in the capillary tube part 28 u. 24 driven back by excess pressure, the sensors 46 or 42 and 40 being used to determine the pressure values P1 or P2 . However, this embodiment is not preferred over the embodiment described above.

Durch die Bestimmung der Dichte ζp1 und der vorstehend erwähnten dynamischen Viskosität kann somit nach der Gleichung

Figure imgb0016
bestimmt werden, so dass hierdurch die wichtigsten rheologischen Parameter einer Flüssigkeit in einer einfachen und unkompliziert zu handhabenden Vorrichtung bestimmt werden können.By determining the density ζ p1 and the dynamic viscosity mentioned above, it is possible to use the equation
Figure imgb0016
be determined so that the most important rheological parameters of a liquid can be determined in a simple and uncomplicated device.

So ist es über die Bestimmung der Viskosität hinaus mit nur einer Messung der Plasmadichte möglich, eine direkte Aussage über den Gesamteiweissgehalt im Plasma zu machen.In addition to determining the viscosity, it is possible to make a direct statement about the total protein content in the plasma with just one measurement of the plasma density.

Ein Vergleich der mit der Eichkurve ermittelten Plasmaviskositäten zeigt, dass die hierdurch ermittelten Werte mit den Werten sehr gut übereinstimmen, die mit einem Coulter-Harkness-Viskosimeter aufgenommen wurden. Die Abweichungen der Messwerte betragen dabei etwa ±0,5%.A comparison of the plasma viscosities determined with the calibration curve shows that the values determined in this way correspond very well with the values recorded with a Coulter-Harkness viscometer. The deviations of the measured values are approximately ± 0.5%.

In Fig. 3 ist mit 80 eine weitere besonders bevorzugte Ausführungsform eines erfindungsgemässen Viskosimeters gezeigt, wobei diese Ausführungsform im wesentlichen der in Fig. 1 gezeigten Ausführungsform ähnelt. Insofern wird auf die vorstehenden Ausführungen zu Fig. 1 Bezug genommen.FIG. 3 shows another particularly preferred embodiment of a viscometer according to the invention at 80, this embodiment being essentially similar to the embodiment shown in FIG. 1. In this respect, reference is made to the above statements relating to FIG. 1.

Das Viskosimeter 80 gemäss Fig. 3 besteht im wesentlichen aus einem Gehäuse 82, das eine vorteilhafterweise geneigt angeordnete Frontplatte 84 aufweist.The viscometer 80 according to FIG. 3 essentially consists of a housing 82 which has an advantageously inclined front plate 84.

Diese Frontplatte 84 entspricht im wesentlichen der Frontplatte 12 von Fig. 1. Dementsprechend ist in dieser Frontplatte 84 wiederum eine Nut 86 vorgesehen, die sich vom Einlaufende 88 bis zum Auslaufende 90 erstreckt. Zu dieser Nut 86 gehören ein erster waagerechter Kapillarrohrteil 92, ein sich daran anschliessender, um einen im wesentlichen rechten Winkel abgebogener Kapillarrohrteil 94, ein sich an den Kapillarrohrteil 94 anschliessender, wiederum um einen im wesentlichen rechten Winkel abgebogener Kapillarrohrteil 96, ein sich an den Kapillarrohrteil 96 anschliessender, um einen rechten Winkel abgebogener Kapillarrohrteil 98, ein sich an den Kapillarrohrteil 98 anschliessender, im wesentlichen um einen rechten Winkel abgebogener Kapillarrohrteil 100 und ein sich an den Kapillarrohrteil 100 anschliessender, im wesentlichen um einen rechten Winkel abgebogener Kapillarrohrteil 102. Dabei bilden die Kapillarrohrteile 92 bis 100 eine S-Form, während der Kapillarrohrteil 102 wenigstens bis zur Höhe des Kapillarrohrteils 92 ansteigt.This front plate 84 corresponds essentially to the front plate 12 of FIG. 1. Accordingly, a groove 86 is again provided in this front plate 84, which extends from the inlet end 88 to the outlet end 90. This groove 86 includes a first horizontal capillary tube part 92, a capillary tube part 94 adjoining it, bent by a substantially right angle, a capillary tube part 96 adjoining the capillary tube part 94, again bent by a substantially right angle, a capillary tube part 96 96 subsequent capillary tube part 98 bent at a right angle, a capillary tube part 100 adjoining the capillary tube part 98, essentially bent at a right angle, and a capillary tube part 102 adjoining the capillary tube part 100, essentially bent at a right angle Capillary tube parts 92 to 100 have an S-shape, while the capillary tube part 102 rises at least up to the height of the capillary tube part 92.

Die Kapillarrohrteile 92, 96 und 100 sowie die Kapillarrohrteile 94, 98 und 102 sind im wesentlichen parallel zueinander angeordnet. Jedoch können die Kapillarrohrteile 94 und 98 auch eine im wesentlichen halbkreisförmige Form, also eine Schlaufenform einnehmen. Von Bedeutung ist hierbei nur, dass die im wesentlichen rechtwinkligen Übergänge der Nut 86 das in diese Nut einzulegende Kapillarrohr 104, das dem Kapillarrohr 36 entspricht, nicht abknicken.The capillary tube parts 92, 96 and 100 and the capillary tube parts 94, 98 and 102 are arranged essentially parallel to one another. However, the capillary tube parts 94 and 98 can also assume an essentially semicircular shape, that is to say a loop shape. It is only important here that the essentially rectangular transitions of the groove 86 do not kink the capillary tube 104 to be inserted into this groove, which corresponds to the capillary tube 36.

Stromauf dieser Nut 86 ist eine etwas vergrösserte Nut 106 angeordnet, in die eine Spritze 108 eingelegt werden kann.A slightly enlarged groove 106 is arranged upstream of this groove 86, into which a syringe 108 can be inserted.

Diese Spritze 108 ist vorteilhafterweise mit dem Kapillarrohr 104 verbunden und wird mit dem Plasma gefüllt in diese Nuten 86 und 106 eingelegt.This syringe 108 is advantageously connected to the capillary tube 104 and, filled with the plasma, is inserted into these grooves 86 and 106.

Auch diese Ausführungsform weist wiederum eine mit A bezeichnete Beruhigungsstrecke auf, die sich im wesentlichen in den Kapillarrohrteilen 94 und 96 erstreckt.This embodiment, too, in turn has a calming section denoted by A, which essentially extends in the capillary tube parts 94 and 96.

Im l(apillarrohrteil 100 befindet sich die Messstrecke B, die in Länge dem Kapillarrohrteil 32 gemäss Fig. 1 entspricht.The measuring section B, which corresponds in length to the capillary tube part 32 according to FIG. 1, is located in the l (apillary tube part 100).

Bezüglich der Anordnung der Kapillarrohrteile 92 bis 102 wird im übrigen auf die Beschreibung zur Fig. 1 Bezug genommen. So stellt der Kapillarrohrteil 102 wiederum eine Steigstrecke dar und entspricht somit dem Kapillarrohrteil 34 gemäss Fig. 1.With regard to the arrangement of the capillary tube parts 92 to 102, reference is made to the description of FIG. 1. The capillary tube part 102 in turn represents an ascending section and thus corresponds to the capillary tube part 34 according to FIG. 1.

Beim Vergleich der beiden Ausführungsformen gemäss Fig. 1 und 3 ist zu ersehen, dass bei der Fig. 3 der Kapillarrohrteil 22 entfällt und dass die Messstrecke vom Kapillarrohrteil 24 in den unteren Kapillarrohrteil 100 verlegt worden ist. Diese Verlegung ist durch die Anordnung der Spritze 106 bedingt, die gemäss einer bevorzugten Ausführungsform mit einem Spritzenantrieb 110 entsprechend entleert werden kann. Dieser Spritzenantrieb 110 ist in der Frontplatte 94 angeordnet und befindet sich in der Längsachse des Kapillarrohrteils 92.When comparing the two embodiments according to FIGS. 1 and 3, it can be seen that the capillary tube part 22 is omitted in FIG. 3 and that the measuring section has been moved from the capillary tube part 24 into the lower capillary tube part 100. This relocation is due to the arrangement of the syringe 106, which according to a preferred embodiment can be emptied accordingly with a syringe drive 110. This syringe drive 110 is arranged in the front plate 94 and is located in the longitudinal axis of the capillary tube part 92.

Bezüglich der Form und Gestalt der Nut 86 sowie der Abmessung und des Materials des Schlauchs wird auf die Beschreibung zur Fig. 1 Bezug genommen.With regard to the shape and shape of the groove 86 and the dimension and material of the hose, reference is made to the description of FIG. 1.

In der Frontplatte 84 sind wiederum 3 Detektoren 112, 114 und 116 vorgesehen, wobei der Detektor 112 im Kapillarrohrteil 98, vorteilhafterweise an seinem Unterende, vorgesehen und die Detektoren 114 u. 116 im Kapillarrohrteil 100 vorgesehen sind. Vorzugsweise sind diese Detektoren 114,116 wiederum als Lichtsensoren ausgebildet und sind entsprechend in den Kapillarrohrteilen 98 u. 100 in vorgesehene Öffnungen eingesetzt und behindern somit nicht das Einsetzen des schlauchförmigen Kapillarrohrs 104. Im übrigen entsprechen diese Detektoren in Ausführung und Anordnung den Detektoren 40, 42 und 46, so dass wiederum auf die Beschreibung zu Fig. 1 Bezug genommen wird.3 detectors 112, 114 and 116 are again provided in the front plate 84, the de tector 112 in the capillary tube part 98, advantageously at its lower end, provided and the detectors 114 u. 116 are provided in the capillary tube part 100. These detectors 114, 116 are preferably again designed as light sensors and are correspondingly located in the capillary tube parts 98 u. 100 inserted into the provided openings and thus do not hinder the insertion of the tubular capillary tube 104. Otherwise, these detectors correspond in design and arrangement to detectors 40, 42 and 46, so that reference is again made to the description of FIG. 1.

Vorzugsweise ist der Detektor 112 mit dem Spritzenantrieb elektronisch gekoppelt und stoppt diesen Spritzenantrieb, sobald das in das Kapillarrohr 104 gepumpte Plasma den Detektor 112 erreicht hat. Demgemäss wird also der beim Zuklappen des Deckels 54 gemäss Fig. 1 gestartete Füllvorgang für eine bestimmte Zeit unterbrochen, während der das Plasma sich in den Kapillarrohrteilen 94, 96 u. 98 befindet. Bezüglich der Unterbrechungszeiten wird auf die Beschreibung von Fig. 1 verwiesen.Detector 112 is preferably electronically coupled to the syringe drive and stops this syringe drive as soon as the plasma pumped into capillary tube 104 has reached detector 112. Accordingly, the filling process started when the cover 54 is closed according to FIG. 1 is interrupted for a certain time during which the plasma is in the capillary tube parts 94, 96 and. 98 located. With regard to the interruption times, reference is made to the description of FIG. 1.

Ist das in der Beruhigungsstrecke A enthaltene Plasma nach dieser Zeit auf die gewünschte Temperatur temperiert worden, wird ein Schlauchschneidwerkzeug 118 betätigt, das am Kapillarrohr 92 angeordnet ist und das in der Nut 86 enthaltene Kapillarrohr 104 durchtrennt. Infolge der Abtrennung von der geschlossenen Spritze 108 vermag das in der Beruhigungsstrecke A enthaltene Plasma infolge der Schwerkraft weiter zu fliessen und gelangt somit in die Messstrecke B.If the plasma contained in the calming section A has been tempered to the desired temperature after this time, a tube cutting tool 118 is actuated, which is arranged on the capillary tube 92 and cuts through the capillary tube 104 contained in the groove 86. As a result of the separation from the closed syringe 108, the plasma contained in the calming section A can continue to flow due to gravity and thus reaches the measuring section B.

Diese Messstrecke B, wird - wie vorstehend erläutert - zwischen den Detektoren 114 und 116 gebildet und entspricht somit der Messstrecke B von Fig. 1, die zwischen den Detektoren 40 und 42 gebildet wird. Im übrigen entspricht die Thermostatisierung sowie die Messung der Viskosität ebenfalls der Ausführungsform gemäss Fig. 1, so dass hierauf Bezug genommen wird.As explained above, this measuring path B is formed between the detectors 114 and 116 and thus corresponds to the measuring path B of FIG. 1, which is formed between the detectors 40 and 42. Otherwise, the thermostatting and the measurement of the viscosity also correspond to the embodiment according to FIG. 1, so that reference is made to this.

Claims (16)

1. Apparatus for measuring the viscosity of fluids, in particular of blood plasma, comprising a capillary tube for passing said fluid under the influence of gravity, whereby said capillary tube comprises vertical and horizontal capillary tube branches (22, 24, 26, 28, 30, 32, 34; 60, 62, 64, 66, 68, 70; 90, 92, 94, 96, 98, 100, 102), and with a means for measuring the rate of flow, characterized in that said capillary tube comprises at least two horizontally arranged straight capillary tube branches (24,28; 96, 100) in form of at least a first and at least a second capillary tube branch, one of which comprising the measuring path (B), and which are connected via a vertically arranged capillary tube branch (26; 98), and that it is embodied as flexible plastic hose being exchangeably arranged within a respectively shaped groove (16; 86) of a front plate (12; 84).
2. Apparatus according to claim 1, characterized in that the second capillary tube branch (28) is connected with a third horizontally arranged capillary tube branch (32) via a lower curved capillary tube branch (30).
3. Apparatus according to claim 1 or 2, characterized in that at the first capillary tube branch (24) two detectors (40, 42) are arranged within a distance forming the measuring path (B).
4. Apparatus according to claim 1 or 2, characterized in that the second capillary tube branch (100) comprises two detectors (114, 116) within a space forming the measuring path (B).
5. Apparatus according to claim 3 or 4, characterized in that the space forming the measuring path (B) amounts to 30-200 mm.
6. Apparatus according to any of claims 1 to 5, characterized in that the vertical space between the first capillary tube branch (24; 96) and the second capillary tube branch (28; 100) amounts to 40-160 mm.
7. Apparatus according to any of claims 1 to 6, characterized in that adjacent to the second capillary tube branch (100), respectively the third capillary tube branch (32) there is a rising capillary tube branch (102, respectively 34).
8. Apparatus according to any of claims 1 to 7, characterized in that adjacent to the first capillary tube branch (24) there is a substantially vertically rising capillary tube branch (22).
9. Apparatus according to any of claims 1 to 8, characterized in that at the downstream end of the second capillary tube branch (28) a third detector (46) for time depending control of a downstream arranged closure magnet (48) is arranged.
10. Apparatus according to any of claims 4 to 8, characterized in that streamup of the detectors (114,116) a fourth detector (112) is arranged within the groove (86) by the signal of which a syringe drive (110) arranged on the front plate and/or a cutting tool (118) for separating the capillary tube is operable.
11. Apparatus according to any of claims 1 to 11, characterized in that the flexible plastic hose (36; 104) consists of polyethylene or polyurethane having an inner diameter of about 0,5-2 mm and a wall thickness of about 0,2-0,5 mm.
12. Apparatus according to any of claims 1 to 11, characterized in that the front plate (12, 84) is temperature controllable to about 37°C.
13. Apparatus according to claim 7, characterized in that the rising capillary tube branch (34; 102) adjacent to the second (28; 100), respectively third capillary tube branch (32) comprises at least one curved capillary tube branch with substantially horizontal, parallel capillary tube sections (62, 70) and the upper capillary tube section (70) of the hose (36; 104) is connected with a three- way part (72) which is connected with a suction pump (76) via a conduit (74).
14. Apparatus according to claim 13, characterized in that within each of the horizontal capillary tube sections (62, 70) one detector (78, 82) is arranged by means of which the pressure value achieved with the suction pump (76) may be determined.
15. Apparatus according to claim 13 or 14, characterized in that the vertical space between the horizontal capillary tube sections (62, 70) amounts to 60-140 mm.
16. Apparatus according to any of claims 3 to 15, characterized in that the detectors (40, 42, 46, 78,82,112,114,116) are optoelectronical sensors.
EP83107905A 1982-08-13 1983-08-10 Device for determining the viscosity of liquids, especially of blood plasma Expired EP0103172B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83107905T ATE28362T1 (en) 1982-08-13 1983-08-10 DEVICE FOR DETERMINING THE VISCOSITY OF LIQUIDS, ESPECIALLY BLOOD PLASMA.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3230246 1982-08-13
DE3230246A DE3230246C2 (en) 1982-08-13 1982-08-13 Device for determining the viscosity of liquids, in particular blood plasma

Publications (2)

Publication Number Publication Date
EP0103172A1 EP0103172A1 (en) 1984-03-21
EP0103172B1 true EP0103172B1 (en) 1987-07-15

Family

ID=6170850

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83107905A Expired EP0103172B1 (en) 1982-08-13 1983-08-10 Device for determining the viscosity of liquids, especially of blood plasma

Country Status (10)

Country Link
US (1) US4554821A (en)
EP (1) EP0103172B1 (en)
JP (1) JPS5952732A (en)
AT (1) ATE28362T1 (en)
DE (2) DE3230246C2 (en)
DK (1) DK157379C (en)
ES (1) ES524948A0 (en)
FI (1) FI75934C (en)
NO (1) NO160951C (en)
PT (1) PT77196B (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1294146C (en) * 1986-05-30 1992-01-14 Reuben E. Kron Apparatus and method of measuring native mammalian blood viscosity
US5522255A (en) * 1993-08-31 1996-06-04 Boehringer Mannheim Corporation Fluid dose, flow and coagulation sensor for medical instrument
US5854423A (en) * 1996-03-20 1998-12-29 Venegas; Jose G. Apparatus and method for assessment of visco-elasticity and shear adherence strength properties of blood clots
US6402703B1 (en) * 1997-08-28 2002-06-11 Visco Technologies, Inc. Dual riser/single capillary viscometer
US6322524B1 (en) 1997-08-28 2001-11-27 Visco Technologies, Inc. Dual riser/single capillary viscometer
US6019735A (en) 1997-08-28 2000-02-01 Visco Technologies, Inc. Viscosity measuring apparatus and method of use
US6322525B1 (en) 1997-08-28 2001-11-27 Visco Technologies, Inc. Method of analyzing data from a circulating blood viscometer for determining absolute and effective blood viscosity
US6450974B1 (en) 1997-08-28 2002-09-17 Rheologics, Inc. Method of isolating surface tension and yield stress in viscosity measurements
US6428488B1 (en) 1997-08-28 2002-08-06 Kenneth Kensey Dual riser/dual capillary viscometer for newtonian and non-newtonian fluids
DE19755529A1 (en) * 1997-12-13 1999-06-17 Roche Diagnostics Gmbh Analysis system for sample liquids
US6484565B2 (en) 1999-11-12 2002-11-26 Drexel University Single riser/single capillary viscometer using mass detection or column height detection
US20030158500A1 (en) * 1999-11-12 2003-08-21 Kenneth Kensey Decreasing pressure differential viscometer
US6412336B2 (en) 2000-03-29 2002-07-02 Rheologics, Inc. Single riser/single capillary blood viscometer using mass detection or column height detection
US6484566B1 (en) 2000-05-18 2002-11-26 Rheologics, Inc. Electrorheological and magnetorheological fluid scanning rheometer
AU2002248217A1 (en) * 2001-12-21 2003-07-24 Rheologics, Inc. Dual capillary viscometer for newtonian and non-newtonian fluids
DE10236122A1 (en) * 2002-08-07 2004-02-19 Bayer Ag Device and method for determining viscosities and liquids by means of capillary force
US6949066B2 (en) * 2002-08-21 2005-09-27 World Heart Corporation Rotary blood pump diagnostics and cardiac output controller
US7207939B2 (en) * 2002-10-03 2007-04-24 Coulter International Corp. Apparatus and method for analyzing a liquid in a capillary tube of a hematology instrument
ATE445148T1 (en) * 2003-02-07 2009-10-15 Rafailidis Stilianos U-TUBE RHEOMETER FOR DYNAMIC MEASUREMENT OF ELASTICITY
US7131318B2 (en) * 2004-09-28 2006-11-07 Phase Psl Instrument Inc. Viscometer
FR2892814B1 (en) * 2005-10-27 2008-01-04 Commissariat Energie Atomique METHOD AND DEVICE FOR DETERMINING AT LEAST ONE DYNAMIC PROPERTY OF A DEFORMABLE FLUID OR SOLID MATERIAL
US9791386B2 (en) * 2009-01-20 2017-10-17 Spectro Scientific, Inc. Integrated, portable sample analysis system and method
US8384895B2 (en) 2009-01-20 2013-02-26 Spectro, Inc. Spectrometer flip top sample head
US8661878B2 (en) * 2011-01-18 2014-03-04 Spectro, Inc. Kinematic viscometer and method
JP6684214B2 (en) * 2013-12-09 2020-04-22 テキサス テック ユニヴァーシティー システムTexas Tech University System Smartphone-based multiplexed viscometer for high-throughput analysis of fluids
KR101701334B1 (en) * 2015-11-24 2017-02-13 전북대학교산학협력단 Portable blood viscostity measuring device
GB2555870A (en) 2016-11-15 2018-05-16 Haemair Ltd Rheometer and method for the use thereof
EP3619517A4 (en) * 2017-05-04 2020-11-11 University of Connecticut Assembly for measuring the viscosity of fluids using microchannels
JP7134430B2 (en) * 2018-07-04 2022-09-12 学校法人産業医科大学 body fluid viscosity measuring device
JP7371850B2 (en) * 2019-06-20 2023-10-31 国立大学法人九州工業大学 Viscosity measuring device, surface tension measuring device, viscosity measuring method, and surface tension measuring method
CN114689466B (en) * 2022-05-31 2022-08-23 扬州惠特科技有限公司 Online polymer viscosity detection device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2065695A (en) * 1933-03-06 1936-12-29 Herbert E T Haultain Method of and apparatus for determining a degree of fineness of finely divided material
FR775672A (en) * 1934-07-10 1935-01-07 High performance precision viscometer
US2625817A (en) * 1949-06-03 1953-01-20 Oppenauer Rupert Device for measuring the viscosity of liquids
US3713328A (en) * 1971-02-24 1973-01-30 Idemitsu Kosan Co Automatic measurement of viscosity
GB1467427A (en) * 1973-08-08 1977-03-16 Ici Ltd Apparatus suitable for use as a high pressure viscometer
US3924448A (en) * 1974-06-19 1975-12-09 Us Navy Pressure drop polymer concentration meter (pcm)
US3999538A (en) * 1975-05-22 1976-12-28 Buren Philpot V Jun Method of blood viscosity determination
FR2331088A1 (en) * 1975-11-05 1977-06-03 Clin Midy FLOW REGULATOR ESPECIALLY FOR INFUSION
US4135509A (en) * 1977-04-26 1979-01-23 Sherwood Medical Industries Inc. Fluid pressure manometer
US4346606A (en) * 1980-03-10 1982-08-31 Imed Corporation Rate meter

Also Published As

Publication number Publication date
FI832724A0 (en) 1983-07-28
NO832903L (en) 1984-02-14
FI832724A (en) 1984-02-14
DE3372541D1 (en) 1987-08-20
DE3230246A1 (en) 1984-02-16
ES8501881A1 (en) 1984-12-01
US4554821A (en) 1985-11-26
DE3230246C2 (en) 1985-06-27
NO160951B (en) 1989-03-06
DK157379B (en) 1989-12-27
EP0103172A1 (en) 1984-03-21
DK157379C (en) 1990-05-21
FI75934B (en) 1988-04-29
DK368183D0 (en) 1983-08-12
PT77196A (en) 1983-09-01
NO160951C (en) 1989-06-14
FI75934C (en) 1988-08-08
ES524948A0 (en) 1984-12-01
PT77196B (en) 1986-03-11
ATE28362T1 (en) 1987-08-15
DK368183A (en) 1984-02-14
JPH032424B2 (en) 1991-01-16
JPS5952732A (en) 1984-03-27

Similar Documents

Publication Publication Date Title
EP0103172B1 (en) Device for determining the viscosity of liquids, especially of blood plasma
EP0223244B1 (en) Method and apparatus for measuring the platelet aggregation and the coagulation of blood
DE2201149C2 (en) Method and apparatus for measuring the viscosity of native mammalian blood
EP0094576B1 (en) Apparatus for determining the flow rate resistance of suspensions, in particular of blood
DE2444148C3 (en) Capillary viscometer
DE19821903B4 (en) Blood analysis system for the method of controlling a blood analysis system
DE3739247C2 (en) Bleeding time measuring device
EP0111942B1 (en) Apparatus for the in vitro measurement of bleeding time
DE19714087C2 (en) Affinity viscometry method and viscosimetric affinity sensor
DE2410945A1 (en) DEVICE FOR DETERMINING THE VALUE OF BLOOD PLATE AGGREGATION
DE3215330A1 (en) INFUSION APPARATUS
EP1255991A2 (en) Device and method for detecting the coagulation functions of global, especially primary hemostasis
EP2984988B1 (en) Device and method for detecting a hose line laid in the receiving element of a tensioning unit for tensioning a hose line
DE4201928A1 (en) HOLLOW NEEDLE FOR VISCOSITY MEASUREMENT OF LIQUIDS
DE2542198A1 (en) DEVICE FOR MEASURING A VOLUME OF LIQUID AND METHOD OF OPERATING THIS DEVICE
DE4201258A1 (en) PERFUSION DEVICE
DE3030856C2 (en)
EP1975597A2 (en) Shearing stress application
DE1815502A1 (en) Device and method for the automatic mixing and filling of liquids
EP0896672B1 (en) Process and device for measuring blood platelet aggregation or blood coagulation
DE102004063358A1 (en) Method for determining the viscosity and viscometer
DE2733409A1 (en) METHOD AND DEVICE FOR DETERMINING OSMOTIC CELL RESISTANCE
DE2613212C2 (en) Method for determining the flow behavior of liquids for medical and pharmaceutical purposes, as well as device for carrying out the method
EP0094339B1 (en) Pipette for determining the rate of sedimentation, in particular blood sedimentation
WO2020053212A1 (en) System for analysing fluids originating from the body or fluids in contact with fluids originating from the body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19840412

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19870715

REF Corresponds to:

Ref document number: 28362

Country of ref document: AT

Date of ref document: 19870815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3372541

Country of ref document: DE

Date of ref document: 19870820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870831

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19890825

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890830

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19900810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900822

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19900824

Year of fee payment: 8

Ref country code: CH

Payment date: 19900824

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900907

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910831

Ref country code: CH

Effective date: 19910831

Ref country code: BE

Effective date: 19910831

BERE Be: lapsed

Owner name: KIESEWETTER HOLGER DR.

Effective date: 19910831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920731

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920817

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930810

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940429

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83107905.8

Effective date: 19920306