EP0101533A1 - Radar antenna - Google Patents

Radar antenna Download PDF

Info

Publication number
EP0101533A1
EP0101533A1 EP83105211A EP83105211A EP0101533A1 EP 0101533 A1 EP0101533 A1 EP 0101533A1 EP 83105211 A EP83105211 A EP 83105211A EP 83105211 A EP83105211 A EP 83105211A EP 0101533 A1 EP0101533 A1 EP 0101533A1
Authority
EP
European Patent Office
Prior art keywords
radar antenna
section
pyramid
plate
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP83105211A
Other languages
German (de)
French (fr)
Inventor
Peter Füglister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schweiz AG
Original Assignee
Siemens Albis AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Albis AG filed Critical Siemens Albis AG
Publication of EP0101533A1 publication Critical patent/EP0101533A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/02Antennas or antenna systems providing at least two radiating patterns providing sum and difference patterns

Definitions

  • the present invention relates to a radar antenna according to the preamble of patent claim 1.
  • both simple mirror antennas with a microwave hom emitter in their focus and, for example, so-called Cassegrain antennas can be used.
  • the radar radiation beam is first passed through an axial opening in the parabolic mirrors and then reflected a first and a second time in the actual parabolic mirror in a so-called Cassegrain subreflector. This prevents disruptive effects, such as those that occur with a direct feed.
  • Both types of antennas which are known for example from the "Radar Handbook” by Merrill Skolnik, McGraw-Hill 1970, pages 10-3 and 10-13, can also be used in monopulse radar systems using four or more separate radiation beams .
  • Beam deflection from the antenna axis is achieved by lateral displacement of the horns in the focal plane of the antenna by arranging the four homedivers in such a way that their axes run exactly parallel to one another. Such an arrangement is shown in Fig. 18 and 19, pages 21-15 and 21-16, of the mentioned radar manual.
  • quadruple emitters which are arranged to excite a reflector at approximately their focal point and, for Cassegrain antennas, approximately at a focal point of the subreflector, is known per se and is relatively unproblematic from the principle of geometric optics, as long as the wavelength is negligibly small compared to the antenna dimensions.
  • the quadruple radiator according to the invention has four horn radiators A, B, C, D (FIG. 1), each of which consists of a transformer part AT and an end position (FIG. 2).
  • the end position of a horn, e.g. A comprises three sections AZ, AU, AP arranged coaxially one after the other, of which the middle section AU forms a transition between a cylindrical waveguide space in section AZ and a pyramidal hollow space in section AP.
  • the other end of the section AZ connects to one end of the transformer file AT, the other end of which is provided with a square waveguide flange F, by means of which the radiator is attached to a round base plate P (FIGS. 1 and 2), preferably with screws .
  • the home radiator A is connected via a slot SA penetrating the plate P to a rectangular waveguide connection (not shown in FIG. 2).
  • the diagonal of the flange quadrilateral is rotated by 45 ° with respect to the diagonal of the quadrilateral that forms the base of the pyramid.
  • the waveguide space of the transformer location AT represents a penetration between a prism, the base of which corresponds to the rectangular cross section of the slot SA, and a step-shaped cylindrical surface, the different diameters of which taper towards the waveguide connection, the height of the steps in axial direction corresponds at least approximately to a quarter of the corresponding waveguide wavelengths ⁇ g.
  • a transformer part AT is specified, however, with a continuously designed cavity.
  • the electrical symmetry of the section AU can be improved with some grooves.
  • the grooves are not shown in the drawing, since more details about groove radiators can be found in the above-mentioned book "Electromagnetic Horn Antennas" p. 245ff.
  • the four square pyramid-shaped sections AP, BP, CP, DP are attached to each other at their borders (Fig.2) in such a way that their common border forms a square, the area of which is at least approximately four times larger than the area of the a single border formed quadrangle.
  • these borders are provided with short extensions AW or collars at the mouth of the pyramid, which at least approximately have a rectangular cross section towards the outside.
  • the Ver Extension of the section ST also runs coaxially with a further thin hole BH on the plate P (FIG. 2).
  • the holes at points ST and BH are used to direct the antenna using a light beam.
  • One tube can be inserted in each of these holes.
  • the position of the subrefiector can be shifted for fine adjustment and can be centered with respect to the quadruple emitter using this light beam.
  • the sub-reflector can either have a centering mark or an opening in the apex.
  • the axes of the four hom emitters can run parallel. However, it is advantageous to tilt it at a small angle against the BH-ST straight line.
  • the horn A (Fig. 1 and 2) or the seat of the flange F is inclined by a small angle w1 with respect to the opposite axis of symmetry bd (Fig.1) of the plate P.
  • the described four-fold radiator also has the advantage of better radiation symmetry, in addition to an improved displacement possibility of the four radiators, and allows the four radiators to be inclined to one another without further undesirable discontinuities in the form of bends on the common edges or kinks.
  • the inclination of the horn radiators leads to an improvement in the sub-reflector illumination and a reduction in the reflector imaging errors.
  • the polarization can be selected to be vertical, horizontal or circular, with circular polarization, for example in section AZ, a polarizer having to be introduced in a known manner.
  • the mouth emitters can be closed with a lid made of dielectric material, so that the horn emitters can be filled with air or a gas with excess pressure, which prevents dust and / or moisture from entering the waveguide system.

Abstract

The monopulse radar antenna consists of four horn emitters (A, B, C, D), mounted on a plate (P), the axes of the horn emitters (A, B, C, D) being inclined in each case by a small angle (e.g. w1) with respect to the axis of symmetry (ST-BH) of the plate (P). Each horn emitter (A) consists of a transformer part (AT) whose waveguide space represents a penetration between a prism and a cylindrical surface, designed in the form of steps, and an end part whose final section is designed in the shape of a pyramid. The four horn emitters (A, B, C, D) are connected to each other at their edges. <IMAGE>

Description

Die vorliegende Erfindung betrifft eine Radarantenne gemäss dem Oberbegriff des Patentanspruches 1.The present invention relates to a radar antenna according to the preamble of patent claim 1.

Zur Abstrahlung eines Radar-Strahlungsbündels können sowohl einfache Spiegelantennen mit einem Mikrowellen-Homstrahler in ihrem Fokus als auch beispielsweise sogenannte Cassegrain-Antennen eingesetzt werden. Bei der Cassegrain-Antenne wird das Radar-Strahlungsbündel zuerst durch eine axiale Oeffnung im Parabolspiegel geführt und dann in einem sogenannten Cassegrain-Subreflektor ein erstes und Im eigentlichen Parabolspiegel ein zweites Mal reflektiert. Dadurch werden störende Effekte, wie sie bei einer direkten Einspeisung auftreten, vermieden.To emit a radar beam, both simple mirror antennas with a microwave hom emitter in their focus and, for example, so-called Cassegrain antennas can be used. In the Cassegrain - antenna, the radar radiation beam is first passed through an axial opening in the parabolic mirrors and then reflected a first and a second time in the actual parabolic mirror in a so-called Cassegrain subreflector. This prevents disruptive effects, such as those that occur with a direct feed.

Beide Arten von Antennen, die beispielsweise aus dem "Radar Handbook" von Merrill Skolnik, McGraw-Hill 1970, Seiten 10-3 und 10-13, bekannt sind, können unter Verwendung von vier oder mehr getrennten Strahlungsbündeln ebenfalls in Monopuls-Radarsystemen Anwendung finden. Dabei wird eine Strahlablenkung von der Antennenachse durch eine seitliche Verschiebung der Hornstrahler in der Fokusebene der Antenne erreicht, indem die vier Homstrahler derart angeordnet sind, dass ihre Achsen genau parallel zueinander verlaufen. Eine solche Anordnung Ist in Fig.18 und 19, Seite 21-15 bzw. 21-16, des erwähnten Radar-Handbuches dargestellt. Die Arbeitsweise solcher Vierfach-Strahler, die zur Erregung eines Reflektors ungefähr in ihrem Brennpunkt und bei Cassegrain-Antennen etwa in einem Brennpunkt des Subreflektors angeordnet sind, ist an sich bekannt und vom Prinzip der geometrischen Optik her relativ unproblematisch, solange die Wellenlänge vernachlässigbar klein gegenüber den Antennenabmessungen ist.Both types of antennas, which are known for example from the "Radar Handbook" by Merrill Skolnik, McGraw-Hill 1970, pages 10-3 and 10-13, can also be used in monopulse radar systems using four or more separate radiation beams . Beam deflection from the antenna axis is achieved by lateral displacement of the horns in the focal plane of the antenna by arranging the four homedivers in such a way that their axes run exactly parallel to one another. Such an arrangement is shown in Fig. 18 and 19, pages 21-15 and 21-16, of the mentioned radar manual. The operation of such quadruple emitters, which are arranged to excite a reflector at approximately their focal point and, for Cassegrain antennas, approximately at a focal point of the subreflector, is known per se and is relatively unproblematic from the principle of geometric optics, as long as the wavelength is negligibly small compared to the antenna dimensions.

Zweck der vorliegenden Erfindung Ist jedoch, einen Mehrfachstrahler mit einer besonders günstigen Strahlungssymmetrie anzugeben. Dies wird erfindungsgemäss mit einem Mehrfachstrahler erreicht, wie er im Anspruch 1 gekennzeichnet ist. Vorteilhafte Ausgestaltungen der Erfindung sind in weiteren Ansprüchen angegeben. Die Erfindung wird nachfolgend durch Ausführungsbeispiele und Zeichnungen näher beschrieben. Es zeigt :

  • Fig. 1 eine Ansicht auf die Oeffnungen eines Vlerfachstrahlers
  • Fig. 2 eine seitliche Ansicht des Vierfachstrahlers.
Purpose of the present invention, however, is to provide a multiple radiator with a particularly favorable radiation symmetry. This is achieved according to the invention with a multiple radiator as characterized in claim 1. Advantageous embodiments of the invention are specified in further claims. The invention is described in more detail below by means of exemplary embodiments and drawings. It shows :
  • Fig. 1 is a view of the openings of a multiple radiator
  • Fig. 2 is a side view of the quadruple radiator.

Der erfindungsgemässe Vierfach-Strahler weist vier Hornstrahler A, B, C, D (Fig.1) auf, die je aus einem Transformatorteil AT und einem Endtell (Fig.2) bestehen. Der Endtell eines Hornstrahlers z.B. A umfasst drei koaxial nacheinander angeordnete Abschnitte AZ, AU, AP, von denen der mittlere Abschnitt AU einen Uebergang zwischen einem zylindrischen Hohlleiter-Raum im Abschnitt AZ und einem pyramidenförmigen Hohltelter-Raum Im Abschnitt AP bildet. Das andere Ende des Abschnitts AZ schllesst sich an das eine Ende des Transformatorfeils AT an, dessen anderes Ende mit einem viereckigen Hohlleiterflansch F versehen ist, durch den der Homstrahler an einer runden Basisplatte P (Fig.1 und 2), vorzugsweise mit Schrauben befestigt wird. Der Homstrahler A ist über einen die Platte P durchdringenden Schlitz SA mit einem In Fig.2 nicht dargestellten Rechteck-Hohlleiter-Anschluss verbunden. Dabei Ist die Diagonale des Flanschvierecks um 45° gegenüber der Diagonale des Vierecks gedreht, das die Basis der Pyramide darstellt. Der Hohlleiter-Raum des Transformatortells AT stellt eine Durchdringung zwischen einem Prisma, dessen Basis mit dem rechteckigen Querschnitt des Schlitzes SA übereinstimmt, und einer stufenförmig ausgebildeten Zylinderfläche dar, deren verschiedene Durchmesser sich gegen den Hohlleiter-Anschluss hin verjüngen, wobei die Höhe der Stufen in axialer Richtung jeweils zumindest angenähert einem Viertel der entsprechenden Hohlleiter-Wellenlängen λ g entspricht. Im Buch "Etectromagnetic Horn Antennas" herausgegeben von A.W. Love, IEEE Press.1976, S. 189ff ist ein Transformatorteil AT jedoch mit einem kontinuierlich ausgestalteten Hohlraum angegeben.The quadruple radiator according to the invention has four horn radiators A, B, C, D (FIG. 1), each of which consists of a transformer part AT and an end position (FIG. 2). The end position of a horn, e.g. A comprises three sections AZ, AU, AP arranged coaxially one after the other, of which the middle section AU forms a transition between a cylindrical waveguide space in section AZ and a pyramidal hollow space in section AP. The other end of the section AZ connects to one end of the transformer file AT, the other end of which is provided with a square waveguide flange F, by means of which the radiator is attached to a round base plate P (FIGS. 1 and 2), preferably with screws . The home radiator A is connected via a slot SA penetrating the plate P to a rectangular waveguide connection (not shown in FIG. 2). The diagonal of the flange quadrilateral is rotated by 45 ° with respect to the diagonal of the quadrilateral that forms the base of the pyramid. The waveguide space of the transformer location AT represents a penetration between a prism, the base of which corresponds to the rectangular cross section of the slot SA, and a step-shaped cylindrical surface, the different diameters of which taper towards the waveguide connection, the height of the steps in axial direction corresponds at least approximately to a quarter of the corresponding waveguide wavelengths λ g. In the book "Etectromagnetic Horn Antennas" edited by A.W. Love, IEEE Press. 1976, p. 189ff, a transformer part AT is specified, however, with a continuously designed cavity.

Die elektrische Symmetrie des Abschnitts AU kann mit einigen Rillen verbessert werden. Zur Vereinfachung der Figuren wird jedoch auf eine zeichnerische Darstellung der Rillen verzichtet, da Näheres über Rillenhomstrahler dem erwähnten Buch "Electromagnetic Horn Antennas" S. 245ff entnommen werden kann.The electrical symmetry of the section AU can be improved with some grooves. In order to simplify the figures, however, the grooves are not shown in the drawing, since more details about groove radiators can be found in the above-mentioned book "Electromagnetic Horn Antennas" p. 245ff.

Die vier viereckigen pyramidenförmigen Abschnitte AP, BP, CP, DP (Fig.1) sind untereinander an ihren Umrandungen (Fig.2) derart befestigt, dass ihre gemeinsame Umrandung ein Viereck bildet, dessen Fläche zumindest angenähert viermal grösser ist als die Fläche des von einer einzelnen Umrandung gebildeten Vierecks. Zu diesem Zweck sind diese Umrandungen mit kurzen Ausweitungen AW oder Kragen an der Ausmündung der Pyramide versehen, die gegen aussen zumindest angenähert einen rechteckigen Querschnitt aufweisen. Dadurch ergibt sich eine gemeinsame Strecke ST im Zentrum des Vierfach-Strahlers bei der Zusammenfügung der vier Umrandungen der pyramidenförmigen Abschnitte. An dieser Stelle, die das Zentrum der Vierfach-Strahler-Apertur darstellt, Ist eine axial verlaufende Oeffnung, vorzugsweise eine dünne Bohrung, vorhanden, deren Achse mit der Strecke ST zusammenfällt. Die Verlängerung der Strecke ST verläuft auch koaxial mit einer weiteren dünnen Bohrung BH an der Platte P (Fig.2). Die Bohrungen an den Stellen ST und BH dienen dazu, die Antenne mit Hilfe eines Lichtstrahles zu richten. In diesen Bohrungen kann je ein Röhrchen eingefügt sein.The four square pyramid-shaped sections AP, BP, CP, DP (Fig.1) are attached to each other at their borders (Fig.2) in such a way that their common border forms a square, the area of which is at least approximately four times larger than the area of the a single border formed quadrangle. For this purpose, these borders are provided with short extensions AW or collars at the mouth of the pyramid, which at least approximately have a rectangular cross section towards the outside. This results in a common path ST in the center of the quadruple radiator when the four borders of the pyramid-shaped sections are joined together. At this point, which represents the center of the quadruple radiator aperture, there is an axially extending opening, preferably a thin bore, the axis of which coincides with the distance ST. The Ver Extension of the section ST also runs coaxially with a further thin hole BH on the plate P (FIG. 2). The holes at points ST and BH are used to direct the antenna using a light beam. One tube can be inserted in each of these holes.

Der Subrefiektor ist für den Feinabgieich in seiner Lage verschiebbar und kann mit Hilfe dieses Lichtstrahles bezüglich des Vierfach-Strahlers zentriert werden. Zu diesem Zweck kann der Subreflektor im Scheitel entweder eine Zentriermarke oder eine Oeffnung aufweisen. Die Achsen der vier Homstrahler können parallel verlaufen. Es ist jedoch vorteilhaft, sie in einem kleinen Winkel gegen die Gerade BH-ST zu neigen. So ist der Hornstrahler A (Fig.1 und 2) bzw. die Sitzfläche des Flansches F um einen kleinen Winkel w1 in bezug auf die gegenüberliegende Symmetrieachse bd (Fig.1) der Platte P geneigt. Entsprechendes gilt für die Homstrahler B, C und D, die jeweils um die Winkel w2, w3 und w4 geneigt sein können. In solchen Fällen Ist die Ausweitung der Umrandungen AW, BW, CW und DW entsprechend zu dimensionieren, wobei solche Umrandungen an sich auch entfallen können. Vorzugsweise kann w1 = w3 und w2 = w4 und Insbesondere w1 = w2 = w3 = w4 gewählt werden.The position of the subrefiector can be shifted for fine adjustment and can be centered with respect to the quadruple emitter using this light beam. For this purpose, the sub-reflector can either have a centering mark or an opening in the apex. The axes of the four hom emitters can run parallel. However, it is advantageous to tilt it at a small angle against the BH-ST straight line. The horn A (Fig. 1 and 2) or the seat of the flange F is inclined by a small angle w1 with respect to the opposite axis of symmetry bd (Fig.1) of the plate P. The same applies to the home radiators B, C and D, which can each be inclined by the angles w2, w3 and w4. In such cases, the extension of the borders AW, BW, CW and DW must be dimensioned accordingly, although such borders themselves can also be omitted. Preferably w1 = w3 and w2 = w4 and in particular w1 = w2 = w3 = w4 can be selected.

Der beschriebene Vierfach-Homstrahier besitzt gegenüber einem klassischen Vierfach-Pyramiden-Strahler nebst einer verbesserten Verktebemöglichkeit der vier Homstrahler auch den Vorteil einer besseren Strahlungssymmetrie und erlaubt, die vier Strahler zueinander zu neigen, ohne dass an den gemeinsamen Homkanten weitere unerwünschte Diskontinuitäten in Form von Abwinkelungen oder Knickstellen entstehen. Zudem bringt die Neigung der Hornstrahler eine Verbesserung der Subreflektorausleuchtung und eine Verminderung der Reflektorabblidungsfehler mit sich. Dabei kann die Polarisation vertikal, horizontal oder zirkular gewählt werden, wobei bei Zirkularpolarisation beispielsweise im Abschnitt AZ ein Polarisator in bekannter Weise eingeführt werden muss. Die Ausmündung der Homstrahler wird nach Wunsch mit einem Deckel aus dielektrischem Material abgeschlossen, so dass der Hornstrahler mit Luft oder einem Gas mit Ueberdruck ausgefüllt werden kann, der ein Eindringen von Staub und/oder Feuchtigkeit in das Hohlleiter-System verhindert.Compared to a classic quadruple pyramid radiator, the described four-fold radiator also has the advantage of better radiation symmetry, in addition to an improved displacement possibility of the four radiators, and allows the four radiators to be inclined to one another without further undesirable discontinuities in the form of bends on the common edges or kinks. In addition, the inclination of the horn radiators leads to an improvement in the sub-reflector illumination and a reduction in the reflector imaging errors. The polarization can be selected to be vertical, horizontal or circular, with circular polarization, for example in section AZ, a polarizer having to be introduced in a known manner. If desired, the mouth emitters can be closed with a lid made of dielectric material, so that the horn emitters can be filled with air or a gas with excess pressure, which prevents dust and / or moisture from entering the waveguide system.

Claims (4)

1. Radarantenne mit mehreren pyramidenförmigen Homsfrahlem, gekennzeichnet durch folgende Merkmale : a) mindestens ein Paar Hornstrahler Ist derart ausgebildet, dass jeder von ihnen einen Transformatorteil (AT) und einen Endteil aufweist; b) der Transformatorteil jedes dieser beiden Hornstrahler Ist an der einen Seite einer Platte (P) über einen Schlitz (SA) befestigt, an den auf der anderen Seite der Platte (P) ein Rechteck-Hohlleiter angeschlossen ist; c) der Endteil weist drei koaxial nacheinander angeordnete Abschnitte (AZ, AU, AP) auf, von denen der mittlere Abschnitt (AU) einen Uebergang zwischen einem zylindrischen Hohlleiter-Raum im ersten Abschnitt (AZ) und einem pyramidenförmigen Hohlleiter-Raum im dritten Abschnitt (AP) bildet; d) der Transformatorteil (AT) besteht aus einem Uebergang zwischen einem rechteckigen Hohlleiter-Raum und einem zylindrischen Hohlleiter-Raum; e) dieser Uebergang stellt eine Durchdringung zwischen einem Prisma, dessen Basis mit dem Querschnitt des rechteckigen Hohlleiter-Raumes übereinstimmt, und einer stufenförmig ausgebildeten Zylinderfläche dar, deren verschiedene Durchmesser sich gegen den Rechteck-Hohlleiter-Anschluss hin verjüngen; f) die Höhe der Stufen der Zylinderfläche In axialer Richtung entspricht jeweils zumindest angenähert einem Viertel der entsprechenden Hohlleiter-Wellenlängen. 1. Radar antenna with several pyramid-shaped Homsframes, characterized by the following features: a) at least one pair of horns is designed such that each of them has a transformer part (AT) and an end part; b) the transformer part of each of these horns is attached to one side of a plate (P) via a slot (SA) to which a rectangular waveguide is connected on the other side of the plate (P); c) the end part has three coaxially arranged sections (AZ, AU, AP), of which the middle section (AU) has a transition between a cylindrical waveguide space in the first section (AZ) and a pyramid-shaped waveguide space in the third section (AP) forms; d) the transformer part (AT) consists of a transition between a rectangular waveguide space and a cylindrical waveguide space; e) this transition represents a penetration between a prism, the base of which corresponds to the cross section of the rectangular waveguide space, and a step-shaped cylindrical surface, the different diameters of which taper towards the rectangular waveguide connection; f) the height of the steps of the cylinder surface in the axial direction corresponds in each case at least approximately to a quarter of the corresponding waveguide wavelengths. 2. Radarantenne nach Anspruch 1, dadurch gekennzeichnet, dass die Homstrahler jedes Paares in einem Winkel gegen die Symmetrieachse der Radarantenne geneigt sind.2. Radar antenna according to claim 1, characterized in that the homologs of each pair are inclined at an angle to the axis of symmetry of the radar antenna. 3. Radarantenne nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass vier Hornstrahler (A, B, C, D) vorhanden sind, deren pyramidenförmige Ausmündungen rundherum eine Ausweitung (AW) mit flachen Selten aufweisen, auf die sich die vier Homstrahler gegenseitig stützen.3. Radar antenna according to claim 1 or 2, characterized in that four horn radiators (A, B, C, D) are present, the pyramid-shaped openings all around have an extension (AW) with shallow rarities on which the four homebeams are mutually supported. 4. Radarantenne nach Anspruch 3, dadurch gekennzeichnet, dass im Zentrum des Vierfach-Strahlers eine axial verlaufende Oeffnung (ST) vorgesehen ist, deren verlängerte Achse koaxial zu einer weiteren axial verlaufenden Oeffnung (BH) an der Platte (P) verläuft.4. Radar antenna according to claim 3, characterized in that an axially extending opening (ST) is provided in the center of the quadruple radiator, the elongated axis of which extends coaxially to a further axially extending opening (BH) on the plate (P).
EP83105211A 1982-08-19 1983-05-26 Radar antenna Withdrawn EP0101533A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH495482 1982-08-19
CH4954/82 1982-08-19

Publications (1)

Publication Number Publication Date
EP0101533A1 true EP0101533A1 (en) 1984-02-29

Family

ID=4285410

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83105211A Withdrawn EP0101533A1 (en) 1982-08-19 1983-05-26 Radar antenna

Country Status (1)

Country Link
EP (1) EP0101533A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0381037A1 (en) * 1989-01-31 1990-08-08 Siemens-Albis Aktiengesellschaft Antenna system
WO2001065277A1 (en) * 2000-02-29 2001-09-07 Groundprobe Pty Ltd Ground penetrating radar
WO2009134751A1 (en) * 2008-04-29 2009-11-05 Raytheon Company Small aperture interrogator antenna system employing sum-difference azimuth discrimination techniques
CN102931497A (en) * 2011-08-02 2013-02-13 株式会社本田艾莱希斯 Antenna device
WO2013154658A1 (en) * 2012-04-12 2013-10-17 Raytheon Company Miniature horn interrogator antenna with internal sum/difference combiner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2718592A (en) * 1951-04-28 1955-09-20 Bell Telephone Labor Inc Antenna
US3031661A (en) * 1956-10-31 1962-04-24 Bendix Corp Microwave antenna feed for circular polarization
FR1462334A (en) * 1965-10-15 1966-04-15 Thomson Houston Comp Francaise Multibeam antenna system performing spatial spectro-analysis
EP0030272A1 (en) * 1979-11-19 1981-06-17 Siemens-Albis Aktiengesellschaft Cassegrain antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2718592A (en) * 1951-04-28 1955-09-20 Bell Telephone Labor Inc Antenna
US3031661A (en) * 1956-10-31 1962-04-24 Bendix Corp Microwave antenna feed for circular polarization
FR1462334A (en) * 1965-10-15 1966-04-15 Thomson Houston Comp Francaise Multibeam antenna system performing spatial spectro-analysis
EP0030272A1 (en) * 1979-11-19 1981-06-17 Siemens-Albis Aktiengesellschaft Cassegrain antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THE MICROWAVE JOURNAL, Band 5, März 1962, Seiten 117,118,121, Dedham, USA *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0381037A1 (en) * 1989-01-31 1990-08-08 Siemens-Albis Aktiengesellschaft Antenna system
WO2001065277A1 (en) * 2000-02-29 2001-09-07 Groundprobe Pty Ltd Ground penetrating radar
US6664914B2 (en) 2000-02-29 2003-12-16 Groundprobe Pty Ltd Ground penetrating radar
WO2009134751A1 (en) * 2008-04-29 2009-11-05 Raytheon Company Small aperture interrogator antenna system employing sum-difference azimuth discrimination techniques
JP2011519250A (en) * 2008-04-29 2011-06-30 レイセオン カンパニー Small aperture interrogator antenna system using sum-difference orientation discrimination technique
AU2009241388B2 (en) * 2008-04-29 2012-12-20 Raytheon Company Small aperture interrogator antenna system employing sum-difference azimuth discrimination techniques
US8537067B2 (en) 2008-04-29 2013-09-17 Raytheon Company Small aperture interrogator antenna system employing sum difference azimuth discrimination techniques
CN102931497A (en) * 2011-08-02 2013-02-13 株式会社本田艾莱希斯 Antenna device
WO2013154658A1 (en) * 2012-04-12 2013-10-17 Raytheon Company Miniature horn interrogator antenna with internal sum/difference combiner
US9035842B2 (en) 2012-04-12 2015-05-19 Raytheon Company Miniature horn interrogator antenna with internal sum/difference combiner

Similar Documents

Publication Publication Date Title
DE2503594C2 (en)
DE19642810C1 (en) Directional radar system for anticollision and vehicle speed measurement
DE2919628A1 (en) MULTI-REFLECTOR ANTENNA ARRANGEMENT
DE2505375A1 (en) ANTENNA SYSTEM CONSISTS OF A PARABOLIC MIRROR AND AN EXCITER
DE3505583A1 (en) RADAR ANTENNA ARRANGEMENT AND METHOD FOR MAKING SAME
EP0021251B1 (en) Pillbox-radar antenna with integrated iff antenna
DE2812903A1 (en) ANTENNA WITH ECCENTRIC REFLECTORS
DE977749C (en) Antenna system with electronic deflection
EP0101533A1 (en) Radar antenna
DE2415020A1 (en) ANTENNA SYSTEM
DE4004071C2 (en) Optical resonator for solid-state lasers
DE102015213389A1 (en) Mirror arrangement for a lighting device and lighting device with mirror arrangement
DE2925063C2 (en) Radar antenna with integrated IFF antenna
DE3840451C2 (en) Lens antenna
DE10211015A1 (en) reflector lamp
EP0439800A1 (en) Dual-reflector antenna
DE2947910C2 (en) Cassegrain antenna
DE2345222C3 (en) Reflector antenna
DE2416718C3 (en) Directional antenna with a single exciter arranged in the area of the focal plane of a parabolic mirror
DE2245346C1 (en) Antenna arrangement for radar or direction finding purposes with sum-difference diagram
DE1303784B (en) HORN BEAM
DE69826341T2 (en) Device for antenna beam forming for multiplex channels
DE69830199T2 (en) ANTENNA ARRANGEMENT AND METHOD CONNECTED WITH SUCH AN ARRANGEMENT
EP0030272A1 (en) Cassegrain antenna
DE2947934C2 (en) Cassegrain antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19830603

AK Designated contracting states

Designated state(s): CH DE GB IT LI NL

17Q First examination report despatched

Effective date: 19860611

R17C First examination report despatched (corrected)

Effective date: 19870128

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19870610

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FUEGLISTER, PETER