EP0099769B1 - Device for analyzing a spatial field for the angular localization of a radiating object - Google Patents

Device for analyzing a spatial field for the angular localization of a radiating object Download PDF

Info

Publication number
EP0099769B1
EP0099769B1 EP19830401158 EP83401158A EP0099769B1 EP 0099769 B1 EP0099769 B1 EP 0099769B1 EP 19830401158 EP19830401158 EP 19830401158 EP 83401158 A EP83401158 A EP 83401158A EP 0099769 B1 EP0099769 B1 EP 0099769B1
Authority
EP
European Patent Office
Prior art keywords
plane
axis
image
optical
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19830401158
Other languages
German (de)
French (fr)
Other versions
EP0099769A1 (en
Inventor
Christian Pepin
Yves-Antoine Emmanuelli
Jean-Louis Beck
Christian Sez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0099769A1 publication Critical patent/EP0099769A1/en
Application granted granted Critical
Publication of EP0099769B1 publication Critical patent/EP0099769B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2253Passive homing systems, i.e. comprising a receiver and do not requiring an active illumination of the target
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2213Homing guidance systems maintaining the axis of an orientable seeking head pointed at the target, e.g. target seeking gyro
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2273Homing guidance systems characterised by the type of waves
    • F41G7/2293Homing guidance systems characterised by the type of waves using electromagnetic waves other than radio waves

Definitions

  • the present invention relates to a device for analyzing a spatial field for the angular localization of a radiating object in the field and in which the video image is formed by circular field scanning.
  • the invention applies more precisely to systems equipped with a detector strip as a photodetector or image sensor, and in which a circular analysis of the image of the instantaneous field observed is carried out.
  • a more particularly envisaged application is in the field of seeker for missiles, mainly infrared seeker with imaging or pseudo-imaging.
  • the axis of rotation is parallel to the axis of the receiving optics and an additional mirror is used to reflect the radiation towards the bar which is offset relative to the axis.
  • the axis of rotation is perpendicular to that of the optics and an internal mirror inclined at 45 ° on the optical axis returns the radiation towards the dihedral which reflects it towards the detector placed at the rear of an opening in the mirror.
  • the object of the invention is to provide a video image forming device in circular field scanning in which these drawbacks are avoided and which fits well in a gyro-stabilized version.
  • a self-directing missile device with four quadrant detector and equipped with anti-roll stabilization.
  • a receiving optical mirror is mounted on the gyroscopic router and is therefore driven in rotation; the connection with the center of suspen'sion is done by a ball mounting allowing the relative axial depointing.
  • the invention proposes to produce a video image formation device by circular field scanning, comprising a receiving optic which produces the image of the field observed in a plane perpendicular to the axis of the receiving optics, a photodetector device constituted a photodetector strip located in this plane and arranged along a radius of the circular field scan, and intermediate optical means for producing a circular image scan in this plane, these optical means using a straight reflective dihedral driven in rotation around an axis perpendicular to its edge and corresponding to the axis of the receiving optics, the video image forming device being characterized in that the receiving optics is constituted by means of a Cassegrain assembly comprising a main mirror which focuses the incident radiation on said photodetector strip by means of a secondary mirror mounted on the same optical axis, the secondary mirror re being constituted by said rotating dihedral.
  • FIG. 1 represents a video image forming device according to the invention, comprising a receiving optic 1 which produces the image of the field observed in a plane, a photodetector array 3 located in this plane and intermediate optical means using a right dihedron reflective 2 driven into rotation around an axis perpendicular to its edge to produce a circular scan by rotation of the image of the field in front of the bar 3 arranged radially.
  • the receiving optics is constituted by a Cassegrain assembly with a main mirror 1 which focuses the incident radiation via the secondary mirror 2 mounted on the same optical axis Z.
  • the secondary mirror is constituted by the rotating dihedron 2 , the axis of rotation of the reflecting dihedron corresponding to the optical axis Z of the Cassegrain assembly.
  • the radiation received after reflections on the mirrors 1 and 2 is focused in the plane of the bar 3.
  • the block 4 represents means for driving the reflecting dihedron in rotation 2.
  • the block 5 represents the processing and operating circuits of the SV video signal detected by the photodetector element strip 3.
  • this device has certain characteristics which are recalled with the aid of FIG. 2.
  • a longitudinal section plane called PNI non-inverting plane
  • the device forms a direct image of an object; thus the object OB has for image O'B 'of the same direction.
  • the inverting plane PI In a second longitudinal section plane, called the inverting plane PI and perpendicular to the previous one, the optical device forms an inverted image of an object; thus, the object OA will have the image O'A 'of reverse direction.
  • the growth on this diagram has not been taken into account. It appears that the device is equivalent to a symmetry with respect to a straight line in the image plane. If the optical device D is rotated by an angle 8, the image rotates in the same direction by a double angle of 26, this property being general for all these types of devices.
  • a right-angled dihedral consisting of two plane mirrors placed in an optical path thus provides a symmetrical image with respect to the line of intersection of the two faces of the dihedron, called the edge of the dihedron.
  • This property of geometric optics is well known and if we consider an axis of rotation perpendicular to the edge, we have an inverting plane containing the axis of rotation and perpendicular to the edge of the dihedral and a non-inverting plane containing the axis of rotation and the dihedral edge.
  • the mounting with right dihedral turning thus solves well the problem of the circular sweeping of the field.
  • the solution chosen which consists in replacing the secondary of the Cassegrain type optics by the dihedral whose edge takes the place of the secondary mirror is particularly advantageous in an application to a seeker with video imaging, given that the axis of rotation is finds it confused with the optical axis of the device.
  • the condition to check is that the edge of the dihedral passes through the axis of rotation and is perpendicular to this axis.
  • the dihedral is positioned symmetrically with respect to the axis of rotation but, for practical and production considerations, the symmetrical position will be the one chosen because it avoids having disadvantages on the optical plane on the one hand taking into account that the pupil would be asymmetrical, on the mechanical plane on the other hand in particular in a gyro-stabilized version as a result of the imbalance and balancing questions that this is likely to pose .
  • Figures 3 and 4 show the optical path of the light rays. It was considered that the angular field observed is between the extreme directions given by the rays R2 and R3, the radius R1 corresponding to the middle direction parallel to the optical axis Z of the system. The dihedral edge is perpendicular to the figure plane in Fig. 3 and passes through this plane in the case of FIG. 4.
  • the assembly includes additional optical elements, in particular an image recovery optic 7 which makes it possible to place the detector 3 further downstream on the Z axis. In a version according to FIG. 1 the detector would be placed at the focal plane indicated PF.
  • the Cassegrain assembly grouping the main mirror 1 and the secondary mirror formed by the rotating dihedral 2 focuses the field radiation on the focal plane PF where the image of the field will be located.
  • the optics 7 constituted by a converging lens makes it possible to take up the image of the field in the plane PF to reform it downstream in a plane where the photodetector bar 3 will be positioned.
  • This version corresponds to that of a fixed sensor carried by the missile body.
  • the lens 7 is not useful in its central part and this can possibly be hollowed out.
  • a spherical mirror 8 is provided, the center of curvature of which is located on the axis Z in the plane where the bar is positioned, so as to return the radiation reflected by the latter towards the detector.
  • the reflecting deposit is distributed on a spherical support, providing the transparent circular area necessary for the passage of useful radiation.
  • the mirror is located where a real pupil PR is formed.
  • the support can be produced using an element made of transparent material, glass for example, or using two opaque elements, metallic for example.
  • the mounting with the mirror 8 is useful in the case of a cooled infrared detector because it makes it possible to limit the noise resulting from the detection of the continuous background by the detector. This technique is described in French patent publication number 2,487,512 (filing no.
  • Fig. 5 relates to an achievement for a dihedral circular scanning seeker in which the detector or sensor is fixed, carried by the missile body.
  • the detector bar 3 is positioned on the cold table of a cooling device 10, for example a cryostat.
  • the bar is positioned at the center of suspension of the gyroscope which is indicated by the intersection of the Y axis with the Z axis, the Y axis being one of the axes of mechanical rotation of the gimbal.
  • the optical assembly 1 and 2 is driven in rotation by the gyroscopic router 11 which gives an angular speed of image analysis double the speed of rotation of the router. There is a slight difference in terms of the recovery optics vis-à-vis the representation. 3 and Fig.
  • this optic is constituted by two lenses, a lens 7A which transforms the beam coming from the focal plane into a parallel beam and a lens 7B which reconcentrates the beam at the level of the detector 3.
  • the spherical mirror 8 is constituted by a set of two mechanical parts 8A and 8B, the part 8B being integral with the transparent optics 7B which is hollowed out in its central part.
  • the bearings 12 make it possible to separate the terminal optics 7B-8A-8B from the rotation of the router.
  • the router 11 comprises an annular magnet 13 which undergoes the magnetic effects generated by the coils 14 said to be of precession and which are fixedly mounted on a mechanical support 15 which is integral with the body 16 of the missile.
  • the router 11 is decoupled from the frame 17 linked to the central gimbal by the ball bearings 12.
  • the second mechanical axis of the gimbal is perpendicular to the plane of the figure and not visible in the median plane of cut shown.
  • the rotation along the Y axis is decoupled from the body of the missile 16 by the ball bearings 18.
  • the secondary mirror 2 consisting of the right dihedron is supported by arms 19, for example two thin arms to mechanically couple it to the spinning top. Note also the presence of a diaphragm 20 which limits the entry of stray radiation.
  • Fig. 6 shows a second application to a seeker with circular dihedral scanning and in which this time the sensor is carried by the gimbal and no longer by the missile body, the detector 3 is thus secured to the angular deflection of the aiming axis Z and no longer from the longitudinal axis of the missile.
  • the detector will preferably consist of a detector strip with multiplexing integrated in the focal plane in order to minimize the number of connecting wires going to downstream processing circuits.
  • the optics are particularly simple since it comprises the main mirror of the aspheric Cassegrain, and the secondary mirror constituted by the dihedral 2. There is no dioptric element, the spectral band is therefore very wide.
  • the angular deflections of the aiming axis Z are not limited as in the case of FIG. 5 since the sensor is integral with the gyroscopic structure.

Description

La présente invention concerne un dispositif d'analyse d'un champ spatial pour la localisation angulaire d'un objet rayonnant dans le champ et dans lequel l'image vidéo est formée par balayage circulaire de champ. L'invention s'applique plus précisément aux systèmes équipés d'une barrette détectrice en tant que dispositif photodétecteur ou senseur d'image, et où l'on effectue une analyse circulaire de l'image du champ instantané observé.The present invention relates to a device for analyzing a spatial field for the angular localization of a radiating object in the field and in which the video image is formed by circular field scanning. The invention applies more precisely to systems equipped with a detector strip as a photodetector or image sensor, and in which a circular analysis of the image of the instantaneous field observed is carried out.

Une application plus particulièrement envisagée se situe dans le domaine des autodirecteurs pour missiles, principalement des autodirecteurs infrarouges à imagerie ou pseudo-imagerie.A more particularly envisaged application is in the field of seeker for missiles, mainly infrared seeker with imaging or pseudo-imaging.

Il est connu par le livre de J.M. Lloyd intitulé "Thermal imaging systems" édité par Plenum Press 2ème édition 1979, notamment aux pages 319,322 et 323, de produire un balayage circulaire d'image par rotation de celle-ci devant une barrette détectrice disposée radialement, en utilisant un dièdre droit réfléchissant entraîné en rotation autour d'un axe perpendiculaire à son arête.It is known from the book by JM Lloyd entitled "Thermal imaging systems" published by Plenum Press 2nd edition 1979, in particular on pages 319, 322 and 323, to produce a circular scanning of image by rotation of the latter in front of a detector strip arranged radially , using a right reflective dihedral driven in rotation around an axis perpendicular to its edge.

Suivant une première solution l'axe de rotation est parallèle à l'axe de l'optique réceptrice et un miroir additionnel est utilisé pour réfléchir le rayonnement vers la barrette qui est déportée par rapport à l'axe. Selon une autre solution, l'axe de rotation est perpendiculaire à celui de l'optique et un miroir interne incliné à 45° sur l'axe optique renvoie le rayonnement vers le dièdre qui le réfléchit vers le détecteur disposé à l'arrière d'une ouverture ménagée dans le miroir.According to a first solution, the axis of rotation is parallel to the axis of the receiving optics and an additional mirror is used to reflect the radiation towards the bar which is offset relative to the axis. According to another solution, the axis of rotation is perpendicular to that of the optics and an internal mirror inclined at 45 ° on the optical axis returns the radiation towards the dihedral which reflects it towards the detector placed at the rear of an opening in the mirror.

Aucune de ces solutions n'est aisément adaptable avec une liaison gyro-stabilisée de l'optique par défaut de symétrie d'exécution par rapport à l'axe optique; ces montages ne permettent pas d'utiliser de manière simple la toupie pour faire tourner le dièdre, Il y a une perte photométrique à cause du miroir additionnel qui intercepte une partie du rayonnement, ou à cause du rayonnement qui n'est pas réfléchi à l'endroit de la partie évidée.None of these solutions is easily adaptable with a gyro-stabilized link of the optics by default of symmetry of execution with respect to the optical axis; these assemblies do not allow the router to be used in a simple manner to rotate the dihedral, there is a photometric loss because of the additional mirror which intercepts part of the radiation, or because of the radiation which is not reflected at the location of the hollowed out part.

Le but de l'invention est de réaliser un dispositif de formation d'image vidéo en balayage circulaire de champ dans lequel ces inconvénients sont évités et qui s'intègre bien dans une version gyrostabilisée.The object of the invention is to provide a video image forming device in circular field scanning in which these drawbacks are avoided and which fits well in a gyro-stabilized version.

Il est connu par la publication de brevet GB-A-2.075.789 un dispositif d'imagerie qui utilise le balayage tournant précité avec une optique à dièdre et qui est destiné à un autodirecteur de missile. Il comporte une optique réceptrice dioptrique avec repliement des rayons par un ensemble de miroirs dont deux forment un dièdre percé pour le passage des rayons focalisés par la lentille réceptrice.It is known from patent publication GB-A-2,075,789 an imaging device which uses the above-mentioned rotating scanning with dihedral optics and which is intended for a missile seeker. It includes a dioptric receiving optic with folding of the rays by a set of mirrors, two of which form a dihedral pierced for the passage of rays focused by the receiving lens.

Il est connu par ailleurs, suivant la publication de brevet US-A-4.266.173 un dispositif autodirecteur de missile à détecteur quatre quadrans et équipé d'une stabilisation anti-roulis. Suivant une réalisation, une optique réceptrice à miroirs est montée sur la toupie gyroscopique et est donc entraînée en rotation; la liaison avec le centre de suspen'sion se fait par un montage à boule permettant le dépointage axial relatif.It is also known, according to patent publication US-A-4,266,173, a self-directing missile device with four quadrant detector and equipped with anti-roll stabilization. According to one embodiment, a receiving optical mirror is mounted on the gyroscopic router and is therefore driven in rotation; the connection with the center of suspen'sion is done by a ball mounting allowing the relative axial depointing.

L'invention propose de réaliser un dispositif de formation d'image vidéo par balayage circulaire de champ, comportant une optique réceptrice qui produit l'image du champ observée dans un plan perpendiculaire à l'axe de l'optique réceptrice, un dispositif photodétecteur constitué d'une barrette photodétectrice localisée dans ce plan et disposée selon un rayon du balayage circulaire de champ, et des moyens optiques intermédiaire pour produire un balayage circulaire d'image dans ce plan, ces moyens optiques utilisant un dièdre droit réfléchissant entraîné en rotation autour d'un axe perpendiculaire à son arête et correspondant à l'axe de l'optique réceptrice, le dispositif de formation d'image vidéo étant caractérisé en ce que l'optique réceptrice est constituée au moyen d'un montage Cassegrain comportant un miroir principal qui focalise le rayonnement incident sur ladite barrette photodétectrice par l'intermédiaire d'un miroir secondaire montés sur le même axe optique, le miroir secondaire étant constitué par ledit dièdre tournant.The invention proposes to produce a video image formation device by circular field scanning, comprising a receiving optic which produces the image of the field observed in a plane perpendicular to the axis of the receiving optics, a photodetector device constituted a photodetector strip located in this plane and arranged along a radius of the circular field scan, and intermediate optical means for producing a circular image scan in this plane, these optical means using a straight reflective dihedral driven in rotation around an axis perpendicular to its edge and corresponding to the axis of the receiving optics, the video image forming device being characterized in that the receiving optics is constituted by means of a Cassegrain assembly comprising a main mirror which focuses the incident radiation on said photodetector strip by means of a secondary mirror mounted on the same optical axis, the secondary mirror re being constituted by said rotating dihedral.

Les deux publications de brevet précités n'utilisent pas comme dans la solution proposée une optique réceptrice Cassegrain dont le miroir secondaire est constitué par un dièdre tournant autour de l'axe optique; une telle optique ne comporte que des miroirs ce qui lui confère plusieurs avantages notamment par rapport à une solution à lentille réceptrice du point de vue de la légèreté et du coefficient de transmission optique.The two aforementioned patent publications do not use, as in the proposed solution, a Cassegrain receiving optic, the secondary mirror of which is constituted by a dihedron rotating around the optical axis; such an optic only comprises mirrors which gives it several advantages in particular compared to a receiving lens solution from the point of view of lightness and of the optical transmission coefficient.

Les particularités et avantages de la présente invention apparaîtront dans la description qui suit donnée à titre d'exemple non limitatif, à l'aide des figures annexées qui représentent:

  • - Fig. 1, un schéma simplifié d'un dispositif de formation d'image vidéo conforme à l'invention;
  • - Fig. 2, un schéma rappelant le principe d'élaboration d'un balayage circulaire d'image à l'aide d'un dispositif optique tournant;
  • - Fig. 3, le cheminement optique du rayonnement dans un montage dérivé de celui de la Fig. 1 et dans un plan passant par l'axe optique et orthogonal à l'arête du dièdre réfléchissant;
  • - Fig. 4, le cheminement du rayonnement reçu dans la même version que la Fig. 3 mais cette fois dans un plan orthogonal au précédent et passant par l'arête du dièdre réfléchissant;
  • - Fig. 5, un exemple de réalisation d'un dispositif de formation d'image vidéo conforme à l'invention dans une version gyroscopée à détecteur fixe;
  • - Fig. 6, un autre mode de réalisation d'un dispositif de formation d'image vidéo conforme à l'invention dans une version gyroscopée à détecteur porté par la tête stabilisée.
The features and advantages of the present invention will appear in the description which follows, given by way of nonlimiting example, with the aid of the appended figures which represent:
  • - Fig. 1, a simplified diagram of a video image forming device according to the invention;
  • - Fig. 2, a diagram recalling the principle of developing a circular image scan using a rotating optical device;
  • - Fig. 3, the optical path of the radiation in an arrangement derived from that of FIG. 1 and in a plane passing through the optical and orthogonal axis to the edge of the reflecting dihedral;
  • - Fig. 4, the path of the radiation received in the same version as FIG. 3 but this time in a plane orthogonal to the previous one and passing through the edge of the reflecting dihedral;
  • - Fig. 5, an exemplary embodiment of a video image forming device according to the invention in a gyro version with fixed detector;
  • - Fig. 6, another embodiment of a video image forming device according to the invention in a gyroscopic version with detector carried by the stabilized head.

Le schéma de la Fig. 1 représente un dispositif de formation d'image vidéo conforme à l'invention, comportant une optique réceptrice 1 qui produit l'image du champ observé dans un plan, une barrette photodétectrice 3 localisée dans ce plan et des moyens optiques intermédiaires utilisant un dièdre droit réfléchissant 2 entraîné en rotation autour d'un axe perpendiculaire à son arête pour produire un balayage circulaire par rotation de l'image du champ devant la barrette 3 disposée radialement. Selon l'invention l'optique réceptrice est constituée par un montage Cassegrain avec un miroir principal 1 qui focalise le rayonnement incident par l'intermédiaire du miroir secondaire 2 monté sur le même axe optique Z. Le miroir secondaire est constitué par le dièdre tournant 2, l'axe de rotation du dièdre réfléchissant correspondant à l'axe optique Z du montage Cassegrain. Le rayonnement reçu après réflexions sur les miroirs 1 et 2 est focalisé dans le plan de la barrette 3. Le bloc 4 représente des moyens d'entraînement en rotation du dièdre réfléchissant 2. Le bloc 5 représente les circuits de traitement et d'exploitation du signal vidéo SV détecté par la barrette d'élément photodétecteurs 3.The diagram in FIG. 1 represents a video image forming device according to the invention, comprising a receiving optic 1 which produces the image of the field observed in a plane, a photodetector array 3 located in this plane and intermediate optical means using a right dihedron reflective 2 driven into rotation around an axis perpendicular to its edge to produce a circular scan by rotation of the image of the field in front of the bar 3 arranged radially. According to the invention, the receiving optics is constituted by a Cassegrain assembly with a main mirror 1 which focuses the incident radiation via the secondary mirror 2 mounted on the same optical axis Z. The secondary mirror is constituted by the rotating dihedron 2 , the axis of rotation of the reflecting dihedron corresponding to the optical axis Z of the Cassegrain assembly. The radiation received after reflections on the mirrors 1 and 2 is focused in the plane of the bar 3. The block 4 represents means for driving the reflecting dihedron in rotation 2. The block 5 represents the processing and operating circuits of the SV video signal detected by the photodetector element strip 3.

Pour produire un balayage circulaire à l'aide d'un dispositif optique tournant, il faut et il suffit que ce dispositif présente certaines caractéristiques qui sont rappelées à l'aide de la Fig. 2. Dans un plan de coupe longitudinale, dit plan non inverseur PNI, le dispositif forme une image directe d'un objet; ainsi l'objet OB a pour image O'B' de même sens. Dans un deuxième plan de coupe longitudinale, dit plan inverseur PI et perpendiculaire au précédent, le dispositif optique forme une image inversée d'un objet; ainsi, l'objet OA aura pour image O'A' de direction inversée. Il n'a pas été tenu compte du grandissement sur ce schéma. Il apparaît que le dispositif est équivalent à une symétrie par rapport à une droite dans le plan image. Si l'on fait tourner le dispositif optique D d'un angle 8, l'image tourne dans le même sens d'un angle double de 26, cette propriété étant générale pour tous ces types de dispositifs.To produce a circular scan using a rotating optical device, it is necessary and sufficient that this device has certain characteristics which are recalled with the aid of FIG. 2. In a longitudinal section plane, called PNI non-inverting plane, the device forms a direct image of an object; thus the object OB has for image O'B 'of the same direction. In a second longitudinal section plane, called the inverting plane PI and perpendicular to the previous one, the optical device forms an inverted image of an object; thus, the object OA will have the image O'A 'of reverse direction. The growth on this diagram has not been taken into account. It appears that the device is equivalent to a symmetry with respect to a straight line in the image plane. If the optical device D is rotated by an angle 8, the image rotates in the same direction by a double angle of 26, this property being general for all these types of devices.

Un dièdre rectangle constitué de deux miroirs plan placés dans un chemin optique fournit ainsi une image symétrique par rapport à la droite d'intersection des deux faces du dièdre, dite arête du dièdre. Cette propriété d'optique géométrique est bien connue et si l'on considère un axe de rotation perpendiculaire à l'arête, on dispose d'un plan inverseur contenant l'axe de rotation et perpendiculaire à l'arête du dièdre et d'un plan non inverseur contenant l'axe de rotation et l'arête du dièdre. Le montage à dièdre droit tournant résout donc bien le problème du balayage circulaire du champ.A right-angled dihedral consisting of two plane mirrors placed in an optical path thus provides a symmetrical image with respect to the line of intersection of the two faces of the dihedron, called the edge of the dihedron. This property of geometric optics is well known and if we consider an axis of rotation perpendicular to the edge, we have an inverting plane containing the axis of rotation and perpendicular to the edge of the dihedral and a non-inverting plane containing the axis of rotation and the dihedral edge. The mounting with right dihedral turning thus solves well the problem of the circular sweeping of the field.

La solution retenue qui consiste à remplacer le secondaire de l'optique type Cassegrain par le dièdre dont l'arête prend la place du miroir secondaire est particulièrement intéressante dans une application à un autodirecteur à imagerie vidéo, étant donné que l'axe de rotation se trouve confondu avec l'axe optique du dispositif. Sur le plan du principe, la condition à vérifier est que l'arête du dièdre passe par l'axe de rotation et est perpendiculaire à cet axe. Ainsi, il n'est pas obligatoire que le dièdre soit positionné symétriquement par rapport à l'axe de rotation mais, pour des considérations d'ordre pratique et de réalisation, la position symétrique sera celle retenue car elle évite d'avoir des inconvénients sur le plan optique d'une part compte-tenu que la pupille serait disy- métrique, sur le plan mécanique d:autre-part en particulier dans une version gyro-stabilisée par suite des questions de balourd et d'équilibrage que celà risque de poser.The solution chosen which consists in replacing the secondary of the Cassegrain type optics by the dihedral whose edge takes the place of the secondary mirror is particularly advantageous in an application to a seeker with video imaging, given that the axis of rotation is finds it confused with the optical axis of the device. In terms of principle, the condition to check is that the edge of the dihedral passes through the axis of rotation and is perpendicular to this axis. Thus, it is not obligatory that the dihedral is positioned symmetrically with respect to the axis of rotation but, for practical and production considerations, the symmetrical position will be the one chosen because it avoids having disadvantages on the optical plane on the one hand taking into account that the pupil would be asymmetrical, on the mechanical plane on the other hand in particular in a gyro-stabilized version as a result of the imbalance and balancing questions that this is likely to pose .

Les figures 3 et 4 montrent le trajet optique des rayons lumineux. On a considéré que le champ angulaire observé est compris entre les directions extrêmes données par les rayons R2 et R3, le rayon R1 correspondant à la direction médiane parallèle à l'axe optique Z du système. L'arête du dièdre est perpendiculaire au plan de figure dans la Fig. 3 et passe par ce plan dans le cas de la Fig. 4. Par rapport à la structure de la Fig. 1, le montage comporte des éléments optiques supplémentaires, en particulier une optique de reprise d'image 7 ce qui permet de placer le détecteur 3 plus loin en aval sur l'axe Z. Dans une version selon la Fig. 1 le détecteur se trouverait placé au plan focal indiqué PF. Chacune de ces versions correspond à un mode de réalisation décrit ultérieurement à l'aide des figures 5 et 6 où le senseur est fixe ou porté par la partie gyrostabilisée. L'ensemble Cassegrain groupant le miroir principal 1 et le miroir secondaire formé par le dièdre tournant 2 focalise le rayonnement de champ au plan focal PF où va se trouver l'image du champ. L'optique 7 constituée par une lentille convergente permet de reprendre l'image du champ dans le plan PF pour la reformer en aval dans un plan où sera positionnée la barrette photodétectrice 3. Cette version correspond à celle d'un senseur fixe porté par le corps du missile. Comme on peut le voir la lentille 7 n'est pas utile dans sa partie centrale et celle-ci peut éventuellement être évidée. En complément, il est prévu un miroir sphérique 8 dont le centre de courbure se situe sur l'axe Z dans le plan où est positionnée la barrette, en sorte de renvoyer vers le détecteur le rayonnement réfléchi par celui-ci. Le dépôt réflichissant est réparti sur un support sphérique en ménageant la zone circulaire transparente nécessaire pour le passage du rayonnement utile. Le miroir se situe à l'endroit où se trouve formée une pupille réelle PR. Le support peut être réalisé à l'aide d'un élément en matériau transparent, un verre par exemple, ou à l'aide de deux éléments opaques, métalliques par exemple. Le montage avec le miroir 8 est utile dans le cas d'un détecteur infrarouge refroidi car il permet de limiter le bruit résultant de la détection du fond continu par le détecteur. Cette technique est décrite dans la publication de brevet français numéro 2.487.512 (dépôt n° 80.16126 du 22 juillet 1980). Il est avantageux dans le cas d'un senseur infrarouge, fixe au centre de suspension du gyroscope, de placer dans le plan de pupille réelle PR le miroir sphérique 8 dont le centre est le détecteur lui-même ce qui permet de diminuer le bruit en sortie du détecteur. L'avantage est d'autant plus important que dans un concept à détecteur fixe, à cause des débattements de la ligne de visée, le champ de vison du détecteur est nécessairement plus grand que ce qu'il faudrait pour couvrir la pupille utile.Figures 3 and 4 show the optical path of the light rays. It was considered that the angular field observed is between the extreme directions given by the rays R2 and R3, the radius R1 corresponding to the middle direction parallel to the optical axis Z of the system. The dihedral edge is perpendicular to the figure plane in Fig. 3 and passes through this plane in the case of FIG. 4. With respect to the structure of FIG. 1, the assembly includes additional optical elements, in particular an image recovery optic 7 which makes it possible to place the detector 3 further downstream on the Z axis. In a version according to FIG. 1 the detector would be placed at the focal plane indicated PF. Each of these versions corresponds to an embodiment described later using FIGS. 5 and 6 where the sensor is fixed or carried by the gyrostabilized part. The Cassegrain assembly grouping the main mirror 1 and the secondary mirror formed by the rotating dihedral 2 focuses the field radiation on the focal plane PF where the image of the field will be located. The optics 7 constituted by a converging lens makes it possible to take up the image of the field in the plane PF to reform it downstream in a plane where the photodetector bar 3 will be positioned. This version corresponds to that of a fixed sensor carried by the missile body. As can be seen, the lens 7 is not useful in its central part and this can possibly be hollowed out. In addition, a spherical mirror 8 is provided, the center of curvature of which is located on the axis Z in the plane where the bar is positioned, so as to return the radiation reflected by the latter towards the detector. The reflecting deposit is distributed on a spherical support, providing the transparent circular area necessary for the passage of useful radiation. The mirror is located where a real pupil PR is formed. The support can be produced using an element made of transparent material, glass for example, or using two opaque elements, metallic for example. The mounting with the mirror 8 is useful in the case of a cooled infrared detector because it makes it possible to limit the noise resulting from the detection of the continuous background by the detector. This technique is described in French patent publication number 2,487,512 (filing no. 80.16126 of July 22, 1980). It is advantageous in the case of an infrared sensor, fixed at the center of suspension of the gyroscope, to place in the real pupil plane PR the spherical mirror 8 whose center is the detector itself which makes it possible to reduce the noise by detector output. The advantage is all the more important since in a concept with a fixed detector, because of the deflections of the line of sight, the field of vision of the detector is necessarily greater than what would be necessary to cover the useful pupil.

La Fig. 5 se rapporte à une réalisation pour un autodirecteur à balayage circulaire à dièdre dans lequel le détecteur ou senseur est fixe, porté par le corps du missile. La barrette détectrice 3 est positionnée sur la table froide d'un dispositif de refroidissement 10, par exemple un cryostat. La barrette se trouve positionnée au centre de suspension du gyroscope qui est indiqué par l'intersection de l'axe Y avec l'axe Z, l'axe Y étant l'un des axes de rotation mécanique du cardan. Dans ce montage l'ensemble optique 1 et 2 est entraîné en rotation par la toupie gyroscopique 11 ce qui donne une vitesse angulaire d'analyse d'image double de la vitesse de rotation de la toupie. Il y a une légère différence au niveau de l'optique de reprise vis-à-vis de la représentation Fig. 3 et Fig. 4 en ce sens que cette optique est consituée par deux lentilles, une lentille 7A qui transforme le faisceau provenant du plan focal en un faisceau parallèle et une lentille 7B qui recon- centre le faisceau au niveau du détecteur 3. Le miroir sphérique 8 est constitué par un ensemble de deux pièces mécanique 8A et 8B, la pièce 8B étant solidaire de l'optique transparente 7B qui est évidée dans sa partie centrale. Les roulements 12 permettent de désolidariser l'optique terminale 7B-8A-8B de la rotation de la toupie. La toupie 11 comporte un aimant annulaire 13 qui subit les effets magnétiques engendrés par les bobines 14 dites de précession et qui sont montées fixes sur un support mécanique 15 qui est solidaire du corps 16 du missile. La toupie 11 est découplée du cadre 17 lié au cardan central par les roulements à billes 12. Le deuxième axe mécanique du cardan est perpendiculaire au plan de figure et non visible dans le plan médian de coupe représenté. La rotation selon l'axe Y est découplée du corps du missile 16 par les roulements à billes 18. Le miroir secondaire 2 consistué par le dièdre droit est supporté par des bras 19, par exemple deux bras de faible épaisseur pour le coupler mécaniquement à la toupie. On notera également la présence d'un diaphragme 20 qui permet de limiter l'entrée de rayonnement parasite.Fig. 5 relates to an achievement for a dihedral circular scanning seeker in which the detector or sensor is fixed, carried by the missile body. The detector bar 3 is positioned on the cold table of a cooling device 10, for example a cryostat. The bar is positioned at the center of suspension of the gyroscope which is indicated by the intersection of the Y axis with the Z axis, the Y axis being one of the axes of mechanical rotation of the gimbal. In this arrangement, the optical assembly 1 and 2 is driven in rotation by the gyroscopic router 11 which gives an angular speed of image analysis double the speed of rotation of the router. There is a slight difference in terms of the recovery optics vis-à-vis the representation. 3 and Fig. 4 in the sense that this optic is constituted by two lenses, a lens 7A which transforms the beam coming from the focal plane into a parallel beam and a lens 7B which reconcentrates the beam at the level of the detector 3. The spherical mirror 8 is constituted by a set of two mechanical parts 8A and 8B, the part 8B being integral with the transparent optics 7B which is hollowed out in its central part. The bearings 12 make it possible to separate the terminal optics 7B-8A-8B from the rotation of the router. The router 11 comprises an annular magnet 13 which undergoes the magnetic effects generated by the coils 14 said to be of precession and which are fixedly mounted on a mechanical support 15 which is integral with the body 16 of the missile. The router 11 is decoupled from the frame 17 linked to the central gimbal by the ball bearings 12. The second mechanical axis of the gimbal is perpendicular to the plane of the figure and not visible in the median plane of cut shown. The rotation along the Y axis is decoupled from the body of the missile 16 by the ball bearings 18. The secondary mirror 2 consisting of the right dihedron is supported by arms 19, for example two thin arms to mechanically couple it to the spinning top. Note also the presence of a diaphragm 20 which limits the entry of stray radiation.

La Fig. 6 représente une deuxième application à un autodirecteur à balayage circulaire à dièdre et dans laquelle cette fois le senseur est porté par le cardan et non plus par le corps du missile, le détecteur 3 est ainsi solidaire du dépointage angulaire de l'axe de visée Z et non plus de l'axe longitudinal du missile. Dans cette version le détecteur sera préférentiellement constitué par une barrette détectrice avec multiplexage intégré dans le plan focal afin de minimiser le nombre de fils de liaison allant vers des circuits de traitement en aval. Dans cette configuration l'optique est particulièrement simple puisqu'elle comporte le miroir principal du Cassegrain asphérique, et le miroir secondaire constitué par le dièdre 2. Il n'y a pas d'élément dioptrique, la bande spectrale est donc très large. Les débattements angulaires de l'axe Z de visée ne sont pas limités comme dans le cas de la Fig. 5 étant donné que le senseur est solidaire de la structure gyroscopée.Fig. 6 shows a second application to a seeker with circular dihedral scanning and in which this time the sensor is carried by the gimbal and no longer by the missile body, the detector 3 is thus secured to the angular deflection of the aiming axis Z and no longer from the longitudinal axis of the missile. In this version, the detector will preferably consist of a detector strip with multiplexing integrated in the focal plane in order to minimize the number of connecting wires going to downstream processing circuits. In this configuration the optics are particularly simple since it comprises the main mirror of the aspheric Cassegrain, and the secondary mirror constituted by the dihedral 2. There is no dioptric element, the spectral band is therefore very wide. The angular deflections of the aiming axis Z are not limited as in the case of FIG. 5 since the sensor is integral with the gyroscopic structure.

Claims (5)

1. Device for forming a video image by circular field scanning, comprising an optical receiving unit (1) producing the image of the observed field in a plane perpendicular to the axis (Z) of the optical receiving unit, a photodetector device made up by a photodetector bar (3) located in this plane and arranged along a radius of the circular field scanning, and intermediate optical means to produce a circular image scanning in this plane, these optical means using a reflecting upright dihedron (2) rotated about an axis perpendicular to its edge and corresponding to the axis of the optical receiving unit, the video image forming device being characterized in that the optical receiving unit is constituted by means of a Cassegrain arrangement comprising a main mirror (1) focusing the incident radiation on said photodetector bar (3) by a secondary mirror (2) mounted on the same optical axis (Z), the secondary mirror being made up by said rotating dihedron.
2. Device according to claim 1, and wherein an additional optical element is provided to recover the field image formed in the focal plane of the optical receiving unit to restore this image in another plane wherein the bar is located, the image recovering optical element being a convergent lens, characterized in that this lens (7) determines, with the Cassegrain arrangement, an intermediate plane between the lens and the photodetector bar wherein a real diaphragm (PR) of circular shape is formed, and in that a spherical mirror (8) is arranged in this plane having a transparent circular zone corresponding to a diaphragm to pass only the useful radiation, the spherical mirror being reflecting (8A, 8B) outside of this zone to reflect onto the detector the radiation emitted by the latter.
3. Device according to any of the preceding claims, characterized in that it comprises gyroscopic stabilizing means for the optical axis (Z) and that the dihedron is driven by the gyro (11) of the gyroscopic arrangement.
4. Device according to claim 3, used to constitute a missile homing device having a movable detector carried by the gyroscope.
5. Device according to any of the combined claims 2 and 3, used to constitute a missile homing device with a stationary detector, characterized in that the detector bar (3) is positioned in the suspension center of the gyroscope and is joined with the body (16) of the missile.
EP19830401158 1982-06-18 1983-06-07 Device for analyzing a spatial field for the angular localization of a radiating object Expired EP0099769B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8210708A FR2528981B1 (en) 1982-06-18 1982-06-18 DEVICE FOR ANALYZING A SPATIAL FIELD FOR THE ANGULAR LOCATION OF A RADIANT OBJECT
FR8210708 1982-06-18

Publications (2)

Publication Number Publication Date
EP0099769A1 EP0099769A1 (en) 1984-02-01
EP0099769B1 true EP0099769B1 (en) 1987-05-20

Family

ID=9275170

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19830401158 Expired EP0099769B1 (en) 1982-06-18 1983-06-07 Device for analyzing a spatial field for the angular localization of a radiating object

Country Status (3)

Country Link
EP (1) EP0099769B1 (en)
DE (1) DE3371691D1 (en)
FR (1) FR2528981B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2764402B1 (en) * 1986-04-21 2003-02-21 Aerospatiale SELF-GUIDING SYSTEM FOR MISSILE
FR2688317B1 (en) * 1987-03-09 1994-08-05 Thomson Csf LASER WAVE SPATIAL ANALYSIS DEVICE, PARTICULARLY FOR MISSILE SELF-DIRECTING.
FR2647540B1 (en) * 1989-05-23 1994-03-25 Thomson Csf MISSILE RALLYING DEVICE
FR2670980A1 (en) * 1990-12-20 1992-06-26 Thomson Csf INFRARED DETECTOR HAVING HIGH IDENTIFICATION CAPACITY, AND THERMAL CAMERA COMPRISING SUCH A DETECTOR.
DE4135260C1 (en) * 1991-10-25 1993-02-25 Bodenseewerk Geraetetechnik Gmbh, 7770 Ueberlingen, De

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2418437A1 (en) * 1972-04-15 1975-10-30 Elektro Optik Gmbh & Co Kg Scanner for tracking system - realises centre point modulation by combining scanning and reversion optical systems
US3927254A (en) * 1975-03-13 1975-12-16 Gen Dynamics Corp Optical seeker scanning system
US4266173A (en) * 1979-03-15 1981-05-05 The Boeing Company Roll compensated seeker head
FR2481794A1 (en) * 1980-05-05 1981-11-06 Trt Telecom Radio Electr OPTICAL DEVICE FOR SPATIAL FIELD ANALYSIS AND ANGULAR LOCALIZATION OF A RADIANT OBJECT IN THIS FIELD

Also Published As

Publication number Publication date
EP0099769A1 (en) 1984-02-01
FR2528981B1 (en) 1985-10-25
FR2528981A1 (en) 1983-12-23
DE3371691D1 (en) 1987-06-25

Similar Documents

Publication Publication Date Title
EP1714179B1 (en) Method and device for generating retinal images using the stigmatism of the two foci of a substantially elliptical sight
EP0487385B1 (en) Collimated display system with off-axis spherical mirror for simulator
EP0099769B1 (en) Device for analyzing a spatial field for the angular localization of a radiating object
WO1996007120A1 (en) Orientation locating system for an observation instrument
EP0189217A1 (en) Optical-mechanical analyser with a fixed telemetric field
EP0025398B1 (en) Multiple-field optical system
FR2552893A1 (en) Improvements to observation apparatuses
FR2548384A1 (en) VIDEO IMAGING DEVICE, IN PARTICULAR FOR SELF-DIAGRAM
EP0127914A1 (en) Multi-field panoramic viewer excluding image rotation
EP0100124A1 (en) Optical imaging system for a seeker
EP0425365B1 (en) System for correction of optical aberrations caused by non axial use of spherical cupolas
EP0005705A1 (en) Telescope and its application in binoculars
EP0004813B1 (en) Optical observation instrument
FR2472762A1 (en) BINOCULAR DAY VISION DEVICE
EP0147894B1 (en) Reticular projection device within an optical system
EP0614103B1 (en) Infrared telescope with oscillating mirrors
WO2022214766A1 (en) Dual-field catadioptric telescope
WO1998002769A1 (en) Image rotating optical system and observation system comprising same
FR3090136A1 (en) Enhanced Field of View Telescope
FR2753282A1 (en) Image rotation optical system for CCD detector matrix
EP0104115A2 (en) Viewer with instantaneous enlarged field comprising a mirror and method of manufacturing said mirror
FR3121758A1 (en) Bi-spectral catadioptric telescope
EP1079215A1 (en) High resolution infrared spectroscopic instrument
FR2851054A1 (en) LARGE-FIELD OPTICAL TELESCOPE AND PARTICULARLY FOR ASTRONOMICAL OBSERVATION FROM A SATELLITE
WO2002033438A1 (en) Device with known laser equivalent surface and associated method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE GB IT LI NL SE

17P Request for examination filed

Effective date: 19840314

17Q First examination report despatched

Effective date: 19860115

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI NL SE

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3371691

Country of ref document: DE

Date of ref document: 19870625

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940516

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940524

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940630

Year of fee payment: 12

EAL Se: european patent in force in sweden

Ref document number: 83401158.7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950520

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950524

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950630

Ref country code: CH

Effective date: 19950630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960101

EUG Se: european patent has lapsed

Ref document number: 83401158.7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960607

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970301