EP0095237B1 - Process for the hydrogenation of solid carbonaceous fuses - Google Patents
Process for the hydrogenation of solid carbonaceous fuses Download PDFInfo
- Publication number
- EP0095237B1 EP0095237B1 EP83301913A EP83301913A EP0095237B1 EP 0095237 B1 EP0095237 B1 EP 0095237B1 EP 83301913 A EP83301913 A EP 83301913A EP 83301913 A EP83301913 A EP 83301913A EP 0095237 B1 EP0095237 B1 EP 0095237B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reaction
- hydrogen
- chamber
- fuel
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007787 solid Substances 0.000 title claims description 11
- 238000005984 hydrogenation reaction Methods 0.000 title claims description 9
- 238000000034 method Methods 0.000 title description 17
- 238000006243 chemical reaction Methods 0.000 claims description 47
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 33
- 239000001257 hydrogen Substances 0.000 claims description 33
- 229910052739 hydrogen Inorganic materials 0.000 claims description 33
- 239000007789 gas Substances 0.000 claims description 29
- 239000000376 reactant Substances 0.000 claims description 22
- 239000000446 fuel Substances 0.000 claims description 21
- 239000007795 chemical reaction product Substances 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 10
- 239000003575 carbonaceous material Substances 0.000 claims description 3
- 238000010924 continuous production Methods 0.000 claims description 2
- 239000003245 coal Substances 0.000 description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 12
- 239000000047 product Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000004449 solid propellant Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000012263 liquid product Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000036284 oxygen consumption Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical class [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000002802 bituminous coal Substances 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- -1 coals Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000003090 exacerbative effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/06—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
Definitions
- the invention relates to the hydrogenation of solid carbonaceous fuels and in particular to a process for the manufacture of hydrocarbon- containing fuel gases and/or hydrocarbon liquids from solid carbonaceous fuels by reaction with hydrogen-containing gas in an entrained flow system.
- Coals and coal-like substances are not homogeneous. Some part of their constituent matter reacts more readily with hydrogen than does the remainder; consequently hydrogenation generally leaves a residue which requires more severe conditions for further reaction. Nevertheless, rapid reaction of a large part of the carbon in such fuels can be achieved and is facilitated if the fuel is in a finely divided state and is brought quickly to reaction temperature.
- suspension gasifiers i.e. fluidised and entrained flow systems
- These gasifiers operate at high temperatures and pressures with gas residence times ranging from a few seconds to fractions of a second.
- fluidised gasifiers In fluidised gasifiers, recirculation of solids within the bed leads to good thermal stability, allowing reaction to be initiated with relatively little reactants preheat and thus enabling the preheat to be determined solely by overall thermal balance considerations.
- Superficial velocities typically 0.03-1.5 mls sec- 1 , are low compared with 4.5 mls sec-1 or more in entrained flow systems, however, and this limits the ability of fluidised gasifiers to exploit the rapid reaction rates and achieve high gasifier throughputs.
- Fluidised gasifiers also impose a limit on the proportion of very small material in the feed size range in order to avoid excessive carry-over of fines.
- the coal is injected into the reactor at low temperature and then heated by rapid mixing with injected hot hydrogen.
- Requisite heat is supplied by preheating the gaseous hydrogen to a substantially higher injection temperature than the mixed reactants temperature required to initiate sustained hydrogenation.
- Substantially more hydrogen is fed to the reactor than is consumed in the hydrogenation reaction.
- Excess hydrogen is needed to favour methane synthesis and to supply the coal-heating function.
- Conventional heat exchangers can be used to preheat the hydrogen to about 815°C and the final increment of heat is provided by partial oxidation with a small amount of injected oxygen.
- Co-current flow of reactants in entrained flow gasifiers is the cause of some disadvantageous features, the elimination of which would substantially improve process efficiency.
- One such feature an obvious source of inefficiency, is the use of excess preheated hydrogen-containing gas to heat the pulverised coal to initiate reaction. It is proposed that by reducing this excess, would lead to higher preheat temperatures.
- Another such feature is the injection of oxygen. But the need for oxygen injection arises because the preheat requirements generally exceed what is possible with conventional indirect heaters. Thus it is most probable that minimising the hydrogen provision would increase oxygen consumption, increasing the capital costs and fuel requirements of the oxygen production unit associated with the gasifier. Furthermore, partial combustion with oxygen leads to the formation of significant amounts of carbon oxides and, hence, a reduced degree of conversion of carbon to methane.
- the object of the invention is to avoid the disadvantages which result from co-current flow of the reactants in entrained flow gasifiers.
- the invention provides a continuous process for the hydrogenation of carbonaceous fuels wherein said fuel and a gas comprising hydrogen are continuously introduced into a thermally insulated reaction chamber so constructed as to define an endless path along which reactants and reaction products can circulate within the chamber and said fuel and said gas comprising hydrogen are admixed and introduced in the form of at least one jet through orifice means into the reaction chamber to cause a substantial amount of an admixture of reactants and reaction products to circulate continuously around the said endless path characterised in that said fuel is solid particulate carbonaceous material transported in a stream of a hydrogen containing gas whose temperature is not greater than 200°C and wherein a portion of the reaction products is continuously withdrawn from the chamber, sufficient remaining in the chamber to permit adequate recirculation to support reaction of the fuel particles and produce a reaction product whose temperature is not less than 700°C.
- reaction products' may include products of incomplete reaction and unreacted reactants.
- operating temperatures in the reaction chamber may be maintained, without oxygen injection by employing only moderate preheat temperatures.
- the temperature of said mixture of fuel and gas comprising hydrogen can be lower than that required to initiate and sustain reaction in an conventional entrained flow gasifier.
- Incoming reactants are then raised to a high enough temperature for reaction to begin as they become mixed with hotter recycled products.
- Hydrogen-containing gas suitable for use in the process may be provided by known methods, for example, by reacting hydrocarbons or carbonaceous materials with steam or with steam and oxygen to give mixtures of hydrogen and oxides of carbon. Known methods may then be used, if desired, to increase the hydrogen content of such mixtures. It is envisaged that incompletely reacted particles of solid fuel from the process of the invention itself may be so reacted to provide hydrogenating gas.
- the proportion of hydrogen to be supplied in relation to the solid fuel will depend on the composition of the solid fuel, the composition of the hydrogenating gas, the nature of the products desired and the extent to which the solid fuel reacts but will generally lie within the range of weight ratios from 0.1:1 to 1:1.
- the hydrogen/coal ratio should lie within the range from 0.2:1 to 0.5:1.
- the stream of hydrogen-containing gas, transporting the particles of solid fuel into the reaction chamber may but need not be gently preheated up to a maximum temperature of 200°C. Above this temperature the effect of heat on the particles of solid fuel is such as to make their transportation increasingly difficult and eventually impossible.
- limitations on the preheat temperature of the gas comprising hydrogen arise solely from the design criteria which govern the construction of fired heaters for operation at high pressure. It is a feature of the invention that the required preheat temperatures of the gas comprising hydrogen are comfortably within the capabilities of heaters which can be constructed using known, present day technology. That is to say, in general, that the preheat temperature need not exceed about 800°C and can be substantially lower. In the manufacture of SNG from coal, it is preferred that the gas comprising hydrogen should be preheated to a temperature within the range from 600 to 800°C.
- the circulation of gas within the reaction chamber is caused by the transfer of momentum from the rapidly moving stream or streams of reactants entering the reaction chamber to the products already in the reaction chamber.
- the magnitude of the circulatory effect may be specified in terms of the recirculation ratio, that is to say, the ratio of the volume of gas circulating within the reaction chamber to the volume of gas withdrawn from the reaction chamber during one complete period of the circulatory motion.
- recirculation ratios in the region of 2:1, suffice to enable temperatures, of the mixed reactants and products to be obtained which are well above the temperature at which the exothermic reaction is initiated.
- the use of higher recirculation ratios will lead to greater temperature uniformity within the reaction chamber and, consequently, will influence the nature of the reaction products. Whether it is desirable to use higher recirculation ratios will largely depend on what products the process is required to produce. In the manufacture of SNG from coal it is preferred that the recirculation ratio should lie within the range from 2:1 to 10:1.
- the process of the invention in the production of both gaseous and liquid products, is not pressure sensitive, although it is preferred that the process be carried out at pressures in excess of 5 bars.
- reaction temperature is preferably between 800°C and 1000°C with a residence time ranging between 0.01 to 5 seconds depending upon both the reaction temperature and the nature of the carbonaceous fuel.
- a typical residence time would be about 0.1 second.
- the reaction chamber advantageously comprises a generally cylindrical thermally insulated vessel having mounted coaxially within it a hollow cylindrical member, optionally taking the form of a venturi, which is shorter than the internal length of the vessel and which divides the interior of the reaction chamber into an inner region within the cylindrical member and an outer region of annular cross-section, the two regions being in communication with each other beyond the ends of the hollow cylindrical member to form the aforesaid endless path, and orifice means arranged to introduce the reactants at or close to one end of the vessel and axially towards the other end of the vessel.
- the rapidly moving stream of reactants entering the reaction chamber passes along the inner region of the chamber, carrying reaction products already in the chamber along with it, and the moving body of gas and entrained particles then returns along the outer region of the chamber to the vicinity of the orifice means where it receives fresh impetus from the stream of reactants leaving the orifice means and starts a further cycle of the circulatory movement.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Hydrogen, Water And Hydrids (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8215088 | 1982-05-24 | ||
GB08215088A GB2121426A (en) | 1982-05-24 | 1982-05-24 | Hydrogenated carbonaceous solids |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0095237A2 EP0095237A2 (en) | 1983-11-30 |
EP0095237A3 EP0095237A3 (en) | 1985-01-16 |
EP0095237B1 true EP0095237B1 (en) | 1986-10-29 |
Family
ID=10530579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83301913A Expired EP0095237B1 (en) | 1982-05-24 | 1983-04-06 | Process for the hydrogenation of solid carbonaceous fuses |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0095237B1 (enrdf_load_stackoverflow) |
JP (1) | JPS58215484A (enrdf_load_stackoverflow) |
DE (1) | DE3367251D1 (enrdf_load_stackoverflow) |
GB (1) | GB2121426A (enrdf_load_stackoverflow) |
ZA (1) | ZA832545B (enrdf_load_stackoverflow) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2180464A (en) * | 1985-09-18 | 1987-04-01 | British Gas Corp | Gas-solid phase reactions and apparatus therefor |
GB2180465A (en) * | 1985-09-18 | 1987-04-01 | British Gas Corp | Gas solid phase reactions & apparatus therefor |
GB2253406B (en) * | 1991-03-06 | 1994-11-16 | British Gas Plc | Electrical power generation |
GB2253407B (en) * | 1991-03-06 | 1994-11-16 | British Gas Plc | Electrical power generation |
US5269899A (en) * | 1992-04-29 | 1993-12-14 | Tosoh Smd, Inc. | Cathode assembly for cathodic sputtering apparatus |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB477867A (en) * | 1937-02-12 | 1938-01-07 | Ceskoslovenske Tovarny Na Dusi | Improvements in or relating to processes and apparatus for the hydrogenation of carbonaceous materials |
BE629454A (enrdf_load_stackoverflow) * | 1962-03-12 | |||
GB1074932A (en) * | 1964-03-05 | 1967-07-05 | Gas Council | Improvements in or relating to methods of carrying out reactions |
ZA757407B (en) * | 1974-12-27 | 1976-11-24 | Union Carbide Corp | Process for the continuous hydrocarbonization of coal |
AU506536B2 (en) * | 1976-05-24 | 1980-01-10 | Rockwell International Corp. | Coal hydrogenation |
US4206032A (en) * | 1978-03-17 | 1980-06-03 | Rockwell International Corporation | Hydrogenation of carbonaceous materials |
GB2086411B (en) * | 1980-10-27 | 1984-03-28 | British Gas Corp | Efg process |
-
1982
- 1982-05-24 GB GB08215088A patent/GB2121426A/en not_active Withdrawn
-
1983
- 1983-04-06 EP EP83301913A patent/EP0095237B1/en not_active Expired
- 1983-04-06 DE DE8383301913T patent/DE3367251D1/de not_active Expired
- 1983-04-12 ZA ZA832545A patent/ZA832545B/xx unknown
- 1983-05-24 JP JP58091413A patent/JPS58215484A/ja active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58215484A (ja) | 1983-12-14 |
GB2121426A (en) | 1983-12-21 |
ZA832545B (en) | 1984-06-27 |
EP0095237A3 (en) | 1985-01-16 |
DE3367251D1 (en) | 1986-12-04 |
EP0095237A2 (en) | 1983-11-30 |
JPH0517279B2 (enrdf_load_stackoverflow) | 1993-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3985519A (en) | Hydrogasification process | |
US4315758A (en) | Process for the production of fuel gas from coal | |
US3782913A (en) | Two-stage gasification of coal with forced reactant mixing and steam treatment of recycled char | |
US4211669A (en) | Process for the production of a chemical synthesis gas from coal | |
US4118204A (en) | Process for the production of an intermediate Btu gas | |
US3544291A (en) | Coal gasification process | |
Kim et al. | Coal gasification characteristics in a downer reactor | |
US2683657A (en) | Gasification of carbonaceous solids | |
US2662816A (en) | Gasification of carbonaceous materials containing volatile constituents | |
US3817723A (en) | Two-stage gasification of pretreated coal | |
US3898057A (en) | Process for converting methanol to a high-methane gas | |
US2879148A (en) | Process for the production of carbon monoxide from a solid fuel | |
US4206032A (en) | Hydrogenation of carbonaceous materials | |
US3876392A (en) | Transfer line burner using gas of low oxygen content | |
US2871114A (en) | Process for the gasification of solid fuels | |
US4415431A (en) | Integrated oxygasification and hydropyrolysis process for producing liquid and gaseous hydrocarbons | |
EP0050905A1 (en) | Improvements in or relating to coal gasification process | |
EP0095237B1 (en) | Process for the hydrogenation of solid carbonaceous fuses | |
US2868631A (en) | Gasification process | |
US3615298A (en) | Gasification of carbonaceous material | |
US3128164A (en) | Process for gasification of hydrocarbons to hydrogen and carbon monoxide | |
US3954596A (en) | Production of low sulfur heavy oil from coal | |
US3503724A (en) | Method and apparatus for producing mixtures of methane,carbon monoxide,and hydrogen | |
US2824792A (en) | Method of reducing metal oxides | |
US2554264A (en) | Process for treating hydrocarbon synthesis tail gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR IT NL |
|
17P | Request for examination filed |
Effective date: 19831213 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR IT NL |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR IT NL |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3367251 Country of ref document: DE Date of ref document: 19861204 |
|
BECH | Be: change of holder |
Free format text: 861029 *BRITISH GAS P.L.C. |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
NLS | Nl: assignments of ep-patents |
Owner name: BRITISH GAS PLC TE LONDEN, GROOT-BRITTANNIE. |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020311 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020314 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20020318 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20020417 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20030406 |
|
BE20 | Be: patent expired |
Owner name: *BG PUBLIC LIMITED COMPANY Effective date: 20030406 |