EP0094759A2 - Apparatus for and method of metalizing metal bodies - Google Patents

Apparatus for and method of metalizing metal bodies Download PDF

Info

Publication number
EP0094759A2
EP0094759A2 EP83302487A EP83302487A EP0094759A2 EP 0094759 A2 EP0094759 A2 EP 0094759A2 EP 83302487 A EP83302487 A EP 83302487A EP 83302487 A EP83302487 A EP 83302487A EP 0094759 A2 EP0094759 A2 EP 0094759A2
Authority
EP
European Patent Office
Prior art keywords
metalizing
chamber
powder
heated
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP83302487A
Other languages
German (de)
French (fr)
Other versions
EP0094759A3 (en
Inventor
Darryl Feder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inductalloy Corp
Original Assignee
Inductalloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inductalloy Corp filed Critical Inductalloy Corp
Publication of EP0094759A2 publication Critical patent/EP0094759A2/en
Publication of EP0094759A3 publication Critical patent/EP0094759A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder

Definitions

  • This invention relates to the metalizing of metal bodies, such as bars and rods and tubes, so as to produce articles, such as chrome plated steel bars and rods, for such ultimate uses as shafts or pins, and chrome plated tubes.
  • chromium is a relatively expensive material, and chromium's use in various chemical baths means, by which chrome plating may be effected, is environmentally undesirable and/or difficult and expensive to control.
  • the problems with said prior technique are that there is both lack of accurate control of the thickness of the layer of the surface application material to the underlying body, and resultant lack of uniformity of the thickness of the layer that is applied by the torch heat. Furthermore, the minimum thickness of the layer of applied material usually obtained by metalizing with an open flame torch, working with powdered metal, is about .008 inches, and maximum thickness of layer of applied metal is about .015 inches, both of which thickness values are frequently much greater than the thickness of the applied material layer required to be supplied to meet the performance specifications for the metalized part, and this substantially increases the cost of manufacture.
  • a further problem is that when using fine particles of metalizing materials to form a fused surface on an underlying body, the torch heat intensity is frequently so great that it vaporizes, or burns away, a substantial quantity of the finest particles of the metalizing material, resulting in loss of material and economic waste.
  • One object of this invention is to provide an improved method for surface metalizing metal bars, rods and tubes in a manner to accurately control the thickness of metalizing surface applied to the underlying body.
  • Another object of this invention is to provide an improved apparatus for, and method of, surface metalizing bodies with a metalizing powder in a manner that substantially reduces the burn-up loss of the metalizing material.
  • a further object of this invention is to provide an apparatus and method for surface metalizing of bodies with chrome powder in a manner to provide an accurate control of the thickness of the metalizing layer applied, while simultaneously avoiding economic loss of metalizing powder through vaporization or burning.
  • a first induction coil is used to provide, as part of a first step, the heating of an axially moving body, such as a bar or rod or tube, to a selected pre-heat temperature; rotating the body while a powdered metalizing material is flooded. onto, or over, the pre-heated body to adheringly deposit a layer of metalizing material onto the body; and then fusing the powdered metalizing material to the body by induction heating the body with metalizing material adhering thereto, at a fusing temperature and in the presence of an inert gas, while recapturing, for later re-use, the non-deposited metalizing powder.
  • an axially moving body such as a bar or rod or tube
  • Figure 1 is a vertical, cross-sectional, view of one form of apparatus for practicing the process of this invention, and illustrating diagrammatically a preferred combination of means and apparatus, for effecting the practice of the process of this invention upon an elongated cylindrical body.
  • an elongated cylindrical bar 10 of steel, or the like, that is to be metalized is illustrated as being endless, the bar 10 usually will be of some finite length that is greater than the length of the treating apparatus illustrated.
  • the bar is to be advanced through the heating apparatus by means that moves the bar 10 axially, or longitudinally, while simultaneously rotating the bar 10.
  • Such an apparatus is well known in the art of movement of elongated bodies.
  • such an apparatus would include sets of opposed roller discs located both upstream (ahead of) and downstream (after) a station at which the bar is to be acted upon, with the sets of rollers constructed and arranged to at least support the bar at the elevation shown, relative to the region at which the bar is to be acted upon.
  • the two sets of roller discs would be arranged in an overlapping fashion so as to define a support region above the region of overlap, which would serve as a crotch to cradle the cylindrical body, and the discs would also be arranged so that their rotation would operate to move the cylindrical body axially while the cylindrical body also would be rotated about its longitudinal axis.
  • FIG. 1 illustrates, diagrammatically, a type of motion imparting means in the form of a set of inclined drive rollers 12 and 14, which are angled oppositely as shown, and each driven from a source of rotation, such as a power train, or by drive motors 13 and 15, to cause the rollers to purchase, or grip, the bar to cause it to move axially, or longitudinally in the direction of arrow 16, while simultaneously rotating the bar in the direction of arrow 18.
  • a source of rotation such as a power train
  • drive motors 13 and 15 to cause the rollers to purchase, or grip, the bar to cause it to move axially, or longitudinally in the direction of arrow 16, while simultaneously rotating the bar in the direction of arrow 18.
  • the metal bar 10 is shown moving from left to right through an enclosure, or chamber means, generally 20, which defines, and substantially encloses, an isolated treating chamber 22.
  • the chamber-defining means 20 includes a pair of spaced end walls, respectively entry wall 24 and exit wall 26, a top wall 28, a bottom wall 30 with oppositely sloping sections 30a and 30b, which pitch toward a central junction, and back and front walls, not seen in Fig. 1.
  • the back wall is spaced behind the drawing sheet and the front wall is spaced forwardly of the drawing sheet, as is understood in such illustrative drawings.
  • the entry wall 24 has a first, or entry, opening 25 therein.
  • the exit wall 26 has a second, or exit, opening 27 therein.
  • the leading end of the bar 10 moving from left to right enters the substantially enclosed treating chamber 32, that, is bounded by walls 24, 26, 28, and 30 and the back and front walls, through entry opening 25 and exits from chamber 32 through exit opening 27.
  • first heating means in the form of a first electrical induction helical heating coil located adjacent the entry opening 25 and surrounding a portion of metal bar 10.
  • the heating coil means 34 is of any type well known in the art for effecting induction heating in a metal body, such as a bar 10.
  • a second electrical induction, helical, heating coil means 36 is spaced from heating coil means 34, and is located adjacent the exit opening 27, and it surrounds the bar 10 at a point along that bar's travel that is before the bar leaves the treating chamber.
  • a typical counstruction for the first heating coil means 34, for use with a bar 10 of one inch (1") diameter is a 4-turn coil with an internal diameter (I.D.) of 1 and 3/16 inches, designed to provide a pre-heating, of the bar portion surrounded by coil means 34, to an initial temperature of about 900 degrees F.
  • the second heating coil means 36 is designed to provide an induction heating of the bar portion of one inch (1") diameter surrounded by coil means 36 to a chrome-fusing temperature of approximately 1800 degrees or more, as required, using a 6-turn coil with a 1 and 1/4 inch I.D.
  • the power consumed by heating coil means 36 is about 100 kilowatts at a frequency of 10 Khz.
  • the temperature 'developed by an induction heater is a function of the number of turns of the coil heater and its closeness to the body being heated.
  • the coils 34 and 36 are axially spaced and aligned relative to the bar 10 and its direction of movement, so that a pre-heated portion 10a of bar 10 passes through the surrounded core region of coil 36.
  • the pre-heated portion 10a of bar 10 is shown positioned between coils 34 and 36, in the course of its longitudinal movement.
  • the bar portion 10a is subject to an additional step of the process herein in the said region located between coils 34 and 36.
  • the region in which the exposed, pre-heated, bar portion 10a is located between coils 34 and 36 is positioned directly in the path of an upright, projected, flow passageway that is located within chamber 32, and which extends, in effect, between a discharge nozzle, or spout, 40 and a sump, or return, pipe 42. More specifically, there is provided upon the top wall 28 of chamber defining means 20, a reservoir, or supply tube, 44 from which flows a supply of a metalizing powder, P. The lower end of a reservoir 44 feeds into the upstream end of nozzle 40 whose interior is shaped, as shown, to form a tapered metering funnel 45 which terminates at its lower end in a constructed discharge opening 46.
  • the intake end of reservoir 44 is provided with a constant supply (not shown) of metalizing powder that feeds downwardly from reservoir 44 by gravity, aided by movement of a supply of gas under pressure toward discharge opening 46.
  • An upstream portion of reservoir tube 44 is provided with a laterally extending connection tube 48 through which is supplied pressurized gas from a source (not shown). Pressurizing gas may also be supplied through reservoir 44 from its inlet end.
  • the gas used for aiding flow of the metalizing powder from funnel discharge opening 46 downwardly across the bar portion 10a is a non-oxidizing gas, such as nitrogen, or a rare gas selected from the group that includes neon and argon.
  • the gas is nitrogen under 5 p.s.i. pressure in excess of atmospheric pressure, and pre-heated to a temperature of at least 900 degrees F.
  • the entire interior of treating chamber 32 is also supplied by nitrogen at elevated temperature of at least 900 degrees E., supplied through an inlet tube 49 through the top chamber wall 28.
  • the metalizing powder 46, and the impelling and entraining nitrogen gas that discharges through opening 46 then flows, as a stream of fluid which entrains metalizing powder 46 and which washes over, or bathes, the pre-heated bar portion 10a with metalizing powder.
  • the heat of the pre-heated bar portion 10a operates to cause the metalizing powder 46 in the stream of fluid to adhere, or cling, to the pre-heated surface of the bar, and since the bar 10 is being continuously rotated, a continuous coating of clinging powder is provided on bar portion 10a.
  • the sump, or return, pipe 42 is positioned on the intake side of a diaphragm-type pump (not shown), as is available for use in a flowing gas-particle recovery system.
  • the axially moving bar 10 operates to move bar portion 10a into and through the open core of heating coil 36, where an increased induced temperature, in excess of approximately 1800 degrees F., effected in bar portion 10a operates to fuse the clinging powder 46 to the bar ' position 10a to form a continuous metalized surface on bar 10.
  • the fused, metalized, bar portion is designated at 10b.
  • alloys sold by Colmbnoy Corporation of Detroit, Michigan have been employed in metalizing bars and tubes.
  • Colmonoy Alloy Nos. 62 and 63 having a Rockwell Hardness (C Scale) of 58-63 and a specific gravity of 7.8, have a melting point of 1875 degrees F.
  • Other alloy numbers have greater specific gravity values and higher melting point temperatures to a maximum of about 2250 degrees F.
  • metalized bar portion 10b with fused surface exits the chamber 32 through exit opening 27, said metalized bar portion is caused to pass through a water quench station 50 in the form of a ring, or annulus, from which one or more streams of cooling water are projected inwardly and directed against the metalized surface of metalized bar portion 10b.
  • the use of this invention has the capability of providing a metalized surface of a thickness between .002 - .015 inches. It will be observed that the minimum thickness of the metalized surface, or layer, provided by practice of this invention is as small as about 1/4 of the minimum thickness that could be achieved through use of the prior art, torch, technique discussed above, and this leads to a substantial economy in use * of metalizing powder, the cost of which is presently about $6. - $8. per pound.
  • the metalized bar portion After the metalized bar portion has been quenched and cooled, the metalized bar may be cut into axial lengths as desired to provide bar segments for further finishing operations by subsequent machining or other operations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating Apparatus (AREA)
  • General Induction Heating (AREA)

Abstract

An apparatus and method for metalizing the surface of metal bodies, such as bars, rods and tubes is providing using a substantially enclosed chamber in which the metalizing is caused to occur. An elongated body to be metalized is moved axially into the chamber through an entrance opening while the body is simultaneously rotated, and then passes through a first induction heating coil to pre-heat a portion of the body surface to a selected pre-heat temperature. The pre-heated portion is then advanced past the pre-heating coil to a point where it is subjected to, and bathed by, a flowing stream of metalizing powder entrained within a heated non-oxidizing gas, such as nitrogen, with the flowing stream directed against the pre-heated body portion so that the entrained metalizing powder impinges against and clings to and covers the entire surface of the pre-heated portion. The pre-heated body portion with metalizing powder clinging thereto then moves through a second induction heating coil which heats the body and metalizing powder to a fusing temperature greater than the pre-heat temperature, so as to fuse the metalizing powder to the body. The interior of the chamber is filled with the non-oxidizing gas to prevent entry of air. The moving body with fused metalized surface thereon then exits from the chamber and is arranged to pass through a water quenching station which quenches and cools the metalized body.

Description

  • This invention relates to the metalizing of metal bodies, such as bars and rods and tubes, so as to produce articles, such as chrome plated steel bars and rods, for such ultimate uses as shafts or pins, and chrome plated tubes.
  • BACKGROUND OF THE INVENTION
  • There are many fields of manufacture in which metalizing is used to provide bodies, such as bars and rods and tubes of ordinary steel, with an expensive surface layer, treatment, or coating that is fused to the metal, to provide a part that will respond to manufacturing specifications but is less expensive than making the entire body of the same material that the specifications require be only at the surface of the body. Thus, parts such as force transmitting rods, piston rods, shock absorber shafts, bearing shafts, pivot pins, tubes, and the like, are frequently required to provide thereon an exterior surface of chromium, or chrome.
  • It has been long known that ordinary steels, except for leaded steels or resulphurized steels, provided in bar or pin form, may be chrome surfaced, by plating or the like, to both meet the specifications for desired strength of the part and with the surface character being specially adapted for the environment in which the part is to be used.
  • However, chromium is a relatively expensive material, and chromium's use in various chemical baths means, by which chrome plating may be effected, is environmentally undesirable and/or difficult and expensive to control.
  • While metalizing the surface of bars and rods avoids, to substantial extent, the undesirable environmental effects of chemical plating such bodies, the mechanical metalizing techniques presently employed have usually used an open flame torch that burns fuel gases, such as acetylene, propane, or the like in the presence of oxygen, to both preheat the body surface to an elevated temperature and to heat the surface application material, which is initially in powder form, to a temperature at which the molten powder material will fuse with the material of the body. These prior art metalizing techniques have not been wholly successful in metalizing tubes, as the heat of a torch will frequently burn through the wall of-the tube.
  • The problems with said prior technique are that there is both lack of accurate control of the thickness of the layer of the surface application material to the underlying body, and resultant lack of uniformity of the thickness of the layer that is applied by the torch heat. Furthermore, the minimum thickness of the layer of applied material usually obtained by metalizing with an open flame torch, working with powdered metal, is about .008 inches, and maximum thickness of layer of applied metal is about .015 inches, both of which thickness values are frequently much greater than the thickness of the applied material layer required to be supplied to meet the performance specifications for the metalized part, and this substantially increases the cost of manufacture. A further problem is that when using fine particles of metalizing materials to form a fused surface on an underlying body, the torch heat intensity is frequently so great that it vaporizes, or burns away, a substantial quantity of the finest particles of the metalizing material, resulting in loss of material and economic waste.
  • One object of this invention is to provide an improved method for surface metalizing metal bars, rods and tubes in a manner to accurately control the thickness of metalizing surface applied to the underlying body.
  • Another object of this invention is to provide an improved apparatus for, and method of, surface metalizing bodies with a metalizing powder in a manner that substantially reduces the burn-up loss of the metalizing material.
  • A further object of this invention is to provide an apparatus and method for surface metalizing of bodies with chrome powder in a manner to provide an accurate control of the thickness of the metalizing layer applied, while simultaneously avoiding economic loss of metalizing powder through vaporization or burning.
  • Further objects and advantages will become known to one skilled in the art, as these specifications proceed to describe the invention disclosed herein.
  • In the instant invention, a first induction coil is used to provide, as part of a first step, the heating of an axially moving body, such as a bar or rod or tube, to a selected pre-heat temperature; rotating the body while a powdered metalizing material is flooded. onto, or over, the pre-heated body to adheringly deposit a layer of metalizing material onto the body; and then fusing the powdered metalizing material to the body by induction heating the body with metalizing material adhering thereto, at a fusing temperature and in the presence of an inert gas, while recapturing, for later re-use, the non-deposited metalizing powder.
  • Figure 1 is a vertical, cross-sectional, view of one form of apparatus for practicing the process of this invention, and illustrating diagrammatically a preferred combination of means and apparatus, for effecting the practice of the process of this invention upon an elongated cylindrical body.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • Referring now to the drawing, there is shown, in the vertical, cross-sectional, view of the apparatus for practice of the invention an elongated cylindrical bar 10 of steel, or the like, that is to be metalized. Although the bar 10 is illustrated as being endless, the bar 10 usually will be of some finite length that is greater than the length of the treating apparatus illustrated. The bar is to be advanced through the heating apparatus by means that moves the bar 10 axially, or longitudinally, while simultaneously rotating the bar 10. Such an apparatus, is well known in the art of movement of elongated bodies. Typically, such an apparatus (not shown) would include sets of opposed roller discs located both upstream (ahead of) and downstream (after) a station at which the bar is to be acted upon, with the sets of rollers constructed and arranged to at least support the bar at the elevation shown, relative to the region at which the bar is to be acted upon.
  • In such prior constructions, the two sets of roller discs would be arranged in an overlapping fashion so as to define a support region above the region of overlap, which would serve as a crotch to cradle the cylindrical body, and the discs would also be arranged so that their rotation would operate to move the cylindrical body axially while the cylindrical body also would be rotated about its longitudinal axis. The drawing, Fig. 1, illustrates, diagrammatically, a type of motion imparting means in the form of a set of inclined drive rollers 12 and 14, which are angled oppositely as shown, and each driven from a source of rotation, such as a power train, or by drive motors 13 and 15, to cause the rollers to purchase, or grip, the bar to cause it to move axially, or longitudinally in the direction of arrow 16, while simultaneously rotating the bar in the direction of arrow 18.
  • The metal bar 10 is shown moving from left to right through an enclosure, or chamber means, generally 20, which defines, and substantially encloses, an isolated treating chamber 22. The chamber-defining means 20 includes a pair of spaced end walls, respectively entry wall 24 and exit wall 26, a top wall 28, a bottom wall 30 with oppositely sloping sections 30a and 30b, which pitch toward a central junction, and back and front walls, not seen in Fig. 1. The back wall is spaced behind the drawing sheet and the front wall is spaced forwardly of the drawing sheet, as is understood in such illustrative drawings. The entry wall 24 has a first, or entry, opening 25 therein. The exit wall 26 has a second, or exit, opening 27 therein. The leading end of the bar 10, moving from left to right, enters the substantially enclosed treating chamber 32, that, is bounded by walls 24, 26, 28, and 30 and the back and front walls, through entry opening 25 and exits from chamber 32 through exit opening 27.
  • Mounted within the treating chamber 32 is a first heating means, 34, in the form of a first electrical induction helical heating coil located adjacent the entry opening 25 and surrounding a portion of metal bar 10. The heating coil means 34 is of any type well known in the art for effecting induction heating in a metal body, such as a bar 10. A second electrical induction, helical, heating coil means 36 is spaced from heating coil means 34, and is located adjacent the exit opening 27, and it surrounds the bar 10 at a point along that bar's travel that is before the bar leaves the treating chamber.
  • A typical counstruction for the first heating coil means 34, for use with a bar 10 of one inch (1") diameter is a 4-turn coil with an internal diameter (I.D.) of 1 and 3/16 inches, designed to provide a pre-heating, of the bar portion surrounded by coil means 34, to an initial temperature of about 900 degrees F. The second heating coil means 36 is designed to provide an induction heating of the bar portion of one inch (1") diameter surrounded by coil means 36 to a chrome-fusing temperature of approximately 1800 degrees or more, as required, using a 6-turn coil with a 1 and 1/4 inch I.D. The power consumed by heating coil means 36 is about 100 kilowatts at a frequency of 10 Khz. The temperature 'developed by an induction heater is a function of the number of turns of the coil heater and its closeness to the body being heated.
  • The coils 34 and 36 are axially spaced and aligned relative to the bar 10 and its direction of movement, so that a pre-heated portion 10a of bar 10 passes through the surrounded core region of coil 36. The pre-heated portion 10a of bar 10 is shown positioned between coils 34 and 36, in the course of its longitudinal movement. The bar portion 10a is subject to an additional step of the process herein in the said region located between coils 34 and 36.
  • The region in which the exposed, pre-heated, bar portion 10a is located between coils 34 and 36 is positioned directly in the path of an upright, projected, flow passageway that is located within chamber 32, and which extends, in effect, between a discharge nozzle, or spout, 40 and a sump, or return, pipe 42. More specifically, there is provided upon the top wall 28 of chamber defining means 20, a reservoir, or supply tube, 44 from which flows a supply of a metalizing powder, P. The lower end of a reservoir 44 feeds into the upstream end of nozzle 40 whose interior is shaped, as shown, to form a tapered metering funnel 45 which terminates at its lower end in a constructed discharge opening 46. The intake end of reservoir 44 is provided with a constant supply (not shown) of metalizing powder that feeds downwardly from reservoir 44 by gravity, aided by movement of a supply of gas under pressure toward discharge opening 46.
  • An upstream portion of reservoir tube 44 is provided with a laterally extending connection tube 48 through which is supplied pressurized gas from a source (not shown). Pressurizing gas may also be supplied through reservoir 44 from its inlet end. The gas used for aiding flow of the metalizing powder from funnel discharge opening 46 downwardly across the bar portion 10a, is a non-oxidizing gas, such as nitrogen, or a rare gas selected from the group that includes neon and argon. Preferably, the gas is nitrogen under 5 p.s.i. pressure in excess of atmospheric pressure, and pre-heated to a temperature of at least 900 degrees F. The entire interior of treating chamber 32 is also supplied by nitrogen at elevated temperature of at least 900 degrees E., supplied through an inlet tube 49 through the top chamber wall 28.
  • The metalizing powder 46, and the impelling and entraining nitrogen gas that discharges through opening 46 then flows, as a stream of fluid which entrains metalizing powder 46 and which washes over, or bathes, the pre-heated bar portion 10a with metalizing powder. The heat of the pre-heated bar portion 10a operates to cause the metalizing powder 46 in the stream of fluid to adhere, or cling, to the pre-heated surface of the bar, and since the bar 10 is being continuously rotated, a continuous coating of clinging powder is provided on bar portion 10a.
  • The washing stream of nitrogen and metalizing powder which passes over bar 10 and moves downwardly below bar portion 10a, is recaptured by a sump, or return pipe 42, which conveys the recaptured stream to a recapture apparatus for either recycling both the gas and powder to and through inlet tube 48 or reservoir 44, or recapturing the stream through some other alternate recovery of the powder and gas, together or separately, as desired. The sump, or return, pipe 42 is positioned on the intake side of a diaphragm-type pump (not shown), as is available for use in a flowing gas-particle recovery system.
  • As the bar portion 10a is being coated with the metalizing powder 46 which clings to said bar portion, the axially moving bar 10 operates to move bar portion 10a into and through the open core of heating coil 36, where an increased induced temperature, in excess of approximately 1800 degrees F., effected in bar portion 10a operates to fuse the clinging powder 46 to the bar 'position 10a to form a continuous metalized surface on bar 10. The fused, metalized, bar portion is designated at 10b.
  • As an example of metalizing material used, alloys sold by Colmbnoy Corporation of Detroit, Michigan have been employed in metalizing bars and tubes. Specifically, Colmonoy Alloy Nos. 62 and 63 having a Rockwell Hardness (C Scale) of 58-63 and a specific gravity of 7.8, have a melting point of 1875 degrees F. Other alloy numbers have greater specific gravity values and higher melting point temperatures to a maximum of about 2250 degrees F.
  • After the metalized bar portion 10b with fused surface exits the chamber 32 through exit opening 27, said metalized bar portion is caused to pass through a water quench station 50 in the form of a ring, or annulus, from which one or more streams of cooling water are projected inwardly and directed against the metalized surface of metalized bar portion 10b.
  • The use of this invention has the capability of providing a metalized surface of a thickness between .002 - .015 inches. It will be observed that the minimum thickness of the metalized surface, or layer, provided by practice of this invention is as small as about 1/4 of the minimum thickness that could be achieved through use of the prior art, torch, technique discussed above, and this leads to a substantial economy in use *of metalizing powder, the cost of which is presently about $6. - $8. per pound. Furthermore, when using the torch technique only about a maximum of 70% of the metalizing material would be deposited on the surface of the articles being metalized, while with the practice of the invention disclosed herein, at least 90% of the metalizing material is deposited on the surface of the articles, providing a 90% efficiency factor for usage of 'the metalizing powder.
  • After the metalized bar portion has been quenched and cooled, the metalized bar may be cut into axial lengths as desired to provide bar segments for further finishing operations by subsequent machining or other operations.
  • While the interior of the heating chamber 22 is pressurized by gas under pressure, and the size of entry opening 25 and exit opening 27 could permit escape of some gas and entrained metalizing powder therethrough, it will be recognized that means such as gaskets and recovery systems, could be employed to seal against, or limit, loss of fluid and entrained metalizing powder through such openings. However, it is believed that the losses will be, or could be made, so insubstantial as to not demand use of expensive loss prevention measures and costs associated therewith.
  • While I have disclosed herein an apparatus and method for metalizing certain regular metal bodies, persons skilled in that art will appreciate that the invention herein may be used for metalizing of other or irregular bodies, and it is intended to cover all aspects of my invention herein, as limited solely in the claims appended hereto.

Claims (14)

1. An apparatus for metalizing an elongated body comprising, in combination:
a substantially enclosed treating chamber;
a first opening in said chamber through which one end of an elongated body is adapted to enter moving axially of the body, a second opening in said chamber through which the said one end of the elongated body and the body is adapted to leave the chamber, moving axially;
means for moving said elongated body axially through said first opening into the chamber, then through the chamber, and then from said chamber outwardly through said second opening;
a first heating means in the chamber for locally heating the body to a first elevated temperature;
a second heating means in the chamber spaced for said first heating means and for locally heating the body to a second elevated temperature greater in degree of heat than said first elevated temperature;
metalizing powder supply means arranged to discharge therefrom, and into said treating chamber, a metalizing powder stream that washes over the entire _ surface of the portion of the body that has been heated to said first elevated temperature, leaving on said heated body portion an adherent layer of metalizing powder before the body is subjected to said second elevated temperature; and
the temperature of the second elevated temperature being selected to be that at which the adherent metalizing powder layer fuses to the body.
and means outside the chamber for quenching the heat of the metalized body as it leaves the metalizing chamber.
2. An apparatus for metalizing an elongated body comprising in combination:
means defining an enclosing metalizing chamber having a first opening through which the elongated body is to enter the chamber, and a second opening through which the metalized elongated body is to exit from the chamber;
means operatively associated with the elongated body for axially advancing the elongated body relative to said chamber while simultaneously rotating it about its longitudinal axis;
means within said chamber for locally heating a portion of the elongated body, after it enters the chamber, to a first selected pre-heat temperature as -the body advances through the chamber;
means providing, within the chamber, a washing stream, composed of a mixture of finely dispersed metalizing powder and a pressurized non-oxidizing gas, that is directed to flow over the axially advancing and rotating pre-heated body portion, whereby a portion of the metalizing powder in said washing stream is caused to cling to and coat, to a substantially uniform thickness, said pre- heated body portion;
and means within said chamber for locally heating said coated body portion to fuse the coating of metalizing powder to the body portion, at a fusing temperature which is greater in degree of heat than said pre-heat temperature, before said coated body portion exits from the chamber.
3. An apparatus as in Claim 2 wherein the washing stream of metalizing powder and non-oxidizing gas is a mixture of metalizing powder and nitrogen that is heated to a temperature of at least approximately the same degree of heat as the pre-heated body portion.
4. An apparatus as in Claim 2 wherein the chamber includes spaced inlet and outlet stream means, for effecting and directing movement of the washing stream of fine particles of a metalizing powder and gas, over a flowpath transverse to the direction of axial movement of the elongated body, and along a transverse path that is located axially of the elongated body between the pre-heat means and the fusing-heat means.
5. An apparatus as in Claim 4 wherein the inlet stream means includes a reservoir provided with a supply of heated metalizing powder therein; a constricted nozzle shaped outlet from the reservoir, and a source of heated gas under pressure directed into the reservoir upstream of the constricted nozzle for moving the heated powder through said nozzle into the chamber.
6. An apparatus as in Claim 1 including liquid quench means located outside and adacent the chamber for quenching the heat of the metalized body as it leaves the metalizing chamber.
7. An apparatus for metalizing an elongated body comprising, in combination:
means defining an enclosing heating chamber which is constructed and arranged to provide therein a laterally elongated passageway through which an elongated body to be metalized is adapted to be moved longitudinally;
means defining an upright disposed flow passageway which is arranged to intersect said laterally elongated passageway and the path of the body to be metalized moving longitudinally therethrough;
means for effecting movement of a metalizing wash stream, of metalizing powder entrained in gas, along said flow passageway;
a first heating means positioned along the path of movement of the elongated body, and being constructed and arranged to pre-heat a portion of the body to be metalized before said pre-heated body portion passes through said flow passageway in which it is washed by the stream of metalizing powder to the extent that metalizing powder clings to the surface of the pre-heated body;
a second heating means positioned along the path of movement of the elongated body and spaced from the first heating means and from the region in which the pre-heated body portion is washed by the stream of metalizing powder, and being constructed and arranged to heat the body portion which is coated with metalizing powder clinging thereto, to fuse the clinging metalizing powder to the body in a continuous metalizing skin of a desired thickness;
and means for moving an elongated body to be metalized longitudinally through the laterally elongated passageway while simultaneously rotating the elongated body, as the body moves longitudinally sequentially into the chamber, past the first pre-heating means, through the metalizing wash stream, past the second fusing-heat means, and outwardly from said chamber.
8. An apparatus as in Claim 7 wherein the first, pre-heat, heating means includes an electrical induction heating coil means positioned to surround the laterally moving elongated body, and being of a length and power output to locally heat, by induction, the surface of the body to a temperature of about 900 degrees F.
9. An apparatus as in Claim 8 wherein the second, fusing-heat, heating means includes an electrical induction heating coil means positioned to surround the laterally moving elongated body that has metalizing powder clinging thereto, and being of a length and power output to locally heat, by induction, the body to a fusing temperature of at least 1800 degrees F. at which the metalizing powder, that clings to the body, fuses to the body to provide a continuous metalized surface for the body.
10. An apparatus as in Claim 7 wherein the heating chamber is purged of all gases other than a non-oxidizing gas maintained therein at a temperature approximately equal to the temperature developed in the body by the first, pre- heat, heating means.
11. An apparatus as in Claim 10 wherein the non-oxidizing gas is nitrogen that is provided under a pressure that is above the pressure of gas surrounding the exterior of the chamber.
12. A method of metalizing a body of metal comprising the steps of pre-heating a portion of the body to a temperature at which metalizing powder will cling to the pre-heated body's surface; then bathing the preheated body in a flowing stream of a pre-heated metalizing powder entrained in a fluid carrier of a pre-heated, pressurized, non-oxidizing gas, so that particles of the metalizing -powder will impinge upon and cling to the surface of the pre-heated body; and then fusing the clinging, metalizing, powder to the body at a fusing temperature that is higher than the pre-heat temperature of both the body and the metalizing powder.
13. A method as in Claim 12 wherein the step of pre-heating is effected by electric induction heating of a portion of the body; and wherein the step of fusing of the clingling metalizing powder to the body is effected by electric induction heating of the body to a temperature greater than the pre-heat temperature of the body, and at a temperature at which the clinging metalizing powder fuses to the body portion.
14. A method as in Claim 12 wherein the bathing of the pre-heated body in a flowing stream of metalizing powder entrained in a fluid carrier is effected by directing a flowing stream, of a metalizing powder provided in a fluid carrier of a non-oxidizing gas, to move against the pre-heated body portion, while simultaneously rotating the body to expose all of the pre-heated surface of said body portion to impingement thereagainst by the directed flowing stream, to effect a clinging of the metalizing powder to the entire surface of the pre- heated body portion.
EP83302487A 1982-05-03 1983-05-03 Apparatus for and method of metalizing metal bodies Withdrawn EP0094759A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US37428282A 1982-05-03 1982-05-03
US374282 1982-05-03

Publications (2)

Publication Number Publication Date
EP0094759A2 true EP0094759A2 (en) 1983-11-23
EP0094759A3 EP0094759A3 (en) 1984-03-28

Family

ID=23476086

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83302487A Withdrawn EP0094759A3 (en) 1982-05-03 1983-05-03 Apparatus for and method of metalizing metal bodies

Country Status (2)

Country Link
EP (1) EP0094759A3 (en)
AU (1) AU1416783A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0119095A2 (en) * 1983-03-14 1984-09-19 Inductalloy Corporation Apparatus for and method of metalizing internal surfaces of metal bodies such as tubes and pipes
EP0247582A1 (en) * 1986-05-28 1987-12-02 Gec Alsthom Sa Process for depositing a protective cobalt-chromium-tungsten coating on a vane composed of a titanium alloy containing vanadium, and vane thus coated
WO1999000534A1 (en) * 1997-06-27 1999-01-07 Firma Hermann Heye Method for producing a hard layer on tools, device for inductive sintering or sealing in hard layers on plungers and plugs, and plungers and plugs for producing hollow glassware
WO2001034875A1 (en) * 1999-11-09 2001-05-17 Koncentra Verkstads Ab Method and device for providing a layer to a piston ring
FR2822727A1 (en) * 2001-04-03 2002-10-04 Gesal Ind METHOD FOR APPLYING A COATING RESISTANT TO HIGH TEMPERATURES, DEVICE FOR CARRYING OUT THIS METHOD AND OBJECT PROVIDED WITH SAID COATING
DE10102991C2 (en) * 2000-02-19 2003-11-20 Ald Vacuum Techn Ag Device for heating a metal workpiece
CN104911521A (en) * 2013-12-05 2015-09-16 绵阳快典科技有限公司 Inner bore avoidance steel pipe coating galvanization device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2803559A (en) * 1954-03-25 1957-08-20 Coast Metals Inc Method and apparatus for applying powdered hard surfacing alloy with induction heating
US3436244A (en) * 1965-06-29 1969-04-01 Gen Motors Corp Fusion coating of metal articles
GB1177729A (en) * 1967-04-10 1970-01-14 Fritz Maak Method and Apparatus for the production of Zinc Coatings
DE1929153A1 (en) * 1969-06-09 1970-12-17 Friedrich Heck Hot-dip tin, tin-lead and solder-alloy plat- - ing of metal parts, strips, wires and rods
GB1499978A (en) * 1973-10-31 1978-02-01 Glacier Metal Co Ltd Method of making multi-layer bearing strip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2803559A (en) * 1954-03-25 1957-08-20 Coast Metals Inc Method and apparatus for applying powdered hard surfacing alloy with induction heating
US3436244A (en) * 1965-06-29 1969-04-01 Gen Motors Corp Fusion coating of metal articles
GB1177729A (en) * 1967-04-10 1970-01-14 Fritz Maak Method and Apparatus for the production of Zinc Coatings
DE1929153A1 (en) * 1969-06-09 1970-12-17 Friedrich Heck Hot-dip tin, tin-lead and solder-alloy plat- - ing of metal parts, strips, wires and rods
GB1499978A (en) * 1973-10-31 1978-02-01 Glacier Metal Co Ltd Method of making multi-layer bearing strip

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0119095A2 (en) * 1983-03-14 1984-09-19 Inductalloy Corporation Apparatus for and method of metalizing internal surfaces of metal bodies such as tubes and pipes
EP0119095A3 (en) * 1983-03-14 1985-01-23 Inductalloy Corporation Apparatus for and method of metalizing internal surfaces of metal bodies such as tubes and pipes
EP0247582A1 (en) * 1986-05-28 1987-12-02 Gec Alsthom Sa Process for depositing a protective cobalt-chromium-tungsten coating on a vane composed of a titanium alloy containing vanadium, and vane thus coated
FR2599384A1 (en) * 1986-05-28 1987-12-04 Alsthom METHOD FOR THE INSTALLATION OF A COBALT-CHROME-TUNGSTEN PROTECTIVE COATING ON A TITANIUM ALLOY DAWN COMPRISING VANADIUM AND DAWN SO COATED
US4839237A (en) * 1986-05-28 1989-06-13 Alsthom Method of laying a cobalt-chromium-tungsten protective coating on a blade made of a tungsten alloy including vanadium, and a blade coated thereby
WO1999000534A1 (en) * 1997-06-27 1999-01-07 Firma Hermann Heye Method for producing a hard layer on tools, device for inductive sintering or sealing in hard layers on plungers and plugs, and plungers and plugs for producing hollow glassware
WO2001034875A1 (en) * 1999-11-09 2001-05-17 Koncentra Verkstads Ab Method and device for providing a layer to a piston ring
US6600130B1 (en) 1999-11-09 2003-07-29 Koncentra Verkstads Ab Method and device for providing a layer to a piston ring
DE10102991C2 (en) * 2000-02-19 2003-11-20 Ald Vacuum Techn Ag Device for heating a metal workpiece
US6677560B2 (en) 2000-02-19 2004-01-13 Ald Vacuum Technologies Ag Apparatus for inductively heating a workpiece
US6689995B2 (en) 2000-02-19 2004-02-10 Ald Vacuum Technologies Ag Apparatus and method for healing a workpiece of metal
FR2822727A1 (en) * 2001-04-03 2002-10-04 Gesal Ind METHOD FOR APPLYING A COATING RESISTANT TO HIGH TEMPERATURES, DEVICE FOR CARRYING OUT THIS METHOD AND OBJECT PROVIDED WITH SAID COATING
WO2002081773A1 (en) * 2001-04-03 2002-10-17 Gesal Industrie S.A. Method for applying a high temperature resistant coating, device therefor and object provided with said coating
CN104911521A (en) * 2013-12-05 2015-09-16 绵阳快典科技有限公司 Inner bore avoidance steel pipe coating galvanization device
CN104911521B (en) * 2013-12-05 2017-06-20 甘肃天和力德管道制造有限公司 A kind of endoporus keeps away the steel pipe coating galvanizing rig of position

Also Published As

Publication number Publication date
EP0094759A3 (en) 1984-03-28
AU1416783A (en) 1983-12-01

Similar Documents

Publication Publication Date Title
US4552091A (en) Apparatus for metalizing metal bodies
US4490411A (en) Apparatus for and method of metalizing internal surfaces of metal bodies such as tubes and pipes
US3996398A (en) Method of spray-coating with metal alloys
US5860204A (en) Continuous tube forming and coating
KR100830245B1 (en) An apparatus and process for solid-state deposition and consolidation of high velocity powder particles using thermal plastic deformation
CA1067354A (en) Boiler tube coating and method for applying the same
US5344062A (en) Method of forming seamed metal tube
US3670400A (en) Process and apparatus for fabricating a hot worked metal layer from atomized metal particles
US5738725A (en) Cooling system for apparatus of coating an inside of a pipe or tube
US3854898A (en) A method for producing armored rod and wire saws
GB2195662B (en) Production of metal spray deposits
JPH09501105A6 (en) Manufacturing method of welded metal pipe
EP0094759A2 (en) Apparatus for and method of metalizing metal bodies
US4551354A (en) Method for metalizing metal bodies
EP1222050B1 (en) Method and apparatus for coating the seams of welded tubes
US3524245A (en) Continuous tube forming and metallizing process
US3927816A (en) Hot dipped steel tube and a method for producing the same
US5496588A (en) Method and apparatus for galvanizing linear materials
US2803559A (en) Method and apparatus for applying powdered hard surfacing alloy with induction heating
AU623370B2 (en) Process and device for continuously coating workpieces
US3768145A (en) Method of in line coating of galvanized tubing
US4034703A (en) Apparatus for externally coating endless metal tubing and like elongated metal members
US3597261A (en) Method of coating copper plated strands with zinc
JPS59208075A (en) Metal product metallizing process and device
US2532389A (en) Metal coating device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19841128

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19851130

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FEDER, DARRYL