EP0093671B1 - Geologische Anlage zur Lagerung von radioaktivem Material, insbesondere in verglaster Form - Google Patents

Geologische Anlage zur Lagerung von radioaktivem Material, insbesondere in verglaster Form Download PDF

Info

Publication number
EP0093671B1
EP0093671B1 EP83400871A EP83400871A EP0093671B1 EP 0093671 B1 EP0093671 B1 EP 0093671B1 EP 83400871 A EP83400871 A EP 83400871A EP 83400871 A EP83400871 A EP 83400871A EP 0093671 B1 EP0093671 B1 EP 0093671B1
Authority
EP
European Patent Office
Prior art keywords
galleries
level
storage
vertical
wastes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83400871A
Other languages
English (en)
French (fr)
Other versions
EP0093671A1 (de
Inventor
Guy Courtois
Claude Jaouen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0093671A1 publication Critical patent/EP0093671A1/de
Application granted granted Critical
Publication of EP0093671B1 publication Critical patent/EP0093671B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/34Disposal of solid waste

Definitions

  • the present invention relates generally to techniques for preserving radioactive materials from used fuel elements after they have been discharged from a reactor.
  • Fissile materials which have remained in a nuclear reactor such as for example an enriched uranium reactor cooled with pressurized light water, are depleted in U 235 and correspondingly enriched in plutonium at the same time as waste is created.
  • a nuclear reactor such as for example an enriched uranium reactor cooled with pressurized light water
  • reprocessing operations are frequently carried out on such used fuel elements which essentially allow the separation of uranium depleted in isotope 235 and the plutonium formed as well as the packaging of the waste in a safe form.
  • the residual products which cannot be used and which contain a significant proportion of highly radioactive materials are then subjected to vitrification operations.
  • Tables 1 and 2 which follow give respectively for the fission products and for the actinides, the masses and powers of the radioactive nuclei obtained from the reprocessing of a tonne of uranium contained in fuel elements for a light water nuclear reactor, the reprocessing of which was carried out three years after the fuel was unloaded.
  • the radioactive waste thus vitrified is commonly stored in France in the form of a compact cylindrical mass with a volume of 220 liters in a metal container whose wall has a thickness of 5 mm, the diameter of which is 430 mm and the height of 1,660 mm.
  • Such containers spontaneously heat up to high temperatures; to ensure good preservation with a sufficient safety limit, it was decided not to exceed 200 ° C at the container surface and 450 ° C at the heart of the glass on the axis of the container. r.
  • the present invention specifically relates to a facility for storing radioactive waste in a predetermined geological site which allows, thanks to relatively simple means, to carry out the two previous conservation periods successively on the same site.
  • the two interim storage and final disposal operations are therefore carried out in a geological installation with sufficient depth and nevertheless capable of being ventilated by natural convection of fresh air from the ground surface and set in motion only by the heat energy released by radioactive waste buried in the ground.
  • the radioactive decay having reached the desired rate, there is no longer any risk in considering final storage in situ, the site is completely and definitively closed off, of course, stopping the previous ventilation.
  • the galleries in the second lower plane are used to supply fresh air from the surface and to evacuate the hot air that has circulated in the installation; the fact that these galleries are inclined at an angle a to the common direction of the galleries in the foreground makes it possible to arrange the vertical storage wells between the axis of the galleries in the foreground and the lateral niches, adjacent to the galleries in the second plane, in which a support resting on the surface of the ground ensures the seat and the stability of the vitrified active waste containers stacked in said vertical storage wells from the upper galleries in the foreground.
  • These vertical wells, in which the release of heat due to the storage of waste takes place, are also traversed by a hairpin in the ascending-descending direction by the air flow of ventilation by natural convection.
  • the angle a of inclination of the galleries of the second plane relative to the galleries of the foreground is equal, preferably to one of the two values 30 ° and 45 °, the regular geometric network of the vertical wells of storage between the two gallery planes being either hexagonal mesh or square mesh.
  • the arrival of fresh air and the departure of hot air at the level of the galleries in the second plane take place via a belt of two peripheral galleries, surrounding the galleries in the second plane, and communicating with they.
  • the radioactive waste is distributed, inside each vertical storage well, in tubes occupying the periphery of the well and traversed by ascending fresh air, the hot air descending in an empty central tube, the base of each peripheral tube being able to comprise a device for absorbing the fall of all the tubes resting on a cast iron base support filled with concrete and placed in the center of a lateral niche.
  • the vertical storage wells are closed, at their outlet in the galleries in the foreground, by a metal plate or plug ensuring the protection of personnel against radiation without preventing the vehicle traffic.
  • the first upper plan of galleries. Can be .situated according to the nature of the ground between 300 and 1000 meters and the vertical distance which separates them from the second lower plan of galleries can be of the order of 20 to 40 meters but preferably of 25 to 30 meters, which allows to superimpose in the previous tubes 10 to 15 layers of each 6 vitrified containers with a height of about 1m 85 each.
  • the vertical storage wells 5 extend vertically in which the vitrified radioactive waste containers are stored, some of which only referenced 6 have been shown diagrammatically in FIG. 1.
  • the access shaft 2a is used to descend to the level of the galleries 3, the drums such as 7 from a loading machine 8 located on the surface having its own protection and movable on wheels.
  • a loading machine 8 located on the surface having its own protection and movable on wheels.
  • another transfer machine 9 takes up the drums 7 to route them along the gallery 3 and introduce them, as seen in the vertical well 5 on the left after removing the metal plate or plug 10 of this vertical well 5.
  • the base support 11 serving to support the column of drums 6 stacked in each well.
  • the ventilation by natural convection of the installation of FIG. 1 takes place as indicated by the arrows in the drawing, that is to say that the tube 2b is used for suction from the surface of the ground 1 of fresh air which then travels in the galleries 4 and, from there, in a hairpin along an ascending and descending path in each of the vertical wells 5 to be then evacuated in the form of hot air by axial ducts to each well vertical storage 5 and rise to the surface by the aeration well 2c.
  • it is the chimney effect which results from the presence in the vertical wells 5 of radioactive waste releasing a large amount of calories which allows this circulation of cooling air in the installation by natural convection.
  • the first upper plan 3 of galleries is located 500 meters deep and the second plan 4 of galleries 30 meters below, that is to say at 530 meters from the ground surface 1.
  • FIG. 2 there is shown schematically a plan view of the two levels of galleries 3 and 4 of the installation of Figure 1 above.
  • the level 3 galleries are shown in solid lines and the level 4 galleries in dashes to avoid any confusion.
  • This figure shows the access wells 2a, the cooling air inlet 2b and the hot air outlet 2c.
  • the total footprint of the installation in plan is 500 x 500 m, that is to say that each of the level 3 galleries, in total of 17 distant from each other by 25 m, has a length of 500 m .
  • the galleries 4 of the lower plane are inclined at 45 ° to the galleries 3 of the upper plane and the various niches 12 containing the vertical storage wells 5 are arranged vertically in the galleries of the foreground horizontal 3 so as to allow the convenient loading of the wells 5.
  • These wells 5 are 149 on the whole surface, of which only a few are shown; they have a diameter of 3.2 m.
  • the galleries of levels 3 and 4 have a circular profile slightly flattened down and a diameter of 5 m.
  • the access or evacuation wells 2 have a diameter of 8 m.
  • two peripheral galleries 13 and 14 surround the oblique galleries of the lower level 4 and are intended, as will be described in more detail later, to facilitate the distribution of the cooling air coming from the surface and the hot air to be evacuated to the surface after it has passed through the vertical wells 5.
  • the 149 vertical storage wells 5 are located at the top of a square mesh network.
  • FIG 3 there is shown the detail of one of the niches 12 serving as support for a column of vitrified radioactive containers stacked in a vertical well such as 5.
  • this niche 12 we see a base support 11 in cast iron filled of concrete on which six housings 15, 16, 17, 18, 19 and 20 come to rest, at the bottom of which are anti-fall stools, not shown, which serve as support for the containers of vitrified waste which are housed there one above the other.
  • Each tube such as 20 is provided with a cold air inlet duct 21 which includes a baffle allowing the passage of this air while ensuring biological protection with respect to the radioactive products contained in the tube 20.
  • the six tubes for housing the stored products 15, 16, 17, 18, 19 and 20 are thus traversed by an ascending flow of fresh air which permanently licks the periphery of the vitrified containers stacked in each of the tubes.
  • An empty central tube 22 is assigned to the return of hot air from the upper part of the vertical well 5 to the hot air outlet pipe 23 which is connected to the exhaust gallery 14 of FIG. 2.
  • the well 5 has a height of 30 m and the tubes 15 to 20 contain 10 to 15 layers of six containers of vitrified radioactive waste each having a height of about 1.85 m.
  • Figure 5 shows in perspective one of the angles of the installation of vertical wells 5 between the galleries of the upper first plane 3 and the galleries of the second lower plane 4.
  • the hot air exhaust wells 2c and d cold air intake 2b as well as at the second level of the galleries 4 the belt of the two peripheral galleries 13 and 14 serving for the distribution and distribution of the fresh air arriving from the surface (solid lines) and the hot air exhausted to the surface (dashes).
  • a number of niches 12 are also visible in this figure as well as vertical wells 5 in exploded form making it possible to see the six peripheral storage tubes and the central hot air return tube.
  • a division into two compartments is carried out by a median plate 25 which separates the upper part of the pipe in which fresh air circulates from the lower part in which a second pipe 26 serves as a conduit conveying the hot air.
  • This plate 25 corresponds to the niche separation floor 12 such as the one seen at 24 in FIG. 3.
  • the installation thus described with reference to the first five figures is suitable for receiving radioactive waste corresponding to the reprocessing of a plant processing 1,600 tonnes of fuel per year and having operated for 30 years. It can thus definitively store around 24,000 drums of 220 liters each of vitrified radioactive waste without the temperature exceeding the critical value of 100 ° C on the surrounding rock. For clarification, we can indicate that the peripheral evacuation gallery 14 of hot air does not exceed 90 ° C in permanent operation
  • FIG. 6 shows schematically and simplified a variant of the mode of circulation by natural convection of air in an installation of the same kind as that of the preceding figures.
  • This installation includes the access shafts 2a, the fresh air inlet 2b and the hot air discharge 2c in connection with the galleries 3 in the foreground and the galleries 4 in the second lower plane.
  • the inclination of the galleries from one floor to the other has not been shown for simplicity.
  • the difference in design with the previous example here lies in the fact that the fresh air coming from the surface through the pipe 2b is injected directly into the galleries of level 4 and rises in one direction in all the wells 5 to lead in the various galleries of the foreground 3 and be evacuated overall by the pipe 2c from the upper foreground 3. In this variant therefore, there is no longer any natural circulation of air along a 'hairpin path in vertical storage wells 5.
  • Figures 7a, 7b, 7c and 7d show several possible examples of installation of vertical storage wells 5 in a regular network.
  • the galleries in the foreground 3 are shown in solid lines and, inclined at an angle a and in dashes, the galleries in the second plane 4 of the installation.
  • the purpose of these various figures is to show that the possible configurations of arrangement of the vertical storage wells 5 are quite numerous and in correspondence with the value of the angle a of inclination of the galleries of plane 3 on the galleries of plane 4.
  • the mesh of the storage wells 5 is a mesh in the form of a parallelogram and in the second case (FIG. 7d) it is a rectangular mesh.
  • reception rocks in which the galleries of the installation object of the invention are dug can be of very varied natures; we will nevertheless cite as particularly interesting the terrains made up of granite, clay, salt or volcanic rocks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Processing Of Solid Wastes (AREA)

Claims (8)

1. Anlage zur Lagerung von radioaktiven Abfällen in einer vorbestimmten geologischen Struktur mit :
- einer Reihe vertikaler Schächte (2), durch die die Abfallstoffe in die Lagerstätte gebracht werden und zur Ventilation der Luft, die durch natürliche Konvektion durch die Galerien zirkuliert, die die Erdoberfläche mit der in großer Tiefe gelegenen Lagerstätte verbinden,
- einer ersten oberen Ebene (3) von horizontalen Galerien, die parallel zueinander und mit gleichem Abstand voneinander verlaufen und mit Transportmitteln für die Abfallstoffe versehen sind,
- einer zweiten unteren Ebene (4) horizontaler Galerien, die parallel zueinander und mit gleichem Abstand voneinander verlaufen,
- vertikalen Schächten (5), die für die Lagerung der Abfallstoffe bestimmt sind und sich zwischen der ersten oberen Ebene (3) und der zweiten unteren Ebene (4) erstrecken,
- wobei mindestens einer der vertikalen Schächte (2b) für eine Frischluftversorgung von der Erdoberfläche sorgt und die Galerien der zweiten Ebene und mindestens ein weiterer vertikaler Schacht (2c) die Heißluft aus den Galerien zur Erdoberfläche hintransportiert, dadurch gekennzeichnet, daß
- die Galerien der zweiten unteren Ebene gegenüber der gemeinsamen Richtung der Galerien der ersten oberen Ebene (3) mit einem Winkel a versetzt sind, und
- die zur Lagerung bestimmten vertikalen Schächte (5) die Galerien der ersten Ebene (3) und der zweiten Ebene (4) nach dem Muster eines gleichmäßigen geometrischen Gitters verbinden, wobei jeder Schacht (5), der in seinem oberen Bereich in der Achse einer Galerie der ersten Ebene mündet und mit seinem unteren Bereich in einer seitlichen Nische (12), die mit einer der Galerien der zweiten Ebene verbunden ist, und wobei die Zirkulation der Kühlluft unter der Einwirkung der Wärmeabfuhr in den gelagerten Abfallstoffen auf einem in den vertikalen Schächten auf- und absteigendem haarnadelkurvigen Weg, der die beiden Galerienebenen während der Zwischenlagerung verbindet, stattfindet.
2. Anlage nach Anspruch 1, dadurch gekennzeichnet, daß der Versetzungswinkel a der Galerien der zweiten Ebene gegenüber den Galerien der ersten Ebene gleich einem der Werte 30° oder 45° ist, wobei das gleichmäßige geometrische Gitter der senkrechten Speicherschächte zwischen den beiden Galerieebenen rechteckige oder hexagonale Maschen hat.
3. Anlage nach Anspruch 1, dadurch gekennzeichnet, daß die Ankunft frischer Luft und die Abfuhr warmer Luft bei den Galerien der zweiten Ebene über einen Gürtel zweier Randgalerien (13, 14) stattfindet, die die Galerien der zweiten Ebene (4) umgeben und mit diesen in Verbindung stehen.
4. Anlage nach einem der Ansprüche 1-3, dadurch gekennzeichnet, daß die radioaktiven Abfallstoffe im Inneren eines jeden senkrechten Lagerschachts (5) in Rohren (15, 20) verteilt sind, die die Umfangsfläche der Schächte besetzen und von frischer aufsteigender Luft durchspült werden, während die warme Luft in einem leeren zentralen Rohr (22) absteigt und wobei der Boden eines jeden Randrohrs einen Stoßdämpfer (21) aufweist und die Gesamtheit der Rohre auf einem gegossenen Basissockel (11) ruht, der mit Beton aufgefüllt ist und in der Mitte einer Seitennische (12) angeordnet ist.
5. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß die senkrechten Lagerschächte (5) an ihrer Mündung in die Galerien der ersten Ebene durch eine Metallplatte (10) verschlossen sind, die den Schutz des Personals gegen Verstrahlung gewährleistet, ohne die Fahrzeugbewegung zu beeinträchtigen.
6. Anlage nach einem der Ansprüche 1-5, dadurch gekennzeichnet, daß die erste obere Galerienebene in einer Tiefe von 300 bis 1 000 m angeordnet ist.
7. Anlage nach einem der Ansprüche 1-6, dadurch gekennzeichnet, daß die erste obere Galerienebene und die zweite untere Galerienebene vertikal mit 20 bis 40 m, vorzugsweise mit 25 bis 30 m, beabstandet sind.
8. Anlage nach einem der Ansprüche 1-7, dadurch gekennzeichnet, daß sie in ein Felsenmassiv eingearbeitet ist, das aus Felsen besteht, die aus der Gruppe gewählt sind, die Granit, Ton, Salz und Vulkanfelsen umfaßt.
EP83400871A 1982-05-05 1983-04-29 Geologische Anlage zur Lagerung von radioaktivem Material, insbesondere in verglaster Form Expired EP0093671B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8207786 1982-05-05
FR8207786A FR2526574A1 (fr) 1982-05-05 1982-05-05 Procede d'evacuation de dechets radioactifs et installation geologique pour l'evacuation de ces dechets

Publications (2)

Publication Number Publication Date
EP0093671A1 EP0093671A1 (de) 1983-11-09
EP0093671B1 true EP0093671B1 (de) 1987-02-11

Family

ID=9273743

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83400871A Expired EP0093671B1 (de) 1982-05-05 1983-04-29 Geologische Anlage zur Lagerung von radioaktivem Material, insbesondere in verglaster Form

Country Status (5)

Country Link
US (1) US4500227A (de)
EP (1) EP0093671B1 (de)
JP (1) JPS5931499A (de)
DE (1) DE3369809D1 (de)
FR (1) FR2526574A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19529357A1 (de) * 1995-08-09 1997-02-13 Nukem Gmbh Unterirdisches Zwischenlager sowie Verfahren zum Zwischenlagern von Abfall

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8402669D0 (en) * 1984-02-01 1984-03-07 English Electric Co Ltd Storage arrangements for nuclear fuel
US4776409A (en) * 1984-09-04 1988-10-11 Manchak Frank Insitu waste impoundment treating apparatus and method of using same
US4844839A (en) * 1984-09-04 1989-07-04 Manchak Frank In situ treatment and analysis of wastes
WO1986001439A1 (en) * 1984-09-04 1986-03-13 Manchak Frank In situ waste impoundment treating apparatus and method of using same
JPS61202200A (ja) * 1985-03-06 1986-09-06 清水建設株式会社 放射性廃棄物の岩盤内貯蔵設備
JPS61202198A (ja) * 1985-03-06 1986-09-06 清水建設株式会社 放射性廃棄物の岩盤内貯蔵設備
JPS61202199A (ja) * 1985-03-06 1986-09-06 清水建設株式会社 放射性廃棄物の岩盤内貯蔵設備
JPS61204599A (ja) * 1985-03-07 1986-09-10 清水建設株式会社 放射性廃棄物の岩盤内貯蔵設備
WO1987001312A1 (en) * 1985-08-26 1987-03-12 Manchak Frank In situ hazardous waste treating apparatus and method of using same
US5633508A (en) * 1995-10-12 1997-05-27 Cold Spring Granite Company Secondary shielding structure
US6238138B1 (en) * 1997-07-14 2001-05-29 Henry Crichlow Method for temporary or permanent disposal of nuclear waste using multilateral and horizontal boreholes in deep islolated geologic basins
US5850614A (en) * 1997-07-14 1998-12-15 Crichlow; Henry B. Method of disposing of nuclear waste in underground rock formations
US6342650B1 (en) * 1999-06-23 2002-01-29 VALFELLS áGUST Disposal of radiation waste in glacial ice
JP3945225B2 (ja) * 2001-11-09 2007-07-18 鹿島建設株式会社 空気搬送システムによる地層処分方法
FR2891093B1 (fr) * 2005-09-16 2007-10-26 Schneider Electric Ind Sas Declencheur electronique pourvu de moyens de surveillance, disjoncteur comportant un tel declencheur et procede de surveillance.
GB2448346A (en) * 2007-04-12 2008-10-15 Univ Sheffield Nuclear waste disposal
JP6495068B2 (ja) * 2015-03-30 2019-04-03 大成建設株式会社 管渠の構築方法および地下流路
US9833819B2 (en) 2015-04-06 2017-12-05 Safe Nuclear Solutions, LLC System for deep underground storage of radioactive waste

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2788637A (en) * 1952-12-04 1957-04-16 Phillips Petroleum Co Underground storage systems and improved method of operating
SE390718B (sv) * 1975-05-28 1977-01-17 Abv Vegforbettringar Ab Anleggning for lagring av petroleumprodukter i underjordiska lagringsrum
US4020004A (en) * 1975-11-21 1977-04-26 The United States Of America As Represented By The United States Energy Research And Development Administration Conversion of radioactive ferrocyanide compounds to immobile glasses
US4040480A (en) * 1976-04-15 1977-08-09 Atlantic Richfield Company Storage of radioactive material
SE416690B (sv) * 1977-06-30 1981-01-26 Wp System Ab Anleggning for lagring av radioaktivt material i berg
US4192629A (en) * 1976-12-13 1980-03-11 Hallenius Tore J System for the storage of radioactive material in rock
ES464822A1 (es) * 1976-12-13 1979-05-01 Torejerker Hallenius Deposito subterraneo para almacenar material radiactivo y otros materiales en roca.
DE2754269C2 (de) * 1977-12-06 1986-10-16 Gesellschaft für Strahlen- und Umweltforschung mbH, 8000 München Endlagerstätte für radioaktive Abfälle
JPS54128818A (en) * 1978-02-21 1979-10-05 Hallenius Tore Jerker Facility for storing fluid such as petroleum products into base rock
US4230597A (en) * 1978-08-03 1980-10-28 Hittman Corporation Conversion of radioactive waste materials into solid form
US4326820A (en) * 1978-11-28 1982-04-27 Gesellschaft Fur Strahlen-Und Umweltforschung Mbh Munchen Final depository for radioactive wastes
US4320028A (en) * 1979-05-17 1982-03-16 Leuchtag H Richard Nuclear waste disposal system
US4269728A (en) * 1979-08-21 1981-05-26 The United States Of America As Represented By The United States Department Of Energy Method for storing spent nuclear fuel in repositories
FR2479542B1 (fr) * 1980-03-27 1987-08-07 Tech Nles Ste Gle Nouveaux materiaux barrieres utilisables pour le conditionnement des effluents radio-actifs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Rapport UKAREA Northern Division Report HD. R. 514 (R) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19529357A1 (de) * 1995-08-09 1997-02-13 Nukem Gmbh Unterirdisches Zwischenlager sowie Verfahren zum Zwischenlagern von Abfall

Also Published As

Publication number Publication date
US4500227A (en) 1985-02-19
FR2526574A1 (fr) 1983-11-10
EP0093671A1 (de) 1983-11-09
JPH0340840B2 (de) 1991-06-20
JPS5931499A (ja) 1984-02-20
DE3369809D1 (en) 1987-03-19
FR2526574B1 (de) 1984-09-28

Similar Documents

Publication Publication Date Title
EP0093671B1 (de) Geologische Anlage zur Lagerung von radioaktivem Material, insbesondere in verglaster Form
US11342091B2 (en) Systems and methods for storing spent nuclear fuel
TWI460740B (zh) 儲存高階核廢料之系統及方法
US7590213B1 (en) Systems and methods for storing spent nuclear fuel having protection design
US10147509B2 (en) Ventilated system for storing high level radioactive waste
EP0253730A1 (de) Vorrichtung zum trockenen Lagern von wärmeabgebenden Materialien, insbesondere von radioaktiven Materialien
US20050220256A1 (en) Systems and methods for storing spent nuclear fuel having a low heat load
FR2665294A1 (fr) Centrale nucleaire a structure de securite.
KR101123651B1 (ko) 고준위 폐기물을 저장하기 위한 시스템 및 방법
FR3001829A1 (fr) Procede de stockage de dechets radiferes dans un sol sature d'eau, a faible profondeur
EP0042323B1 (de) Einrichtung zur Lagerung und/oder zum Transport von Kernbrennelementen
CA2204407C (fr) Dispositif de mur drainant implante dans un sol
EP0795061B1 (de) Vorrichtung einer entwässerungsmauer im boden
JP2023552915A (ja) 核燃料と放射性廃棄物の高密度地下貯蔵システム
FR2721430A1 (fr) Dispositif et procédé de stockage à sac de matériaux dégageant de la chaleur.
JP2020016459A (ja) 核爆発後の超ウラン元素酸化物除去設備
Cohen Ocean Dumping of High-Level Waste—An Acceptable Solution We Can “Guarantee”
SMILESKI et al. CREATION, MANAGEMENT AND STORAGE OF RADIOACTIVE WASTE AND ITS ENVIRONMENTAL EFFECTS
RU2137231C1 (ru) Способ захоронения ядерного вещества
Kubofcik Low-level radiation waste management system
JPS61223700A (ja) 低レベル放射性廃棄物の貯蔵方法
JPH04115189A (ja) 原子力プラント設備
Singh ON THE ESSENTIAL CHARACTERISTICS OF UNDERGROUND STORAGE OF SPENT NUCLEAR FUEL IN THE HI-STORM 100 SYSTEM
Massey Gamma ray energy spectrum of a buried radioactive source.
JPS61202196A (ja) 放射性廃棄物の岩盤内貯蔵設備

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE GB LI SE

17P Request for examination filed

Effective date: 19840502

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE GB LI SE

REF Corresponds to:

Ref document number: 3369809

Country of ref document: DE

Date of ref document: 19870319

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BECN Be: change of holder's name

Effective date: 19870211

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890317

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890328

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930330

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930426

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930429

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940430

Ref country code: CH

Effective date: 19940430

Ref country code: BE

Effective date: 19940430

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Effective date: 19940430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940429

EUG Se: european patent has lapsed

Ref document number: 83400871.6

Effective date: 19910115