EP0093671A1 - Geological storage arrangement for radioactive materials, especially in the vitrified form - Google Patents

Geological storage arrangement for radioactive materials, especially in the vitrified form Download PDF

Info

Publication number
EP0093671A1
EP0093671A1 EP83400871A EP83400871A EP0093671A1 EP 0093671 A1 EP0093671 A1 EP 0093671A1 EP 83400871 A EP83400871 A EP 83400871A EP 83400871 A EP83400871 A EP 83400871A EP 0093671 A1 EP0093671 A1 EP 0093671A1
Authority
EP
European Patent Office
Prior art keywords
galleries
waste
geological
plane
wells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83400871A
Other languages
German (de)
French (fr)
Other versions
EP0093671B1 (en
Inventor
Guy Courtois
Claude Jaouen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0093671A1 publication Critical patent/EP0093671A1/en
Application granted granted Critical
Publication of EP0093671B1 publication Critical patent/EP0093671B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/34Disposal of solid waste

Definitions

  • the present invention relates generally to techniques for preserving radioactive materials from used fuel elements after they have been discharged from a reactor.
  • Fissile materials which have remained in a nuclear reactor such as for example an enriched uranium reactor cooled with pressurized light water, are depleted in U 235 and correspondingly enriched in plutonium at the same time as waste is created.
  • a nuclear reactor such as for example an enriched uranium reactor cooled with pressurized light water
  • reprocessing operations are frequently carried out on such used fuel elements which essentially allow the separation of uranium depleted in isotope 235 and the plutonium formed as well as the packaging of the waste in a safe form.
  • the residual products which cannot be used and which contain a significant proportion of highly radioactive materials are then subjected to vitrification operations.
  • Tables 1 and 2 which follow give respectively for the fission products and for the actinides, the masses and powers of the radioactive nuclei obtained from the reprocessing of a ton of uranium contained in fuel elements for a light water nuclear reactor, the reprocessing of which was carried out three years after the fuel was unloaded.
  • the radioactive waste thus vitrified is commonly stored in France in the form of a compact cylindrical mass with a volume of 220 liters in a metal container whose wall has a thickness of 5 mm, whose diameter is 430 mm and the height of 1660 mm.
  • Such containers spontaneously heat up to high temperatures; to ensure good preservation with a sufficient safety limit, it was decided not to exceed 200 ° C at the container surface and 450 ° C at the heart of the glass on the axis of the container.
  • Such a container known per se is shown by way of indication in Figure 1 attached.
  • the object of the present invention is precisely to jet a geological storage facility which allows, thanks to relatively simple means, to carry out the two previous conservation periods successively on the same site.
  • the subject of the invention is a process for the disposal of radioactive waste, in particular vitrified waste, characterized in that a first interim storage under ventilation is carried out in the same geological site and successively over time. air by natural convection, then, after stopping this ventilation and closing the site with a geochemical barrier, a final deposit ensuring the complete decrease in the radioactivity of this same waste.
  • the process which is the subject of the invention therefore consists in carrying out the two operations of interim storage and final disposal in a geological installation with sufficient depth and nevertheless capable of being ventilated by natural convection of fresh air coming from the ground surface and placed in motion only by the calorific energy released by radioactive waste buried in the ground.
  • the radioactive decay having reached the desired rate, there is no longer any risk in considering final storage in situ, the site is completely and definitively closed off, of course, stopping the previous ventilation.
  • the galleries in the second lower plane are used to supply fresh air from the surface and to evacuate the hot air that has circulated in the installation; the fact that these galleries are inclined at an angle a to the common direction of the galleries in the foreground makes it possible to arrange the vertical storage wells between the axis of the galleries in the foreground and the lateral niches, adjacent to the galleries in the second plane, in which a support resting on the surface of the ground ensures the seat and the stability of the vitrified active waste containers stacked in said vertical storage wells from the upper galleries in the foreground.
  • These vertical wells, in which the release of heat due to the storage of waste takes place, are also traversed by a hairpin in the ascending-descending direction by the air flow of ventilation by natural convection.
  • the angle a of inclination of the galleries of the second plane relative to the galleries of the foreground is equal, preferably to one of the two values 30 ° and 45 °, the regular geometric network of vertical sinks of storage between the two planes of galleries being either with hexagonal meshes, or with square meshes.
  • the arrival of fresh air and the departure of hot air at the level of the galleries in the second plane takes place via a belt of two peripheral galleries, surrounding the galleries in the second plane, and communicating with they.
  • the radioactive waste is distributed, inside each vertical storage well, in tubes occupying the periphery of the well and traversed by ascending fresh air, the hot air descending in an empty central tube, the base of each peripheral tube being able to include a fall damping device and all the tubes resting on a cast iron base support filled with concrete and placed in the center of a lateral niche.
  • the vertical storage wells are closed, at their outlet in the galleries in the foreground, by a metal plate or plug ensuring the protection of personnel against radiation without preventing the vehicle traffic.
  • the first upper gallery plane can be located depending on the nature of the terrain between 300 and 1000 meters and the vertical distance separating them from the second lower gallery plane can be of the order of 20 to 40 meters but preferably 25 to 30 meters, which makes it possible to superimpose in the preceding tubes 10 to 15 layers of each 6 vitrified containers with a height of approximately 85 cm each.
  • the vertical storage wells 5 extend vertically in which the vitrified radioactive waste containers are stored, some of which only referenced 6 have been shown diagrammatically in FIG. 1.
  • the access shaft 2a is used to descend to the level of the galleries 3, the drums such as 7 from a loading machine 8 located on the surface having its own protection and movable on wheels.
  • a loading machine 8 located on the surface having its own protection and movable on wheels.
  • another transfer machine 9 takes up the drums 7 to route them along the gallery 3 and introduce them, as seen in the vertical well 5 on the left after removing the metal plate or plug 10 of this vertical well 5.
  • the base support 11 serving to support the column of drums 6 stacked in each well.
  • the ventilation by natural convection of the installation of FIG. 1 takes place as indicated by the arrows in the drawing, that is to say that the tube 2b is used for suction from the surface of the ground 1 of fresh air which then travels in the galleries 4 and, from there, in a hairpin along an ascending and descending path in each of the vertical wells 5 to be then evacuated in the form of hot air by axial ducts to each vertical storage well 5 and rise to the surface by the aeration well 2c.
  • it is the chimney effect which results from the presence in the vertical wells 5 of radioactive waste releasing a large amount of calories which allows this circulation of cooling air in the installation by natural convection.
  • the first upper plan 3 of galleries is located 500 meters deep. and the second plan 4 of galleries 30 meters below, that is to say 530 meters from the surface of the ground 1.
  • FIG. 2 there is shown schematically a plan view of the two levels of galleries 3 and 4 of the installation of Figure 1 above.
  • the level 3 galleries are shown in solid lines and the level 4 galleries in dashes to avoid any confusion.
  • This figure shows the access shafts 2a, the cooling air intake 2b and the hot air discharge 2c.
  • the total footprint of the installation in plan is 500 x 500 m, that is to say that each of the galleries of level 3, the total number of 17 distant from each other by 25 m, has a length of 500 m .
  • the galleries 4 of the lower plane are inclined at 45 ° to the galleries 3 of the upper plane and the different niches 12 containing the vertical storage wells 5 are arranged vertically in the galleries of the foreground horizontal 3 so as to allow the convenient loading of the wells 5.
  • These wells 5 are 149 on the whole surface, of which only a few are shown; they have a diameter of 3.2 m.
  • the galleries of levels 3 and 4 have a circular profile slightly flattened down and a diameter of 5 m.
  • the wells access or evacuation 2 have a diameter of 8 m.
  • two peripheral galleries 13 and 14 surround the oblique galleries of the lower level 4 and are intended, as will be described in more detail later, to facilitate the distribution of the cooling air coming from the surface and the hot air to be evacuated to the surface after it has passed through the vertical wells 5.
  • the 149 vertical storage wells 5 are located at the top of a square mesh network.
  • FIG 3 there is shown the detail of one of the niches 12 serving as support for a column of vitrified radioactive containers stacked in a vertical well such as 5.
  • this niche 12 we see a base support 11 in cast iron filled of concrete on which six housings 15, 16, 17, 18, 19 and 20 come to rest, at the bottom of which are anti-fall stools, not shown, which serve as support for the containers of vitrified waste which are housed there one above the other.
  • Each tube such as 20 is provided with a cold air inlet duct 21 which includes a baffle allowing the passage of this air while ensuring biological protection with respect to the radioactive products contained in the tube 20.
  • the six tubes for housing the stored products 15, 16, 17, 18, 19 and 20 are thus traversed by an ascending flow of fresh air which permanently licks the periphery of the vitrified containers stacked in each of the tubes.
  • An empty central tube 22 is assigned to the return of hot air from the upper part of the vertical well 5 to the hot air outlet pipe 23 which is connected to the exhaust gallery 14 of FIG. 2.
  • the well 5 has a height of 30 m and the tubes 15 to 20 contain 10 to 15 layers of six containers of vitrified radioactive waste each having a height of about 1.85 m.
  • Figure 5 shows in perspective one of the angles of the installation of vertical wells 5 between the galleries of the upper first plane 3 and the galleries of the second lower plane 4.
  • the hot air exhaust wells 2c and d cold air intake 2b as well as at the second level of the galleries 4 the belt of the two peripheral galleries 13 and 14 serving for the distribution and distribution of the fresh air arriving from the surface (solid lines) and the hot air exhausted to the surface (dashes).
  • a number of niches 12 are also visible in this figure as well as vertical wells 5 in exploded form making it possible to see the six peripheral storage tubes and the central hot air return tube.
  • a division into two compartments is carried out by a median plate 25 which separates the upper part of the pipe in which fresh air circulates from the lower part in which a second pipe 26 serves as a conduit conveying the hot air.
  • This plate 25 corresponds to the niche separation floor 12 such than the one seen at 24 in Figure 3.
  • the installation thus described with reference to the first five figures is suitable for receiving radioactive waste corresponding to the reprocessing of a plant processing 1600 tonnes of fuel per year and having operated for 30 years. It can thus definitively store around 24,000 drums of 220 liters each of vitrified radioactive waste without the temperature exceeding the critical value of 100 ° C on the surrounding rock. By way of clarification, it can be indicated that the peripheral evacuation gallery 14 of hot air does not exceed 90 ° C. in permanent operation.
  • FIG. 6 shows schematically and simplified a variant of the mode of circulation by natural convection of air in an installation of the same kind as that of the preceding figures.
  • the access shafts 2a, fresh air inlet 2b and hot air discharge 2c in connection with the galleries 3 of the foreground and the galleries 4 of the second lower plan.
  • the inclination of the galleries from one floor to the other has not been shown for simplicity.
  • the difference in design with the previous example here lies in the fact that the fresh air coming from the surface through the pipe 2b is injected directly into the galleries of level 4 and rises in one direction in all the wells 5 to lead in the various galleries of the foreground 3 and be evacuated overall by the pipe 2c from the upper foreground 3.
  • this variant therefore, there is no longer any natural circulation of air along a hairpin path in vertical storage wells 5.
  • Figures 7a, 7b, 7c and 7d show more several possible examples of the installation of vertical storage wells 5 in a regular network.
  • the galleries in the foreground 3 are shown in solid lines and, inclined at an angle ⁇ and in dashes, the galleries in the second plane 4 of the installation.
  • the purpose of these various figures is to show that the possible configurations of arrangement of the vertical storage wells 5 are quite numerous and in correspondence with the value of the angle a of inclination of the galleries of plane 3 on the galleries of plane 4.
  • the mesh of the storage wells 5 is a mesh in the form of a parallelogram and in the second case (FIG. 7d) it is a rectangular mesh.
  • reception rocks in which the galleries of the installation object of the invention are dug can be of very varied natures; we will nevertheless cite as particularly interesting the terrains made up of granite, clay, salt or volcanic rocks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Installation géologique pour l'évacuation de déchets radioactifs vitrifiés. Elle comporte en combinaison: - une série de puits verticaux (2) d'accès des déchets vers le sous-sol et de ventilation reliant la surface du sol (1) au site de stockage situé à grande profondeur; - un premier plan supérieur (3) de galeries horizontales, parallèles et équidistantes, munies de moyen (9) pour véhiculer les déchets; - un deuxième plan inférieur (4) de galeries horizontales, parallèles et équidistantes selon une direction inclinée d'un angle α par rapport à la direction commune des galeries du premier plan supérieur (3).Geological installation for the disposal of vitrified radioactive waste. It comprises in combination: - a series of vertical wells (2) for access of the waste to the basement and ventilation connecting the soil surface (1) to the storage site located at great depth; - A first upper plane (3) of horizontal, parallel and equidistant galleries, provided with means (9) for transporting the waste; - A second lower plane (4) of horizontal galleries, parallel and equidistant in a direction inclined by an angle α relative to the common direction of the galleries of the first upper plane (3).

Description

La présente invention se rapporte d'une façon générale aux techniques de conservation des matières radioactives issues des éléments combustibles usagés après leur déchargement d'un réacteur.The present invention relates generally to techniques for preserving radioactive materials from used fuel elements after they have been discharged from a reactor.

Les matériaux fissiles qui ont séjourné dans un réacteur nucléaire, comme par exemple un réacteur à uranium enrichi refroidi à l'eau légère pressurisée, sont appauvris en U235 et corrélativement enrichis en plutonium en même temps qu'il y a création de déchets. Comme ce dernier élément est lui-même fissile et peut être utilisé à son tour notamment dans des réacteurs du type à neutrons rapides, on procède fréquemment sur de tels éléments combustibles usagés à des opérations dites de retraitement qui permettent essentiellement la séparation de l'uranium appauvri en isotope 235 et du plutonium formé ainsi que le conditionnement des déchets sous une forme sûre. Après un processus de retraitement, les produits résiduels non utilisables et qui comportent une part importante de matériaux fortement radioactifs sont alors soumis à des opérations de vitrification.Fissile materials which have remained in a nuclear reactor, such as for example an enriched uranium reactor cooled with pressurized light water, are depleted in U 235 and correspondingly enriched in plutonium at the same time as waste is created. As the latter element is itself fissile and can in turn be used in particular in reactors of the fast neutron type, so-called reprocessing operations are frequently carried out on such used fuel elements which essentially allow the separation of uranium depleted in isotope 235 and the plutonium formed as well as the packaging of the waste in a safe form. After a reprocessing process, the residual products which cannot be used and which contain a significant proportion of highly radioactive materials are then subjected to vitrification operations.

Pour cette conservation, deux problèmes majeurs sont à prendre en considération. D'une part et bien évidemment les déchets ainsi conditionnés sont très fortement radioactifs et constituent un danger mortel pour tous les organismes vivants dont on doit les séparer par des protections biologiques ; d'autre part, et ceci n'est pas toujours pris en considération avec toute l'attention nécessaire, les réactions de désintégration radioactive dont ils sont le siège, libèrent, de l'énergie sous forme de chaleur. A cette remarque viennent s'ajouter les périodes de décroissance de ces corps radioactifs qui sont parfois très longues et peuvent s'étendre par exemple de 30 à 30.000 ans pour les plus courants.For this conservation, two major problems must be taken into consideration. On the one hand and obviously the waste thus conditioned are very highly radioactive and constitute a lethal danger for all living organisms from which they must be separated by biological protections; on the other hand, and this is not always taken into account with all the necessary attention, the radioactive decay reactions of which they are the seat, release energy in the form of heat. To this remark are added the periods of decay of these radioactive bodies which are sometimes very long and can extend for example from 30 to 30,000 years for the most common.

A titre d'illustration de ce qui précède, les tableaux 1 et 2 qui suivent donnent respectivement pour les produits de fission et pour les actinides, les masses et puissances des noyaux radioactifs obtenus à partir du retraitement d'une tonne d'uranium contenu dans des éléments combustibles de réacteur nucléaire à eau légère, dont le retraitement a été effectué trois ans après le déchargement du combustible.

Figure imgb0001
Figure imgb0002
By way of illustration of the above, Tables 1 and 2 which follow give respectively for the fission products and for the actinides, the masses and powers of the radioactive nuclei obtained from the reprocessing of a ton of uranium contained in fuel elements for a light water nuclear reactor, the reprocessing of which was carried out three years after the fuel was unloaded.
Figure imgb0001
Figure imgb0002

Pour illustrer les conséquences des données précédentes, on peut rappeler que les déchets radioactifs ainsi vitrifiés sont stockés couramment en France sous la forme d'une masse cylindrique compacte d'un volume de 220 litres dans un conteneur métallique dont la paroi a une épaisseur de 5 mm, dont le diamètre est de 430 mm et la hauteur de 1660 mm. De tels conteneurs s'échauffent spontanément à des températures élevées ; pour assurer une bonne conservation avec une limite de sécurité suffisante, il a été décidé de ne pas dépasser 200°C en surface de conteneur et 450°C au coeur du verre sur l'axe du conteneur. Un tel conteneur en soi connu est représenté à titre indicatif sur la figure 1 ci- jointe.To illustrate the consequences of the preceding data, it may be recalled that the radioactive waste thus vitrified is commonly stored in France in the form of a compact cylindrical mass with a volume of 220 liters in a metal container whose wall has a thickness of 5 mm, whose diameter is 430 mm and the height of 1660 mm. Such containers spontaneously heat up to high temperatures; to ensure good preservation with a sufficient safety limit, it was decided not to exceed 200 ° C at the container surface and 450 ° C at the heart of the glass on the axis of the container. Such a container known per se is shown by way of indication in Figure 1 attached.

L'idée la plus simple qui vient tout naturellement à l'esprit pour se débarrasser de ces déchets vitrifiés est celle de l'enfouissement dans le sol à plus ou moins grande profondeur. Malheureusement, la théorie et la pratique montrent qu'un tel confinement sans précautions spéciales dans des galeries ou des enceintes souterraines est impossible en raison des températures auxquelles parviendrait la masse ainsi conservée et qui seraient suffisantes pour provoquer des fissurations ou des affaissements de terrain sérieux accompagnés de destruction partielle de certains des conteneurs de verre, ce qui pourrait conduire les produits radioactifs extrêmement dangereux à se répandre dans l'environnement.The simplest idea that comes naturally to mind to get rid of this vitrified waste is that of burial in the ground at more or less great depth. Unfortunately, theory and practice show that such confinement without special precautions in galleries or underground enclosures is impossible because of the temperatures at which the mass thus preserved would reach and which would be sufficient to cause cracking or serious subsidence of the ground accompanied partial destruction of some of the glass containers, which could lead to extremely dangerous radioactive materials being released into the environment.

Pour cette raison, on envisage généralement une conservation de ces déchets vitrifiés en trois périodes successives dans le temps, à savoir respectivement :

  • 1. Un entreposage provisoire ou intérimaire de 4 à 5 ans dans des chambres en béton situées au voisinage de la surface du sol et parcourues par de l'air de refroidissement forcé pour évacuer les calories et limiter la température de l'ensemble à une valeur maximale de l'ordre de 200°C. Des puits métalliques à petite capacité permettent de loger dans un ensemble de ce genre 3000 à 4000 conteneurs de verre fortement actifs.
  • 2. Après cette première période de décroissance radioactive, un stockage intérimaire de longue durée, toujours au voisinage de la surface, à une profondeur de 6 à 50 m dans des salles en béton construites par terrassement et munies d'un refroidissement libre ou forcé.
  • 3. Un dépôt définitif dans le sol à grande profondeur de ces mêmes conteneurs de verre lorsque leur état d'activité a suffisamment décru pour que la masse ainsi entreposée de façon définitive dans le sol n'échauffe pas la roche d'accueil au delà de 100°C à 150°C selon sa nature. Les installations de dépôt définitif à grande profondeur (de l'ordre de 500 à 1000 m par exemple) sont alors obturées de façon définitive par des barrières géochimiques à l'aide d'un matériau qui assure à la fois la continuité mécanique du massif géologique et la continuité thermique entre les conteneurs de verre et la roche pour permettre la dissipation de l'énergie résiduelle qui continuera à être émise pendant quelques milliers d'années.
For this reason, it is generally envisaged to store this vitrified waste in three successive periods in time, namely respectively:
  • 1. Temporary or interim storage of 4 to 5 years in concrete chambers located near the ground surface and traversed by forced cooling air to evacuate the heat ries and limit the temperature of the assembly to a maximum value of the order of 200 ° C. Small capacity metal sinks can accommodate 3000 to 4000 highly active glass containers in an assembly of this type.
  • 2. After this first period of radioactive decay, interim long-term storage, always near the surface, at a depth of 6 to 50 m in concrete rooms built by earthworks and provided with free or forced cooling.
  • 3. A final deposit in the ground at great depth of these same glass containers when their state of activity has decreased enough so that the mass thus permanently stored in the ground does not heat the receiving rock beyond 100 ° C to 150 ° C depending on its nature. The final disposal facilities at great depth (of the order of 500 to 1000 m for example) are then closed off definitively by geochemical barriers using a material which ensures both the mechanical continuity of the geological massif and thermal continuity between the glass containers and the rock to allow the dissipation of the residual energy which will continue to be emitted for a few thousand years.

La nécessité de séparer les étapes 2 et 3 précédentes que sont le stockage intérimaire de longue durée et le dépôt définitif dans le sol, conduit à une complication majeure qui est la remontée à la surface et le transport dans un autre site des conteneurs de verre fortement actifs. Cette complication augmente évidemment les risques de contamination et par conséquent le danger lié au problème de l'évacuation desdits déchets radioactifs.The need to separate the previous stages 2 and 3, which are long-term interim storage and final deposition in the ground, leads to a major complication which is the raising to the surface and the transport of glass containers to another site. assets. This complication obviously increases the risks of contamination and consequently the danger linked to the problem of the disposal of said radioactive waste.

La présente invention a précisément pour objet une installation de stockage géologique qui permet, grâce à des moyens relativement simples, de réaliser les deux périodes de conservation précédente de façon successive sur un même site.The object of the present invention is precisely to jet a geological storage facility which allows, thanks to relatively simple means, to carry out the two previous conservation periods successively on the same site.

A cet effet, l'invention a pour objet un procédé d'évacuation de déchets radioactifs, notamment vitrifiés, caractérisé en ce que l'on effectue, dans le même site géologique et de façon successive dans le temps, un premier stockage intérimaire sous ventilation d'air par convection naturelle, puis, après arrêt de cette ventilation et obturation du site par une barrière géochimique, un dépôt définitif assurant la décroissance complète de la radioactivité de ces mêmes déchets.To this end, the subject of the invention is a process for the disposal of radioactive waste, in particular vitrified waste, characterized in that a first interim storage under ventilation is carried out in the same geological site and successively over time. air by natural convection, then, after stopping this ventilation and closing the site with a geochemical barrier, a final deposit ensuring the complete decrease in the radioactivity of this same waste.

Le procédé objet de l'invention consiste à effectuer par conséquent les deux opérations de stockage intérimaire et de dépôt définitif dans une installation géologique à profondeur suffisante et néanmoins apte à être ventilée par convection naturelle d'air frais provenant de la surface du sol et mis en mouvement uniquement par l'énergie calorifique libérée par les déchets radioactifs enfouis dans le sol. Lorsque, la décroissance radioactive ayant atteint le taux souhaité, il n'y a plus de risques à envisager le stockage définitif in situ, on obture le site complètement et de façon définitive en arrêtant bien entendu la ventilation précédente.The process which is the subject of the invention therefore consists in carrying out the two operations of interim storage and final disposal in a geological installation with sufficient depth and nevertheless capable of being ventilated by natural convection of fresh air coming from the ground surface and placed in motion only by the calorific energy released by radioactive waste buried in the ground. When, the radioactive decay having reached the desired rate, there is no longer any risk in considering final storage in situ, the site is completely and definitively closed off, of course, stopping the previous ventilation.

La présente invention a également pour objet une installation géologique qui permet la mise en oeuvre du procédé précédent et qui se caractérise essentiellement en ce qu'elle comporte dans le sol en combinaison :

  • - une série de puits verticaux d'accès des déchets vers le sous-sol et de ventilation reliant la surface du sol au site de stockage situé à grande profondeur ;
  • - un premier plan supérieur de galeries horizontales, parallèles et équidistantes, munies de moyens pour véhiculer les déchets ;
  • - un deuxième plan inférieur de galeries horizontales, parallèles, et équidistantes, selon une direction inclinée d'un angle a par rapport à la direction commune des galeries du premier plan supérieur ;
  • - des puits verticaux, affectés au stockage des déchets et reliant selon un réseau géométrique régulier les galeries du premier plan et du deuxième plan, chaque puits débouchant, en partie haute, dans l'axe d'une galerie du premier plan et, en partie basse, dans une niche latérale, reliée à l'une des galeries du deuxième plan ;
  • - au moins un des puits verticaux alimentant en air frais depuis la surface du sol les galeries du deuxième plan et au moins un autre des puits verticaux évacuant l'air chaud depuis lesdites galeries vers la surface du sol, la circulation de cet air de refroidissement ayant lieu en épingle à cheveux selon un trajet ascendant-descendant dans les puits verticaux reliant les deux plans de galeries pendant le stockage intérimaire, sous l'effet du dégagement de chaleur se produisant dans les déchets stockés.
The present invention also relates to a geological installation which allows the implementation of the above process and which is essentially characterized in that it comprises in the soil in combination:
  • - a series of vertical waste access shafts to the basement and ventilation connecting the soil surface to the storage site located at great depth;
  • - a first upper plane of horizontal, parallel and equidistant galleries, provided with means for transporting the waste;
  • - A second lower plane of horizontal galleries, parallel, and equidistant, in a direction inclined by an angle a with respect to the common direction of the galleries of the first upper plane;
  • - vertical wells, used for the storage of waste and connecting the galleries in the foreground and in the second plane according to a regular geometric network, each well opening, in the upper part, in the axis of a gallery in the foreground and, in part low, in a side niche, connected to one of the galleries in the second plan;
  • - At least one of the vertical wells supplying fresh air from the surface of the ground with the galleries in the second plane and at least one of the vertical wells evacuating the hot air from said galleries to the ground surface, the circulation of this cooling air taking place in a hairpin along an ascending-descending path in the vertical wells connecting the two planes of galleries during interim storage, under the effect of the release of heat occurring in the stored waste.

La répartition des déchets radioactifs dans des puits verticaux de stockage qui relient les galeries du premier plan et du deuxième plan permet de résoudre.de façon simple et pratique les problèmes essentiels de ce type de stockage. En effet, les puits verticaux d'accès depuis la surface du sol vers l'installation sont utilisés l'un pour descendre les déchets radioactifs à grande profondeur et les autres pour assurer la ventilation d'air par convection naturelle dans l'installation ; les galeries du premier plan supérieur sont munies de moyens pour véhiculer lesdits déchets tels que par exemple chariots ou locomoteurs montés sur rails. Les galeries du deuxième plan inférieur servent à assurer l'apport en air frais depuis la surface et l'évacuation de l'air chaud qui a circulé dans l'installation ; le fait que ces galeries sont inclinées d'un angle a sur la direction commune des galeries du premier plan permet de disposer les puits verticaux de stockage entre l'axe des galeries du premier plan et des niches latérales, voisines des galeries du deuxième plan, dans lesquelles un support reposant sur la surface du sol assure l'assise et la stabilité des conteneurs de déchets actifs vitrifiés empilés dans lesdits puits verticaux de stockage depuis les galeries supérieures du premier plan. Ces puits verticaux, dans lesquels a lieu le dégagement de chaleur dû au stockage de déchets, sont également parcourus en épingle à cheveux dans le sens ascendant-descendant par le courant d'air de ventilation par convection naturelle. On comprend l'avantage que présente l'inclinaison des directions des galeries des deux plans l'un par rapport à l'autre : s'il est possible en effet de prévoir que les puits verticaux débouchent dans l'axe des galeries du plan supérieur pour le chargement de ces puits, il n'est pas pensable en revanche que ces mêmes puits de stockage débouchent directement dans l'axe des galeries du deuxième plan inférieur, faute de quoi il aurait fallu prévoir un renflement important de chacune de ces galeries au point d'arrivée inférieur de chaque puits de stockage, ce qui en aurait compliqué énormément la réalisation. Selon l'installation conforme à l'invention au contraire, le point d'arrivée au deuxième niveau des puits verticaux de stockage se situe latéralement au voisinage immédiat des galeries du deuxième plan, ce qui permet de les installer dans des niches latérales toutes identiques et conçues sur le même modèle.The distribution of radioactive waste in vertical storage wells which connect the galleries in the foreground and in the second plane makes it possible to solve in a simple and practical manner the essential problems of this type of disposal. In fact, the vertical access shafts from the ground surface to the installation are used, one to lower the radioactive waste to great depth and the others to ensure ventilation of air by natural convection in the installation; the galleries in the upper foreground are provided with means for transporting said waste such as for example trolleys or locomotors mounted on rails. The galleries in the second lower plane are used to supply fresh air from the surface and to evacuate the hot air that has circulated in the installation; the fact that these galleries are inclined at an angle a to the common direction of the galleries in the foreground makes it possible to arrange the vertical storage wells between the axis of the galleries in the foreground and the lateral niches, adjacent to the galleries in the second plane, in which a support resting on the surface of the ground ensures the seat and the stability of the vitrified active waste containers stacked in said vertical storage wells from the upper galleries in the foreground. These vertical wells, in which the release of heat due to the storage of waste takes place, are also traversed by a hairpin in the ascending-descending direction by the air flow of ventilation by natural convection. We understand the advantage of the inclination of the directions of the galleries of the two planes relative to each other: if it is indeed possible to predict that the vertical shafts open in the axis of the galleries of the upper plane for the loading of these wells, it is not conceivable on the other hand that these same storage wells open directly in the axis of the galleries of the second lower plane, failing which it would have been necessary to provide a significant bulge of each of these galleries lower end point of each storage well, which would have enormously complicated the realization. According to the installation according to the invention on the contrary, the point of arrival at the second level of the vertical storage wells is located laterally in the immediate vicinity of the galleries of the second plane, which makes it possible to install them in lateral niches all identical and designed on the same model.

Selon l'invention, l'angle a d'inclinaison des galeries du deuxième plan par rapport aux galeries du premier plan est égal, de préférence à rune des deux valeurs 30° et 45°, le réseau géométrique régulier de.s puits verticaux de stockage entre les deux plans de galeries étant soit à mailles hexagonales, soit à mailles carrées.According to the invention, the angle a of inclination of the galleries of the second plane relative to the galleries of the foreground is equal, preferably to one of the two values 30 ° and 45 °, the regular geometric network of vertical sinks of storage between the two planes of galleries being either with hexagonal meshes, or with square meshes.

De façon pratique, l'arrivée d'air frais et le départ d'air chaud au niveau des galeries du deuxième plan a lieu par l'intermédiaire d'une ceinture de deux galeries périphériques, entourant les galeries du deuxième plan, et communiquant avec elles.In practice, the arrival of fresh air and the departure of hot air at the level of the galleries in the second plane takes place via a belt of two peripheral galleries, surrounding the galleries in the second plane, and communicating with they.

Selon une autre caractéristique de la présente invention, les déchets radioactifs sont répartis, à l'intérieur de chaque puits vertical de stockage, dans des tubes occupant la périphérie du puits et parcourus par de l'air frais ascendant, l'air chaud redescendant dans un tube central vide, la base de chaque tube périphérique pouvant comporter un dispositif amortisseur de chute et l'ensemble des tubes reposant sur un support de base en fonte rempli de béton et disposé au centre d'une niche latérale.According to another characteristic of the present invention, the radioactive waste is distributed, inside each vertical storage well, in tubes occupying the periphery of the well and traversed by ascending fresh air, the hot air descending in an empty central tube, the base of each peripheral tube being able to include a fall damping device and all the tubes resting on a cast iron base support filled with concrete and placed in the center of a lateral niche.

Selon une autre caractéristique de l'installation géologique objet de l'invention, les puits verticaux de stockage sont obturés, à leur débouché dans les galeries du premier plan, par une plaque métallique ou bouchon assurant la protection du personnel contre les rayonnements sans empêcher la circulation des véhicules.According to another characteristic of the geological installation object of the invention, the vertical storage wells are closed, at their outlet in the galleries in the foreground, by a metal plate or plug ensuring the protection of personnel against radiation without preventing the vehicle traffic.

Le premier plan supérieur de galeries peut être situé selon la nature du terrain entre 300 et 1000 mètres et la distance verticale qui les sépare du deuxième plan inférieur de galeries peut être de l'ordre de 20 à 40 mètres mais de préférence de 25 à 30 mètres, ce qui permet de superposer dans les tubes précédents 10 à 15 couches de chacune 6 conteneurs vitrifiés d'une hauteur de lm 85 chacun environ.The first upper gallery plane can be located depending on the nature of the terrain between 300 and 1000 meters and the vertical distance separating them from the second lower gallery plane can be of the order of 20 to 40 meters but preferably 25 to 30 meters, which makes it possible to superimpose in the preceding tubes 10 to 15 layers of each 6 vitrified containers with a height of approximately 85 cm each.

De toute façon l'invention sera mieux comprise à la lecture qui suit de la description de plusieurs exemples de mise en oeuvre qui seront donnés à titre explicatif et non limitatif et décrits en se référant aux figures 1 à 7 ci-jointes, sur lesquelles :

  • - la figure 1 montre en coupe-élévation l'implantation générale dans le sol d'une installation géologique conforme à la présente invention :
  • - la figure 2 montre une vue schématique de dessus d'un ensemble de stockage comportant une galerie supérieure et une galerie inférieure permettant de comprendre l'implantation des puits verticaux de stockage entre les deux galeries ;
  • - la figure 3 montre le détail de réalisation d'une niche latérale dans laquelle on voit le support de base des six tubes de logement de conteneurs vitrifiés ;
  • - la figure 4 est une coupe axiale de la figure 3 qui permet de voir l'implantation des tubes et des conteneurs qu'ils renferment ainsi que le sens de circulation de l'air ;
  • - la figure 5 est une vue en perspective cavalière d'une partie de l'installation montrant les deux plans de galeries supérieur et inférieur et leurs connexions avec les puits verticaux de stockage d'une part et les puits d'accès d'air froid et d'air chaud de l'autre ;
  • - la figure 6 représente une variante possible du circuit de ventilation par convection naturelle de l'air dans l'installation objet de l'invention ;
  • - les figures 7a à 7d montrent les différentes configurations possibles d'inclinaison de la direction des galeries supérieures et inférieures les unes par rapport aux autres en rapport avec les différentes formes de réseau géométrique de puits verticaux qui en résultent.
In any case, the invention will be better understood on reading the following description of several examples of implementation which will be given by way of non-limiting explanation and described with reference to FIGS. 1 to 7 attached, in which:
  • FIG. 1 shows in cross-elevation the general location in the ground of a geological installation in accordance with the present invention:
  • - Figure 2 shows a schematic top view of a storage assembly comprising an upper gallery and a lower gallery to understand the layout of the vertical storage wells between the two galleries;
  • - Figure 3 shows the detail of a side recess in which we see the base support of the six vitrified container housing tubes;
  • - Figure 4 is an axial section of Figure 3 which allows to see the layout of the tubes and containers they contain as well as the direction of air circulation;
  • - Figure 5 is a perspective view of part of the installation showing the two upper and lower gallery planes and their connections with the vertical storage wells on the one hand and the cold air access wells and hot air on the other;
  • - Figure 6 shows a possible variant of the ventilation circuit by natural air convection in the installation object of the invention;
  • - Figures 7a to 7d show the different possible configurations of inclination of the direction of the upper and lower galleries with respect to each other in relation to the different forms of geometric network of vertical wells which result therefrom.

Sur la figure 1, on voit, creusés en profondeur sous le niveau 1 du sol, les puits d'accès 2a, 2b et 2c ; le premier plan supérieur de galeries horizontales 3 et le deuxième plan inférieur de galeries horizontales 4 que l'on a représenté, pour la commodité du dessin, parallèle au plan de galeries supérieures 3 bien qu'il soit conformément à l'invention, incliné d'un angle a sur ce dernier.In Figure 1, we see, dug deep below level 1 of the ground, the access shafts 2a, 2b and 2c; the first upper plane of horizontal galleries 3 and the second lower plane of horizontal galleries 4 which has been shown, for the convenience of the drawing, parallel to the plane of upper galleries 3 although it is in accordance with the invention, inclined d 'an angle a on the latter.

Entre les plans de galeries 3 et 4, s'étendent verticalement les puits verticaux de stockage 5 dans lesquels sont stockés les conteneurs de déchets radioactifs vitrifiés, dont quelques uns seulement référencés 6 ont été représentés schématiquement sur la figure 1.Between the planes of galleries 3 and 4, the vertical storage wells 5 extend vertically in which the vitrified radioactive waste containers are stored, some of which only referenced 6 have been shown diagrammatically in FIG. 1.

Le puits d'accès 2a est utilisé pour descendre au niveau des galeries 3, les fûts tels que 7 à partir d'une machine de chargement 8 située en surface comportant sa propre protection et mobile sur des roues. Au niveau de la galerie 3, une autre machine de transfert 9 reprend les fûts 7 pour les acheminer le long de la galerie 3 et les introduire, comme on le voit dans le puits vertical 5 de gauche après avoir retiré la plaque métallique ou bouchon 10 de ce puits vertical 5. On voit également au fond de chaque puits de stockage vertical 5, le support de base 11 servant d'appui à la colonne de fûts 6 empilés dans chaque puits.The access shaft 2a is used to descend to the level of the galleries 3, the drums such as 7 from a loading machine 8 located on the surface having its own protection and movable on wheels. At the level of the gallery 3, another transfer machine 9 takes up the drums 7 to route them along the gallery 3 and introduce them, as seen in the vertical well 5 on the left after removing the metal plate or plug 10 of this vertical well 5. We also see at the bottom of each vertical storage well 5, the base support 11 serving to support the column of drums 6 stacked in each well.

La ventilation par convection naturelle de l'installation de la figure 1, a lieu comme l'indiquent les flèches sur le dessin, c'est-à-dire que le tube 2b sert à l'aspiration depuis la surface du sol 1 d'un air frais qui chemine ensuite dans les galeries 4 et, à partir de là, en épingle à cheveux selon un trajet montant et descendant dans chacun des puits verticaux 5 pour être évacué ensuite sous forme d'air chaud par des conduits axiaux à chaque puits vertical de stockage 5 et remonter à la surface par le puits d'aération 2c. Selon l'invention, c'est l'effet de cheminée qui résulte de la présence dans les puits verticaux 5 de déchets radioactifs dégageant une forte quantité de calories qui permet cette circulation d'air de refroidissement dans l'installation par convection naturelle.The ventilation by natural convection of the installation of FIG. 1 takes place as indicated by the arrows in the drawing, that is to say that the tube 2b is used for suction from the surface of the ground 1 of fresh air which then travels in the galleries 4 and, from there, in a hairpin along an ascending and descending path in each of the vertical wells 5 to be then evacuated in the form of hot air by axial ducts to each vertical storage well 5 and rise to the surface by the aeration well 2c. According to the invention, it is the chimney effect which results from the presence in the vertical wells 5 of radioactive waste releasing a large amount of calories which allows this circulation of cooling air in the installation by natural convection.

Pour donner une idée approximative des dimensions de l'installation de la figure l, le premier plan supérieur 3 de galeries est situé à 500 mètres de profondeur. et le deuxième plan 4 de galeries 30 mètres plus bas, c'est-à-dire à 530 mètres de la surface du sol 1.To give a rough idea of the dimensions of the installation in FIG. 1, the first upper plan 3 of galleries is located 500 meters deep. and the second plan 4 of galleries 30 meters below, that is to say 530 meters from the surface of the ground 1.

Sur la figure 2, on a représenté schématiquement une vue en plan des deux niveaux de galeries 3 et 4 de l'installation de la figure 1 précédente. Les galeries du niveau 3 sont représentées en traits pleins et les galeries du niveau 4 en tirets pour éviter toute confusion. On retrouve sur cette figure, les puits d'accès 2a, d'arrivée d'air de refroidissement 2b et d'évacuation d'air chaud 2c. L'emprise totale de l'installation en plan est de 500 x 500 m, c'est-à-dire que chacune des galeries du niveau 3, au nombre total de 17 distantes entre elles de 25 m, a une longueur de 500 m. Dans le mode de réalisation de la figure 2, les galeries 4 du plan inférieur sont inclinées à 45° sur les galeries 3 du plan supérieur et les différentes niches 12 contenant les puits verticaux de stockage 5 sont disposées à la verticale des galeries du premier plan horizontal 3 de façon à permettre le chargement commode des puits 5. Ces puits 5 sont au nombre de 149 sur toute la surface, dont quelques uns seulement sont représentés ; ils ont un diamètre de 3,2 m. Les galeries des niveaux 3 et 4 ont un profil circulaire légèrement aplati vers le bas et un diamètre de 5 m. Les puits d'accès ou d'évacuation 2 ont un diamètre de 8 m. Selon l'invention, deux galeries périphériques 13 et 14 entourent les galeries obliques du niveau inférieur 4 et sont destinées, ainsi qu'on le décrira plus en détail ultérieurement, à faciliter la répartition de l'air de refroidissement provenant de la surface et de l'air chaud à évacuer vers la surface après sa traversée des puits verticaux 5.In Figure 2, there is shown schematically a plan view of the two levels of galleries 3 and 4 of the installation of Figure 1 above. The level 3 galleries are shown in solid lines and the level 4 galleries in dashes to avoid any confusion. This figure shows the access shafts 2a, the cooling air intake 2b and the hot air discharge 2c. The total footprint of the installation in plan is 500 x 500 m, that is to say that each of the galleries of level 3, the total number of 17 distant from each other by 25 m, has a length of 500 m . In the embodiment of FIG. 2, the galleries 4 of the lower plane are inclined at 45 ° to the galleries 3 of the upper plane and the different niches 12 containing the vertical storage wells 5 are arranged vertically in the galleries of the foreground horizontal 3 so as to allow the convenient loading of the wells 5. These wells 5 are 149 on the whole surface, of which only a few are shown; they have a diameter of 3.2 m. The galleries of levels 3 and 4 have a circular profile slightly flattened down and a diameter of 5 m. The wells access or evacuation 2 have a diameter of 8 m. According to the invention, two peripheral galleries 13 and 14 surround the oblique galleries of the lower level 4 and are intended, as will be described in more detail later, to facilitate the distribution of the cooling air coming from the surface and the hot air to be evacuated to the surface after it has passed through the vertical wells 5.

Dans le mode de réalisation de la figure 2, les 149 puits de stockage verticaux 5 sont situés au sommet d'un réseau à mailles carrées.In the embodiment of Figure 2, the 149 vertical storage wells 5 are located at the top of a square mesh network.

Sur la figure 3, on a représenté le détail d'une des niches 12 servant de support à une colonne de conteneurs radioactifs vitrifiés empilés dans un puits vertical tel que 5. Dans cette niche 12, on voit un support de base 11 en fonte rempli de béton sur lequel viennent s'appuyer six logements 15, 16, 17, 18, 19 et 20, dans le fond desquels se trouvent des tabourets anti-chute non représentés qui servent de support aux conteneurs de déchets vitrifiés qu'on vient y loger les uns au-dessus des autres. Chaque tube tel que 20 est muni d'un conduit 21 d'arrivée d'air froid qui comporte une chicane permettant le passage de cet air en assurant la protection biologique vis-à-vis des produits radioactifs contenus dans le tube 20. Les six tubes de logement des produits stockés 15, 16, 17, 18, 19 et 20 sont donc ainsi parcourus par un débit d'air frais ascendant qui lèche en permanence la périphérie des conteneurs vitrifiés empilés dans chacun des tubes. Un tube central vide 22 est affecté au retour de l'air chaud depuis la partie supérieure du puits vertical 5 vers la conduite de sortie d'air chaud 23 laquelle est reliée à la galerie d'évacuation 14 de la figure 2. Un plancher de séparation 24 représenté sous une forme éclatée pour permettre la vue du support ll, sépare la partie supérieure de la niche où circule l'air froid venant de la surface de la partie inférieure dans laquelle se trouve la conduite d'air chaud 23.In Figure 3, there is shown the detail of one of the niches 12 serving as support for a column of vitrified radioactive containers stacked in a vertical well such as 5. In this niche 12, we see a base support 11 in cast iron filled of concrete on which six housings 15, 16, 17, 18, 19 and 20 come to rest, at the bottom of which are anti-fall stools, not shown, which serve as support for the containers of vitrified waste which are housed there one above the other. Each tube such as 20 is provided with a cold air inlet duct 21 which includes a baffle allowing the passage of this air while ensuring biological protection with respect to the radioactive products contained in the tube 20. The six tubes for housing the stored products 15, 16, 17, 18, 19 and 20 are thus traversed by an ascending flow of fresh air which permanently licks the periphery of the vitrified containers stacked in each of the tubes. An empty central tube 22 is assigned to the return of hot air from the upper part of the vertical well 5 to the hot air outlet pipe 23 which is connected to the exhaust gallery 14 of FIG. 2. A floor of partition 24 shown in exploded form to allow the view of the support ll, separates the upper part lower of the niche where cold air circulates from the surface of the lower part in which the hot air duct 23 is located.

Dans l'exemple décrit, le puits 5 a une hauteur de 30 m et les tubes 15 à 20 contiennent 10 à 15 couches de six conteneurs de déchets radioactifs vitrifiés ayant chacun une hauteur de 1,85 m environ.In the example described, the well 5 has a height of 30 m and the tubes 15 to 20 contain 10 to 15 layers of six containers of vitrified radioactive waste each having a height of about 1.85 m.

Sur la figure 4, on retrouve en coupe axiale selon l'axe du puits 5 de la figure 3, les tubes 17, 22 et 20 munis de leur amortisseur antichute 24. Les flèches montrent le sens de la circulation d'air froid et ascendant dans les tubes périphériques 17 et 20 et d'air chaud et descendant dans le tube central vide 22.In Figure 4, we find in axial section along the axis of the well 5 of Figure 3, the tubes 17, 22 and 20 provided with their fall arrestor 24. The arrows show the direction of the circulation of cold and ascending air in the peripheral tubes 17 and 20 and hot air and descending in the empty central tube 22.

La figure 5 montre en perspective l'un des angles de l'installation des puits verticaux 5 entre les galeries du premier plan supérieur 3 et les galeries du deuxième plan inférieur 4. On retrouve les puits d'évacuation d'air chaud 2c et d'arrivée d'air froid 2b ainsi qu'au deuxième niveau des galeries 4 la ceinture des deux galeries périphériques 13 et 14 servant à la distribution et à la répartition de l'air frais arrivant de la surface (traits pleins) et de l'air chaud évacué vers la surface (tirets). Un certain nombre de niches 12 sont également visibles sur cette figure ainsi que des puits verticaux 5 sous forme éclatée permettant de voir les six tubes de stockage périphérique et le tube de retour d'air chaud central. Dans les canalisations 4 de la galerie du deuxième plan ainsi que dans la canalisation 13, une division en deux compartiments est réalisée par un plateau médian 25 qui sépare la partie supérieure de la canalisation dans laquelle circule librement de l'air frais de la partie inférieure dans laquelle une seconde canalisation 26 sert de conduit véhiculant l'air chaud. Ce plateau 25 correspond au plancher de séparation des niches 12 tel que celui que l'on voit en 24 sur la figure 3.Figure 5 shows in perspective one of the angles of the installation of vertical wells 5 between the galleries of the upper first plane 3 and the galleries of the second lower plane 4. We find the hot air exhaust wells 2c and d cold air intake 2b as well as at the second level of the galleries 4 the belt of the two peripheral galleries 13 and 14 serving for the distribution and distribution of the fresh air arriving from the surface (solid lines) and the hot air exhausted to the surface (dashes). A number of niches 12 are also visible in this figure as well as vertical wells 5 in exploded form making it possible to see the six peripheral storage tubes and the central hot air return tube. In the pipes 4 of the gallery in the second plan as well as in the pipe 13, a division into two compartments is carried out by a median plate 25 which separates the upper part of the pipe in which fresh air circulates from the lower part in which a second pipe 26 serves as a conduit conveying the hot air. This plate 25 corresponds to the niche separation floor 12 such than the one seen at 24 in Figure 3.

L'installation ainsi décrite en se référant aux cinq premières figures est adaptée à recevoir les déchets radioactifs correspondant au retraitement d'une usine traitant 1600 tonnes de combustible par an et ayant fonctionné pendant 30 ans. Elle peut stocker ainsi de façon définitive environ 24000 fûts de 220 litres chacun de déchets radioactifs vitrifiés sans que la température dépasse la valeur critiquede 100°C sur la roche environnante. A titre de précision, on peut indiquer que la galerie d'évacuation périphérique 14 d'air chaud ne dépasse pas 90°C en fonctionnement permanent.The installation thus described with reference to the first five figures is suitable for receiving radioactive waste corresponding to the reprocessing of a plant processing 1600 tonnes of fuel per year and having operated for 30 years. It can thus definitively store around 24,000 drums of 220 liters each of vitrified radioactive waste without the temperature exceeding the critical value of 100 ° C on the surrounding rock. By way of clarification, it can be indicated that the peripheral evacuation gallery 14 of hot air does not exceed 90 ° C. in permanent operation.

La figure 6 représente de façon schématique et simplifiée une variante du mode de mise en circulation par convection naturelle de l'air dans une installation de même nature que celle des figures précédentes. On retrouve dans cette installation les puits d'accès 2a, d'entrée d'air frais 2b et d'évacuation d'air chaud 2c en liaison avec les galeries 3 du premer plan et les galeries 4 du deuxième plan inférieur. Comme sur la figure 1, l'inclinaison des galeries d'un étage sur l'autre n'a pas été représentée pour plus de simplicité. La différence de conception avec l'exemple précédent réside ici dans le fait que l'air frais provenant de la surface par la canalisation 2b est injecté directement dans les galeries du niveau 4 et s'élève à sens unique dans tous les puits 5 pour déboucher dans les diverses galeries du premier plan 3 et être évacué globalement par la canalisation 2c à partir du premier plan supérieur 3. Dans cette variante par conséquent, il n'y a plus de circulation naturelle d'air selon un trajet en épingle à cheveux dans les puits verticaux de stockage 5.FIG. 6 shows schematically and simplified a variant of the mode of circulation by natural convection of air in an installation of the same kind as that of the preceding figures. We find in this installation the access shafts 2a, fresh air inlet 2b and hot air discharge 2c in connection with the galleries 3 of the foreground and the galleries 4 of the second lower plan. As in Figure 1, the inclination of the galleries from one floor to the other has not been shown for simplicity. The difference in design with the previous example here lies in the fact that the fresh air coming from the surface through the pipe 2b is injected directly into the galleries of level 4 and rises in one direction in all the wells 5 to lead in the various galleries of the foreground 3 and be evacuated overall by the pipe 2c from the upper foreground 3. In this variant therefore, there is no longer any natural circulation of air along a hairpin path in vertical storage wells 5.

Les figures 7a, 7b, 7c et 7d montrent plusieurs exemples possibles d'implantation des puits verticaux de stockage 5 dans un réseau régulier. Sur ces différentes figures, on a représenté en traits pleins les galeries du premier plan 3 et, inclinées d'un angle α et en tirets, les galeries du deuxième plan 4 de l'installation. Ces différentes figures ont pour objet de montrer que les configurations possibles de disposition des puits verticaux de stockage 5 sont assez nombreuses et en correspondance avec la valeur de l'angle a d'inclinaison des galeries du plan 3 sur les galeries du plan 4.Figures 7a, 7b, 7c and 7d show more several possible examples of the installation of vertical storage wells 5 in a regular network. In these various figures, the galleries in the foreground 3 are shown in solid lines and, inclined at an angle α and in dashes, the galleries in the second plane 4 of the installation. The purpose of these various figures is to show that the possible configurations of arrangement of the vertical storage wells 5 are quite numerous and in correspondence with the value of the angle a of inclination of the galleries of plane 3 on the galleries of plane 4.

Si l'on prend comme paramètres l'entraxe minimal a entre deux galeries du plan 3 et l'entraxe minimum b entre deux puits 5, on doit d'abord garder en. mémoire que ces deux paramètres ont des limites qui sont imposées pour l'entraxe a entre galeries par des raisons de solidité mécanique, et, pour l'entraxe b entre puits de stockage 5, par des raisons thermiques. puisque l'échauffement de la roche doit être limité à une valeur de l'ordre de 100°C à 150°C suivant la nature de celle-ci.If we take as parameters the minimum center distance a between two galleries of the plane 3 and the minimum center distance b between two wells 5, we must first keep in. It should be remembered that these two parameters have limits which are imposed for the center distance a between galleries for reasons of mechanical strength, and, for the center distance b between storage wells 5, for thermal reasons. since the heating of the rock must be limited to a value of the order of 100 ° C to 150 ° C depending on the nature of it.

Selon les différentes hypothèses qui peuvent se présenter et notamment les caractéristiques physiques du milieu géologique, trois cas I, II et III sont à considérer.

  • I. Dans les cas des figures 7a et 7b on suppose que b > a. Deux cas doivent alors être examinés.
    • 1)
      Figure imgb0003
      ≥a dans ce cas le réseau optimal est un réseau hexagonal de mailles b comme représenté sur la figure 7a l'entraxe entre les galeries 3 étant alors a =
      Figure imgb0004
      ce qui conduit à une maille hexagonale et à un angle a d'inclinaison des galeries 4 sur les galeries 3 égal à 30°C.
    • 2)
      Figure imgb0005
      <a, c'est alors le cas de la figure 7b, et on a intérêt à réaliser un réseau à mailles carrées de côté b, l'angle d'inclinaison des galeries 4 sur les galeries 3 étant de 45°.
  • II. Si b = a, c'est le cas des figures 1 à 6, et l'optimum est alors la maille carrée et l'angle d'inclinaison a des galeries des deux plans l'une sur l'autre de 45° avec un côté de la maille égal à a.
  • III. b < a, c'est le cas des figures 7c et 7d qui correspondent chacune à une réalisation différente, selon que l'on choisit l'inclinaison a pour que l'on ait tgα = b/2a (figure 7c) ou tga = b/a (figure 7d).
According to the various hypotheses which can arise and in particular the physical characteristics of the geological environment, three cases I, II and III are to be considered.
  • I. In the cases of Figures 7a and 7b we assume that b> a. Two cases must then be examined.
    • 1)
      Figure imgb0003
      ≥a in this case the optimal network is a hexagonal network of meshes b as shown in FIG. 7a the distance between the galleries 3 then being a =
      Figure imgb0004
      which leads to a hexagonal mesh and to an angle a of inclination of the galleries 4 on the galleries 3 equal to 30 ° C.
    • 2)
      Figure imgb0005
      <a, this is the case in FIG. 7b, and it is advantageous to produce a square mesh network on side b, the angle of inclination of the galleries 4 on the galleries 3 being 45 °.
  • II. If b = a, it is the case of figures 1 to 6, and the optimum is then the square mesh and the angle of inclination has galleries of the two planes one on the other of 45 ° with a side of the mesh equal to a.
  • III. b <a, this is the case in FIGS. 7c and 7d which each correspond to a different embodiment, depending on whether one chooses the inclination a so that one has tgα = b / 2a (FIG. 7c) or tga = b / a (Figure 7d).

Dans le premier cas (figure 7c) la maille des puits de stockage 5 est une maille en forme de parallèlo- gramme et dans le deuxième cas (figure 7d) c'est une maille rectangulaire.In the first case (FIG. 7c) the mesh of the storage wells 5 is a mesh in the form of a parallelogram and in the second case (FIG. 7d) it is a rectangular mesh.

On a néanmoins intérêt dans le cas où b< a à réaliser un entraxe entre puits supérieurs égal à a, et à réaliser également un réseau à mailles carrées de côté a, l'angle a d'inclinaison étant toujours de 45°, ceci pour simplifier la réalisation et les possibilités de calcul thermique de la configuration.It is nevertheless advantageous in the case where b <a to make a center distance between upper wells equal to a, and also to make a square mesh network of side a, the angle a of inclination always being 45 °, this for simplify the realization and the possibilities of thermal calculation of the configuration.

Les considérations précédentes ne sont données bien entendu qu'à titre illustratif pour montrer que la caractéristique générale de l'invention selon laquelle on réalise une inclinaison a des galeries des premier et deuxième plans les unes sur les autres peut conduire dans la pratique à de nombreux modes d'implantation des puits de stockage 5 sans sortir pour autant du cadre de l'invention. Il résulte néanmoins des considérations précédentes que les valeurs les plus pratiques pour l'angle a sont 30° ou 45° et, pour le réseau géométrique régulier des puits verticaux de stockage, une maille soit hexagonale soit carrée.The above considerations are of course given only by way of illustration to show that the general characteristic of the invention according to which an inclination is made to galleries of the first and second planes one on the other can lead in practice to many methods of installing storage wells 5 without departing from the scope of the invention. However, it follows from the preceding considerations that the most practical values for the angle a are 30 ° or 45 ° and, for the regular geometric network of vertical storage wells, a mesh is either hexagonal or square.

Les roches d'accueil dans lesquelles sont creusées les galeries de l'installation objet de l'invention peuvent être de natures très variées ; on citera néanmoins comme particulièrement intéressants les terrains constitués de granit, d'argile,de sel ou de roches volcaniques.The reception rocks in which the galleries of the installation object of the invention are dug can be of very varied natures; we will nevertheless cite as particularly interesting the terrains made up of granite, clay, salt or volcanic rocks.

Enfin, lorsqu'au bout d'une période de 100 à 300 ans, on estime que le temps nécessaire au premier stockage intérimaire est terminé, on descend au coeur même de l'installation pour y déposer la barrière géochimique de remplissage définitif en démontant lels structures propres à la ventilation et en colmatant les vides entre les sources et la roche ainsi qu'en obturant tous les accès tels que galeries, cheminées etc. Ce remplissage doit être fait conformément à l'invention à l'aide d'un matériau qui doit :

  • - assurer la continuité thermique entre les sources radioactives et la roche après fermeture pour permettre à l'énergie résiduelle de continuer à se dissiper régulièrement jusqu'à la cessation définitive de toute activité ;
  • - rétablir la continuité mécanique du massif rocheux ;
  • - rétablir une perméabilité de ce même massif, notamment vis-à-vis des eaux d'infiltration, voisine de ce qu'elle était à l'origine
  • - jouer éventuellement le rôle de barrière physico-chimique.
Finally, when after a period of 100 to 300 years, it is estimated that the time necessary for the first interim storage is over, we descend to the very heart of the installation to deposit the geochemical barrier of final filling by dismantling the l structures suitable for ventilation and sealing the voids between the springs and the rock as well as closing off all accesses such as galleries, chimneys, etc. This filling must be done in accordance with the invention using a material which must:
  • - ensure thermal continuity between the radioactive sources and the rock after closure to allow the residual energy to continue to dissipate regularly until the definitive cessation of all activity;
  • - restore the mechanical continuity of the rock mass;
  • - restore permeability of this same massif, in particular with respect to seepage water, close to what it was originally
  • - possibly play the role of physico-chemical barrier.

Pour ce remplissage, divers matériaux peuvent être utilisés. A titre d'exemple non limitatif, on peut citer :

  • - dans le cas de roches en granit, un mélange de granit concassé et d'argile du type "beutonite" ;
  • - dans le cas de sel ou d'argile, ce sont ces matériaux eux-mêmes qui servent respectivement de remplissage.
For this filling, various materials can be used. By way of nonlimiting example, there may be mentioned:
  • - in the case of granite rocks, a mixture of crushed granite and "beutonite" type clay;
  • - in the case of salt or clay, it is these materials themselves which respectively serve as filling.

Claims (9)

1. Procédé d'évacuation de déchets radioactifs, notamment vitrifiés, caractérisé en ce que l'on effectue, dans le même site géologique et de façon successive dans le temps, un premier stockage intérimaire sous ventilation d'air par convection naturelle, puis, après arrêt de cette ventilation et obturation du site par une barrière géochimique, un dépôt définitif assurant la décroissance complète de la radioactivité de ces mêmes déchets.1. A method of evacuating radioactive waste, in particular vitrified waste, characterized in that one carries out, in the same geological site and successively over time, a first interim storage under ventilation of air by natural convection, then, after stopping this ventilation and closing the site with a geochemical barrier, a final deposit ensuring the complete decrease in the radioactivity of this same waste. 2. Installation géologique pour l'évacuation de déchets radioactifs, notamment vitrifiés, selon le procédé de la revendication 1 précédente, caractérisé en ce qu'elle comporte en combinaison : - une série de puits verticaux (2) d'accès des déchets vers le sous sol et de ventilation reliant la surface du sol (1) au site de stockage situé à grande profondeur ; - un premier plan supérieur (3) de galeries horizontales, parallèles et équidistantes, munies de moyens (9) pour véhiculer les déchets ; - un deuxième plan inférieur (4) de galeries horizontales, parallèles et équidistantes, selon une direction inclinée d'un angle a par rapport à la direction commune des galeries du premier plan supérieur (3) ; - des puits verticaux (5) affectés au stockage des déchets et reliant selon un réseau géométrique régulier les galeries du premier plan (3) et du deuxième plan (4) chaque puits (5) débouchant, en partie haute, dans l'axe d'une galerie du premier plan et, en partie basse, dans une niche latérale (12), reliée à l'une des galeries du deuxième plan ; - au moins un des puits verticaux (2b) alimentant en air frais depuis la surface du sol, les galeries du deuxième plan et au moins un autre des puits verticaux (2c) évacuant l'air chaud depuis lesdites galeries vers la surface du sol, la circulation de cet air de refroidissement ayant lieu en épingle à cheveux selon un trajet ascendant-descendant dans les puits verticaux reliant les deux plans de galeries pendant le stockage intérimaire, sous l'effet du dégagement de chaleur se produisant dans les déchets stockés. 2. Geological installation for the disposal of radioactive waste, in particular vitrified waste, according to the method of claim 1 above, characterized in that it comprises in combination: - a series of vertical wells (2) for access of the waste to the basement and ventilation connecting the surface of the soil (1) to the storage site located at great depth; - A first upper plane (3) of horizontal, parallel and equidistant galleries, provided with means (9) for transporting the waste; - a second lower plane (4) of horizontal galleries, parallel and equidistant, in a direction inclined by an angle a with respect to the common direction of the galleries of the first upper plane (3); - vertical wells (5) assigned to the storage of waste and connecting according to a regular geometric network the galleries of the foreground (3) and the second plane (4) each well (5) emerging, in the upper part, in the axis d 'a gallery in the foreground and, in the lower part, in a lateral niche (12), connected to one of the galleries in the second plan; - at least one of the vertical wells (2b) supplying fresh air from the surface of the ground, the galleries of the second plane and at least one other of the vertical wells (2c) evacuating the hot air from said galleries towards the surface of the ground, the circulation of this cooling air taking place in a pin hair in an ascending-descending path in the vertical wells connecting the two planes of galleries during interim storage, under the effect of the release of heat occurring in the stored waste. 3. Installation géologique selon la revendication 2, caractérisée en ce que l'angle a d'inclinaison des galeries du deuxième plan par rapport aux galeries du premier plan est égal à l'une des deux valeurs 30° et 45°, le réseau géométrique régulier des puits verticaux de stockage entre les deux plans de galeries étant soit à mailles hexagonales, soit à mailles carrées.3. Geological installation according to claim 2, characterized in that the angle a of inclination of the galleries of the second plane relative to the galleries of the foreground is equal to one of the two values 30 ° and 45 °, the geometric network regular vertical storage wells between the two planes of galleries being either with hexagonal meshes, or with square meshes. 4. Installation géologique selon la revendication 2, caractérisée en ce que l'arrivée d'air frais et le départ d'air chaud au niveau des galeries du deuxième plan a lieu par l'intermédiaire d'une ceinture de deux galeries périphériques (13, 14), entourant les ga- ler ies du deuxième plan (4), et communiquant avec elles.4. Geological installation according to claim 2, characterized in that the arrival of fresh air and the departure of hot air at the level of the galleries in the second plane takes place by means of a belt of two peripheral galleries (13 , 14), surrounding and communicating with the galleries of the second plane (4). 5. Installation géologique selon l'une quelconque des revendications 1 à 4, caractérisée en ce que les déchets radioactifs sont répartis, à l'intérieur de chaque puits vertical de stockage (5), dans des tubes (15, 20) occupant la périphérie du puits et parcourus par de l'air frais ascendant, l'air chaud redescendant dans un tube central vide (22), la base de chaque tube périphérique comportant un dispositif amortisseur de chute (21) et l'ensemble des tubes reposant sur un support de base en fonte (11) rempli de béton et disposé au centre d'une niche latérale (12).5. Geological installation according to any one of claims 1 to 4, characterized in that the radioactive waste is distributed, inside each vertical storage well (5), in tubes (15, 20) occupying the periphery from the well and traversed by ascending fresh air, the hot air descending in an empty central tube (22), the base of each peripheral tube comprising a fall damping device (21) and all of the tubes resting on a cast iron base support (11) filled with concrete and placed in the center of a side niche (12). 6. Installation géologique selon la revendication 2, caractérisée en ce que les puits verticaux de stockage (5) sont obturés, à leur débouché dans les galeries du premier plan, par une plaque métallique (10) assurant la protection du personnel contre les rayonnements sans empêcher la circulation des véhicules.6. Geological installation according to claim 2, characterized in that the vertical storage wells (5) are closed, at their outlet in the galleries in the foreground, by a metal plate (10) ensuring the protection of personnel against radiation without prevent vehicle traffic. 7. Installation géologique suivant l'une quelconque des revendications 2 à 6, caractérisée en ce que le premier plan supérieur de galeries est situé entre 300 et 1000 mètres.7. Geological installation according to any one of claims 2 to 6, characterized in that the first upper plan of galleries is located between 300 and 1000 meters. 8. Installation géologique suivant l'une quelconque des revendication 2 à 7, caractérisée en ce que le premier plan supérieur de galeries et le deuxième plan inférieur de galeries sont distants verticalement de 20 à 40 mètres et, de préférence, de 25 à 30 mètres.8. Geological installation according to any one of claims 2 to 7, characterized in that the first upper plan of galleries and the second lower plan of galleries are vertically distant from 20 to 40 meters and, preferably, from 25 to 30 meters . 9. Installation géologique suivant l'une quelconque des revendications 2 à 8, caractérisé en ce qu'elle est creusée dans un massif rocheux composé de l'une des roches choisies dans le groupe comprenant le granit, l'argile, le sel et les roches volcaniques.9. Geological installation according to any one of claims 2 to 8, characterized in that it is dug in a rock mass composed of one of the rocks chosen from the group comprising granite, clay, salt and volcanic rocks.
EP83400871A 1982-05-05 1983-04-29 Geological storage arrangement for radioactive materials, especially in the vitrified form Expired EP0093671B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8207786A FR2526574A1 (en) 1982-05-05 1982-05-05 RADIOACTIVE WASTE DISPOSAL METHOD AND GEOLOGICAL FACILITY FOR THE EVACUATION OF THESE WASTE
FR8207786 1982-05-05

Publications (2)

Publication Number Publication Date
EP0093671A1 true EP0093671A1 (en) 1983-11-09
EP0093671B1 EP0093671B1 (en) 1987-02-11

Family

ID=9273743

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83400871A Expired EP0093671B1 (en) 1982-05-05 1983-04-29 Geological storage arrangement for radioactive materials, especially in the vitrified form

Country Status (5)

Country Link
US (1) US4500227A (en)
EP (1) EP0093671B1 (en)
JP (1) JPS5931499A (en)
DE (1) DE3369809D1 (en)
FR (1) FR2526574A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0151035A2 (en) * 1984-02-01 1985-08-07 The English Electric Company Limited Storage arrangements for nuclear fuel
WO1997006536A1 (en) * 1995-08-09 1997-02-20 Nukem Gmbh Underground storage facility, and associated method of storing waste
WO2008125803A1 (en) * 2007-04-12 2008-10-23 The University Of Sheffield Nuclear waste disposal
KR101279208B1 (en) * 2005-09-16 2013-06-26 슈나이더 일렉트릭 인더스트리스 에스에이에스 Electronic trip device provided with monitoring means, circuit breaker comprising one such trip device and method for monitoring

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4809685A (en) * 1984-09-04 1986-03-24 Manchak, F. In situ waste impoundment treating apparatus and method of using same
US4776409A (en) * 1984-09-04 1988-10-11 Manchak Frank Insitu waste impoundment treating apparatus and method of using same
US4844839A (en) * 1984-09-04 1989-07-04 Manchak Frank In situ treatment and analysis of wastes
JPS61202199A (en) * 1985-03-06 1986-09-06 清水建設株式会社 Storage facility in base rock of radioactive waste
JPS61202200A (en) * 1985-03-06 1986-09-06 清水建設株式会社 Storage facility in base rock of radioactive waste
JPS61202198A (en) * 1985-03-06 1986-09-06 清水建設株式会社 Storage facility in base rock of radioactive waste
JPS61204599A (en) * 1985-03-07 1986-09-10 清水建設株式会社 Storage facility in base rock of radioactive waste
NL8620328A (en) * 1985-08-26 1987-08-03 Manchak Frank Appts. for detoxifying hazardous waste in situ - without atmospheric contamination by rapid procedure
US5633508A (en) * 1995-10-12 1997-05-27 Cold Spring Granite Company Secondary shielding structure
US6238138B1 (en) * 1997-07-14 2001-05-29 Henry Crichlow Method for temporary or permanent disposal of nuclear waste using multilateral and horizontal boreholes in deep islolated geologic basins
US5850614A (en) * 1997-07-14 1998-12-15 Crichlow; Henry B. Method of disposing of nuclear waste in underground rock formations
US6342650B1 (en) * 1999-06-23 2002-01-29 VALFELLS áGUST Disposal of radiation waste in glacial ice
JP3945225B2 (en) * 2001-11-09 2007-07-18 鹿島建設株式会社 Geological disposal method using pneumatic conveying system
JP6495068B2 (en) * 2015-03-30 2019-04-03 大成建設株式会社 Construction method of underground pipe and underground channel
EP3281204A4 (en) 2015-04-06 2019-03-13 Safe Nuclear Solutions LLC System for deep underground storage of radioactive waste

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2755554A1 (en) * 1976-12-13 1978-06-29 Tore Jerker Hallenius FACILITY FOR STORING RADIOACTIVE MATERIALS IN ROCKY SUBSOIL
FR2411473A1 (en) * 1977-12-06 1979-07-06 Strahlen Umweltforsch Gmbh FINAL STORAGE LOCATION OF RADIOACTIVE WASTE

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2788637A (en) * 1952-12-04 1957-04-16 Phillips Petroleum Co Underground storage systems and improved method of operating
SE390718B (en) * 1975-05-28 1977-01-17 Abv Vegforbettringar Ab INSTALLATION FOR STORAGE OF PETROLEUM PRODUCTS IN UNDERGROUND STORAGE ROOMS
US4020004A (en) * 1975-11-21 1977-04-26 The United States Of America As Represented By The United States Energy Research And Development Administration Conversion of radioactive ferrocyanide compounds to immobile glasses
US4040480A (en) * 1976-04-15 1977-08-09 Atlantic Richfield Company Storage of radioactive material
US4192629A (en) * 1976-12-13 1980-03-11 Hallenius Tore J System for the storage of radioactive material in rock
SE416690B (en) * 1977-06-30 1981-01-26 Wp System Ab PLANT FOR STORAGE OF RADIOACTIVE MATERIAL IN BERG
GB2017797B (en) * 1978-02-21 1982-06-03 Sagefors K System for the storage of petroleum products and other fluids in a rock
US4230597A (en) * 1978-08-03 1980-10-28 Hittman Corporation Conversion of radioactive waste materials into solid form
US4326820A (en) * 1978-11-28 1982-04-27 Gesellschaft Fur Strahlen-Und Umweltforschung Mbh Munchen Final depository for radioactive wastes
US4320028A (en) * 1979-05-17 1982-03-16 Leuchtag H Richard Nuclear waste disposal system
US4269728A (en) * 1979-08-21 1981-05-26 The United States Of America As Represented By The United States Department Of Energy Method for storing spent nuclear fuel in repositories
FR2479542B1 (en) * 1980-03-27 1987-08-07 Tech Nles Ste Gle NEW BARRIER MATERIALS FOR USE IN THE CONDITIONING OF RADIO-ACTIVE EFFLUENTS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2755554A1 (en) * 1976-12-13 1978-06-29 Tore Jerker Hallenius FACILITY FOR STORING RADIOACTIVE MATERIALS IN ROCKY SUBSOIL
FR2411473A1 (en) * 1977-12-06 1979-07-06 Strahlen Umweltforsch Gmbh FINAL STORAGE LOCATION OF RADIOACTIVE WASTE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NUCLEAR ENERGY, vol. 21, no. 4, août 1982, pages 245-252, Londres, GB. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0151035A2 (en) * 1984-02-01 1985-08-07 The English Electric Company Limited Storage arrangements for nuclear fuel
EP0151035A3 (en) * 1984-02-01 1985-08-28 The English Electric Company Limited Storage arrangements for nuclear fuel
US4832903A (en) * 1984-02-01 1989-05-23 The English Electric Company Limited Dry storage arrangements for nuclear fuel
WO1997006536A1 (en) * 1995-08-09 1997-02-20 Nukem Gmbh Underground storage facility, and associated method of storing waste
US5920602A (en) * 1995-08-09 1999-07-06 Nukem Gmbh Underground storage facility, and associated method of storing waste
KR101279208B1 (en) * 2005-09-16 2013-06-26 슈나이더 일렉트릭 인더스트리스 에스에이에스 Electronic trip device provided with monitoring means, circuit breaker comprising one such trip device and method for monitoring
WO2008125803A1 (en) * 2007-04-12 2008-10-23 The University Of Sheffield Nuclear waste disposal

Also Published As

Publication number Publication date
JPH0340840B2 (en) 1991-06-20
FR2526574B1 (en) 1984-09-28
FR2526574A1 (en) 1983-11-10
EP0093671B1 (en) 1987-02-11
DE3369809D1 (en) 1987-03-19
JPS5931499A (en) 1984-02-20
US4500227A (en) 1985-02-19

Similar Documents

Publication Publication Date Title
EP0093671B1 (en) Geological storage arrangement for radioactive materials, especially in the vitrified form
TWI460740B (en) System and method of storing high level waste
US8625732B2 (en) Systems and methods for storing spent nuclear fuel
EP0253730B1 (en) Device for dry-storing heat-releasing materials, especially radioactive materials
US7590213B1 (en) Systems and methods for storing spent nuclear fuel having protection design
US10147509B2 (en) Ventilated system for storing high level radioactive waste
US20050207525A1 (en) Underground system and apparatus for storing spent nuclear fuel
FR2665294A1 (en) Nuclear power station with safety structure
US20050220256A1 (en) Systems and methods for storing spent nuclear fuel having a low heat load
FR2763168A1 (en) Water-cooled nuclear reactor
FR2784785A1 (en) NUCLEAR WATER REACTOR HAVING A RECEPTACLE CONTAINING DEFORMABLE INTERNAL STRUCTURES
EP2075799B1 (en) Systems and methods for storing high level radioactive waste
FR2460026A1 (en) COLLECTING DEVICE FOR COMBUSTIBLE ELEMENTS FUSING A NUCLEAR REACTOR
FR3001829A1 (en) Method for storing radiferous waste in geological layer to extract e.g. uranium, involves gradually saturating water to limit water movement to maintain waste in anoxic condition to avoid oxidation of waste and migration of radio elements
EP0042323B1 (en) Installation for the storage and/or transportation of nuclear fuel element assemblies
CH665919A5 (en) DEVICE FOR CLOSING A WASTE NUCLEAR FUEL STORAGE CASTLE.
CA2204407C (en) Drainage wall buried in the ground
EP0795061B1 (en) Drainage wall buried in the ground
US20220165444A1 (en) High-density subterranean storage system for nuclear fuel and radioactive waste
JPH0968594A (en) Vessel for storing and disposing radioactive waste
FR2721430A1 (en) Containers for dry storage of heat-releasing materials
Cohen Ocean Dumping of High-Level Waste—An Acceptable Solution We Can “Guarantee”
RU2137231C1 (en) Nuclear material disposal method
WO2001050480A1 (en) Installation and method for storing irradiated products, especially irradiated nuclear fuel assemblies
Kubofcik Low-level radiation waste management system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE GB LI SE

17P Request for examination filed

Effective date: 19840502

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE GB LI SE

REF Corresponds to:

Ref document number: 3369809

Country of ref document: DE

Date of ref document: 19870319

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BECN Be: change of holder's name

Effective date: 19870211

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890317

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890328

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930330

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930426

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930429

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940430

Ref country code: CH

Effective date: 19940430

Ref country code: BE

Effective date: 19940430

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Effective date: 19940430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940429

EUG Se: european patent has lapsed

Ref document number: 83400871.6

Effective date: 19910115