EP0091018A1 - Position control for a double acting hydraulic motor - Google Patents
Position control for a double acting hydraulic motor Download PDFInfo
- Publication number
- EP0091018A1 EP0091018A1 EP83102914A EP83102914A EP0091018A1 EP 0091018 A1 EP0091018 A1 EP 0091018A1 EP 83102914 A EP83102914 A EP 83102914A EP 83102914 A EP83102914 A EP 83102914A EP 0091018 A1 EP0091018 A1 EP 0091018A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- error signal
- valves
- arrangement according
- pressure reducing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004044 response Effects 0.000 claims abstract description 16
- 239000012530 fluid Substances 0.000 abstract description 4
- 238000004804 winding Methods 0.000 description 10
- 230000002763 arrhythmic effect Effects 0.000 description 7
- 230000009467 reduction Effects 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000010720 hydraulic oil Substances 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
- F15B13/04—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
- F15B13/042—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
- F15B13/043—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/006—Hydraulic "Wheatstone bridge" circuits, i.e. with four nodes, P-A-T-B, and on-off or proportional valves in each link
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B9/00—Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member
- F15B9/02—Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type
- F15B9/03—Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type with electrical control means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/2053—Type of pump
- F15B2211/20546—Type of pump variable capacity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/30505—Non-return valves, i.e. check valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/3056—Assemblies of multiple valves
- F15B2211/30565—Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
- F15B2211/30575—Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve in a Wheatstone Bridge arrangement (also half bridges)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/32—Directional control characterised by the type of actuation
- F15B2211/327—Directional control characterised by the type of actuation electrically or electronically
- F15B2211/328—Directional control characterised by the type of actuation electrically or electronically with signal modulation, e.g. pulse width modulation [PWM]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6336—Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6346—Electronic controllers using input signals representing a state of input means, e.g. joystick position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/665—Methods of control using electronic components
- F15B2211/6653—Pressure control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/665—Methods of control using electronic components
- F15B2211/6654—Flow rate control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/665—Methods of control using electronic components
- F15B2211/6656—Closed loop control, i.e. control using feedback
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/705—Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
- F15B2211/7051—Linear output members
- F15B2211/7053—Double-acting output members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/77—Control of direction of movement of the output member
- F15B2211/7733—Control of direction of movement of the output member providing vibrating movement, e.g. dither control for emptying a bucket
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/77—Control of direction of movement of the output member
- F15B2211/7741—Control of direction of movement of the output member with floating mode, e.g. using a direct connection between both lines of a double-acting cylinder
Definitions
- the invention relates to an arrangement for controlling a double-acting hydraulic cylinder with an extension and a retraction chamber, which are connected via a valve device to a hydraulic pressure source and with a sump, and with a control circuit controlling the valve device.
- Valve devices of this type are known in connection with position control systems for such hydraulic cylinders with a closed flow circuit. Gate valves are known for their sensitivity to contamination in hydraulic oil. It is also difficult to design such control systems with slide valves in such a way that they ensure a bumpless, stable operation, especially when the system is intended to withstand heavy loads that tend to overrun the drive factor. to control, for example when a heavy load is to be lowered with the help of the hydraulic cylinder. If a system is designed in such a way that it meets the latter requirement, however, a control system results which is too slow in the opposite sense, for example if the hydraulic motor is to lift a heavy load. Another disadvantage of such valve devices is that fairly complicated slide designs or additional valves are necessary to achieve a mode of operation in which the hydraulic motor can also assume a floating state.
- valve devices As an alternative to slide valve devices, it is known to actuate double-acting cylinders via four pressure-reducing or non-return valves which can be switched on and off and which are controlled by pilot valves which can be actuated by means of an electromagnet.
- a valve device consisting of four valves can control a movement of the cylinder in both directions and, in addition, enable a floating state for the cylinder as well as a locking state for the cylinder.
- valves that can be switched on and off can generate undesirably high pressures when used in systems which require high flow rates for the hydraulic fluid. In systems with high inertia, such valves can also lead to instabilities and thus the target positions being overrun. It is therefore desirable to obtain a stable system which is suitable for a closed fluid circuit and whose functions are extremely flexible without the need for slide valves.
- valve device has four independently operable valves for controlling a flow connection between each of the two chambers of the cylinder and pressure source and sump, that an arbitrarily actuatable control device for generating a position command signal and a sensor device for generating a Actual position signals are provided, and that the control circuit controls the four valves as a function of an error signal generated from the desired and actual signals.
- the four independently operable valves are expediently each electrically controlled pressure reducing valves, a first of which is connected on the inlet side to the pressure source and on the outlet side to the draw-in chamber; a second one is connected on the inlet side to the feed chamber and on the outlet side to the sump; a third is connected on the inlet side to the extension chamber and on the outlet side to the sump, and a fourth is connected on the inlet side to the pressure source and on the outlet side to the extension chamber.
- Each of the electrically controlled pressure reduction valves is preferably formed in the form of a pilot-operated, proportionally operating ring valve and each has an electromagnetically actuable pilot valve.
- first check valve to prevent pressure medium flow from the feed chamber to the first pressure reduction valve and a second check valve to prevent pressure medium flow from the extension chamber to the fourth pressure reducing valve.
- the individual four valves control the fluid flow between the double-acting cylinder, the pump and the sump.
- the position of the hydraulic cylinder is continuously reported back to the control circuit by the actual position signal.
- This control circuit also receives the desired position signal generated by the operator.
- the control circuit is expediently designed in such a way that it has a differentiating circuit for converting the actual position signal into a signal representing the speed of movement of the cylinder and a differentiating circuit for generating the error signal from the desired and actual signals, the outputs of which have a further differentiating circuit for generating a speed-compensated error signal, which is fed to a reversing converter, that two first driver circuits are also provided for controlling two selected pressure reducing valves, to which the compensated error signal is present, and that two further driver circuits are provided for the other two pressure reducing valves to which the reverse compensated error signal is present.
- the control circuit thus generates reverse and non-reverse speed-compensated error signals, which are each fed to two corresponding actuation solenoids via the pulse width modulating circuits.
- a double-acting cylinder 10 is provided, which is controlled via a valve device 12.
- the cylinder is connected to a pressure medium source or pump 14 and a pressure medium sump 16 via this valve device.
- the pump 14 is preferably a conventional hydraulic pump delivering pressure on demand, or a type of pressure medium source.
- the cylinder 10 includes a position feedback sensor or a potentiometer 80, which is shown and described in detail in US-PS 37 26 191.
- the valve device 12 comprises four pressure-reducing or proportionally operating ring valves 20a to 20d, which are controlled by electromagnets and can be actuated by means of pilot valves. These four valves can be operated independently of one another and are each electrically controlled.
- the valve 20a controls the flow connection between the pressure medium source 14 and a drawing chamber 11 of the cylinder.
- the valve 20b controls the flow connection between the sump 16 and an extension chamber 13 of the cylinder.
- a first check valve 22 prevents flow between the chamber 11 towards the valve 20a.
- Valve 20c controls the flow between chamber 13 and sump 16, while valve 20d controls flow between sump 14 and chamber 13.
- a second check valve 24 prevents flow from chamber 13 to valve 20d.
- the pressure reducing valve 20d controls the flow from the pump 14 to the chamber 13.
- the check valve 24 prevents a flow reversal in the direction of the pressure medium source 14.
- the pressure reduction valves 20a to 20d are controlled in each case by pilot valves which can be actuated by electromagnets 21a to 21d.
- pilot valves which can be actuated by electromagnets 21a to 21d.
- armature 100 moves proportionally against the bias of spring 102 to expose opening 104.
- a pressure difference occurs across the opening 106 of the valve body 108.
- the valve body can thus move proportionally away from the valve seat 112 against the pretension of the spring 110, so as to open the valve 20a in relation to the pilot control and thus the pressure difference.
- the valves 20b to 20d operate in the same way.
- the control circuit 30 generates the necessary control signals as a function of a position signal X, which is obtained from the converter 18 on the cylinder 10, and a control signal C, which is supplied by a converter 28, which is controlled by the operator.
- the transducers can each be designed as a potentiometer.
- the control or target signal C represents a desired position of the cylinder 10 or the associated piston.
- FIG. 2 shows the control circuit 30.
- This comprises an isolation amplifier 32 with a unit gain factor, which is intended to separate the position signal X from the position converter 18.
- Amplifiers (not shown) with a predetermined gain factor may be necessary to influence one or both of the signals (position signal X and control signal C) and to use them for a single voltage range of e.g. Convert 0 to 8 volts.
- the actual signal X is differentiated by a differentiator circuit 34 and amplified by an inverting amplifier 36 with an amplification factor of approximately minus 0.6.
- An error signal E is generated in that the actual signal X is subtracted from the desired signal C at the difference-forming connection point 38.
- the error signal E is then amplified by amplifier 40 factor of approximately 2.0 amplified and reversed by a reversing amplifier 42 with a unit amplification factor.
- a differential connection 44 includes a (-) input that receives the output from the inverter 42 and a (-) input that receives the output of the inverter 36.
- An inverted combined or speed-compensated error signal -E 'thus appears at the output of the differential connection 44.
- the inverted signal -E ' is inverted by a unit gain amplifier 46 to obtain an uninverted combined or speed compensated error signal + E'.
- the error signals E and -E are combined via two corresponding arrhythmic units 50, 54 and 48, 52, respectively, and correspondingly supplied to two identical driver circuits 80b, 80d and 80a, 80c for actuating corresponding electromagnets. These circles, which are described in more detail below, work to produce a change of e.g. 300 mA in the drive current for the electromagnetic windings. This drive current is designated Ic.
- the change in the current in the windings 21a to 21d takes place depending on the occurrence of a voltage change of e.g. 2.5 V in the error signal output of differential connection 44.
- the (-) inputs of arrhythmic circuits 48 and 52 both receive the reverse error signal -E ', while the (-) inputs of arrhythmic circuits 50 and 54 receive the non-inverted error signal + E 'received.
- arrhythmic circuits 48 through 54 continue to receive a low or high level shutdown signal from an operator controlled bistable device 56, e.g., a switch.
- a low level signal from switch 56 will turn off all windings 21a through 21d. As a result, all valves 20a to 20d close. A shutdown state is thus achieved.
- bistable device e.g. switch 58
- switch 58 Another bistable device which can be controlled by the operator supplies a signal of a high or low level which is sent to the (+) inputs of the arrhythmic circuits 48 and 54 and to the (-) inputs of the arrhythmic circuits 50 and 52 is created.
- the operator can thus turn on switch 58 to close valves 20a and 20d while opening valves 20b and 20c, causing engine 10 to float.
- the error signal E from the amplifier 40 is fed to the (+) input of a comparator 60 via the resistor R1.
- the inverted error signal -E from the inverter 42 is fed via resistor R2 to the (+) input of the comparator 62.
- the (-) inputs of comparators 60 and 62 are both connected to an adjustable contact of a variable potentiometer 64, which generates a variable response reference signal Vdb.
- the output of comparator 62 is connected to the (+) input of comparator 60.
- the signal at the output of the comparator 60 has a high value except for the moment when the error signals E or -E are within the response value range, the width of which is determined by the level of the response value reference signal Vab from the potentiometer 64.
- the output of the comparator 60 is connected via a resistor R to a voltage source of +8 volts and to the input of an integrator 66, which has a reverse gain factor of -0.3. Integrator 66 raises or lowers its output between voltage limits in response to abrupt changes in the output of comparator 60. Integrator 66 also performs an inverse function to produce an inverse response reference signal Vdb 'which assumes a low value if so the error signals E and -E are not within the response value range mentioned above.
- the reverse response reference signal Vdb ' turns on the (+) inputs of differential junctions 50 and 52 applied to turn off coils 21b and 21c and close valves 20b and 20c when error signals E or -E are within the response range.
- a conventional pressure sensor 68 can be arranged to measure the outlet pressure of the pressure medium source 14 and to generate a pressure setting signal Vpa which is proportional to the outlet pressure of the pump. This signal is added to the reverse pickup reference signal Vdb 'at the summation point 70. The sum of these two signals is applied to the (+) inputs of summing connections 48 and 54.
- the pressure sensor 66 amplifies the signal Vpa so that there is a proportional reduction in the state of the current supply to the coils 21a and 21d and thus a corresponding greater movement of the valves 20a and 20d in the direction of the closed position.
- This proportional closing of the valves 20a and 20d increases the pressure drop across these valves and thus compensates for the original increase in the pump pressure. Conversely, a decrease in the pump pressure leads to compensation by proportionally opening the valves 20a and 20d.
- Circuit 80a includes an amplifier 82a with a gain factor of approximately 0.8 that amplifies the output of summing connection 48.
- the amplified error signal is routed to one (-) input of a summing connection 84a.
- the other (-) input of connection 84a receives an expanded dither signal of 200 Hz and a triangular waveform generated by the dither oscillator 72 and an inverter 74.
- the output V3 of connection 84a is coupled to amplifier 86a with an amplification factor of approximately 20. This generates a signal V4, which is then connected to the input of a pulse-wide modulator 88a.
- the modulator 88a also receives the non-inverted signal from a pulse-wide oscillator 76 which generates a 300 Hz, triangular waveform signal.
- the modulated output Vc of the modulator 88a is a square-wave voltage signal of 3000 Hz with a percentage modulation or a duty cycle equal to 100 x ((V4-1.26) / (3.93-1.26)), in which 3.93 and 1, 26 are the high and low peak values of the signal from the oscillator 72, respectively.
- the output signal Vc reaches one end of the winding 21a.
- the other end of winding 21a is grounded via current sensing resistor R4a and connected to the (+) input of connection point 84a via amplifier 90a and integration device 92a.
- the amplifier 90a has a gain factor of approximately 2.84, for example.
- the overall effect of circuit 80a is to supply coil 21a with a drive current, designated Ic, which is proportional to the combined signal from arrhythmic unit 48.
- the feedback provided by amplifiers 90a and 92a reduces the variation effects in the voltage supply and resistance of winding 21a and provides improved frequency response sensitivity for the system.
- connection 84a and 84c receive the reverse dither signal
- ver bonds 84b and 84d receive the non-reverse dither signal.
- the dither signals keep the operation of valves 20a and 20c out of phase with the operation of valves 20b and 20d. This prevents valves 20a and 20b and similarly valves 20d and 20c from opening simultaneously, so as to prevent a short circuit current to cylinder 10 by direct overflow of hydraulic oil from pump 14 into reservoir 16. This reduces the flow required to achieve equivalent pressure control, which could otherwise be achieved without dither signals.
- modulators 88a and 88b receive an uninverted oscillator signal
- modulators 88c and 88d each receive an inverted oscillator signal via inverter 78. This means that the two pairs of valves are alternatively actuated in a pulsed manner, instead of simultaneously actuating in a pulsed manner. This also reduces the peak demand with regard to the power supply (not shown).
- the system operates to produce a differential pressure drop across valves 20a through 20d that is inversely proportional to the magnitude of the winding current Ic.
- the pressure medium flow between the chambers 11 and 13 is controlled so as to retract or extend the cylinder as desired.
- the control converter 28 is actuated to extend the cylinder, a positive, non-inverted error signal E is generated. If E is positive, the reverse error signal -E is negative and no current is generated in the windings 21a and 21c, so that the valves 20a and 20c remain closed.
- This positive signal E generates in the circuits 80b and 80d winding currents for the windings 21b and 21d, so that the valves 20b and Open 20d to create a proportional pressure differential across the piston of cylinder 10 and cause cylinder 10 to extend to a new position that corresponds to desired position signal C generated by control transducer 28.
- the reverse error signal -E becomes positive while the non-reverse error signal becomes negative. This leads to the opening of the valves 20a and 20c and the closing of the valves 20b and 20d. The cylinder 10 thus retracts as desired.
- the speed information returned by the differentiator 34 enhances the overall stability of the control system.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Servomotors (AREA)
- Valve Device For Special Equipments (AREA)
- Vehicle Body Suspensions (AREA)
- Fluid-Driven Valves (AREA)
- Fluid-Pressure Circuits (AREA)
- Transplanting Machines (AREA)
- Actuator (AREA)
Abstract
Description
Die Erfindung betrifft eine Anordnung zum Steuern eines doppelt wirkenden hydraulischen Zylinders mit einer Ausfahr- und einer Einziehkammer, die über eine Ventileinrichtung mit einer hydraulischen Druckquelle und mit einem Sumpf verbunden sind, sowie mit einem die Ventileinrichtung steuernden Steuerkreis.The invention relates to an arrangement for controlling a double-acting hydraulic cylinder with an extension and a retraction chamber, which are connected via a valve device to a hydraulic pressure source and with a sump, and with a control circuit controlling the valve device.
Derartige Anordnungen sind in zahlreichen Ausführungsformen und mit unterschiedlichen Ventilen in der Ventileinrichtung bekannt.Such arrangements are known in numerous embodiments and with different valves in the valve device.
So ist es allgemein bekannt, die Strömung zu einem solchen Zylinder sowie auch das Abströmen des Hydrauliköls mit einem Schieberventil zu steuern, wobei das Schieberventil direkt mittels elektromagnetischer Betätigungseinrichtungen oder mit Hilfe eines Vorsteuerdruckes betätigbar ist, der seinerseits über ein elektrisch betätigbares Vorsteuerventil gesteuert wird.It is generally known to control the flow to such a cylinder and also the outflow of the hydraulic oil with a slide valve, the slide valve being operable directly by means of electromagnetic actuation devices or with the aid of a pilot pressure, which in turn is controlled by an electrically actuated pilot valve.
Derartige Ventileinrichtungen sind bekannt im Zusammenhang mit Stellungssteuersystemen für solche hydraulischen Zylinder mit geschlossenem Strömungskreis. Schieberventile sind jedoch bekannt für ihre empfindlichkeit gegenüber Verunreinigungen im hydraulischen Öl. Auch ist es schwierig solche Steuersysteme mit Schieberventilen so auszubilden, daß sie eine stoßfreie stabile Arbeitsweise gewährleisten, insb. auch dann, wenn das System dafür vorgesehen ist, schwere Lasten, die zum überlaufen des Antriebswctors neigen, zu steuern, z.B. dann, wenn mit Hilfe des Hydraulikzylinders eine schwere Last abgesenkt werden soll. Wenn man ein System so ausbildet, daß es der zuletzt genannten Forderung genügt, ergibt sich jedoch ein Steuersystem, das im umgekehrten Sinne zu träge ist, z.B. wenn der Hydraulikmotor eine schwere Last anheben soll. Ein anderer Nachteil solcher Ventileinrichtungen besteht darin, daß ziemlich komplizierte Schieberausbildungen oder zusätzliche Ventile notwendig sind, um eine Arbeitsweise zu erzielen, bei der der Hydraulikmotor auch einen schwimmenden Zustand einnehmen kann.Valve devices of this type are known in connection with position control systems for such hydraulic cylinders with a closed flow circuit. Gate valves are known for their sensitivity to contamination in hydraulic oil. It is also difficult to design such control systems with slide valves in such a way that they ensure a bumpless, stable operation, especially when the system is intended to withstand heavy loads that tend to overrun the drive factor. to control, for example when a heavy load is to be lowered with the help of the hydraulic cylinder. If a system is designed in such a way that it meets the latter requirement, however, a control system results which is too slow in the opposite sense, for example if the hydraulic motor is to lift a heavy load. Another disadvantage of such valve devices is that fairly complicated slide designs or additional valves are necessary to achieve a mode of operation in which the hydraulic motor can also assume a floating state.
Alternativ zu Schieberventileinrichtungen ist es bekannt, doppelwirkende Zylinder über vier ein- und ausschaltbare Druckminderungs- oder Rückschlagventile zu betätigen, die durch mittels Elektromagnet betätigbare Vorsteuerventile gesteuert werden. Eine solche, aus vier Ventilen bestehende Ventileinrichtung kann eine Bewegung des Zylinders in beiden Richtungen steuern und zusätzlich einen schwimmenden Zustand für den Zylinder wie auch einen Verriegelungszustand für den Zylinder ermöglichen. Jedoch kann es geschehen, daß solche ein- und ausschaltbaren Ventile unerwünscht hohe Drücke erzeugen können, wenn sie bei Systemen eingesetzt werden, die hohe Strömungsgeschwindigkeiten für das Hydraulikfluid erforderlich machen. Auch können solche Ventile bei Systemen mit hoher Trägheit dazu führen, daß Instabilitäten und damit ein überfahren der Soll-Stellungen auftreten. Es ist daher wünschenswert, ein stabiles System zu erhalten, das für einen geschlossenen Strömungsmittelkreislauf geeignet ist und dessen Funktionen außerordentlich flexibel sind, ohne daß dazu Schieberventile benötigt werden.As an alternative to slide valve devices, it is known to actuate double-acting cylinders via four pressure-reducing or non-return valves which can be switched on and off and which are controlled by pilot valves which can be actuated by means of an electromagnet. Such a valve device consisting of four valves can control a movement of the cylinder in both directions and, in addition, enable a floating state for the cylinder as well as a locking state for the cylinder. However, such valves that can be switched on and off can generate undesirably high pressures when used in systems which require high flow rates for the hydraulic fluid. In systems with high inertia, such valves can also lead to instabilities and thus the target positions being overrun. It is therefore desirable to obtain a stable system which is suitable for a closed fluid circuit and whose functions are extremely flexible without the need for slide valves.
Es ist daher Aufgabe der Erfindung eine Anordnung der eingangs näher bezeichneten Art vorzusehen, die geeignet ist, Arbeitscharakteristiken sowohl bei Überlaufals auch bei Unterlaufzuständen zu gewährleisten, und bei der die Ventileinrichtung im funktionellen Sinne eine hohe Flexibilität zeitigt, ohne daß die Anwendung des Systems durch hohe Strömungsgeschwindigkeiten oder hohe Trägheitsmomente beschränkt wird.It is therefore an object of the invention to provide an arrangement of the type specified in the introduction which is suitable for ensuring working characteristics both in the case of overflow and underflow conditions, and in which the valve device shows a high degree of flexibility in the functional sense, without the use of the system being restricted by high flow velocities or high moments of inertia.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Ventileinrichtung vier unabhängig betätigbare Ventile zur Steuerung je einer Strömungsverbindung zwischen den beiden Kammern des Zylinders sowie Druckquelle und Sumpf aufweist, daß eine willkürlich betätigbare Steuervorrichtung zur Erzeugung eines Stellungs-Soll-Signals und eine Fühlereinrichtung zur Erzeugung eines Stellungs-Ist-Signals vorgesehen sind, und daß der Steuerkreis die vier Ventile in Abhängigkeit von einem aus den Soll- und Ist-Signalen erzeugten Fehlersignal steuert.This object is achieved in that the valve device has four independently operable valves for controlling a flow connection between each of the two chambers of the cylinder and pressure source and sump, that an arbitrarily actuatable control device for generating a position command signal and a sensor device for generating a Actual position signals are provided, and that the control circuit controls the four valves as a function of an error signal generated from the desired and actual signals.
Zweckmäßigerweise sind die vier unabhängig betätigbaren Ventile jeweils elektrisch gesteuerte Druckminderungsventile, von denen ein Erstes einlaßseitig mit der Druckquelle und auslaßseitig mit der Einziehkammer verbunden ist; ein Zweites einlaßseitig mit der Einziehkammer und auslaßseitig mit dem Sumpf verbunden ist; ein Drittes einlaßseitig mit der Ausfahrkammer und auslaßseitig mit dem Sumpf sowie ein Viertes einlaßseitig mit der Druckquelle und auslaßseitig mit der Ausfahrkammer verbunden ist.The four independently operable valves are expediently each electrically controlled pressure reducing valves, a first of which is connected on the inlet side to the pressure source and on the outlet side to the draw-in chamber; a second one is connected on the inlet side to the feed chamber and on the outlet side to the sump; a third is connected on the inlet side to the extension chamber and on the outlet side to the sump, and a fourth is connected on the inlet side to the pressure source and on the outlet side to the extension chamber.
Jedes der elektrisch gesteuerten Druckminderungsventile ist vorzugsweise in Form eines vorgesteuerten, porportional arbeitenden Ringventils gebildet und weist jeweils ein elektromagnetisch betätigbares Vorsteuerventil auf.Each of the electrically controlled pressure reduction valves is preferably formed in the form of a pilot-operated, proportionally operating ring valve and each has an electromagnetically actuable pilot valve.
Um jede Störung durch unerwünschtes Kurzschließen von Ölströmen zu verhindern, ist zweckmäßigerweise ein erstes Rückschlagventil zur Verhinderung einer Druckmittelströmung von der Einziehkammer zum ersten Druckminderungsventil sowie ein zweites Rückschlagventil zur Verhinderung einer Druckmittelströmung von der Ausfahrkammer zu dem viertenDruckminderungsventil vorgesehen.In order to prevent any malfunction due to undesirable short-circuiting of oil flows, it is expedient to have a first check valve to prevent pressure medium flow from the feed chamber to the first pressure reduction valve and a second check valve to prevent pressure medium flow from the extension chamber to the fourth pressure reducing valve.
Die einzelnen vier Ventile steuern die Fluidströmung zwischen dem doppelt wirkenden Zylinder,der Pumpe und dem Sumpf. Die Stellung des Hydraulikzylinders wird durch das Stellungs-Ist-Signal dem Steuerkreis ständig zurückgemeldet. Dieser Steuerkreis nimmt auch das von der Bedienungsperson erzeugte Stellungs-Soll-Signal auf.The individual four valves control the fluid flow between the double-acting cylinder, the pump and the sump. The position of the hydraulic cylinder is continuously reported back to the control circuit by the actual position signal. This control circuit also receives the desired position signal generated by the operator.
Dabei ist der Steuerkreis zweckmäßigerweise so ausgebildet, daß er einen Differenzierkreis zur Umwandlung des Stellungs-Ist-Signals in ein die Bewegungsgeschwindigkeit des Zylinders wiedergebendes Signal und einen Differenzbildungskreis zur Erzeugung des Fehlersignals aus Soll- und Ist-Signal aufweist, deren Ausgänge mit einem weiteren Differenzbildungskreis zur Erzeugung eines geschwindigkeitskompensierten Fehlersignals verbunden sind, welches einem Umkehrwandler zugeführt wird, daß ferner zwei erste Treiberkreise zur Steuerung von zwei ausgewählten Druckminderungsventilen vorgesehen sind, an denen das kompensierte Fehlersignal anliegt, und daß ferner zwei weitere Treiberkreise für die beiden anderen Druckminderungsventile vorgesehen sind, an denen das umgekehrte kompensierte Fehlersignal anliegt.The control circuit is expediently designed in such a way that it has a differentiating circuit for converting the actual position signal into a signal representing the speed of movement of the cylinder and a differentiating circuit for generating the error signal from the desired and actual signals, the outputs of which have a further differentiating circuit for generating a speed-compensated error signal, which is fed to a reversing converter, that two first driver circuits are also provided for controlling two selected pressure reducing valves, to which the compensated error signal is present, and that two further driver circuits are provided for the other two pressure reducing valves to which the reverse compensated error signal is present.
Damit erzeugt der Steuerkreis umgekehrte und nicht umgekehrte geschwindigkeitskompensierte Fehlersignale, die jeweils zwei korrespondierenden Betätigungssolenoiden über die Impulsweite modulierende Kreise zugeleitet werden .The control circuit thus generates reverse and non-reverse speed-compensated error signals, which are each fed to two corresponding actuation solenoids via the pulse width modulating circuits.
Die Erfindung wird nachfolgend anhand schematischer Zeichnungen an einem Ausführungsbeispiel näher erläutert.The invention is explained in more detail below with the aid of schematic drawings using an exemplary embodiment.
Es zeigen:
- Figur 1 ein vereinfachtes schematisches Diagramm der Anordnung gemäß der Erfindung und
Figur 2 ein schematisches Schaltblockdiagramm des zugehörigen Steuerkreises.
- Figure 1 is a simplified schematic diagram of the arrangement according to the invention and
- Figure 2 is a schematic circuit block diagram of the associated control circuit.
In Figur 1 ist ein doppelwirkender Zylinder 10 vorgesehen, der über eine Ventileinrichtung 12 gesteuert wird. Über diese Ventileinrichtung ist der Zylinder mit einer Druckmittelquelle oder Pumpe 14 und einem Druckmittelsumpf 16 verbunden. Die Pumpe 14 ist vorzugsweise eine übliche,Druck bei Bedarf liefernde Hydraulikpumpe, oder eine Art von Druckmittelquelle. Der Zylinder 10 umfaßt einen seine Stellung rückmeldenden Fühler oder ein Potentiometer 80, das im einzelnen in der US-PS 37 26 191 dargestellt und beschrieben ist.In Figure 1, a double-acting
Die Ventileinrichtung 12 umfaßt vier durch Elektromagnet gesteuerte und durch Vorsteuerventil betätigbare Druckminderungs- oder proportional arbeitende Ringventile 20a bis 20d. Diese vier Ventile sind voneinander unabhängig betätigbar und jeweils elektrisch gesteuert. Das Ventil 20a steuert die Strömungsverbindung zwischen der Druckmittelquelle 14 und einer Einziehkammer 11 des Zylinders. Das Ventil 20b steuert die Strömungsverbindung zwischen dem Sumpf 16 und einer Ausfahrkammer 13 des Zylinders. Ein erstes Rückschlagventil 22 verhindert eine Strömung zwischen der Kammer 11 in Richtung auf das Ventil 20a. Das Ventil 20c steuert die Strömung zwischen der Kammer 13 und dem Sumpf 16, während das Ventil 20d die Strömung zwischen dem Sumpf 14 und der Kammer 13 steuert. Ein zweites Rückschlagventil 24 verhindert eine Strömung von der Kammer 13 zu dem Ventil 20d. Das Druckminderungsventil 20d steuert die Strömung von der Pumpe 14 zu der Kammer 13. Das Rückschlagventil 24 verhindert eine Strömungsumkehr in Richtung.auf die Druckmittelquelle 14.The
Die Druckminderungsventile 20a bis 20d werden jeweils über durch Elektromagnete 21a bis 21d betätigbare Vorsteuerventile gesteuert. Wenn beispielsweise Strom an die Spule 21a gelegt wird, bewegt sich der Anker 100 proportional gegen die Vorspannung der Feder 102, um die Öffnung 104 freizulegen. Dadurch tritt eine Druckdifferenz über der Öffnung 106 des Ventilkörpers 108 auf. Der Ventilkörper kann sich damit gegen die Vorspannung der Feder 110 von seinem Ventilsitz 112 proportional wegbewegen, um so im Verhältnis der Vorsteuerung und damit der Druckdifferenz das Ventil 20a zu öffnen. Die Ventile 20b bis 20d arbeiten in der gleichen Weise.The pressure reduction valves 20a to 20d are controlled in each case by pilot valves which can be actuated by
Der Steuerkreis 30 erzeugt die notwendigen Steuersignale, und zwar als Funktion von einem Stellungssignal X, das von dem Wandler 18 am Zylinder 10 erhalten wird, und von einem Steuersignal C, das durch einen Wandler 28 geliefert wird, der durch die Bedienungsperson gesteuert wird. Die Wandler können jeweils als Potentiometer ausgebildet sein. Das Steuer- oder Soll-Signal C repräsentiert eine gewünschte Stellung des Zylinders 10 bzw. des zugehörigen Kolbens.The
Figur 2 zeigt den Steuerkreis 30. Dieser umfaßt einen Trennverstärker 32 mit Einheitsverstärkungsfaktor, der das Stellungssignal X von dem Stellungswandler 18 trennen soll. Nicht dargestellte Verstärker mit vorbestimmten Verstärkungsfaktor können notwendig sein, um das eine oder beide der Signale (Stellungssignal X und Steuersignal C) zu beeinflussen und sie für einen einzigen Spannungsbereich von z.B. 0 bis 8 Volt umzuwandeln. Das Ist-Signal X wird durch einen Differentiatorkreis 34 differenziert und verstärkt durch einen Umkehrverstärker 36 mit einem Verstärkungsfaktor von etwa minus 0,6.FIG. 2 shows the
Ein Fehlersignal E wird dadurch erzeugt, daß das Ist-Signal X von dem Soll-Signal C an der Differenzbildungs-Verbindungsstelle 38 abgezogen wird. Das Fehlersignal E wird dann durch Verstärker 40 mit einem Verstärkungsfaktor von annähernd 2,0 verstärkt und durch einen Umkehrverstärker 42 mit Einheitsverstärkungsfaktor umgekehrt. Eine Differenzverbindung 44 umfaßt einen (-)Eingang, der das Ausgangssignal von dem Umkehrwandler 42 empfängt, sowie einen (-)-Eingang, der den Ausgang des Umkehrwandlers 36 empfängt. Am Ausgang der Differenzverbindung 44 erscheint somit ein umgekehrtes kombiniertes oder geschwindigkeitskompensiertes Fehlersignal -E'. Das umgekehrte Signal -E' wird durch einen Umkehrverstärker 46 mit Einheitsverstärkungsfaktor umgekehrt, um ein nicht umgekehrtes kombiniertes oder geschwindigkeitskompensiertes Fehlersignal +E' zu erhalten.An error signal E is generated in that the actual signal X is subtracted from the desired signal C at the difference-forming
Die Fehlersignale E und -E werden über jeweils zwei korrespondierende arrhythmetische Einheiten 50,54 bzw. 48,52 kombiniert und entsprechend zwei identischen Treiberkreisen 80b, 80d bzw. 80a,80c zur Betätigung entsprechender Elektromagnete zugeführt. Diese Kreise, die weiter unten näher beschrieben werden, arbeiten zur Erzeugung einer Änderung von z.B. 300 mA in dem Antriebsstrom für die Elektromagnetwicklungen. Dieser Antriebsstrom ist mit Ic bezeichnet. Die Änderung des Stromes in den Wicklungen 21a bis 21d erfolgt in Abhängigkeit vom Auftreten einer Spannungsänderung von z.B. 2,5 V in dem Fehlersignalausgang der Differenzverbindung 44. Die (-)-Eingänge der arrhythmetischen Kreise 48 und 52 empfangen beide das umgekehrte Fehlersignal -E', während die (-)-Eingänge der arrhythmetischen Kreise 50 und 54 das nicht umgekehrte Fehlersignal +E' erhalten.The error signals E and -E are combined via two corresponding
Die (-)-Eingänge der arrhythmetischen Kreise 48 bis 54 empfangen weiterhin von einer durch die Bedienungsperson gesteuerte bistabilen Einrichtung 56, z.B einem Schalter, ein Abschaltsignal von niedrigem oder hohem Niveau. Ein Signal von niedrigem Niveau von dem Schalter 56 führt zur Abschaltung aller Wicklungen 21a bis 21d. Dadurch schließen alle Ventile 20a bis 20d. Damit wird ein Abschaltzustand erreicht.The (-) inputs of
Eine andere, durch die Bedienungsperson steuerbare bistabile Einrichtung (z.B. Schalter 58) liefert ein Signal von hohem Niveau oder niedrigem Niveau, welches an die (+)-Eingänge der arrhythmetischen Kreise 48 und 54 und an die (-)-Eingänge der arrhythmetischen Kreise 50 und 52 angelegt wird. Die Bedienungsperson kann so den Schalter 58 einschalten, um die Ventile 20a und 20d zum Schließen zu bringen, während gleichzeitig die Ventile 20b und 20c geöffnet werden, wodurch der Motor 10 in einen schwimmenden Zustand gelangt.Another bistable device (e.g. switch 58) which can be controlled by the operator supplies a signal of a high or low level which is sent to the (+) inputs of the
Das Fehlersignal E vom Verstärker 40 wird über den Widerstand R1 dem (+)-Eingang eines Komparators 60 zugeführt. Das umgekehrte Fehlersignal -E vom Invertor 42 wird über Widerstand R2 dem (+)-Eingang des Komparators 62 zugeführt. Die (-)-Eingänge der Komparatoren 60 und 62 werden beide mit einem einstellbaren Kontakt eines variablen Potentiometers 64 verbunden, das ein variables Ansprechwert-Bezugssignal Vdb erzeugt. Der Ausgang des Komparators 62 ist mit dem (+)-Eingang des Komparators 60 verbunden. Das Signal am Ausgang des Komparators 60 weist einen hohen Wert auf mit der Ausnahme des Augenblickes, an dem die Fehlersignale E oder -E sich innerhalb des Ansprechwertbereiches befinden, dessen Breite durch das Niveau des Ansprechwert-Bezugssignals Vab vom Potentiometer 64 bestimmt wird. Der Ausgang des Komparators 60 wird über einen Widerstand R mit einer Spannungsquelle von +8 Volt verbunden sowie mit dem Eingang eines Integrators 66, der einen Umkehr-Verstärkungsfaktor von -0,3 aufweist. Der Integrator 66 hebt seinen Ausgang an oder vermindert diesen zwischen Spannungsgrenzen in Abhängigkeit von abrupten Änderungen des Ausgangssignals des Komparators 60. Der Integrator 66 führt außerdem eine Umkehrfunktion aus, um ein umgekehrtes Ansprechwert-Bezugssignal Vdb' zu erzeugen, das einen niedrigen Wert annimmt, sofern nicht die Fehlersignale E und -E innerhalb des zuvor erwähnten Ansprechwertbereiches liegen. Das umgekehrte Ansprechwert-Bezugssignal Vdb' wird an die (+)-Eingänge von Differenzverbindungsstellen 50 und 52 angelegt, um die Spulen 21b und 21c abzuschalten und die Ventile 20b und 20c zu schließen, wenn sich die Fehlersignale E oder -E in dem Ansprechwertbereich befinden.The error signal E from the
Ein üblicher Druckfühler 68 kann angeordnet sein, um den Ausgangsdruck der Druckmittelquelle 14 zu messen, und ein Druckeinstellsignal Vpa zu erzeugen, das proportional dem Auslaßdruck der Pumpe ist. Dieses Signal wird dem umgekehrten Ansprechwert-Bezugssignal Vdb' am Aufsummierungspunkt 70 hinzugefügt. Die Summe dieser beiden Signale werden an die (+)-Eingänge der Aufsummierungsverbindungen 48 und 54 angelegt. Wenn somit der Ausgangsdruck der Pumpe 14 abnimmt, verstärkt der Druckfühler 66 das Signal Vpa, so daß eine proportionale Verminderung im Zustand der Stromspeisung der Spulen 21a und 21d und damit ein entsprechendes stärkeres Bewegen der Ventile 20a und 20d in Richtung auf die Schließstellung erfolgt. Dieses proportionale Schließen der Ventile 20a und 20d vergrößert den Druckabfall über diese Ventile und kompensiert somit die ursprüngliche Zunahme des Pumpendruckes. Umgekehrt führt eine Abnahme des Pumpendruckes zu einer Kompensation durch ein proportionales weiteres öffnen der Ventile 20a und 20d.A
Die Ausgangssignale der Aufsummierungspunkte48 bis 54 werden an identische Kreise 80a bis 80d angelegt, von denen einer im einzelnen erläutert wird. Es handelt sich bei diesen Kreisen um Treiberkreise. Der Kreis 80a umfaßt einen Verstärker 82a mit einem Verstärkungsfaktor von annähernd 0,8, der den Ausgang der Aufsummierverbindung 48 verstärkt. Das verstärkte Fehlersignal wird zu einem (-)-Eingang einer Aufsummierungsverbindung 84a geleitet-Der andere (-)-Eingang der Verbindung 84a nimmt ein umgexehtes Zittersignal von 200 Hz und dreieckiger Wellenform auf, das von dem Zitteroszilatcr 72 und einem Inverior 74 erzeugt wird.The output signals of the summation points 48 to 54 are applied to identical circles 80a to 80d, one of which will be explained in detail. These circles are driver circles. Circuit 80a includes an amplifier 82a with a gain factor of approximately 0.8 that amplifies the output of summing
Der Ausgang V3 der Verbindung 84a wird an den Verstärker 86a mit einem Verstärkungsfaktor von annähernd 20 angekuppelt. Dieser erzeugt ein Signal V4, das dann an den Eingang eines impulsweiten Modulators 88a angeschlossen wird. Der Modulator 88a empfängt auch das nicht umgekehrte Signal von einem impulsweiten Oszilator 76, der ein Signal mit 300 Hz und Dreieckswellenform erzeugt. Der modulierte Ausgang Vc des Modulators 88a ist ein Rechteckspannungssignal von 3000 Hz mit einer prozentualen Modulation oder einem Arbeitszyklus gleich 100 x ((V4 - 1,26)/(3,93 - 1,26)), worin 3,93 und 1,26 jeweils die hohen und niedrigen Spitzenwerte des Signals vom Oszilator 72 sind. Das Ausgangssignal Vc gelangt an das eine Ende der Wicklung 21a.The output V3 of connection 84a is coupled to amplifier 86a with an amplification factor of approximately 20. This generates a signal V4, which is then connected to the input of a pulse-
Das andere Ende der Wicklung 21a ist über den Stromfühlwiderstand R4a geerdet und an den (+)-Eingang der Verbindungsstelle 84a über Verstärker 90a und Integrationseinrichtung 92a gelegt. Der Verstärker 90a weist einen Verstärkungsfaktor von annähernd beispielsweise 2,84 auf. Der Integrator 92a empfängt ebenfalls eine Bezugsspannung Vref gleich 3,43 Volt. Er erzeugt eine Spannung V2, die definiert wird durch die LaPlace-Transformationsgleichung V2 = 2Vref - V1 (6250/(S+ 6250)), in der V1 die Spannung am-Ausgang des Verstärkers 90a ist. Der Gesamteffekt des Kreises 80a besteht darin, die Spule 21a mit einem Antriebsstrom zu speisen, der mit Ic bezeichnet ist, und der dem kombinierten Signal aus der arrhythmetischen Einheit 48 proportional ist. Die Rückführung, die durch die Verstärker 90a und 92a geliefert wird, vermindert die Variationseffekte bei der Speisung der Spannung und dem Widerstand der Wicklung 21a und liefert eine verbesserte Frequenzansprechempfindlichkeit für das System.The other end of winding 21a is grounded via current sensing resistor R4a and connected to the (+) input of connection point 84a via amplifier 90a and integration device 92a. The amplifier 90a has a gain factor of approximately 2.84, for example. Integrator 92a also receives a reference voltage Vref equal to 3.43 volts. It generates a voltage V2, which is defined by the LaPlace transformation equation V2 = 2Vref - V1 (6250 / (S + 6250)), in which V1 is the voltage at the output of amplifier 90a. The overall effect of circuit 80a is to supply
Es wird außerdem darauf hingewiesen, daß die (-)-Eingänge der Verbindungen 84a und 84c das umgekehrte Zittersignal empfangen, während die (-)-Eingänge der Verbindungen 84b und 84d das nicht umgekehrte Zittersignal empfangen. Dies hat zur Folge, daß die Zittersignale die Arbeitsweise der Ventile 20a und 20c außer Phase in Bezug auf die Arbeitsweise der Ventile 20b und 20d halten. Dies verhindert ein gleichzeitiges öffnen der Ventile 20a und 20b und in ähnlicher Weise der Ventile 20d und 20c, um so einen Kurzschlußstrom gegenüber dem Zylinder 10 durch direktes Überströmen des Hydrauliköls von der Pumpe 14 in das Reservoir 16 zu verhindern. Dies vermindert die erforderliche Strömung zur Erzielung einer äquivalenten Druckregelung, die auf andere Weise auch ohne Zittersignale erzielt werden könnte.It is also noted that the (-) inputs of connections 84a and 84c receive the reverse dither signal, while the (-) inputs of
Es wird ferner darauf hingewiesen, daß während die Modulatoren 88a und 88b ein nicht umgekehrtes Oszilatorsignal empfangen, die Modulatoren 88c und 88d jeweils ein umgekehrtes Oszilatorsignal über die Umkehreinrichtung 78 erhalten. Das bedeutet, daß die beiden Ventilpaare alternativ impulsmäßig betätigt werden,statt daß eine gleichzeitige impulsmäßige Betätigung erfolgt. Auch hierdurch wird der Spitzenbedarf bezüglich der Kraftzuspeisung (nicht gezeigt) verringert.It should also be noted that while
Das System arbeitet zur Erzeugung eines Differentialdruckabfalls über die Ventile 20a bis 20d,der umgekehrt proportional zu der Größe des Wicklungsstromes Ic ist. Durch Steuerung der Druckabfälle über die Ventile 20a bis 20d wird der Druckmittelstrom zwischen den Kammern 11 und 13 gesteuert, um so den Zylinder nach Wunsch einzuziehen oder auszufahren. Wenn der Steuerwandler 28 betätigt wird, um den Zylinder auszufahren, wird ein positives, nicht umgekehrtes Fehlersignal E erzeugt. Wenn E positiv ist, ist das umgekehrte Fehlersignal -E negativ und es wird kein Strom in den Wicklungen 21a und 21c erzeugt, so daß die Ventile 20 a und 20c geschlossen bleiben. Dieses positive Signal E erzeugt in den Kreisen 80b und 80d Wicklungsströme für die Wicklungen 21b und 21d, so daß die Ventile 20b und 20d öffnen, um ein proportionales Druckdifferential über den Kolben des Zylinders 10 zu erzeugen und dazu zu führen, daß der Zylinder 10 in eine neue Stellung ausfänrt, die dem Stellungs-Soll-Signal C entspricht, das durch den Steuerwandler 28 erzeugt wird. Wenn der Wandler 28 umgekehrt eine Einziehbewegung des Zylinders erfordert, wird das umgekehrte Fehlersignal -E positiv, während das nicht umgekehrte Fehlersignal negativ wird. Dies führt zum Öffnen der Ventile 20a und 20c und zum Schließen der Ventile 20b und 20d. Damit fährt der Zylinder 10 ein, wie dies gewünscht ist. Die durch den Differentiator 34 zurückgeführte Auskunft über die Geschwindigkeit verstärkt die Gesamtstabilität des Steuersystems.The system operates to produce a differential pressure drop across valves 20a through 20d that is inversely proportional to the magnitude of the winding current Ic. By controlling the pressure drops via the valves 20a to 20d, the pressure medium flow between the
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT83102914T ATE20690T1 (en) | 1982-04-01 | 1983-03-24 | POSITION CONTROL FOR A DOUBLE ACTING HYDRAULIC MOTOR. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US364373 | 1982-04-01 | ||
US06/364,373 US4437385A (en) | 1982-04-01 | 1982-04-01 | Electrohydraulic valve system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0091018A1 true EP0091018A1 (en) | 1983-10-12 |
EP0091018B1 EP0091018B1 (en) | 1986-07-09 |
Family
ID=23434235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83102914A Expired EP0091018B1 (en) | 1982-04-01 | 1983-03-24 | Position control for a double acting hydraulic motor |
Country Status (12)
Country | Link |
---|---|
US (1) | US4437385A (en) |
EP (1) | EP0091018B1 (en) |
JP (1) | JPH0610481B2 (en) |
AT (1) | ATE20690T1 (en) |
AU (1) | AU550989B2 (en) |
BR (1) | BR8301657A (en) |
CA (1) | CA1202100A (en) |
DE (1) | DE3364410D1 (en) |
DK (1) | DK137783A (en) |
ES (1) | ES520993A0 (en) |
MX (1) | MX155212A (en) |
ZA (1) | ZA832274B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2641829A1 (en) * | 1989-01-19 | 1990-07-20 | Danfoss As | SERVOMECHANISM CONTROLLED BY A FLUID |
WO2001059305A1 (en) * | 2000-02-11 | 2001-08-16 | Zf Lenksysteme Gmbh | Control device for a hydraulic control motor |
DE102008013602B4 (en) | 2008-03-11 | 2019-07-04 | Robert Bosch Gmbh | Method for driving a plurality of valves and control block with a plurality of valves |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2525292B1 (en) * | 1982-04-19 | 1986-12-19 | Chatelin Jacques | HYDRAULIC SERVO-MOTOR |
US4506700A (en) * | 1983-10-07 | 1985-03-26 | Deere & Company | Poppet valve with float function |
GB8426486D0 (en) * | 1984-10-19 | 1984-11-28 | Lucas Ind Plc | Electro-hydraulic actuator systems |
JPS62297502A (en) * | 1986-06-18 | 1987-12-24 | Kuroda Precision Ind Ltd | Control device for driving pneumatic cylinder |
US4741247A (en) * | 1986-09-17 | 1988-05-03 | Rexa Corporation | Pneumatic actuator apparatus |
AU603907B2 (en) * | 1987-06-30 | 1990-11-29 | Hitachi Construction Machinery Co. Ltd. | Hydraulic drive system |
US5079989A (en) * | 1989-06-12 | 1992-01-14 | Vickers, Incorporated | Electrohydraulic valve system with a pressure feedback signal modulated by a velocity feedback signal when the velocity exceeds a veloity limit |
US4989495A (en) * | 1989-08-21 | 1991-02-05 | Hydra-Power Systems, Inc. | Hydraulic positioning system with normal and high supply and exhaust flow paths |
SE466712B (en) * | 1990-07-24 | 1992-03-23 | Bo Andersson | HYDRAULIC ENGINE DEVICE CONTROLS THE SAME |
US6131500A (en) * | 1997-12-05 | 2000-10-17 | Moncrief; Rick L. | System and method for producing motion |
US6325153B1 (en) | 1999-01-05 | 2001-12-04 | Halliburton Energy Services, Inc. | Multi-valve fluid flow control system and method |
US6691604B1 (en) * | 1999-09-28 | 2004-02-17 | Caterpillar Inc | Hydraulic system with an actuator having independent meter-in meter-out control |
FR2807794B1 (en) * | 2000-04-18 | 2003-02-14 | Crouzet Automatismes | DOUBLE NESTED LOOP HYDRAULIC SERVO VALVE |
DE50108414D1 (en) * | 2001-08-10 | 2006-01-19 | Zf Lenksysteme Gmbh | CONTROL DEVICE FOR THE CONTINUOUS MOVEMENT OF A HYDRAULIC MOTOR |
US6694860B2 (en) | 2001-12-10 | 2004-02-24 | Caterpillar Inc | Hydraulic control system with regeneration |
KR20030052031A (en) * | 2001-12-20 | 2003-06-26 | 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 | control apparatus of hydraulic valve for construction heavy equipment |
US6699311B2 (en) | 2001-12-28 | 2004-03-02 | Caterpillar Inc | Hydraulic quick drop circuit |
US6732512B2 (en) | 2002-09-25 | 2004-05-11 | Husco International, Inc. | Velocity based electronic control system for operating hydraulic equipment |
US6880332B2 (en) | 2002-09-25 | 2005-04-19 | Husco International, Inc. | Method of selecting a hydraulic metering mode for a function of a velocity based control system |
US6718759B1 (en) | 2002-09-25 | 2004-04-13 | Husco International, Inc. | Velocity based method for controlling a hydraulic system |
US6779340B2 (en) | 2002-09-25 | 2004-08-24 | Husco International, Inc. | Method of sharing flow of fluid among multiple hydraulic functions in a velocity based control system |
US6775974B2 (en) | 2002-09-25 | 2004-08-17 | Husco International, Inc. | Velocity based method of controlling an electrohydraulic proportional control valve |
US7440821B1 (en) * | 2004-01-02 | 2008-10-21 | Sauer-Danfoss Inc. | Method of determining average current in a PWM drive |
US7121189B2 (en) * | 2004-09-29 | 2006-10-17 | Caterpillar Inc. | Electronically and hydraulically-actuated drain value |
US7146808B2 (en) * | 2004-10-29 | 2006-12-12 | Caterpillar Inc | Hydraulic system having priority based flow control |
US7204084B2 (en) * | 2004-10-29 | 2007-04-17 | Caterpillar Inc | Hydraulic system having a pressure compensator |
US7441404B2 (en) | 2004-11-30 | 2008-10-28 | Caterpillar Inc. | Configurable hydraulic control system |
US7451685B2 (en) * | 2005-03-14 | 2008-11-18 | Husco International, Inc. | Hydraulic control system with cross function regeneration |
US7243493B2 (en) * | 2005-04-29 | 2007-07-17 | Caterpillar Inc | Valve gradually communicating a pressure signal |
US7204185B2 (en) * | 2005-04-29 | 2007-04-17 | Caterpillar Inc | Hydraulic system having a pressure compensator |
US7194856B2 (en) * | 2005-05-31 | 2007-03-27 | Caterpillar Inc | Hydraulic system having IMV ride control configuration |
US7302797B2 (en) * | 2005-05-31 | 2007-12-04 | Caterpillar Inc. | Hydraulic system having a post-pressure compensator |
US7210396B2 (en) * | 2005-08-31 | 2007-05-01 | Caterpillar Inc | Valve having a hysteretic filtered actuation command |
US7331175B2 (en) * | 2005-08-31 | 2008-02-19 | Caterpillar Inc. | Hydraulic system having area controlled bypass |
US20100043418A1 (en) * | 2005-09-30 | 2010-02-25 | Caterpillar Inc. | Hydraulic system and method for control |
US7614336B2 (en) * | 2005-09-30 | 2009-11-10 | Caterpillar Inc. | Hydraulic system having augmented pressure compensation |
US7320216B2 (en) * | 2005-10-31 | 2008-01-22 | Caterpillar Inc. | Hydraulic system having pressure compensated bypass |
JP4353190B2 (en) * | 2006-02-27 | 2009-10-28 | コベルコ建機株式会社 | Hydraulic circuit for construction machinery |
US7380398B2 (en) * | 2006-04-04 | 2008-06-03 | Husco International, Inc. | Hydraulic metering mode transitioning technique for a velocity based control system |
US7621211B2 (en) * | 2007-05-31 | 2009-11-24 | Caterpillar Inc. | Force feedback poppet valve having an integrated pressure compensator |
US8479504B2 (en) * | 2007-05-31 | 2013-07-09 | Caterpillar Inc. | Hydraulic system having an external pressure compensator |
US20080295681A1 (en) * | 2007-05-31 | 2008-12-04 | Caterpillar Inc. | Hydraulic system having an external pressure compensator |
DE112007003562T5 (en) * | 2007-07-02 | 2010-05-12 | Parker Hannifin Ab | Fluid valve assembly |
US8348642B2 (en) * | 2007-10-31 | 2013-01-08 | Schlumberger Technology Corporation | Active mud valve system |
US8631650B2 (en) * | 2009-09-25 | 2014-01-21 | Caterpillar Inc. | Hydraulic system and method for control |
AU2012258501A1 (en) * | 2011-12-01 | 2013-06-20 | Harnischfeger Technologies, Inc. | Leveling system |
US9309969B2 (en) | 2013-02-22 | 2016-04-12 | Cnh Industrial America Llc | System and method for controlling a hydrostatic drive unit of a work vehicle |
EP2881595B1 (en) * | 2013-12-03 | 2018-08-22 | Ansaldo Energia IP UK Limited | Device for emergency operation of actuators |
US10072681B1 (en) * | 2014-06-23 | 2018-09-11 | Vecna Technologies, Inc. | Controlling a fluid actuated device |
US10563676B1 (en) | 2014-06-23 | 2020-02-18 | Vecna Robotics, Inc. | Hydrosymbiosis |
BE1025480B9 (en) * | 2017-08-18 | 2019-04-08 | Punch Powertrain Nv | ELECTRICALLY CONTROLLABLE HYDRAULIC SYSTEM FOR A VEHICLE TRANSMISSION AND A METHOD FOR DRIVING THEM |
US20230312241A1 (en) * | 2022-03-31 | 2023-10-05 | Oshkosh Corporation | Cycle time control for a refuse vehicle hydraulic system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD131870A5 (en) * | 1976-10-09 | 1978-07-26 | Danfoss As | ELECTRO-HYDRAULIC CONTROL DEVICE |
GB2055490A (en) * | 1979-07-26 | 1981-03-04 | Deere & Co | Electrohydraulic servo arrangement |
EP0040075A1 (en) * | 1980-05-12 | 1981-11-18 | Ford Motor Company Limited | Hydraulic actuator |
EP0044263A1 (en) * | 1980-06-10 | 1982-01-20 | Pierre Guettmann | Quick response flow-current converter, especially to control actuation or distribution devices |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1666748A (en) | 1927-03-26 | 1928-04-17 | Motor-controlling apparatus | |
USRE26028E (en) | 1963-05-16 | 1966-05-17 | Pilot operated control valve mechanism | |
US3714868A (en) | 1970-09-23 | 1973-02-06 | Marotta Scientific Controls | Valve system for proportional flow control for fluid-operated motor |
US3726191A (en) * | 1971-02-08 | 1973-04-10 | Bunker Ramo | Electrically controlled hydraulic system and transducer therefor |
CH563532A5 (en) | 1973-03-14 | 1975-06-30 | Buehler Ag Geb | |
JPS6037321B2 (en) * | 1974-11-30 | 1985-08-26 | 株式会社豊田中央研究所 | Fluid actuator control device |
JPS5229581A (en) * | 1975-09-01 | 1977-03-05 | Nippon Spindle Mfg Co Ltd | Oil pressure control device |
JPS5437378A (en) * | 1977-08-30 | 1979-03-19 | Ishikawajima Harima Heavy Ind Co Ltd | Removal of hydrogen chloride gas produced in fluidized bed type incinerator |
JPS5490721U (en) * | 1977-12-12 | 1979-06-27 | ||
US4250794A (en) | 1978-03-31 | 1981-02-17 | Caterpillar Tractor Co. | High pressure hydraulic system |
JPS58876Y2 (en) * | 1978-07-20 | 1983-01-08 | 三菱重工業株式会社 | Pressurizing device for reactor coolant |
JPS55119709A (en) * | 1979-03-09 | 1980-09-13 | Hitachi Constr Mach Co Ltd | Servo mechanism |
-
1982
- 1982-04-01 US US06/364,373 patent/US4437385A/en not_active Ceased
-
1983
- 1983-03-11 CA CA000423408A patent/CA1202100A/en not_active Expired
- 1983-03-18 MX MX196646A patent/MX155212A/en unknown
- 1983-03-24 AT AT83102914T patent/ATE20690T1/en not_active IP Right Cessation
- 1983-03-24 EP EP83102914A patent/EP0091018B1/en not_active Expired
- 1983-03-24 DE DE8383102914T patent/DE3364410D1/en not_active Expired
- 1983-03-25 ES ES520993A patent/ES520993A0/en active Granted
- 1983-03-25 DK DK137783A patent/DK137783A/en not_active Application Discontinuation
- 1983-03-29 AU AU12923/83A patent/AU550989B2/en not_active Ceased
- 1983-03-29 JP JP58053443A patent/JPH0610481B2/en not_active Expired - Lifetime
- 1983-03-30 BR BR8301657A patent/BR8301657A/en unknown
- 1983-03-30 ZA ZA832274A patent/ZA832274B/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD131870A5 (en) * | 1976-10-09 | 1978-07-26 | Danfoss As | ELECTRO-HYDRAULIC CONTROL DEVICE |
GB2055490A (en) * | 1979-07-26 | 1981-03-04 | Deere & Co | Electrohydraulic servo arrangement |
EP0040075A1 (en) * | 1980-05-12 | 1981-11-18 | Ford Motor Company Limited | Hydraulic actuator |
EP0044263A1 (en) * | 1980-06-10 | 1982-01-20 | Pierre Guettmann | Quick response flow-current converter, especially to control actuation or distribution devices |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2641829A1 (en) * | 1989-01-19 | 1990-07-20 | Danfoss As | SERVOMECHANISM CONTROLLED BY A FLUID |
WO2001059305A1 (en) * | 2000-02-11 | 2001-08-16 | Zf Lenksysteme Gmbh | Control device for a hydraulic control motor |
US6712091B2 (en) | 2000-02-11 | 2004-03-30 | Zf Lenksysteme Gmbh | Control device for a hydraulic control motor |
DE102008013602B4 (en) | 2008-03-11 | 2019-07-04 | Robert Bosch Gmbh | Method for driving a plurality of valves and control block with a plurality of valves |
Also Published As
Publication number | Publication date |
---|---|
AU550989B2 (en) | 1986-04-10 |
US4437385A (en) | 1984-03-20 |
EP0091018B1 (en) | 1986-07-09 |
CA1202100A (en) | 1986-03-18 |
MX155212A (en) | 1988-01-29 |
ZA832274B (en) | 1984-11-28 |
ES8404021A1 (en) | 1984-04-01 |
BR8301657A (en) | 1983-12-13 |
ES520993A0 (en) | 1984-04-01 |
JPS58180803A (en) | 1983-10-22 |
DK137783D0 (en) | 1983-03-25 |
JPH0610481B2 (en) | 1994-02-09 |
ATE20690T1 (en) | 1986-07-15 |
AU1292383A (en) | 1983-10-06 |
DK137783A (en) | 1983-10-02 |
DE3364410D1 (en) | 1986-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0091018A1 (en) | Position control for a double acting hydraulic motor | |
DE2447858C3 (en) | Servo valve device | |
DE3931962C2 (en) | ||
DE3546336C2 (en) | ||
DE3804744C2 (en) | ||
DE3939857A1 (en) | HYDRAULIC CONTROL UNIT | |
EP0546300A1 (en) | Electrohydraulic control system | |
DE2412318A1 (en) | VALVE ARRANGEMENT FOR THE CONTROL OF A REVERSIBLE HYDRAULIC CONSUMER | |
EP0427981A1 (en) | Electrohydraulic or pneumatic actuator | |
DE3502276A1 (en) | DEVICE FOR CONTINUOUSLY CONTROLLING A SOLENOID VALVE DESIGNED NORMALLY FOR DISCONTINUOUS OPERATION | |
DE2544727B2 (en) | Electro-hydraulic switching pressure control device for a motor vehicle drive provided with a hydraulic torque converter and an automatic step change gear | |
EP0471884B1 (en) | Electrohydraulic servovalve | |
DE2114639A1 (en) | Electrohydraulic control device for a hydraulic consumer | |
DE3586992T2 (en) | LOAD SENSOR SWITCHING OF A LOAD-RELATED DIRECTIONAL CONTROL VALVE. | |
DE4431103C2 (en) | Hydraulic operating unit | |
DE3836453A1 (en) | Valve arrangement for controlling and monitoring the working pressure of a hydraulic consumer | |
DE3330367A1 (en) | Hydraulic drive system | |
DE3642642C2 (en) | ||
EP0092064B1 (en) | Slide control device, in particular a spool of a directional valve | |
EP0582099A2 (en) | Hydraulic system with load sensing | |
DE2822709A1 (en) | COMBINED FEEDBACK CONTROL SYSTEM | |
DE3738241A1 (en) | Electrohydraulic device for the load-independent control of a volume flow in a manner proportional to an input signal | |
DE19534017A1 (en) | Electro-pneumatic system esp. for process control system | |
DE3026564C2 (en) | Hydrostatic drive | |
DE4417153C1 (en) | Position regulation circuit for hydraulic setting element in automobile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19831122 |
|
ITCL | It: translation for ep claims filed |
Representative=s name: LENZI & C. |
|
TCNL | Nl: translation of patent claims filed | ||
EL | Fr: translation of claims filed | ||
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 20690 Country of ref document: AT Date of ref document: 19860715 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3364410 Country of ref document: DE Date of ref document: 19860814 |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19870325 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19870331 Year of fee payment: 5 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19880324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19880325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19880331 Ref country code: CH Effective date: 19880331 |
|
BERE | Be: lapsed |
Owner name: DEERE & CY Effective date: 19880331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19881001 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19890331 |
|
ITTA | It: last paid annual fee | ||
EUG | Se: european patent has lapsed |
Ref document number: 83102914.5 Effective date: 19881206 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19950216 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19961129 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20000221 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20000330 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010324 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20010324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020101 |