EP0089414A1 - Waveguide rotating joint - Google Patents

Waveguide rotating joint Download PDF

Info

Publication number
EP0089414A1
EP0089414A1 EP82111644A EP82111644A EP0089414A1 EP 0089414 A1 EP0089414 A1 EP 0089414A1 EP 82111644 A EP82111644 A EP 82111644A EP 82111644 A EP82111644 A EP 82111644A EP 0089414 A1 EP0089414 A1 EP 0089414A1
Authority
EP
European Patent Office
Prior art keywords
waveguide
partial
rotary coupling
coupling according
waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82111644A
Other languages
German (de)
French (fr)
Other versions
EP0089414B1 (en
Inventor
Günter Dr. Mörz
Werner Speldrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Telecom GmbH
Original Assignee
ANT Nachrichtentechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANT Nachrichtentechnik GmbH filed Critical ANT Nachrichtentechnik GmbH
Priority to AT82111644T priority Critical patent/ATE29342T1/en
Publication of EP0089414A1 publication Critical patent/EP0089414A1/en
Application granted granted Critical
Publication of EP0089414B1 publication Critical patent/EP0089414B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/06Movable joints, e.g. rotating joints
    • H01P1/062Movable joints, e.g. rotating joints the relative movement being a rotation
    • H01P1/066Movable joints, e.g. rotating joints the relative movement being a rotation with an unlimited angle of rotation
    • H01P1/068Movable joints, e.g. rotating joints the relative movement being a rotation with an unlimited angle of rotation the energy being transmitted in at least one ring-shaped transmission line located around the axis of rotation, e.g. "around the mast" rotary joint

Definitions

  • the present invention relates to a waveguide rotary coupling, the coupling members of which are axially rotatably connected to one another and have at least one waveguide input or output.
  • a rotationally symmetrical field is generated in the plane of rotation because its expansion properties are not influenced by the rotation.
  • either coaxial conductors or circular waveguides are used as coupling members which can be rotated relative to one another.
  • Such rotary couplings go e.g. from DE-PS 26 24 428 and DE-PS 21 34 077.
  • DE-PS 21 34 077 shows, especially when the rotary coupling is multi-channel.
  • the invention is therefore based on the object of providing a waveguide rotary coupling of the type mentioned at the outset, which can be designed in multiple channels with little mechanical outlay and has the high bandwidth required for this.
  • the object is achieved in that the mutually rotatable coupling members consist of partial waveguides, which were created by dividing an annular waveguide in a longitudinal sectional plane.
  • the coupling members which can be rotated relative to one another consist of an annular waveguide which is separated in a longitudinal section plane.
  • Fig. 1 shows a section of a rectangular waveguide which is bent in a ring shape in the H plane and whose section is also in the H plane.
  • the partial hollow animal 1 and 2 resulting from the separation of the waveguide are arranged coaxially rotatable relative to one another.
  • the waveguide inputs or outputs 3, 4 are located in the side walls of the partial waveguide.
  • FIG. 2 A rectangular waveguide bent in a ring in the E-plane, which is divided into two partial waveguides 5 and 6 by a cut in the E-Eberie, is shown in FIG. 2. Here only the waveguide entrance 7 is visible in the side wall of the partial waveguide 5.
  • the longitudinal section plane (E, H plane), in which the cross currents are minimal, is expediently chosen as the parting plane of the annular waveguide. Because cross currents occurring in the parting plane would excite interference waves in the gap between the partial waveguides, especially if both are not electrically contacted.
  • the contact-free coupling the so-called choke coupling, is of particular importance because it eliminates the need for fault-prone loop contacts. In the following description, therefore, the contact-free rotary coupling is used exclusively.
  • the following exemplary embodiments are based on the coupling principle shown in FIG. 2, in which the partial waveguides are bent in a ring shape in the E plane and are arranged axially one behind the other. These statements can be transferred in an equivalent manner to the principle shown in FIG. 1, in which partial waveguides bent in the E plane are arranged coaxially one above the other.
  • FIG. 3a shows a cross section through a two-part rotary coupling.
  • a top view of the inside of the two partial waveguides 5 and 6 can be seen in FIGS. 3b and 3c.
  • the 7th and 8th designate the inlets and outlets embedded in the side walls of the partial waveguide.
  • a e.g. through the input 7 shaft is guided by a deflection element 9, which is arranged in front of the input 7 in the partial waveguide 5, in a very specific direction of rotation of the waveguide.
  • a deflection element 10, which is arranged in front of the outlet 8 in the partial waveguide 6, guides the shaft out of the waveguide again.
  • each deflecting element 9 and 10 While each deflecting element 9 and 10, as already mentioned, has its lower regions firmly contacted with a partial waveguide, its upper region projects into the respective opposite partial waveguide without contact (cf.
  • the interference waves generated during the deflection propagate in the separating gap 11, which is present because of the contact-free guidance, between the two partial waveguides, both in the tangential and in the radial direction.
  • a barrier structure acting in both directions which suppresses the interference waves in the separation gap.
  • 3b shows a plan view of the parting plane of the partial waveguide 5.
  • a barrier structure derived from the well-known waffle iron filter (see Microwave Filters, Impecance-Matching Networks, and Coupling Structures, McGraw-Hill, 1964).
  • This special Two-dimensionally acting barrier structure arises from the fact that grooves 12 and 13 which run in a circular manner and parallel to the waveguide axis are milled into the parting plane.
  • the grooves and the remaining webs 14 are dimensioned such that the cut-off frequency of the blocking structure is far below the lowest frequency of the transmission frequency band.
  • the non-contacted upper area of the deflection elements which in the exemplary embodiment shown in FIGS. 3a to 3e consist of massive molded parts bent in a hook shape, is provided with a blocking structure designed on the model of the waffle iron filter. On the one hand, it is intended to reduce the excitation of interference waves and, on the other hand, to ensure that no waves propagate in the direction opposite to the direction of deflection.
  • the entire surface of the deflecting elements is provided with vertical and horizontal grooves 15, 16 and webs 17.
  • FIG. 4a shows such a waveguide piece 18 from the underside, where the entrance 19 can be seen, which is set in the partial waveguide 5 or 6 via the entrance 7 or exit 8.
  • the curvature of the waveguide piece 18 can be seen in the E plane.
  • the curvature in the H plane illustrates the side view (see FIG. 4b). This view shows the exit 20 of the waveguide piece, which points in one of the two directions of rotation of the annular, divided waveguide.
  • This deflection element is also fastened together with its lower area in a partial waveguide and slides with its upper area without contact through the other partial waveguide.
  • a single-channel rotary coupling that is to say a rotary coupling with only one signal input and one signal output
  • the rotary coupling according to the invention can easily be implemented in multiple channels. 5
  • a two-channel rotary coupling is shown schematically.
  • the signal fed into the input 21 of the upper partial waveguide is fed in the direction of the arrow into the ring-shaped waveguide u Q d through the output 21 'shown in broken lines in the partial waveguide below.
  • the output 22 ' is assigned to the input 22.
  • the deflection elements arranged at the inputs and outputs determine the assignment between the inputs and outputs through their orientation and ensure that there is no superimposition of the signal channels in the annular waveguide.
  • a practical version of the rotary coupling described above with an average ring diameter of 110 mm and connecting waveguides with a rectangular cross section of 9.53 x 19.05 has a very low reflection factor of ⁇ 0.03 and a large bandwidth of 32%.
  • the bandwidth can be increased even further by using an annular ridge waveguide.
  • the range of rotation angle depends on the dimensioning of the deflection elements. For example, a single-channel version has a maximum rotation angle of 270 ° and a two-channel version still has a maximum rotation angle of 110 °.

Landscapes

  • Waveguide Connection Structure (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Cable Accessories (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Threshing Machine Elements (AREA)

Abstract

A rotary waveguide coupling including coupling members which are coaxially rotatable with respect to one another and comprise waveguide sections produced by dividing an annular waveguide in a longitudinal sectional plane. Inputs and outputs of the waveguides to be rotated with respect to one another disposed in the side walls of the waveguide sections.

Description

Die vorliegende Erfindung betrifft eine Hohlleiter-Drehkupplung, deren axial drehbar miteinander verbundenen Kupplungsglieder mindestens einen Wellenleitereingang bzw. -ausgang besitzen.The present invention relates to a waveguide rotary coupling, the coupling members of which are axially rotatably connected to one another and have at least one waveguide input or output.

Bei bekannten Drehkupplungen wird in der Drehebene ein rotationssymmetrisches Feld erzeugt, weil dessen Ausbreiungseigenschaften durch die Drehung nicht beeinflußt wird. Dazu werden als gegeneinander verdrehbare Kupplungsglieder entweder Koaxialleiter oder Rundhohlleiter eingesetzt. Derartige Drehkupplungen gehen z.B. aus der DE-PS 26 24 428 und der DE-PS 21 34 077 hervor. Gerade bei Rechteckhohlleitern als Eingangs- bzw. Ausgangswellenleiter der Drehkupplung sind recht komplizierte übergänge auf die rotationssymmetrischen Kupplungsglieder erforderlich. Dies trifft, wie die DE-PS 21 34 077 zeigt, vor allem dann zu, wenn die Drehkupplung mehrkanalig ausgebildet ist.In known rotary couplings, a rotationally symmetrical field is generated in the plane of rotation because its expansion properties are not influenced by the rotation. For this purpose, either coaxial conductors or circular waveguides are used as coupling members which can be rotated relative to one another. Such rotary couplings go e.g. from DE-PS 26 24 428 and DE-PS 21 34 077. Especially with rectangular waveguides as the input or output waveguide of the rotary coupling, quite complicated transitions to the rotationally symmetrical coupling elements are required. This applies, as DE-PS 21 34 077 shows, especially when the rotary coupling is multi-channel.

Solche übergänge und die damit verbundenen Maßnahmen zur Wellentypwandlung bringen eine Erhöhung der Durchgangsdämpfung der Drehkupplung mit sich und verursachen störende Resonanzen.Such transitions and the associated measures for wave type conversion bring an increase in the passage damping of the rotary coupling and cause annoying resonances.

Die nach dem bekannten Prinzip arbeitenden Drehkupplungen sind nicht sehr breitbandig, wodurch mehrkanaligen Ausführungen enge Grenzen gesetzt sind.The rotary couplings working according to the known principle are not very broadband, which means that multi-channel versions are subject to narrow limits.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Hohlleiterdrehkupplung der eingangs genannten Art zu schaffen, die mit geringem mechanischen Aufwand mehrkanalig ausgeführt werden kann und die dazu erforderliche hohe Bandbreite aufweist.The invention is therefore based on the object of providing a waveguide rotary coupling of the type mentioned at the outset, which can be designed in multiple channels with little mechanical outlay and has the high bandwidth required for this.

Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß die gegeneinander verdrehbaren Kupplungsglieder aus Teilhohlleitern bestehen, die durch Teilung eines ringförmigen Hohlleiters in einer Längsschnittebene entstanden sind.According to the invention the object is achieved in that the mutually rotatable coupling members consist of partial waveguides, which were created by dividing an annular waveguide in a longitudinal sectional plane.

Zweckmäßige Ausführungen und Weiterbildungen der Erfindung gehen aus den Unteransprüchen hervor.Expedient designs and developments of the invention emerge from the subclaims.

Anhand von in der Zeichnung dargestellten Ausführungsbeispielen wird nun die Erfindung näher erläutert. Es zeigen:

  • Fig. 1 koaxial angeordnete Kupplungsglieder,
  • Fig. 2 axial hintereinander angeorndete Kupplungsglieder,
  • Fig. 3a bis 3e mehrere Ansichten einer einkanaligen Drehkupplung,
  • Fig. 4a, b Drauf- und Seitenansicht eines Hohlleiterumlenkelementes,
  • Fig. 5 eine zweikanalige Drehkupplung,
  • Fig. 6 eine Drehkupplung, deren elektrische Länge konstant gehalten oder variiert werden kann und
  • Fig. 7 eine Drehkupplung mit unbegrenztem Drehwinkel.
The invention will now be explained in more detail with reference to exemplary embodiments shown in the drawing. Show it:
  • 1 coaxially arranged coupling members,
  • 2 axially arranged coupling members,
  • 3a to 3e several views of a single-channel rotary coupling,
  • 4a, b top and side view of a waveguide deflection element,
  • 5 shows a two-channel rotary coupling,
  • Fig. 6 is a rotary coupling, the electrical length can be kept constant or varied and
  • Fig. 7 is a rotary coupling with an unlimited angle of rotation.

Bei der erfindungsgemäßen Drehkupplung bestehen die gegeneinander verdrehbaren Kupplungsglieder aus einem in einer Längsschnittebene getrennten, ringförmigen Hohlleiter.In the rotary coupling according to the invention, the coupling members which can be rotated relative to one another consist of an annular waveguide which is separated in a longitudinal section plane.

Fig. 1 zeigt einen Ausschnitt eines Rechteckhohlleiters, der in der H-Ebene ringförmig gebogen ist und dessen Schnitt ebenfalls in der H-Ebene liegt. Die durch die Trennung des Hohlleiters entstandenen Teilhohlletier 1 und 2 sind koaxial gegeneinander verdrehbar angeordnet. In den Seitenwänden der Teilhohlleiter befinden sich die Hohlleitereingänge bzw. -ausgänge 3, 4.Fig. 1 shows a section of a rectangular waveguide which is bent in a ring shape in the H plane and whose section is also in the H plane. The partial hollow animal 1 and 2 resulting from the separation of the waveguide are arranged coaxially rotatable relative to one another. The waveguide inputs or outputs 3, 4 are located in the side walls of the partial waveguide.

Ein in der E-Ebene ringförmig gebogener Rechteckhohlleiter, der durch einen Schnitt in der E-Eberie in zwei Teilhohlleiter 5 und 6 geteilt ist, geht aus der Fig. 2 hervor. Hier ist nur der Hohlleitereingang 7 in der Seitenwand des Teilhohlleiters 5 sichtbar.A rectangular waveguide bent in a ring in the E-plane, which is divided into two partial waveguides 5 and 6 by a cut in the E-Eberie, is shown in FIG. 2. Here only the waveguide entrance 7 is visible in the side wall of the partial waveguide 5.

Als Trennebene des ringförmigen Hohlleiters wird sinnvollerweise die Längsschnittebene (E-, H-Ebene) gewählt, in der die Querströme minimal sind. Denn in der Trennebene auftretende Querströme würden in dem Spalt zwischen den Teilhohlleitern, vor allem wenn beide nicht elektrisch miteinander kontaktiert sind, Störwellen anregen. Gerade die kontaktfreie Kupplung, die sogenannte Drosselkupplung (choke coupling), hat besondere Bedeutung, da durch sie störanfällige Schleifenkontakte entfallen. In der nachfolgenden Beschreibung wird daher ausschließlich von der kontaktfreien Drehkupplung ausgegangen. Außerdem wird den folgenden Ausführungsbeispielen das in der Fig. 2 dargestellte Kupplungsprinzip zugrunde gelegt, bei dem die Teilhohlleiter in der E-Ebene ringförmig gebogen und axial hintereinander angeordnet sind. Diese Ausführungen lassen sich in äquivalenter Weise auf das in der Fig. 1 gezeigte Prinzip, bei dem in.der E-Ebene gebogene Teilhohlleiter koaxial übereinander angeordnet sind, übertragen.The longitudinal section plane (E, H plane), in which the cross currents are minimal, is expediently chosen as the parting plane of the annular waveguide. Because cross currents occurring in the parting plane would excite interference waves in the gap between the partial waveguides, especially if both are not electrically contacted. The contact-free coupling, the so-called choke coupling, is of particular importance because it eliminates the need for fault-prone loop contacts. In the following description, therefore, the contact-free rotary coupling is used exclusively. In addition, the following exemplary embodiments are based on the coupling principle shown in FIG. 2, in which the partial waveguides are bent in a ring shape in the E plane and are arranged axially one behind the other. These statements can be transferred in an equivalent manner to the principle shown in FIG. 1, in which partial waveguides bent in the E plane are arranged coaxially one above the other.

Die Fig. 3a zeigt einen Querschnitt durch eine zweiteilige Drehkupplung. Eine Draufsicht auf die Innenseite der beiden Teilhohlleiter 5 und 6 ist den Fig. 3b und 3c zu entnehmen. Mit 7. und 8 sind die in den Seitenwänden der Teilhohlleiter eingelassenen Ein- bzw. Ausgänge bezeichnet. Eine z.B. durch den Eingang 7 eingespeiste Welle wird von einem Umlenkelement 9, das vor dem Eingang 7 im Teilhohlleiter 5 fest angeordnet ist, in eine ganz bestimmte Umlaufrichtung des Hohlleiters geführt. Ein Umlenkelement 10, das vor dem Ausgang 8 im Teilhohlleiter 6 fest angeordnet ist, leitet die Welle wieder aus dem Hohlleiter heraus.3a shows a cross section through a two-part rotary coupling. A top view of the inside of the two partial waveguides 5 and 6 can be seen in FIGS. 3b and 3c. The 7th and 8th designate the inlets and outlets embedded in the side walls of the partial waveguide. A e.g. through the input 7 shaft is guided by a deflection element 9, which is arranged in front of the input 7 in the partial waveguide 5, in a very specific direction of rotation of the waveguide. A deflection element 10, which is arranged in front of the outlet 8 in the partial waveguide 6, guides the shaft out of the waveguide again.

Die in den Fig. 3d und 3e gezeigten Schnitte A-B und C-D durch die Umlenkelemente 9 und 10 verdeutlichen deren Funktionsweise.The sections A-B and C-D shown in FIGS. 3d and 3e through the deflection elements 9 and 10 illustrate their mode of operation.

Während jedes Umlenkelement 9 und 10, wie bereits gesagt, mit seinen unteren Bereichen fest mit einem Teilhohlleiter kontaktiert ist, ragt dessen oberer Bereich kontaktfrei in den jeweils gegenüberliegenden Teilhohlleiter hinein (vgl.While each deflecting element 9 and 10, as already mentioned, has its lower regions firmly contacted with a partial waveguide, its upper region projects into the respective opposite partial waveguide without contact (cf.

Fig. 3a). In den Spalten zwischen den Umlenkelementen und den Hohlleiterwandungen, die die kontaktfreie Führung mit sich bringt, werden zwangsweise Störwellen angeregt.Fig. 3a). In the gaps between the deflection elements and the waveguide walls, which the contact-free guidance entails, interference waves are forcibly excited.

Die bei der Umlenkung entstandenen Störwellen breiten sich im wegen der kontaktfreien Führung vorhandenen Trennspalt 11 zwischen den beiden Teilhohlleitern sowohl in tangentialer als auch in radialer Richtung aus. Es ist daher eine in beiden Richtungen wirkende Sperrstruktur vorgesehen, die die Störwellen im Trennspalt unterdrückt. Und zwar besitzt nur die Trennebene des Teilhohlleiters 5 eine Sperrstruktur. Eine Draufsicht auf die Trennbebene des Teilhohlleiters 5 zeigt die Fig. 3b. Es befindet sich dort eine Sperrstuktur, die aus dem bekannten Waffeleisenfilter (s. Microwave Filters, Impecance-Matching Networks, and Coupling Strukctures, McGraw-Hill, 1964) abgeleitet ist. Diese spezielle zweidimensional wirkende Sperrstruktur entsteht dadurch, daß in die Trennebene radial und parallel zur Hohlleiterachse kreisförmig verlaufende Rillen 12 und 13 eingefräst werden. Die Rillen und die verbleibenden Stege 14 sind so dimensioniert, daß die Grenzfrequenz der Sperrstruktur weit unterhalb der tiefsten Frequenz des übertragungsfrequenzbandes liegt.The interference waves generated during the deflection propagate in the separating gap 11, which is present because of the contact-free guidance, between the two partial waveguides, both in the tangential and in the radial direction. There is therefore provided a barrier structure acting in both directions, which suppresses the interference waves in the separation gap. In fact, only the parting plane of the partial waveguide 5 has a barrier structure. 3b shows a plan view of the parting plane of the partial waveguide 5. There is a barrier structure derived from the well-known waffle iron filter (see Microwave Filters, Impecance-Matching Networks, and Coupling Structures, McGraw-Hill, 1964). This special Two-dimensionally acting barrier structure arises from the fact that grooves 12 and 13 which run in a circular manner and parallel to the waveguide axis are milled into the parting plane. The grooves and the remaining webs 14 are dimensioned such that the cut-off frequency of the blocking structure is far below the lowest frequency of the transmission frequency band.

Auch der nicht kontaktierte obere Bereich der Umlenkelemente, die bei dem in den Fig. 3a bis 3e gezeigten Ausführungsbeispiel aus hakenförmig gebogenen massiven Formteilen bestehen, ist mit einer nach dem Vorbild des Waffeleisenfilters ausgebildeten Sperrstruktur versehen. Sie soll einerseits die Anregung von Störwellen vermindern und andererseits dafür sorgen, daß sich keine Wellen in die der Umlenkrichtung entgegengesetzte Richtung ausbreiten. Zu diesem Zweck ist die gesamte Oberfläche der Umlenkelemente mit senkrecht und waagerecht verlaufenden Rillen 15, 16 und Stegen 17 versehen.The non-contacted upper area of the deflection elements, which in the exemplary embodiment shown in FIGS. 3a to 3e consist of massive molded parts bent in a hook shape, is provided with a blocking structure designed on the model of the waffle iron filter. On the one hand, it is intended to reduce the excitation of interference waves and, on the other hand, to ensure that no waves propagate in the direction opposite to the direction of deflection. For this purpose, the entire surface of the deflecting elements is provided with vertical and horizontal grooves 15, 16 and webs 17.

Unter Umständen ist es zweckmäßig, die Rückseiten der Umlenkelemente mit Absorbermaterial zu versehen.Under certain circumstances, it is expedient to provide the rear sides of the deflection elements with absorber material.

Statt dieser massiven Formteile 9 und 10 können als Umlenkelemente auch in der E- und H-Ebene gekrümmte, dünnwandige Hohlleiterstücke 18 verwendet werden. Die Fig. 4a zeigt ein solches Hohlleiterstück 18 von der Unterseite her, wo der Eingang 19 zu sehen ist, der über den Eingang 7 bzw. Ausgang 8 im Teilhohlleiter 5 bzw. 6 gesetzt wird. In dieser Darstellung ist die Krümmung des Hohlleiterstückes 18 in der E-Ebene erkennbar. Die Krümmung in der H-Ebene verdeutlicht die Seitenansicht (s. Fig. 4b). Diese Ansicht zeigt den Ausgang 20 des Hohlleiterstückes, der in eine der beiden Umlaufrichtungen des ringförmigen, geteilten Hohlleiters weist. Auch dieses Umlenkelement ist mitsamt seinem unteren Bereich in einem Teilhohlleiter befestigt und gleitet mit seinem oberen Bereich kontaktlos durch den anderen Teilhohlleiter.Instead of these massive molded parts 9 and 10, curved, thin-walled waveguide pieces 18 can also be used as deflection elements in the E and H planes. FIG. 4a shows such a waveguide piece 18 from the underside, where the entrance 19 can be seen, which is set in the partial waveguide 5 or 6 via the entrance 7 or exit 8. In this representation, the curvature of the waveguide piece 18 can be seen in the E plane. The curvature in the H plane illustrates the side view (see FIG. 4b). This view shows the exit 20 of the waveguide piece, which points in one of the two directions of rotation of the annular, divided waveguide. This deflection element is also fastened together with its lower area in a partial waveguide and slides with its upper area without contact through the other partial waveguide.

Bei der Beschreibung des Anmeldungsgegenstandes ist oben von einer einkanaligen Drehkupplung, also einer Drehkupplung mit nur einem Signaleingang und einem Signalausgang, ausgegangen worden. Die erfindungsgemäße Drehkupplung läßt sich ohne weiteres mehrkanalig ausführen. In der Fig. 5 ist eine zweikanalige Drehkupplung schematisch dargestellt. Dabei sind in jedem Teilhohlleiter zwei Signaleingänge 21 und 22 bzw. zwei -ausgänge 21' und 22' vorhanden. Das in den Eingang 21 des oberen Teilhohlleiters eingespeiste Signal wird in Pfeilrichtung in den ringförmigen Hohlleiter eingespeist uQd durch den strichliert gezeichneten Ausgang 21' im darunterliegenden Teilhohlleiter wieder herausgeführt. Entsprechend ist dem Eingang 22 der Ausgang 22' zugeordnet. Die an den Ein- und Ausgängen angeordneten Umlenkelemente legen durch ihre Orientierung die Zuordnung zwischen den Ein- und Ausgängen fest und gewährleisten, daß keine Überlagerung der Signalkanäle in dem ringförmigen Hohlleiter erfolgt.In the description of the subject of the application, a single-channel rotary coupling, that is to say a rotary coupling with only one signal input and one signal output, was assumed above. The rotary coupling according to the invention can easily be implemented in multiple channels. 5, a two-channel rotary coupling is shown schematically. There are two signal inputs 21 and 22 or two outputs 21 'and 22' in each partial waveguide. The signal fed into the input 21 of the upper partial waveguide is fed in the direction of the arrow into the ring-shaped waveguide u Q d through the output 21 'shown in broken lines in the partial waveguide below. Correspondingly, the output 22 'is assigned to the input 22. The deflection elements arranged at the inputs and outputs determine the assignment between the inputs and outputs through their orientation and ensure that there is no superimposition of the signal channels in the annular waveguide.

Eine praktische Ausführung der oben beschriebenen Drehkupplung mit einem mittleren Ringdurchmesser von 110 mm und Anschlußhohlleitern mit einem Rechteckquerschnitt von 9,53 x 19,05 besitzt einen sehr geringen Reflexionsfaktor von < 0,03 und eine große Bandbreite von 32%. Die Bandbreite läßt sich noch weiter erhöhen durch den Einsatz eines ringförmigen Steghohlleiters. Der Drehwinkelbereich hängt von der Dimensionierung der Umlenkelemente ab. So hat z.B. eine einkanalige Ausführung einen maximalen Drehwinkel von 270° und eine zweikanalige immerhin noch einen maximalen Drehwinkel von 110°.A practical version of the rotary coupling described above with an average ring diameter of 110 mm and connecting waveguides with a rectangular cross section of 9.53 x 19.05 has a very low reflection factor of < 0.03 and a large bandwidth of 32%. The bandwidth can be increased even further by using an annular ridge waveguide. The range of rotation angle depends on the dimensioning of the deflection elements. For example, a single-channel version has a maximum rotation angle of 270 ° and a two-channel version still has a maximum rotation angle of 110 °.

Bei einer aus zwei Teilhohlleitern zusammengesetzten Drehkupplung ändert sich mit dem Drehwinkel auch die elektrisch wirksame Weglänge im Innern der Drehkupplung. Die Fig. 6 zeigt nun einen Querschnitt durch eine erweiterte Drehkupplung, bei der die elektrische Weglänge konstant gehalten wird. Sie besteht aus einem ersten Teilhohlleiter 24, Weg stehen, so daß ein ungehindertes Verdrehen der Kupplungsglieder um einen beliebig großen Winkel möglich ist.In the case of a rotary coupling composed of two partial waveguides, the electrically effective path length inside the rotary coupling also changes with the angle of rotation. 6 now shows a cross section through an extended rotary coupling, in which the electrical path length is kept constant. It consists of a first partial waveguide 24, Stand away, so that an unimpeded rotation of the coupling members through an arbitrarily large angle is possible.

Bei den beschriebenen Drehkupplungen ist nicht auf die mechanische Ausführung von die einzelnen Kuppplungsglieder miteinander verbindenden Drehlager und Getriebe eingegangen worden. Es bleibt dem Fachmann überlassen, bereits bekannte Lager und Getriebe einzusetzen.In the case of the rotary couplings described, the mechanical design of the rotary bearings and gears connecting the individual coupling members to one another has not been discussed. It is up to the person skilled in the art to use already known bearings and gears.

Claims (14)

1. Hohlleiter-Jrehkupplung, deren axial drehbar miteinander verbundene Kupplungsglieder mindestens einen Wellenleitereingang bzw. einen -ausgang besitzen, dadurch gekennzeichnet, daß die gegeneinander verdrehbaren Kupplungsglieder aus Teilhohlleitern (1, 2, 3, 5, 6) bestehen, die durch Teilung eines ringförmigen Hohlleiters in einer Längsschnittebene entstanden sind.1. waveguide rotary coupling, the axially rotatably interconnected coupling members have at least one waveguide input or output, characterized in that the mutually rotatable coupling members consist of partial waveguides (1, 2, 3, 5, 6), which are divided by the division of an annular Waveguide are created in a longitudinal section plane. 2. Hohlleiter-Drehkupplung nach Anspruch 1, dadurch gekennzeichnet, daß der in zwei Teilhohlleiter (1, 2) aufgeteilte Hohlleiter in der H-Ebene ringförmig gebogen ist.2. Waveguide rotary coupling according to claim 1, characterized in that the waveguide divided into two partial waveguides (1, 2) is bent annularly in the H plane. 3. Hohlleiter-Drehkupplung nach Anspruch 1, dadurch gekennzeichnet, daß der in zwei Teilhohlleiter (5, 6) aufgeteilte Hohlleiter in der E-Ebene ringförmig gebogen ist.3. waveguide rotary coupling according to claim 1, characterized in that the waveguide divided into two partial waveguides (5, 6) is bent annularly in the E plane. 4. Hohlleiter-Drehkupplung nach Anspruch 1, dadurch gekennzeichnet, daß der ringförmige Hohlleiter in seiner querstromfreien Längsschnittebene geteilt ist.4. waveguide rotary coupling according to claim 1, characterized in that the annular waveguide is divided in its cross-sectional longitudinal section plane. 5. Hohlleiter-Drehkupplung nach Anspruch 1, dadurch gekennzeichnet, daß die Drehkupplung, sofern die Teilhohlleiter elektrisch nicht miteinander kontaktiert sind, eine zweidimensionale Sperrstruktur (12, 13, 14) aufweist, die im Trennspalt zwischen beiden Teilhohlleitern (5, 6) angeregte, sich sowohl in radialer als auch in tangentialer Richtung ausbreitende Störwellen unterdrückt.5. waveguide rotary coupling according to claim 1, characterized in that the rotary coupling, provided that the partial waveguides are not electrically contacted with one another, has a two-dimensional locking structure (12, 13, 14) which excited in the separation gap between the two partial waveguides (5, 6), interference waves propagating in both the radial and tangential directions are suppressed. 6. Hohlleiter-Drehkupplung nach Anspruch 5, dadurch gekennzeichnet, daß die Trennebene zu beiden Seiten eines Teilhohlleiters senkrecht und parallel zur gekrümmten Hohlleiterachse verlaufende Rillen (12, 13) aufweist.6. waveguide rotary coupling according to claim 5, characterized in that the parting plane on both sides of a partial waveguide perpendicular and parallel to the curved waveguide axis extending grooves (12, 13). 7. Hohlleiter-Drehkupplung nach Anspruch 1, dadurch gekennzeichnet, daß in den Teilhohlleitern (5, 6) an den Wellenleitereingängen (7) bzw. -ausgängen (8) Umlenkelemente (9, 10) angeordnet sind, die den eingespeisten Wellen eine bestimmte Umlaufrichtung im ringförmigen Hohlleiter verleihen bzw. Wellen einer bestimmten Umlaufrichtung aus diesem herausführen.7. waveguide rotary coupling according to claim 1, characterized in that in the partial waveguides (5, 6) at the waveguide inputs (7) or outputs (8) deflection elements (9, 10) are arranged, which the injected waves a certain direction of rotation impart in the ring-shaped waveguide or lead waves out of it in a specific direction of rotation. 8. Hohlleiter-Drehkupplung nach Anspruch 7, dadurch gekennzeichnet, daß die Umlenkelemente (9, 10) jeweils mit ihrem unteren, an dem Wellenleitereingang bzw. -ausgang ansetzenden Bereich mit dem den Aus- bzw. Eingang'aufweisenden Teilhohlleiter kontaktiert sind und mit ihrem oberen Bereich in den anderen Teilhohlleiter kontaktfrei hineinragen.8. waveguide rotary coupling according to claim 7, characterized in that the deflecting elements (9, 10) are each contacted with their lower, at the waveguide input or output area with the output or input 'having partial waveguide and with it project the upper area into the other partial waveguide without contact. 9. Hohlleiter-Drehkupplung nach Anspruch 8, dadurch gekennzeichnet, daß die Umlenkelemente (9, 10) massive an die Hohlleiterkrümmung angepaßte Formstücke sind, deren oberer Bereich ringsum mit zweidimensional orientierten Fallen (15, 16) versehen ist.9. waveguide rotary coupling according to claim 8, characterized in that the deflecting elements (9, 10) are massive moldings adapted to the waveguide curvature, the upper region of which is provided with two-dimensionally oriented traps (15, 16). 10. Hohlleiter-Drehkupplung nach Anspruch 8, dadurch gekennzeichnet, daß die Umlenkelemente in E- und H-Ebene gekrümmte Hohlleiterstücke (18) sind.10. waveguide rotary coupling according to claim 8, characterized in that the deflecting elements in the E and H planes are curved waveguide pieces (18). 11. Hohlleiter-Drehkupplung nach Anspruch 7, dadurch gekennzeichnet, daß bei mit zwei Wellenleitereingängen (21, 22) bzw. zwei -ausgängen (21', 22') versehenen Teilhohlleitern jeweils das an einem Wellenleitereingang und das an dem zugehörigen Wellenleiterausgang angeordnete Umlenkelement in einander entgegengesetzte Richtungen orien! tiert sind.11. Waveguide rotary coupling according to claim 7, characterized in that in the case of two waveguide inputs (21, 22) or two outputs (21 ', 22') provided partial waveguides in each case the one arranged at a waveguide input and the deflecting element on the associated waveguide output in opposite directions! are. 12. Hohlleiter-Drehkupplung nach Anspruch 1, dadurch gekennzeichnet, daß die Kupplungsteile (5, 6) längs der Drehachse hintereinander angeordnet sind.12. Waveguide rotary coupling according to claim 1, characterized in that the coupling parts (5, 6) are arranged one behind the other along the axis of rotation. 13. Hohlleiter-Drehkupplung nach Anspruch 1, dadurch gekennzeichnet, daß die Kupplungsteile (1, 2) koaxial übereinander angeordnet sind.13. waveguide rotary coupling according to claim 1, characterized in that the coupling parts (1, 2) are arranged coaxially one above the other. 14. Hohlleiter-Drehkupplung nach den Ansprüchen 1, 7, 12 oder 13, dadurch gekennzeichnet, daß vier Teilhohlleiter (24, 25, 26, 27) miteinander gekoppelt sind in der Weise, daß ein erster mit mindestens einem Wellenleitereingang (23) versehener Teilhohlleiter (24) drehbar mit einem zweiten Teilhohlleiter (25) verbunden ist, daß an die Außenwand des zweiten Teilhohlleiters ein dritter Teilhohlleiter (26) ebenfalls mit seiner Außenwand angrenzt, wobei beide Teilhohlleiter fest miteinander verbunden sind und zwischen ihnen mindestens eine Koppelöffnung (29) vorhanden ist, und daß der dritte Teilhohlleiter (26) mit einem vierten, mindestens einen Wellenleiterausgang (28) aufweisenden Teilhohlleiter (27) drehbar verbunden ist.14. waveguide rotary coupling according to claims 1, 7, 12 or 13, characterized in that four partial waveguides (24, 25, 26, 27) are coupled to one another in such a way that a first with at least one waveguide input (23) provided partial waveguide (24) is rotatably connected to a second partial waveguide (25) such that a third partial waveguide (26) also adjoins its outer wall on the outer wall of the second partial waveguide, the two partial waveguides being firmly connected to one another and at least one coupling opening (29) present between them and that the third partial waveguide (26) is rotatably connected to a fourth partial waveguide (27) having at least one waveguide output (28).
EP82111644A 1982-03-18 1982-12-15 Waveguide rotating joint Expired EP0089414B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82111644T ATE29342T1 (en) 1982-03-18 1982-12-15 WAVEGUIDE SWIVEL COUPLING.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823209906 DE3209906A1 (en) 1982-03-18 1982-03-18 TEMPERATURE TURN COUPLING
DE3209906 1982-03-18

Publications (2)

Publication Number Publication Date
EP0089414A1 true EP0089414A1 (en) 1983-09-28
EP0089414B1 EP0089414B1 (en) 1987-09-02

Family

ID=6158623

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82111644A Expired EP0089414B1 (en) 1982-03-18 1982-12-15 Waveguide rotating joint

Country Status (6)

Country Link
US (1) US4533887A (en)
EP (1) EP0089414B1 (en)
AT (1) ATE29342T1 (en)
BR (1) BR8301338A (en)
CA (1) CA1194947A (en)
DE (2) DE3209906A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2189628A3 (en) * 2008-11-21 2013-03-13 Rolls-Royce plc Gas turbine engine having a signal transmission system comprising a waveguide
FR2984612A1 (en) * 2011-12-20 2013-06-21 Thales Sa Rotary joint for guiding electromagnetic waves between two access points in sweeping radar antenna, has waveguides formed between access points, where each access point includes transition to change propagation direction

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3538035A1 (en) * 1985-10-25 1987-04-30 Siemens Ag ROTATING DATA TRANSFER DEVICE
US5242701A (en) * 1988-10-24 1993-09-07 Fbi Brands Ltd. Method for shelf stable packaging of liquid food in hermetically sealed easy-to-open gable top cartons
US5208569A (en) * 1992-06-03 1993-05-04 The United States Of America As Represented By The United States Department Of Energy Simplified flangeless unisex waveguide coupler assembly
DE102005021353A1 (en) * 2005-05-04 2006-11-16 Deutsches Zentrum für Luft- und Raumfahrt e.V. Swivel coupler for use in robot joints, has closed ring formed per transmission direction with two outer conductor halves, which are mechanically separated and lying at a mass potential
CN102017284A (en) * 2008-06-16 2011-04-13 松下电器产业株式会社 High frequency waveguide, antenna device, and electronic apparatus with antenna device
EP2343774A4 (en) * 2008-10-29 2013-11-27 Panasonic Corp High-frequency waveguide and phase shifter using same, radiator, electronic device which uses this phase shifter and radiator, antenna device, and electronic device equipped with same
GB201317637D0 (en) 2013-10-04 2013-11-20 Johnson Matthey Plc Data Transfer Apparatus
US9413049B2 (en) * 2014-03-24 2016-08-09 Raytheon Company Rotary joint including first and second annular parts defining annular waveguides configured to rotate about an axis of rotation
FR3071363B1 (en) * 2017-09-19 2019-09-06 Thales ROTATING ANTENNA FOR ROTARY ANTENNA AND ROTARY ANTENNA COMPRISING SUCH A JOINT
US10790562B2 (en) * 2019-01-02 2020-09-29 Thinkom Solutions, Inc. Compact concentric split ring waveguide rotary joint
DE102021124509A1 (en) 2021-09-22 2023-03-23 Spinner Gmbh Coaxial conductor structure and its use as a broadband mode reflector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR58182E (en) * 1947-12-31 1953-09-29 Thomson Houston Comp Francaise Sealed waveguides
FR1407755A (en) * 1964-06-23 1965-08-06 Comp Generale Electricite Rotating joint for ultra-short waves
US3604009A (en) * 1968-12-09 1971-09-07 Hughes Aircraft Co Millimeter wave-scanning lens antenna
FR2092709A1 (en) * 1970-06-10 1972-01-28 Comp Generale Electricite
US3852762A (en) * 1973-11-14 1974-12-03 Singer Co Scanning lens antenna
US4255751A (en) * 1979-11-20 1981-03-10 Georgia Tech Research Institute Feed mechanism for a geodesic lens
US4358746A (en) * 1980-12-22 1982-11-09 Westinghouse Electric Corp. Rotary coupling joint

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2736867A (en) * 1945-12-10 1956-02-28 Dorothy D Montgomery Crossed wave guide variable impedance
US2595186A (en) * 1950-02-06 1952-04-29 Louis D Breetz Jogged wave guide ring type radio-frequency rotary joint
US2772402A (en) * 1950-11-22 1956-11-27 Sperry Rand Corp Serrated choke system for electromagnetic waveguide
US2737633A (en) * 1951-01-25 1956-03-06 Sperry Rand Corp Wave guide rotary joint system
FR1033991A (en) * 1951-03-15 1953-07-17 Axial recess rotating joint for centimetric radars
US2945193A (en) * 1954-02-02 1960-07-12 Texas Instruments Inc Rotary waveguide joint and switching structure
US2850706A (en) * 1955-05-31 1958-09-02 William F Gabriel Machined waveguide pin choke
US2973493A (en) * 1959-11-30 1961-02-28 Jr Frank E Hasseld Waveguide rotary joint
US3189855A (en) * 1962-05-17 1965-06-15 Kane Engineering Lab Waveguide rotary joint utilizing annular resonant waveguide
US3633130A (en) * 1970-07-15 1972-01-04 Hughes Aircraft Co Multichannel rotary joint supportive of energy in at least three mutually orthogonal circularly symmetric waveguide modes simultaneously
FR2314597A1 (en) * 1975-06-10 1977-01-07 Radiall Sa ROTATING COAXIAL ELECTRICAL CONNECTION
US4233580A (en) * 1976-11-23 1980-11-11 Spinner Gmbh Rotating coupler for transmitting high frequency energy
US4117426A (en) * 1976-12-30 1978-09-26 Hughes Aircraft Company Multiple channel rotary joint

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR58182E (en) * 1947-12-31 1953-09-29 Thomson Houston Comp Francaise Sealed waveguides
FR1407755A (en) * 1964-06-23 1965-08-06 Comp Generale Electricite Rotating joint for ultra-short waves
US3604009A (en) * 1968-12-09 1971-09-07 Hughes Aircraft Co Millimeter wave-scanning lens antenna
FR2092709A1 (en) * 1970-06-10 1972-01-28 Comp Generale Electricite
US3852762A (en) * 1973-11-14 1974-12-03 Singer Co Scanning lens antenna
US4255751A (en) * 1979-11-20 1981-03-10 Georgia Tech Research Institute Feed mechanism for a geodesic lens
US4358746A (en) * 1980-12-22 1982-11-09 Westinghouse Electric Corp. Rotary coupling joint

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2189628A3 (en) * 2008-11-21 2013-03-13 Rolls-Royce plc Gas turbine engine having a signal transmission system comprising a waveguide
US9097132B2 (en) 2008-11-21 2015-08-04 Rolls-Royce Plc Gas turbine engine
FR2984612A1 (en) * 2011-12-20 2013-06-21 Thales Sa Rotary joint for guiding electromagnetic waves between two access points in sweeping radar antenna, has waveguides formed between access points, where each access point includes transition to change propagation direction

Also Published As

Publication number Publication date
US4533887A (en) 1985-08-06
ATE29342T1 (en) 1987-09-15
BR8301338A (en) 1983-11-29
CA1194947A (en) 1985-10-08
DE3209906A1 (en) 1984-02-02
DE3277160D1 (en) 1987-10-08
EP0089414B1 (en) 1987-09-02

Similar Documents

Publication Publication Date Title
DE2632606C2 (en) Wave type coupler
DE2019105C3 (en) Band pass filter for optical waves
DE3641086C1 (en) Waveguide absorber or attenuator
EP0089414A1 (en) Waveguide rotating joint
DE19822072C1 (en) Microwave switch, e.g. for satellite application as redundant switch, achieves higher operating frequency with a significantly greater gap between the rotor and generator housing
DE69515263T2 (en) Coaxial waveguide transition
DE68918426T2 (en) Dual frequency radiating device.
DE3634772C2 (en)
DE3620555C2 (en)
DE2838317A1 (en) DIRECTIONAL COUPLER
DE19615854C1 (en) Method for producing a coupling for connecting two electromagnetic waveguides
DE4034683C2 (en)
DE2904054A1 (en) 3DB DIRECTIONAL COUPLER IN SEMICONDUCTOR DESIGN
DE3009254C2 (en) Antenna exciter with a radiation pattern of elliptical cross-section
DE2304131C3 (en) Reflection filter for microwaves
EP0872910A2 (en) Directional coupler
DE69713005T2 (en) Balanced mixer
DE832165C (en) Electric hollow tube shaft guide
DE3439414A1 (en) ANTENNA EXTENSION FOR AT LEAST TWO DIFFERENT FREQUENCY BANDS
DE2225576C3 (en) Directional line for microwaves
WO2023222592A1 (en) Device for combining or splitting microwaves
DE2616121B2 (en) Traveling wave tube
EP0905813A2 (en) Polarisation filter for the illumination of an antenna
DE2603348C3 (en) Transition line piece and an arrangement built up therewith for coupling between coaxial lines and a concentric multiple line and their use
DE1541588C3 (en) Arrangement for damping higher H deep on wave types

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANT NACHRICHTENTECHNIK GMBH

17P Request for examination filed

Effective date: 19831025

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 29342

Country of ref document: AT

Date of ref document: 19870915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3277160

Country of ref document: DE

Date of ref document: 19871008

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931206

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19931221

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931228

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931231

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: DL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941215

Ref country code: AT

Effective date: 19941215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941216

EAL Se: european patent in force in sweden

Ref document number: 82111644.9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941215

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950701

EUG Se: european patent has lapsed

Ref document number: 82111644.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951220

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961231

Ref country code: CH

Effective date: 19961231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971218

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980227

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991001