EP0089414A1 - Waveguide rotating joint - Google Patents
Waveguide rotating joint Download PDFInfo
- Publication number
- EP0089414A1 EP0089414A1 EP82111644A EP82111644A EP0089414A1 EP 0089414 A1 EP0089414 A1 EP 0089414A1 EP 82111644 A EP82111644 A EP 82111644A EP 82111644 A EP82111644 A EP 82111644A EP 0089414 A1 EP0089414 A1 EP 0089414A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- waveguide
- partial
- rotary coupling
- coupling according
- waveguides
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000008878 coupling Effects 0.000 claims abstract description 59
- 238000010168 coupling process Methods 0.000 claims abstract description 59
- 238000005859 coupling reaction Methods 0.000 claims abstract description 59
- 238000000926 separation method Methods 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims 1
- 230000001902 propagating effect Effects 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 235000012773 waffles Nutrition 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/06—Movable joints, e.g. rotating joints
- H01P1/062—Movable joints, e.g. rotating joints the relative movement being a rotation
- H01P1/066—Movable joints, e.g. rotating joints the relative movement being a rotation with an unlimited angle of rotation
- H01P1/068—Movable joints, e.g. rotating joints the relative movement being a rotation with an unlimited angle of rotation the energy being transmitted in at least one ring-shaped transmission line located around the axis of rotation, e.g. "around the mast" rotary joint
Definitions
- the present invention relates to a waveguide rotary coupling, the coupling members of which are axially rotatably connected to one another and have at least one waveguide input or output.
- a rotationally symmetrical field is generated in the plane of rotation because its expansion properties are not influenced by the rotation.
- either coaxial conductors or circular waveguides are used as coupling members which can be rotated relative to one another.
- Such rotary couplings go e.g. from DE-PS 26 24 428 and DE-PS 21 34 077.
- DE-PS 21 34 077 shows, especially when the rotary coupling is multi-channel.
- the invention is therefore based on the object of providing a waveguide rotary coupling of the type mentioned at the outset, which can be designed in multiple channels with little mechanical outlay and has the high bandwidth required for this.
- the object is achieved in that the mutually rotatable coupling members consist of partial waveguides, which were created by dividing an annular waveguide in a longitudinal sectional plane.
- the coupling members which can be rotated relative to one another consist of an annular waveguide which is separated in a longitudinal section plane.
- Fig. 1 shows a section of a rectangular waveguide which is bent in a ring shape in the H plane and whose section is also in the H plane.
- the partial hollow animal 1 and 2 resulting from the separation of the waveguide are arranged coaxially rotatable relative to one another.
- the waveguide inputs or outputs 3, 4 are located in the side walls of the partial waveguide.
- FIG. 2 A rectangular waveguide bent in a ring in the E-plane, which is divided into two partial waveguides 5 and 6 by a cut in the E-Eberie, is shown in FIG. 2. Here only the waveguide entrance 7 is visible in the side wall of the partial waveguide 5.
- the longitudinal section plane (E, H plane), in which the cross currents are minimal, is expediently chosen as the parting plane of the annular waveguide. Because cross currents occurring in the parting plane would excite interference waves in the gap between the partial waveguides, especially if both are not electrically contacted.
- the contact-free coupling the so-called choke coupling, is of particular importance because it eliminates the need for fault-prone loop contacts. In the following description, therefore, the contact-free rotary coupling is used exclusively.
- the following exemplary embodiments are based on the coupling principle shown in FIG. 2, in which the partial waveguides are bent in a ring shape in the E plane and are arranged axially one behind the other. These statements can be transferred in an equivalent manner to the principle shown in FIG. 1, in which partial waveguides bent in the E plane are arranged coaxially one above the other.
- FIG. 3a shows a cross section through a two-part rotary coupling.
- a top view of the inside of the two partial waveguides 5 and 6 can be seen in FIGS. 3b and 3c.
- the 7th and 8th designate the inlets and outlets embedded in the side walls of the partial waveguide.
- a e.g. through the input 7 shaft is guided by a deflection element 9, which is arranged in front of the input 7 in the partial waveguide 5, in a very specific direction of rotation of the waveguide.
- a deflection element 10, which is arranged in front of the outlet 8 in the partial waveguide 6, guides the shaft out of the waveguide again.
- each deflecting element 9 and 10 While each deflecting element 9 and 10, as already mentioned, has its lower regions firmly contacted with a partial waveguide, its upper region projects into the respective opposite partial waveguide without contact (cf.
- the interference waves generated during the deflection propagate in the separating gap 11, which is present because of the contact-free guidance, between the two partial waveguides, both in the tangential and in the radial direction.
- a barrier structure acting in both directions which suppresses the interference waves in the separation gap.
- 3b shows a plan view of the parting plane of the partial waveguide 5.
- a barrier structure derived from the well-known waffle iron filter (see Microwave Filters, Impecance-Matching Networks, and Coupling Structures, McGraw-Hill, 1964).
- This special Two-dimensionally acting barrier structure arises from the fact that grooves 12 and 13 which run in a circular manner and parallel to the waveguide axis are milled into the parting plane.
- the grooves and the remaining webs 14 are dimensioned such that the cut-off frequency of the blocking structure is far below the lowest frequency of the transmission frequency band.
- the non-contacted upper area of the deflection elements which in the exemplary embodiment shown in FIGS. 3a to 3e consist of massive molded parts bent in a hook shape, is provided with a blocking structure designed on the model of the waffle iron filter. On the one hand, it is intended to reduce the excitation of interference waves and, on the other hand, to ensure that no waves propagate in the direction opposite to the direction of deflection.
- the entire surface of the deflecting elements is provided with vertical and horizontal grooves 15, 16 and webs 17.
- FIG. 4a shows such a waveguide piece 18 from the underside, where the entrance 19 can be seen, which is set in the partial waveguide 5 or 6 via the entrance 7 or exit 8.
- the curvature of the waveguide piece 18 can be seen in the E plane.
- the curvature in the H plane illustrates the side view (see FIG. 4b). This view shows the exit 20 of the waveguide piece, which points in one of the two directions of rotation of the annular, divided waveguide.
- This deflection element is also fastened together with its lower area in a partial waveguide and slides with its upper area without contact through the other partial waveguide.
- a single-channel rotary coupling that is to say a rotary coupling with only one signal input and one signal output
- the rotary coupling according to the invention can easily be implemented in multiple channels. 5
- a two-channel rotary coupling is shown schematically.
- the signal fed into the input 21 of the upper partial waveguide is fed in the direction of the arrow into the ring-shaped waveguide u Q d through the output 21 'shown in broken lines in the partial waveguide below.
- the output 22 ' is assigned to the input 22.
- the deflection elements arranged at the inputs and outputs determine the assignment between the inputs and outputs through their orientation and ensure that there is no superimposition of the signal channels in the annular waveguide.
- a practical version of the rotary coupling described above with an average ring diameter of 110 mm and connecting waveguides with a rectangular cross section of 9.53 x 19.05 has a very low reflection factor of ⁇ 0.03 and a large bandwidth of 32%.
- the bandwidth can be increased even further by using an annular ridge waveguide.
- the range of rotation angle depends on the dimensioning of the deflection elements. For example, a single-channel version has a maximum rotation angle of 270 ° and a two-channel version still has a maximum rotation angle of 110 °.
Landscapes
- Waveguide Connection Structure (AREA)
- Waveguide Switches, Polarizers, And Phase Shifters (AREA)
- Cable Accessories (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Threshing Machine Elements (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft eine Hohlleiter-Drehkupplung, deren axial drehbar miteinander verbundenen Kupplungsglieder mindestens einen Wellenleitereingang bzw. -ausgang besitzen.The present invention relates to a waveguide rotary coupling, the coupling members of which are axially rotatably connected to one another and have at least one waveguide input or output.
Bei bekannten Drehkupplungen wird in der Drehebene ein rotationssymmetrisches Feld erzeugt, weil dessen Ausbreiungseigenschaften durch die Drehung nicht beeinflußt wird. Dazu werden als gegeneinander verdrehbare Kupplungsglieder entweder Koaxialleiter oder Rundhohlleiter eingesetzt. Derartige Drehkupplungen gehen z.B. aus der DE-PS 26 24 428 und der DE-PS 21 34 077 hervor. Gerade bei Rechteckhohlleitern als Eingangs- bzw. Ausgangswellenleiter der Drehkupplung sind recht komplizierte übergänge auf die rotationssymmetrischen Kupplungsglieder erforderlich. Dies trifft, wie die DE-PS 21 34 077 zeigt, vor allem dann zu, wenn die Drehkupplung mehrkanalig ausgebildet ist.In known rotary couplings, a rotationally symmetrical field is generated in the plane of rotation because its expansion properties are not influenced by the rotation. For this purpose, either coaxial conductors or circular waveguides are used as coupling members which can be rotated relative to one another. Such rotary couplings go e.g. from DE-PS 26 24 428 and DE-PS 21 34 077. Especially with rectangular waveguides as the input or output waveguide of the rotary coupling, quite complicated transitions to the rotationally symmetrical coupling elements are required. This applies, as DE-PS 21 34 077 shows, especially when the rotary coupling is multi-channel.
Solche übergänge und die damit verbundenen Maßnahmen zur Wellentypwandlung bringen eine Erhöhung der Durchgangsdämpfung der Drehkupplung mit sich und verursachen störende Resonanzen.Such transitions and the associated measures for wave type conversion bring an increase in the passage damping of the rotary coupling and cause annoying resonances.
Die nach dem bekannten Prinzip arbeitenden Drehkupplungen sind nicht sehr breitbandig, wodurch mehrkanaligen Ausführungen enge Grenzen gesetzt sind.The rotary couplings working according to the known principle are not very broadband, which means that multi-channel versions are subject to narrow limits.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Hohlleiterdrehkupplung der eingangs genannten Art zu schaffen, die mit geringem mechanischen Aufwand mehrkanalig ausgeführt werden kann und die dazu erforderliche hohe Bandbreite aufweist.The invention is therefore based on the object of providing a waveguide rotary coupling of the type mentioned at the outset, which can be designed in multiple channels with little mechanical outlay and has the high bandwidth required for this.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß die gegeneinander verdrehbaren Kupplungsglieder aus Teilhohlleitern bestehen, die durch Teilung eines ringförmigen Hohlleiters in einer Längsschnittebene entstanden sind.According to the invention the object is achieved in that the mutually rotatable coupling members consist of partial waveguides, which were created by dividing an annular waveguide in a longitudinal sectional plane.
Zweckmäßige Ausführungen und Weiterbildungen der Erfindung gehen aus den Unteransprüchen hervor.Expedient designs and developments of the invention emerge from the subclaims.
Anhand von in der Zeichnung dargestellten Ausführungsbeispielen wird nun die Erfindung näher erläutert. Es zeigen:
- Fig. 1 koaxial angeordnete Kupplungsglieder,
- Fig. 2 axial hintereinander angeorndete Kupplungsglieder,
- Fig. 3a bis 3e mehrere Ansichten einer einkanaligen Drehkupplung,
- Fig. 4a, b Drauf- und Seitenansicht eines Hohlleiterumlenkelementes,
- Fig. 5 eine zweikanalige Drehkupplung,
- Fig. 6 eine Drehkupplung, deren elektrische Länge konstant gehalten oder variiert werden kann und
- Fig. 7 eine Drehkupplung mit unbegrenztem Drehwinkel.
- 1 coaxially arranged coupling members,
- 2 axially arranged coupling members,
- 3a to 3e several views of a single-channel rotary coupling,
- 4a, b top and side view of a waveguide deflection element,
- 5 shows a two-channel rotary coupling,
- Fig. 6 is a rotary coupling, the electrical length can be kept constant or varied and
- Fig. 7 is a rotary coupling with an unlimited angle of rotation.
Bei der erfindungsgemäßen Drehkupplung bestehen die gegeneinander verdrehbaren Kupplungsglieder aus einem in einer Längsschnittebene getrennten, ringförmigen Hohlleiter.In the rotary coupling according to the invention, the coupling members which can be rotated relative to one another consist of an annular waveguide which is separated in a longitudinal section plane.
Fig. 1 zeigt einen Ausschnitt eines Rechteckhohlleiters, der in der H-Ebene ringförmig gebogen ist und dessen Schnitt ebenfalls in der H-Ebene liegt. Die durch die Trennung des Hohlleiters entstandenen Teilhohlletier 1 und 2 sind koaxial gegeneinander verdrehbar angeordnet. In den Seitenwänden der Teilhohlleiter befinden sich die Hohlleitereingänge bzw. -ausgänge 3, 4.Fig. 1 shows a section of a rectangular waveguide which is bent in a ring shape in the H plane and whose section is also in the H plane. The partial
Ein in der E-Ebene ringförmig gebogener Rechteckhohlleiter, der durch einen Schnitt in der E-Eberie in zwei Teilhohlleiter 5 und 6 geteilt ist, geht aus der Fig. 2 hervor. Hier ist nur der Hohlleitereingang 7 in der Seitenwand des Teilhohlleiters 5 sichtbar.A rectangular waveguide bent in a ring in the E-plane, which is divided into two
Als Trennebene des ringförmigen Hohlleiters wird sinnvollerweise die Längsschnittebene (E-, H-Ebene) gewählt, in der die Querströme minimal sind. Denn in der Trennebene auftretende Querströme würden in dem Spalt zwischen den Teilhohlleitern, vor allem wenn beide nicht elektrisch miteinander kontaktiert sind, Störwellen anregen. Gerade die kontaktfreie Kupplung, die sogenannte Drosselkupplung (choke coupling), hat besondere Bedeutung, da durch sie störanfällige Schleifenkontakte entfallen. In der nachfolgenden Beschreibung wird daher ausschließlich von der kontaktfreien Drehkupplung ausgegangen. Außerdem wird den folgenden Ausführungsbeispielen das in der Fig. 2 dargestellte Kupplungsprinzip zugrunde gelegt, bei dem die Teilhohlleiter in der E-Ebene ringförmig gebogen und axial hintereinander angeordnet sind. Diese Ausführungen lassen sich in äquivalenter Weise auf das in der Fig. 1 gezeigte Prinzip, bei dem in.der E-Ebene gebogene Teilhohlleiter koaxial übereinander angeordnet sind, übertragen.The longitudinal section plane (E, H plane), in which the cross currents are minimal, is expediently chosen as the parting plane of the annular waveguide. Because cross currents occurring in the parting plane would excite interference waves in the gap between the partial waveguides, especially if both are not electrically contacted. The contact-free coupling, the so-called choke coupling, is of particular importance because it eliminates the need for fault-prone loop contacts. In the following description, therefore, the contact-free rotary coupling is used exclusively. In addition, the following exemplary embodiments are based on the coupling principle shown in FIG. 2, in which the partial waveguides are bent in a ring shape in the E plane and are arranged axially one behind the other. These statements can be transferred in an equivalent manner to the principle shown in FIG. 1, in which partial waveguides bent in the E plane are arranged coaxially one above the other.
Die Fig. 3a zeigt einen Querschnitt durch eine zweiteilige Drehkupplung. Eine Draufsicht auf die Innenseite der beiden Teilhohlleiter 5 und 6 ist den Fig. 3b und 3c zu entnehmen. Mit 7. und 8 sind die in den Seitenwänden der Teilhohlleiter eingelassenen Ein- bzw. Ausgänge bezeichnet. Eine z.B. durch den Eingang 7 eingespeiste Welle wird von einem Umlenkelement 9, das vor dem Eingang 7 im Teilhohlleiter 5 fest angeordnet ist, in eine ganz bestimmte Umlaufrichtung des Hohlleiters geführt. Ein Umlenkelement 10, das vor dem Ausgang 8 im Teilhohlleiter 6 fest angeordnet ist, leitet die Welle wieder aus dem Hohlleiter heraus.3a shows a cross section through a two-part rotary coupling. A top view of the inside of the two
Die in den Fig. 3d und 3e gezeigten Schnitte A-B und C-D durch die Umlenkelemente 9 und 10 verdeutlichen deren Funktionsweise.The sections A-B and C-D shown in FIGS. 3d and 3e through the
Während jedes Umlenkelement 9 und 10, wie bereits gesagt, mit seinen unteren Bereichen fest mit einem Teilhohlleiter kontaktiert ist, ragt dessen oberer Bereich kontaktfrei in den jeweils gegenüberliegenden Teilhohlleiter hinein (vgl.While each
Fig. 3a). In den Spalten zwischen den Umlenkelementen und den Hohlleiterwandungen, die die kontaktfreie Führung mit sich bringt, werden zwangsweise Störwellen angeregt.Fig. 3a). In the gaps between the deflection elements and the waveguide walls, which the contact-free guidance entails, interference waves are forcibly excited.
Die bei der Umlenkung entstandenen Störwellen breiten sich im wegen der kontaktfreien Führung vorhandenen Trennspalt 11 zwischen den beiden Teilhohlleitern sowohl in tangentialer als auch in radialer Richtung aus. Es ist daher eine in beiden Richtungen wirkende Sperrstruktur vorgesehen, die die Störwellen im Trennspalt unterdrückt. Und zwar besitzt nur die Trennebene des Teilhohlleiters 5 eine Sperrstruktur. Eine Draufsicht auf die Trennbebene des Teilhohlleiters 5 zeigt die Fig. 3b. Es befindet sich dort eine Sperrstuktur, die aus dem bekannten Waffeleisenfilter (s. Microwave Filters, Impecance-Matching Networks, and Coupling Strukctures, McGraw-Hill, 1964) abgeleitet ist. Diese spezielle zweidimensional wirkende Sperrstruktur entsteht dadurch, daß in die Trennebene radial und parallel zur Hohlleiterachse kreisförmig verlaufende Rillen 12 und 13 eingefräst werden. Die Rillen und die verbleibenden Stege 14 sind so dimensioniert, daß die Grenzfrequenz der Sperrstruktur weit unterhalb der tiefsten Frequenz des übertragungsfrequenzbandes liegt.The interference waves generated during the deflection propagate in the separating gap 11, which is present because of the contact-free guidance, between the two partial waveguides, both in the tangential and in the radial direction. There is therefore provided a barrier structure acting in both directions, which suppresses the interference waves in the separation gap. In fact, only the parting plane of the
Auch der nicht kontaktierte obere Bereich der Umlenkelemente, die bei dem in den Fig. 3a bis 3e gezeigten Ausführungsbeispiel aus hakenförmig gebogenen massiven Formteilen bestehen, ist mit einer nach dem Vorbild des Waffeleisenfilters ausgebildeten Sperrstruktur versehen. Sie soll einerseits die Anregung von Störwellen vermindern und andererseits dafür sorgen, daß sich keine Wellen in die der Umlenkrichtung entgegengesetzte Richtung ausbreiten. Zu diesem Zweck ist die gesamte Oberfläche der Umlenkelemente mit senkrecht und waagerecht verlaufenden Rillen 15, 16 und Stegen 17 versehen.The non-contacted upper area of the deflection elements, which in the exemplary embodiment shown in FIGS. 3a to 3e consist of massive molded parts bent in a hook shape, is provided with a blocking structure designed on the model of the waffle iron filter. On the one hand, it is intended to reduce the excitation of interference waves and, on the other hand, to ensure that no waves propagate in the direction opposite to the direction of deflection. For this purpose, the entire surface of the deflecting elements is provided with vertical and
Unter Umständen ist es zweckmäßig, die Rückseiten der Umlenkelemente mit Absorbermaterial zu versehen.Under certain circumstances, it is expedient to provide the rear sides of the deflection elements with absorber material.
Statt dieser massiven Formteile 9 und 10 können als Umlenkelemente auch in der E- und H-Ebene gekrümmte, dünnwandige Hohlleiterstücke 18 verwendet werden. Die Fig. 4a zeigt ein solches Hohlleiterstück 18 von der Unterseite her, wo der Eingang 19 zu sehen ist, der über den Eingang 7 bzw. Ausgang 8 im Teilhohlleiter 5 bzw. 6 gesetzt wird. In dieser Darstellung ist die Krümmung des Hohlleiterstückes 18 in der E-Ebene erkennbar. Die Krümmung in der H-Ebene verdeutlicht die Seitenansicht (s. Fig. 4b). Diese Ansicht zeigt den Ausgang 20 des Hohlleiterstückes, der in eine der beiden Umlaufrichtungen des ringförmigen, geteilten Hohlleiters weist. Auch dieses Umlenkelement ist mitsamt seinem unteren Bereich in einem Teilhohlleiter befestigt und gleitet mit seinem oberen Bereich kontaktlos durch den anderen Teilhohlleiter.Instead of these massive molded
Bei der Beschreibung des Anmeldungsgegenstandes ist oben von einer einkanaligen Drehkupplung, also einer Drehkupplung mit nur einem Signaleingang und einem Signalausgang, ausgegangen worden. Die erfindungsgemäße Drehkupplung läßt sich ohne weiteres mehrkanalig ausführen. In der Fig. 5 ist eine zweikanalige Drehkupplung schematisch dargestellt. Dabei sind in jedem Teilhohlleiter zwei Signaleingänge 21 und 22 bzw. zwei -ausgänge 21' und 22' vorhanden. Das in den Eingang 21 des oberen Teilhohlleiters eingespeiste Signal wird in Pfeilrichtung in den ringförmigen Hohlleiter eingespeist uQd durch den strichliert gezeichneten Ausgang 21' im darunterliegenden Teilhohlleiter wieder herausgeführt. Entsprechend ist dem Eingang 22 der Ausgang 22' zugeordnet. Die an den Ein- und Ausgängen angeordneten Umlenkelemente legen durch ihre Orientierung die Zuordnung zwischen den Ein- und Ausgängen fest und gewährleisten, daß keine Überlagerung der Signalkanäle in dem ringförmigen Hohlleiter erfolgt.In the description of the subject of the application, a single-channel rotary coupling, that is to say a rotary coupling with only one signal input and one signal output, was assumed above. The rotary coupling according to the invention can easily be implemented in multiple channels. 5, a two-channel rotary coupling is shown schematically. There are two
Eine praktische Ausführung der oben beschriebenen Drehkupplung mit einem mittleren Ringdurchmesser von 110 mm und Anschlußhohlleitern mit einem Rechteckquerschnitt von 9,53 x 19,05 besitzt einen sehr geringen Reflexionsfaktor von < 0,03 und eine große Bandbreite von 32%. Die Bandbreite läßt sich noch weiter erhöhen durch den Einsatz eines ringförmigen Steghohlleiters. Der Drehwinkelbereich hängt von der Dimensionierung der Umlenkelemente ab. So hat z.B. eine einkanalige Ausführung einen maximalen Drehwinkel von 270° und eine zweikanalige immerhin noch einen maximalen Drehwinkel von 110°.A practical version of the rotary coupling described above with an average ring diameter of 110 mm and connecting waveguides with a rectangular cross section of 9.53 x 19.05 has a very low reflection factor of < 0.03 and a large bandwidth of 32%. The bandwidth can be increased even further by using an annular ridge waveguide. The range of rotation angle depends on the dimensioning of the deflection elements. For example, a single-channel version has a maximum rotation angle of 270 ° and a two-channel version still has a maximum rotation angle of 110 °.
Bei einer aus zwei Teilhohlleitern zusammengesetzten Drehkupplung ändert sich mit dem Drehwinkel auch die elektrisch wirksame Weglänge im Innern der Drehkupplung. Die Fig. 6 zeigt nun einen Querschnitt durch eine erweiterte Drehkupplung, bei der die elektrische Weglänge konstant gehalten wird. Sie besteht aus einem ersten Teilhohlleiter 24, Weg stehen, so daß ein ungehindertes Verdrehen der Kupplungsglieder um einen beliebig großen Winkel möglich ist.In the case of a rotary coupling composed of two partial waveguides, the electrically effective path length inside the rotary coupling also changes with the angle of rotation. 6 now shows a cross section through an extended rotary coupling, in which the electrical path length is kept constant. It consists of a first
Bei den beschriebenen Drehkupplungen ist nicht auf die mechanische Ausführung von die einzelnen Kuppplungsglieder miteinander verbindenden Drehlager und Getriebe eingegangen worden. Es bleibt dem Fachmann überlassen, bereits bekannte Lager und Getriebe einzusetzen.In the case of the rotary couplings described, the mechanical design of the rotary bearings and gears connecting the individual coupling members to one another has not been discussed. It is up to the person skilled in the art to use already known bearings and gears.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT82111644T ATE29342T1 (en) | 1982-03-18 | 1982-12-15 | WAVEGUIDE SWIVEL COUPLING. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19823209906 DE3209906A1 (en) | 1982-03-18 | 1982-03-18 | TEMPERATURE TURN COUPLING |
DE3209906 | 1982-03-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0089414A1 true EP0089414A1 (en) | 1983-09-28 |
EP0089414B1 EP0089414B1 (en) | 1987-09-02 |
Family
ID=6158623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP82111644A Expired EP0089414B1 (en) | 1982-03-18 | 1982-12-15 | Waveguide rotating joint |
Country Status (6)
Country | Link |
---|---|
US (1) | US4533887A (en) |
EP (1) | EP0089414B1 (en) |
AT (1) | ATE29342T1 (en) |
BR (1) | BR8301338A (en) |
CA (1) | CA1194947A (en) |
DE (2) | DE3209906A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2189628A3 (en) * | 2008-11-21 | 2013-03-13 | Rolls-Royce plc | Gas turbine engine having a signal transmission system comprising a waveguide |
FR2984612A1 (en) * | 2011-12-20 | 2013-06-21 | Thales Sa | Rotary joint for guiding electromagnetic waves between two access points in sweeping radar antenna, has waveguides formed between access points, where each access point includes transition to change propagation direction |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3538035A1 (en) * | 1985-10-25 | 1987-04-30 | Siemens Ag | ROTATING DATA TRANSFER DEVICE |
US5242701A (en) * | 1988-10-24 | 1993-09-07 | Fbi Brands Ltd. | Method for shelf stable packaging of liquid food in hermetically sealed easy-to-open gable top cartons |
US5208569A (en) * | 1992-06-03 | 1993-05-04 | The United States Of America As Represented By The United States Department Of Energy | Simplified flangeless unisex waveguide coupler assembly |
DE102005021353A1 (en) * | 2005-05-04 | 2006-11-16 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Swivel coupler for use in robot joints, has closed ring formed per transmission direction with two outer conductor halves, which are mechanically separated and lying at a mass potential |
CN102017284A (en) * | 2008-06-16 | 2011-04-13 | 松下电器产业株式会社 | High frequency waveguide, antenna device, and electronic apparatus with antenna device |
EP2343774A4 (en) * | 2008-10-29 | 2013-11-27 | Panasonic Corp | High-frequency waveguide and phase shifter using same, radiator, electronic device which uses this phase shifter and radiator, antenna device, and electronic device equipped with same |
GB201317637D0 (en) | 2013-10-04 | 2013-11-20 | Johnson Matthey Plc | Data Transfer Apparatus |
US9413049B2 (en) * | 2014-03-24 | 2016-08-09 | Raytheon Company | Rotary joint including first and second annular parts defining annular waveguides configured to rotate about an axis of rotation |
FR3071363B1 (en) * | 2017-09-19 | 2019-09-06 | Thales | ROTATING ANTENNA FOR ROTARY ANTENNA AND ROTARY ANTENNA COMPRISING SUCH A JOINT |
US10790562B2 (en) * | 2019-01-02 | 2020-09-29 | Thinkom Solutions, Inc. | Compact concentric split ring waveguide rotary joint |
DE102021124509A1 (en) | 2021-09-22 | 2023-03-23 | Spinner Gmbh | Coaxial conductor structure and its use as a broadband mode reflector |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR58182E (en) * | 1947-12-31 | 1953-09-29 | Thomson Houston Comp Francaise | Sealed waveguides |
FR1407755A (en) * | 1964-06-23 | 1965-08-06 | Comp Generale Electricite | Rotating joint for ultra-short waves |
US3604009A (en) * | 1968-12-09 | 1971-09-07 | Hughes Aircraft Co | Millimeter wave-scanning lens antenna |
FR2092709A1 (en) * | 1970-06-10 | 1972-01-28 | Comp Generale Electricite | |
US3852762A (en) * | 1973-11-14 | 1974-12-03 | Singer Co | Scanning lens antenna |
US4255751A (en) * | 1979-11-20 | 1981-03-10 | Georgia Tech Research Institute | Feed mechanism for a geodesic lens |
US4358746A (en) * | 1980-12-22 | 1982-11-09 | Westinghouse Electric Corp. | Rotary coupling joint |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2736867A (en) * | 1945-12-10 | 1956-02-28 | Dorothy D Montgomery | Crossed wave guide variable impedance |
US2595186A (en) * | 1950-02-06 | 1952-04-29 | Louis D Breetz | Jogged wave guide ring type radio-frequency rotary joint |
US2772402A (en) * | 1950-11-22 | 1956-11-27 | Sperry Rand Corp | Serrated choke system for electromagnetic waveguide |
US2737633A (en) * | 1951-01-25 | 1956-03-06 | Sperry Rand Corp | Wave guide rotary joint system |
FR1033991A (en) * | 1951-03-15 | 1953-07-17 | Axial recess rotating joint for centimetric radars | |
US2945193A (en) * | 1954-02-02 | 1960-07-12 | Texas Instruments Inc | Rotary waveguide joint and switching structure |
US2850706A (en) * | 1955-05-31 | 1958-09-02 | William F Gabriel | Machined waveguide pin choke |
US2973493A (en) * | 1959-11-30 | 1961-02-28 | Jr Frank E Hasseld | Waveguide rotary joint |
US3189855A (en) * | 1962-05-17 | 1965-06-15 | Kane Engineering Lab | Waveguide rotary joint utilizing annular resonant waveguide |
US3633130A (en) * | 1970-07-15 | 1972-01-04 | Hughes Aircraft Co | Multichannel rotary joint supportive of energy in at least three mutually orthogonal circularly symmetric waveguide modes simultaneously |
FR2314597A1 (en) * | 1975-06-10 | 1977-01-07 | Radiall Sa | ROTATING COAXIAL ELECTRICAL CONNECTION |
US4233580A (en) * | 1976-11-23 | 1980-11-11 | Spinner Gmbh | Rotating coupler for transmitting high frequency energy |
US4117426A (en) * | 1976-12-30 | 1978-09-26 | Hughes Aircraft Company | Multiple channel rotary joint |
-
1982
- 1982-03-18 DE DE19823209906 patent/DE3209906A1/en not_active Withdrawn
- 1982-12-15 EP EP82111644A patent/EP0089414B1/en not_active Expired
- 1982-12-15 AT AT82111644T patent/ATE29342T1/en not_active IP Right Cessation
- 1982-12-15 DE DE8282111644T patent/DE3277160D1/en not_active Expired
-
1983
- 1983-03-17 CA CA000423801A patent/CA1194947A/en not_active Expired
- 1983-03-17 US US06/476,203 patent/US4533887A/en not_active Expired - Fee Related
- 1983-03-17 BR BR8301338A patent/BR8301338A/en not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR58182E (en) * | 1947-12-31 | 1953-09-29 | Thomson Houston Comp Francaise | Sealed waveguides |
FR1407755A (en) * | 1964-06-23 | 1965-08-06 | Comp Generale Electricite | Rotating joint for ultra-short waves |
US3604009A (en) * | 1968-12-09 | 1971-09-07 | Hughes Aircraft Co | Millimeter wave-scanning lens antenna |
FR2092709A1 (en) * | 1970-06-10 | 1972-01-28 | Comp Generale Electricite | |
US3852762A (en) * | 1973-11-14 | 1974-12-03 | Singer Co | Scanning lens antenna |
US4255751A (en) * | 1979-11-20 | 1981-03-10 | Georgia Tech Research Institute | Feed mechanism for a geodesic lens |
US4358746A (en) * | 1980-12-22 | 1982-11-09 | Westinghouse Electric Corp. | Rotary coupling joint |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2189628A3 (en) * | 2008-11-21 | 2013-03-13 | Rolls-Royce plc | Gas turbine engine having a signal transmission system comprising a waveguide |
US9097132B2 (en) | 2008-11-21 | 2015-08-04 | Rolls-Royce Plc | Gas turbine engine |
FR2984612A1 (en) * | 2011-12-20 | 2013-06-21 | Thales Sa | Rotary joint for guiding electromagnetic waves between two access points in sweeping radar antenna, has waveguides formed between access points, where each access point includes transition to change propagation direction |
Also Published As
Publication number | Publication date |
---|---|
US4533887A (en) | 1985-08-06 |
ATE29342T1 (en) | 1987-09-15 |
BR8301338A (en) | 1983-11-29 |
CA1194947A (en) | 1985-10-08 |
DE3209906A1 (en) | 1984-02-02 |
DE3277160D1 (en) | 1987-10-08 |
EP0089414B1 (en) | 1987-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2632606C2 (en) | Wave type coupler | |
DE2019105C3 (en) | Band pass filter for optical waves | |
DE3641086C1 (en) | Waveguide absorber or attenuator | |
EP0089414A1 (en) | Waveguide rotating joint | |
DE19822072C1 (en) | Microwave switch, e.g. for satellite application as redundant switch, achieves higher operating frequency with a significantly greater gap between the rotor and generator housing | |
DE69515263T2 (en) | Coaxial waveguide transition | |
DE68918426T2 (en) | Dual frequency radiating device. | |
DE3634772C2 (en) | ||
DE3620555C2 (en) | ||
DE2838317A1 (en) | DIRECTIONAL COUPLER | |
DE19615854C1 (en) | Method for producing a coupling for connecting two electromagnetic waveguides | |
DE4034683C2 (en) | ||
DE2904054A1 (en) | 3DB DIRECTIONAL COUPLER IN SEMICONDUCTOR DESIGN | |
DE3009254C2 (en) | Antenna exciter with a radiation pattern of elliptical cross-section | |
DE2304131C3 (en) | Reflection filter for microwaves | |
EP0872910A2 (en) | Directional coupler | |
DE69713005T2 (en) | Balanced mixer | |
DE832165C (en) | Electric hollow tube shaft guide | |
DE3439414A1 (en) | ANTENNA EXTENSION FOR AT LEAST TWO DIFFERENT FREQUENCY BANDS | |
DE2225576C3 (en) | Directional line for microwaves | |
WO2023222592A1 (en) | Device for combining or splitting microwaves | |
DE2616121B2 (en) | Traveling wave tube | |
EP0905813A2 (en) | Polarisation filter for the illumination of an antenna | |
DE2603348C3 (en) | Transition line piece and an arrangement built up therewith for coupling between coaxial lines and a concentric multiple line and their use | |
DE1541588C3 (en) | Arrangement for damping higher H deep on wave types |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT CH DE FR GB IT LI NL SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ANT NACHRICHTENTECHNIK GMBH |
|
17P | Request for examination filed |
Effective date: 19831025 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 29342 Country of ref document: AT Date of ref document: 19870915 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3277160 Country of ref document: DE Date of ref document: 19871008 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19931206 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19931221 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19931228 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19931231 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: DL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19941215 Ref country code: AT Effective date: 19941215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19941216 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 82111644.9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19950701 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19941215 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19950701 |
|
EUG | Se: european patent has lapsed |
Ref document number: 82111644.9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19951220 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19961231 Ref country code: CH Effective date: 19961231 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19971218 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19980227 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991001 |