EP0086470A1 - Heat pump condensor with three specifically co-axial tubular elements - Google Patents

Heat pump condensor with three specifically co-axial tubular elements Download PDF

Info

Publication number
EP0086470A1
EP0086470A1 EP83101328A EP83101328A EP0086470A1 EP 0086470 A1 EP0086470 A1 EP 0086470A1 EP 83101328 A EP83101328 A EP 83101328A EP 83101328 A EP83101328 A EP 83101328A EP 0086470 A1 EP0086470 A1 EP 0086470A1
Authority
EP
European Patent Office
Prior art keywords
tube
webs
condenser according
condenser
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP83101328A
Other languages
German (de)
French (fr)
Inventor
Wilhelm Dr.-Ing. Vox
Jürgen Vonhoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0086470A1 publication Critical patent/EP0086470A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/422Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/424Means comprising outside portions integral with inside portions
    • F28F1/426Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Definitions

  • the invention relates to a three-pipe condenser for heat pumps, in particular a coaxial condenser.
  • the three-tube condenser according to the invention as characterized in the claims solves all of the following inventive tasks.
  • the thermal energy of a hot coolant is transferred to two separate media, heating and process water.
  • the heating water must be routed so that it serves as a protective jacket for the domestic water.
  • the water resistance in the condenser heating circuit should be kept as low as possible.
  • the cooling of the compressor of a heat pump should also be possible with a triple condenser.
  • (1) denotes the outer tube, (2) the middle tube and (3) the inner tube.
  • the heat transfer to the inner tube (3) takes place through the webs 4 and 4a.
  • the webs are made of a good heat-conducting material, such as copper.
  • the webs 4 and 4a can have different shapes and are to be selected so that the water resistance for the heating water which flows between the webs and the pipes (2) and (3) is as small as possible.
  • the refrigerant flows between the pipe (1) and the pipe (2) and thus transfers the thermal energy to the pipe (2), from which it is transferred to the heating water and through the webs 4 and 4a to both the heating water and the process water is transmitted.
  • the process water flows in the inner pipe (3).
  • the compressor can be cooled by the refrigerant. This is taken from the condenser approximately in the middle of its length, passed through an ultracooling system into the bottom of the condenser and returned to the condenser. Such a method is most easily possible if the refrigerant is guided in the outer tube.
  • Figure 2 differs from the embodiment of Figure 1 essentially in that the central tube has an enlarged surface and e.g. is designed as a corrugated pipe. In addition, the number of webs (4) is reduced.
  • Figure 3 shows an embodiment with an inner tube (3), which has such a cross-sectional shape that a direct heat transfer from (2) to (3) is possible on a partial circumference of the tube (2) inside.
  • a spring (6) is provided which presses the inner tube (3) with its outer round side against the inner wall of the tube (2).
  • Figure 6 shows an intermediate wall (7) which divides the central tube (2) into two interior spaces.
  • Figure 7 shows a wall reinforcement (8) of the central tube (2).
  • the wall reinforcement is attached, for example, to the inside of the tube (2). It also serves to accommodate the partition (7).
  • Figure 8 shows a similar construction with a curved partition (7).
  • the inner tube (3) can be connected to the center tube (2) or to the webs 4 and 4a using various methods known per se, it being important to ensure that the means used for the connection have very good thermal conductivity numbers. This can be done by soldering or gluing. However, pressing methods can also be used, but clamping devices and springs are also suitable.
  • One way of providing the inner tube with webs is to push in a tube in 3 passes until the material on the webs has laid down twice. This inner tube is then pushed into an already corrugated central tube. In order to connect both pipes with good heat conduction, either the corrugated pipe is rerolled or the inner pipe is flared, or both methods are used together.
  • the corrugated pipe takes over the energy from the refrigerant.
  • the heating water in the chambers between the webs 4 and 4a and the pipes (2 and 3) can heat up directly on the corrugated pipe.
  • thermal energy flows into the heating water via the webs (4 and 4a).
  • a small part of the heat energy flows through the heating water, but essentially via the webs (4 and 4a) to the process water in the inner pipe (3).
  • the management of the domestic water in the Inner tube (3) offers the safety advantage of separating it from the refrigerant by two independent tubes.
  • the process water does not heat up above the temperature of the heating water of approx. 55 ° C, so that no limescale can precipitate out of the process water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The condenser makes possible the production of domestic and heating water with a heat pump. The construction protects the domestic water from the hot coolant by interposition of the heating water. Heating means, e.g. webs, are provided, which transmit the heat energy of the hot coolant through the heating water chamber into the domestic water chamber. In the figure, the hot coolant flows between the outer pipe (1) and the central pipe (2) which is designed as a corrugated pipe. The transmission of the heat energy to the domestic water conducted in the inner pipe (3) takes place via the copper webs (4) designed as heat bridges. <IMAGE>

Description

Die Erfindung bezieht sich auf einen Dreirohrkondensator für Wärmepumpen, insbesondere Koaxialkondensator.The invention relates to a three-pipe condenser for heat pumps, in particular a coaxial condenser.

Für die Erzeugung von Brauch- und/oder Heizwasser ist allgemein bekannt, entweder für jedes Medium (Heiz- oder Brauchwasser) eine getrennte Wärmepumpe mit einem Zweirohrkondensator zu verwenden oder mit einer Wärmepumpe und einem Zweirohrkondensator Heizwasser zu erzeugen und dieses über einen Wärmetauscher im Brauchwasserspeicher zu leiten. Diese Verfahren sind sowohl von den Kosten als auch von den schädlichen Taktzeichen her unwirtschaftlich.For the production of domestic and / or heating water, it is generally known to either use a separate heat pump with a two-pipe condenser for each medium (heating or domestic water) or to produce heating water with a heat pump and a two-pipe condenser and to supply this via a heat exchanger in the domestic hot water tank conduct. These methods are uneconomical in terms of both costs and harmful clock marks.

Mit dem Dreirohrkondensator nach der Erfindung wird es möglich, mit einer Wärmepumpe Heizungs- und Brauchwasser zu erzeugen; dadurch verlängert sich die Laufzeit einer solchen Wärmepumpe.With the three-pipe condenser according to the invention it is possible to produce heating and domestic water with a heat pump; this extends the running time of such a heat pump.

Der Dreirohrkondensator nach der Erfindung wie er in den Patentansprüchen gekennzeichnet ist, löst alle folgenden erfinderischen Aufgaben.The three-tube condenser according to the invention as characterized in the claims solves all of the following inventive tasks.

Die Wärmeenergie eines heißen Kühlmittels ist auf zwei getrennte Medien, Heiz- und Brauchwasser, zu übertragen.The thermal energy of a hot coolant is transferred to two separate media, heating and process water.

Das Heizwasser ist so zu führen, daß es als Schutzmantel für das Brauchwasser dient.The heating water must be routed so that it serves as a protective jacket for the domestic water.

Die übertragung der Wärmeenergie soll auf beide Medien möglichst gleich gut und schnell erfolgen.The transfer of thermal energy to both media should be as good and quick as possible.

Der Wasserwiderstand im Heizkreis des Kondensators soll möglichst klein gehalten werden.The water resistance in the condenser heating circuit should be kept as low as possible.

Im Brauchwasserkreislauf soll kein Kalk ausfallen.No lime should precipitate in the process water circuit.

Die Kühlung des Kompressors einer Wärmepumpe soll auch mit einem Dreifachkondensator möglich sein.The cooling of the compressor of a heat pump should also be possible with a triple condenser.

Die mit dem Erfindungsgegenstand zu erzielenden Vorteile sind im wesentlichen bereits aus der Aufgabenstellung zu erkennen und werden bei der folgenden Beschreibung verschiedener Ausführungsmöglichkeiten zusätzlich erwähnt.The advantages to be achieved with the subject matter of the invention can essentially be seen from the problem and are additionally mentioned in the following description of various possible embodiments.

In Figur 1 ist mit (1) das Außenrohr, mit (2) das Mittelrohr und mit (3) das Innenrohr bezeichnet. Die Wärmeübertragung auf das Innenrohr (3) erfolgt durch die Stege 4 und 4a. Die Stege bestehen aus gut wärmeleitendem Material, z.B. Kupfer. Die Stege 4 und 4a können verschiedene Formen haben und sind so zu wählen, daß der Wasserwiderstand für das Heizwasser, welches zwischen den Stegen und den Rohren (2) und (3) fließt,möglichst klein ist. Das Kältemittel fließt zwischen dem Rohr (1) und dem Rohr (2) und überträgt somit die Wärmeenergie auf das Rohr (2), von welcher sie einerseits auf das Heizungswasser und durch die Stege 4 und 4a sowohl auf das Heizungswasser als auch auf das Brauchwasser übertragen wird. Das Brauchwasser fließt im Innenrohr (3). Es ist bei dieser Konstruktion leicht ersichtlich, daß das Kühlmittel auch im Schadensfalle des Mittelrohres (2) nicht in das Brauchwasser kommen kann. Das Kältemittel würde in das Heizungswasser austreten. Es kann dann über das Sicherheitsventil der Heizungsanlage entweichen. Bei längerem Wärmepumpenbetrieb zur Erwärmung von Heizwasser erwärmt sich das Brauchwasser nicht über 55°C, die maximale Temperatur des Heizwassers. Somit fällt aus dem jeweils frisch zugeführten Brauchwasser noch kein Kalk aus.In Figure 1, (1) denotes the outer tube, (2) the middle tube and (3) the inner tube. The heat transfer to the inner tube (3) takes place through the webs 4 and 4a. The webs are made of a good heat-conducting material, such as copper. The webs 4 and 4a can have different shapes and are to be selected so that the water resistance for the heating water which flows between the webs and the pipes (2) and (3) is as small as possible. The refrigerant flows between the pipe (1) and the pipe (2) and thus transfers the thermal energy to the pipe (2), from which it is transferred to the heating water and through the webs 4 and 4a to both the heating water and the process water is transmitted. The process water flows in the inner pipe (3). With this construction it is easy to see that the coolant cannot get into the process water even if the center tube (2) is damaged. The refrigerant would leak into the heating water. It can then escape through the heating system's safety valve. For longer heat pump operation for heating The heating water of heating water does not heat above 55 ° C, the maximum temperature of the heating water. This means that no lime precipitates from the freshly supplied process water.

Für Wärmepumpen bietet sich ein Kühlen des Kompressors durch das Kältemittel an. Dieses wird dem Kondensator etwa in der Mitte seiner Länge entnommen, durch eine Ulkühlung in den Sumpf des Kondensators geleitet und in den Kondensator zurückgeführt. Ein solches Verfahren ist am leichtesten möglich, wenn das Kältemittel im Außenrohr geführt wird.For heat pumps, the compressor can be cooled by the refrigerant. This is taken from the condenser approximately in the middle of its length, passed through an ultracooling system into the bottom of the condenser and returned to the condenser. Such a method is most easily possible if the refrigerant is guided in the outer tube.

Die Figur 2 unterscheidet sich von der Ausführung der Figur 1 im wesentlichen dadurch, daß das Mittelrohr eine vergrößerte Oberfläche hat und z.B. als Wellrohr ausgeführt ist. Außerdem ist die Anzahl der Stege (4) reduziert.Figure 2 differs from the embodiment of Figure 1 essentially in that the central tube has an enlarged surface and e.g. is designed as a corrugated pipe. In addition, the number of webs (4) is reduced.

Figur 3 zeigt ein Ausführungsbeispiel mit einem Innenrohr (3), welches eine solche Querschnittsform hat, daß eine direkte Wärmeübertragung von (2) nach (3) auf einem Teilumfang des Rohres (2) im Inneren möglich ist.Figure 3 shows an embodiment with an inner tube (3), which has such a cross-sectional shape that a direct heat transfer from (2) to (3) is possible on a partial circumference of the tube (2) inside.

Bei der Figur 4 sind außer der anderen Form des Rohres (3) (Ovalform) Halter (5) für das Rohr (3) vorgesehen.In addition to the other shape of the tube (3) (oval shape), holders (5) for the tube (3) are provided in FIG.

In Figur 5 ist eine Feder (6) vorgesehen, welche das Innenrohr (3) mit seiner äußeren runden Seite an die Innenwand des Rohres (2) preßt.In Figure 5, a spring (6) is provided which presses the inner tube (3) with its outer round side against the inner wall of the tube (2).

Figur 6 zeigt eine Zwischenwand (7), welche das Mittelrohr (2) in zwei Innenräume aufteilt.Figure 6 shows an intermediate wall (7) which divides the central tube (2) into two interior spaces.

Figur 7 zeigt eine Wandverstärkung (8) des Mittelrohres (2). Die Wandverstärkung ist beispielsweise an der Innenseite des Rohres (2) angebracht. Sie dient gleichzeitig zur Aufnahme der Zwischenwand (7).Figure 7 shows a wall reinforcement (8) of the central tube (2). The wall reinforcement is attached, for example, to the inside of the tube (2). It also serves to accommodate the partition (7).

Figur 8 zeigt eine ähnliche Konstruktion mit einer gewölbten Zwischenwand (7).Figure 8 shows a similar construction with a curved partition (7).

Das Innenrohr (3) kann auf verschiedene an sich bekannte Methoden mit dem Mittelrohr (2) oder mit den Stegen 4 und 4a verbunden werden, wobei darauf zu achten ist, daß die zur Verbindung verwendeten Mittel sehr gute Wärmeleitungszahlen haben. Dies kann durch Löten oder Kleben geschehen. Aber es können auch Preßmethoden zur Anwendung kommen, aber auch Klemmvorrichtungen und Federn sind geeignet. Eine Möglichkeit, das Innenrohr mit Stegen zu versehen, besteht darin, ein Rohr in 3 Zügen einzudrücken, bis das Material an den Stegen sich doppelt aufeinandergelegt hat. Dieses Innenrohr wird darauf in ein bereits gewelltes Mittelrohr geschoben. Um beide Rohre gut wärmeleitend miteinander zu verbinden, wird entweder das Wellrohr nachgerollt oder das Innenrohr aufgedornt oder beide Methoden werden gemeinsam angewandt.The inner tube (3) can be connected to the center tube (2) or to the webs 4 and 4a using various methods known per se, it being important to ensure that the means used for the connection have very good thermal conductivity numbers. This can be done by soldering or gluing. However, pressing methods can also be used, but clamping devices and springs are also suitable. One way of providing the inner tube with webs is to push in a tube in 3 passes until the material on the webs has laid down twice. This inner tube is then pushed into an already corrugated central tube. In order to connect both pipes with good heat conduction, either the corrugated pipe is rerolled or the inner pipe is flared, or both methods are used together.

Das Wellrohr übernimmt die Energie vom Kältemittel. Das in den Kammern zwischen den Stegen 4 und 4a und den Rohren (2 und 3) geführte Heizungswasser kann sich am Wellrohr direkt erwärmen. Zusätzlich fließt Wärmeenergie über die Stege (4 und 4a) in das Heizwasser. Die Wärmeenergie fließt zu einem kleinen Teil durch das Heizwasser, im wesentlichen aber über die Stege (4 und 4a) zum Brauchwasser im Innenrohr (3). Die Führung des Brauchwassers im Innenrohr (3) bietet den Sicherheitsvorteil, es durch 2 unabhängige Rohre vom Kältemittel zu trennen.The corrugated pipe takes over the energy from the refrigerant. The heating water in the chambers between the webs 4 and 4a and the pipes (2 and 3) can heat up directly on the corrugated pipe. In addition, thermal energy flows into the heating water via the webs (4 and 4a). A small part of the heat energy flows through the heating water, but essentially via the webs (4 and 4a) to the process water in the inner pipe (3). The management of the domestic water in the Inner tube (3) offers the safety advantage of separating it from the refrigerant by two independent tubes.

Auch bei längerem Betrieb erhitzt sich das Brauchwasser nicht über die Temperatur des Heizwassers von ca. 55°C, so daß beim Brauchwasser noch kein Kalk ausfallen kann.Even when used for a long time, the process water does not heat up above the temperature of the heating water of approx. 55 ° C, so that no limescale can precipitate out of the process water.

Claims (9)

1. Dreirohrkondensator für Wärmepumpen, insbesondere Koaxialkondensator, gekennzeichnet durch ein Außenrohr (1), ein Mittelrohr (2) und ein Innenrohr (3), wobei eine gute Wärmeübertragung vom Mittelrohr (2) auf das Innenrohr (3) mittelbar oder unmittelbar stattfindet.1. Three-tube condenser for heat pumps, in particular coaxial condenser, characterized by an outer tube (1), a central tube (2) and an inner tube (3), good heat transfer from the central tube (2) to the inner tube (3) taking place indirectly or directly. 2. Dreirohrkondensator nach Patentanspruch 1, gekennzeichnet durch gut wärmeleitende Mittel, z.B. Kupferstege (4 oder 4a), welche das Mittelrohr (2) und das Innenrohr (3) miteinander verbinden und welche eine für einen geringen Wasserwiderstand geeignete Form haben.2. three-tube condenser according to claim 1, characterized by good heat-conducting means, e.g. Copper webs (4 or 4a), which connect the center tube (2) and the inner tube (3) to each other and which have a shape suitable for low water resistance. 3. Dreirohrkondensator nach Patentanspruch 1 und 2, gekennzeichnet durch ein Mittelrohr (2), mit welchem die Stege (4 oder 4a) als Innenstege eine Einheit bilden.3. Three-tube condenser according to claim 1 and 2, characterized by a central tube (2) with which the webs (4 or 4a) form a unit as inner webs. 4. Dreirohrkondensator nach Patentanspruch 1 und 2, gekennzeichnet durch ein Innenrohr (3), mit welchem die Stege (4 oder 4a) als Außenstege eine Einheit bilden.4. three-tube condenser according to claim 1 and 2, characterized by an inner tube (3) with which the webs (4 or 4a) form a unit as outer webs. 5. Dreirohrkondensator nach Patentanspruch 1 und 2, gekennzeichnet durch getrennte Stege (4 oder 4a), welche mit keinem Rohr (2 oder 3) eine Einheit bilden.5. three-tube condenser according to claim 1 and 2, characterized by separate webs (4 or 4a) which form a unit with no tube (2 or 3). 6. Dreirohrkondensator nach Anspruch 1, gekennzeichnet durch eine solche Querschnittform des Innenrohres (3), daß die Außenkrümmung des Innenrohres (3) über eine längere Strecke der Innenkrümmung des Mittelrohres (2) annähernd gleich ist.6. Three-tube condenser according to claim 1, characterized by such a cross-sectional shape of the inner tube (3) that the outer curvature of the inner tube (3) is approximately the same over a longer distance of the inner curvature of the central tube (2). 7. Dreirohrkondensator nach Anspruch 1 und 6, gekennzeichnet durch eine Trennwand (7) im Mittelrohr (2) und eine Mandverstärkung (8) des Mittelrohres (2) in dem Bereich, der unterhalb der Trennwand liegt.7. Three-tube condenser according to claim 1 and 6, characterized by a partition (7) in the center tube (2) and a mandrel reinforcement (8) of the center tube (2) in the area below the partition. 8. Dreirohrkondensator nach Anspruch 1 bis 7, gekennzeichnet durch ein Mittelrohr (2), dessen Oberfläche auf der Außenseite vergrößert ist.8. Three-tube condenser according to claim 1 to 7, characterized by a central tube (2), the surface of which is enlarged on the outside. 9. Dreirohrkondensator nach Anspruch 1 bis 8, gekennzeichnet durch gut wärmeleitende Verbindungsmittel, wie Federn, Klemmen, Kleber, Lötmittel, welche für eine gute wärmeübertragende Verbindung zwischen den Rohrwänden oder den Rohrwänden und den Stegen sorgen.9. three-tube condenser according to claim 1 to 8, characterized by good heat-conducting connection means, such as springs, clamps, glue, solder, which ensure a good heat transfer connection between the tube walls or the tube walls and the webs.
EP83101328A 1982-02-15 1983-02-11 Heat pump condensor with three specifically co-axial tubular elements Withdrawn EP0086470A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3205364 1982-02-15
DE19823205364 DE3205364A1 (en) 1982-02-15 1982-02-15 THREE-TUBE CONDENSER FOR HEAT PUMPS

Publications (1)

Publication Number Publication Date
EP0086470A1 true EP0086470A1 (en) 1983-08-24

Family

ID=6155774

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83101328A Withdrawn EP0086470A1 (en) 1982-02-15 1983-02-11 Heat pump condensor with three specifically co-axial tubular elements

Country Status (2)

Country Link
EP (1) EP0086470A1 (en)
DE (1) DE3205364A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2125828A1 (en) * 1996-03-02 1999-03-01 Deutsche Forsch Luft Raumfahrt Trough-shaped collector
WO1999066281A1 (en) * 1998-06-15 1999-12-23 Chul Soo Lee Condenser for heat exchanger systems
DE102012007970A1 (en) * 2012-04-20 2013-10-24 Gm Global Technology Operations, Llc Heat exchanger for air conditioning system of motor vehicle, has inner tube section and outer tube section, which encloses inner tube section by forming intermediate space that is flow-throughable by heat exchange medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT379888B (en) * 1983-10-20 1986-03-10 Alfa Laval Agri Energy Systems HEAT PUMP

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR362995A (en) * 1906-02-05 1906-07-18 Paul Determes Double finned tubes for heating or cooling liquids
GB326278A (en) * 1928-12-31 1930-03-13 Birmingham Aluminium Casting A new or improved heat exchanger or condenser
US2316273A (en) * 1939-07-13 1943-04-13 Meyer Ludwig Heater
GB692885A (en) * 1949-12-28 1953-06-17 Brown Fintube Co Improvements in the manufacture of heat exchangers
FR1070347A (en) * 1952-02-06 1954-07-22 Air Preheater Finned heat exchanger apparatus, and method for its manufacture
FR73895E (en) * 1958-07-30 1960-09-12 Westinghouse Freins & Signaux Improvements to heat exchangers
US2956419A (en) * 1955-11-23 1960-10-18 Dunham Bush Inc Pressure stabilizer system
US3120868A (en) * 1959-09-28 1964-02-11 James S Ballantine Heat exchanger
FR1409932A (en) * 1964-07-24 1965-09-03 Snecma Improvements to heat exchange elements
DE1501531A1 (en) * 1965-09-22 1969-09-11 Kabel Metallwerke Ghh Heat exchanger tube and heat exchanger
DE2016991A1 (en) * 1969-09-08 1971-04-08 Turbotec Inc
FR2389862A1 (en) * 1977-05-03 1978-12-01 Kovacs Andre
FR2395480A2 (en) * 1977-06-22 1979-01-19 Multifluid En Coaxial tube heat exchanger for heat pump - has closed cylindrical inner chamber to increase fluid flow speed and improve heat exchange
US4173872A (en) * 1978-02-01 1979-11-13 Energy Utilization Systems, Inc. Water heater apparatus
US4228848A (en) * 1979-01-23 1980-10-21 Grumman Energy Systems, Inc. Leak detection for coaxial heat exchange system
US4256059A (en) * 1979-05-10 1981-03-17 Energy Concerns, Inc. Heat-exchanging system
GB2083604A (en) * 1980-09-10 1982-03-24 Urch John Francis Heat exchanger
FR2494420A3 (en) * 1980-11-20 1982-05-21 Camping Freeze Sa Heat exchanger assembly for absorption refrigerator - has profiled trunk with inner and outer radial ribs supporting inner and outer tubes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2905552C2 (en) * 1979-02-14 1984-10-18 Stiebel Eltron Gmbh & Co Kg, 3450 Holzminden Heat exchanger

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR362995A (en) * 1906-02-05 1906-07-18 Paul Determes Double finned tubes for heating or cooling liquids
GB326278A (en) * 1928-12-31 1930-03-13 Birmingham Aluminium Casting A new or improved heat exchanger or condenser
US2316273A (en) * 1939-07-13 1943-04-13 Meyer Ludwig Heater
GB692885A (en) * 1949-12-28 1953-06-17 Brown Fintube Co Improvements in the manufacture of heat exchangers
FR1070347A (en) * 1952-02-06 1954-07-22 Air Preheater Finned heat exchanger apparatus, and method for its manufacture
US2956419A (en) * 1955-11-23 1960-10-18 Dunham Bush Inc Pressure stabilizer system
FR73895E (en) * 1958-07-30 1960-09-12 Westinghouse Freins & Signaux Improvements to heat exchangers
US3120868A (en) * 1959-09-28 1964-02-11 James S Ballantine Heat exchanger
FR1409932A (en) * 1964-07-24 1965-09-03 Snecma Improvements to heat exchange elements
DE1501531A1 (en) * 1965-09-22 1969-09-11 Kabel Metallwerke Ghh Heat exchanger tube and heat exchanger
DE2016991A1 (en) * 1969-09-08 1971-04-08 Turbotec Inc
FR2389862A1 (en) * 1977-05-03 1978-12-01 Kovacs Andre
FR2395480A2 (en) * 1977-06-22 1979-01-19 Multifluid En Coaxial tube heat exchanger for heat pump - has closed cylindrical inner chamber to increase fluid flow speed and improve heat exchange
US4173872A (en) * 1978-02-01 1979-11-13 Energy Utilization Systems, Inc. Water heater apparatus
US4228848A (en) * 1979-01-23 1980-10-21 Grumman Energy Systems, Inc. Leak detection for coaxial heat exchange system
US4256059A (en) * 1979-05-10 1981-03-17 Energy Concerns, Inc. Heat-exchanging system
GB2083604A (en) * 1980-09-10 1982-03-24 Urch John Francis Heat exchanger
FR2494420A3 (en) * 1980-11-20 1982-05-21 Camping Freeze Sa Heat exchanger assembly for absorption refrigerator - has profiled trunk with inner and outer radial ribs supporting inner and outer tubes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2125828A1 (en) * 1996-03-02 1999-03-01 Deutsche Forsch Luft Raumfahrt Trough-shaped collector
WO1999066281A1 (en) * 1998-06-15 1999-12-23 Chul Soo Lee Condenser for heat exchanger systems
DE102012007970A1 (en) * 2012-04-20 2013-10-24 Gm Global Technology Operations, Llc Heat exchanger for air conditioning system of motor vehicle, has inner tube section and outer tube section, which encloses inner tube section by forming intermediate space that is flow-throughable by heat exchange medium

Also Published As

Publication number Publication date
DE3205364A1 (en) 1983-08-25

Similar Documents

Publication Publication Date Title
DE69915431T2 (en) Integrated heat exchanger, especially for motor vehicles
DE2617208A1 (en) HEAT EXCHANGER FOR ARTIFICIAL HEART AND LUNG MACHINES
EP0099875A2 (en) Arrangement for heating central heating water and consumption water
EP0086470A1 (en) Heat pump condensor with three specifically co-axial tubular elements
DE3026731A1 (en) HEAT EXCHANGER
DE3390075T1 (en) Power unit for an absorption heat exchange system
DE2161402C3 (en) Shell and tube heat exchanger
DE3315219C2 (en) Domestic hot water storage heater that can be operated with district heating as the heating medium
DE886376C (en) Heat exchanger, especially for water heating
CH647067A5 (en) Heat exchange system
DE2519803C2 (en) Device for heat exchange
EP0028840A3 (en) Arrangement for introducing heat into the primary circuit of the heat pump of a reverse-cycle heating installation
AT380105B (en) PIPE OR HOSE EXCHANGER
DE3409396A1 (en) HEAT PUMP
DE3524888A1 (en) SOLDERING IRON
DE970685C (en) Process for improving the heat exchange in the liquid heat exchanger of absorption cooling apparatus working with auxiliary gas
CH433653A (en) Process for the optional heating of liquids and equipment for carrying out this process
AT387839B (en) Gas burner
DE3026478C2 (en) Low temperature radiator
DE69118432T2 (en) Condensing boiler with heat transfer fluid
AT400366B (en) Device for heating a heat carrier for a heater circuit, and for heating service water with the aid of a heating medium
DE3118170A1 (en) Device for exchanging heat between two liquids controlled at different temperatures
AT371588B (en) ARRANGEMENT FOR EXPLOITING EXHAUST HEAT FROM SITES OR THE LIKE
AT383528B (en) Method of manufacturing a fire tube for heating boilers
DE1551553C (en) Process for limiting the temperature of the hot gas duct walls and other components of a partition wall heat exchanger, heat exchangers for carrying out the process and using the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH FR GB LI NL

17P Request for examination filed

Effective date: 19840216

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19850219