EP0086287A1 - Improved acoustic apparatus and method - Google Patents

Improved acoustic apparatus and method Download PDF

Info

Publication number
EP0086287A1
EP0086287A1 EP82300721A EP82300721A EP0086287A1 EP 0086287 A1 EP0086287 A1 EP 0086287A1 EP 82300721 A EP82300721 A EP 82300721A EP 82300721 A EP82300721 A EP 82300721A EP 0086287 A1 EP0086287 A1 EP 0086287A1
Authority
EP
European Patent Office
Prior art keywords
signal
acoustic
stereophonic
channel
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP82300721A
Other languages
German (de)
French (fr)
Inventor
Donald Eugene Norgaard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORTECH LABORATORIES Ltd
Original Assignee
NORTECH LABORATORIES Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORTECH LABORATORIES Ltd filed Critical NORTECH LABORATORIES Ltd
Priority to EP82300721A priority Critical patent/EP0086287A1/en
Publication of EP0086287A1 publication Critical patent/EP0086287A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic

Definitions

  • the hearing sense relies strongly upon an " ambience" created by a multitude of acoustic reflections and absorptions always present in any site where a sound occurs, and it is this feature which provides authenticity to what is heard.
  • the nature of the ambiance moreover, is transient due to reflections and absorptions which combine differently with direct sounds in a complex manner depending on the sonic radiation pattern of the source, its frequency, timbre, and location in any physically realizable surrounding.
  • A.spatially-distributed source such as an orchestra compounds this intrinsic complexity to an enormous degree. Restoration of an initial ambiance at the site of acoustic reproduction is the foundation of acoustic reality as interpreted by the hearing mechanism.
  • conventional two-channel stereophonic signals are utilized to create a third related signal channel used to provide an additional source of sound which supplements the traditional pair of stereophonic acoustic sources by the process of sonic combination at the site of sound reproduction so that an acceptable level of acoustic reality may be perceived over a relatively large portion of the region where sound is reproduced. This relieves restrictions on where listeners may be positioned for essentially optimum acoustic effect.
  • the present invention permits creation of acoustic ambience in the general region of sound reproduction in order to diminish the effect of artifical sound sources which compete with each other for the listener's attention and serve to destroy the illusion of credibility or naturalness. Also, the present invention provides an apparent extension of frequency range of reproduced sound, particularly in the low frequency region of human hearing where convincing bass response essential to the illusion of reality in reproduced sound is especially difficult to achieve.
  • FIG. 1 illustrates a system according to the invention in which a source 1 of left- and right-channel stereophonic signals such as a stereo receiver, tape player, phonograph, or the like, supplies left-channel signal 4 and right-channel signal 2 through level controls 5 and 3 to power amplifiers 9 and 8, respectively. These level controls may be ganged together for convenience of operation, or may be operated independently.
  • a common or ground reference conductor 7 serves to delineate the respective left- and right-channel signals for both input and output paths.
  • Output signals from the power amplifiers 9 and 8 are supplied to respective left and right loudspeakers 11 and 10 by conductors 7 and 15 for the left loudspeaker and by conductors 7 and 16 for the right loudspeaker.
  • the named elements comprise a conventional stereophonic reproducing system wherein the quality of signals provided by source 1 and the quality and power-handling capabilities of amplifiers 9 and 8 as well as loudspeakers 11 and 10 determine overall stereophonic performance. It is normal practice to separate loudspeakers 11 and 10 by several feet and to direct their principal axes of sonic radiation forward toward a preferred-listening region 13, as indicated by arrow clusters 17L and 17R. It is customary for listeners to face the loudspeakers 11 and 10 in simulation of the general practice of facing performers during a live performance. It is also general practice to utilize matching front loudspeakers, which may be of multiple-transducer design, to avoid preferential treatment of either channel.
  • Fig. 1 thus illustrates a system in which the third loudspeaker 12 located behind the listening region 13 is driven by a signal derived from the left- and right-channel signals and which signal represents the algebraic difference between the signals that drive loudspeakers 11 and 10.
  • the supplementing effect of the sound radiated from rear loudspeaker 12 takes the form of a type of derived ambiance or "phantom" acoustic energy which propagates in a general direction opposite to acoustic energy provided by the front pair of loudspeakers.
  • This supplementary sound is instantaneously different (but not necessarily statistically different) from that produced by either or both front loudspeakers 10 and 11 and encounters totally different sets of multiple reflections and absorptions within the listening region 13.
  • the cumulative effect as interpreted by the human hearing mechanism therefore approaches that experienced while listening at the site of the original sound as modified by the acoustical characteristics at that site.
  • Fig. 2 illustrates a system as in Fig. 1 (similar elements bear the same designations) in which adjustments may be made of output of loudspeaker 12 relative to that of front loudspeakers 10 and 11.
  • primary winding 21 of a high impedance bridging transformer 18 is excited by a signal which is the algebraic difference between the signals used to drive loudspeakers 10 and 11.
  • a secondary winding 22 of the transformer 18 provides the difference signal through adjustable attenuator 19 to a third power amplifier 20.
  • the output of amplifier 20 drives the third or rear loudspeaker 12.
  • the difference signal which appears across secondary winding 22 is referenced to common conductor 7 as indicated in Fig. 2.
  • a voltage step-down ratio of about 5:1 provided by bridging transformer 18 assures sufficient signal excitation for amplifier 20 to produce the desired effect.
  • power amplifier 20 can be identical to that of power amplifiers 8 and 9, and other circuit details such as power supply, and the like, which may be of conventional design and connection to the active elements of the illustrated circuits have been omitted for clarity.
  • signal power required to drive loudspeaker 12 at a chosen level is supplied by the third power amplifier 20 instead of by joint action of power amplifiers 8 and 9, as in the system of Fig. 1, total power requirements for the three power amplifiers in the system of Fig. 2 are lower than for operation of the system of Fig. 1 under conditions which provide the same relative power levels to the respective loudspeakers.
  • a signal representing the algebraic difference between left- and right-channel signals from the stereophonic signal source 1 is obtained by means of a high impedance bridging transformer 26 which has a primary winding 27 connected to receive left-and right-channel signals appearing on terminals 29 and 30.
  • the secondary winding 28 of bridging transformer 26 supplies a ground-referenced difference signal to power amplifier 20 through a level-control potentiometer 23.
  • the bridging transformer 26 should provide a voltage step-up ratio of approximately 3:1 if the voltage gains of power amplifiers 9, 8 and 20 are equal and loudspeaker input impedances and their conversion efficiencies are approximately equal.
  • Unity-gain, low-level, impedance-transforming amplifiers 25 and 24 are connected to the outputs of signal source 1 via the attenuators 3 and 5 to drive the power- amplifier input terminals 29 and 30 and the primary winding 27 of bridging transformer 26.
  • Amplifiers 25 and 24, which may be integrated circuits, provide very low source impedance for driving primary winding 27 of transformer 26 and the power amplifiers 9 and 8.
  • One advantage of the system illustrated in Fig. 3 over that of Fig. 2 is that distortion, noise, and other imperfections attendant to operation of power amplifiers 9 and 8 are not applied to amplifier 20 and thus not reproduced by loudspeaker 12..
  • transformer 26 in Fig. 3 is performed by operational amplifiers 33 and 34 and associated resistor network 35, 36, 37, 38 and 39.
  • amplifiers 33 and 34 each serve as phase inverters, wherein a signal voltage gain of (-1) is achieved through feedback connection of equal value resistors 35 and 36 in association with operational amplifier 33. If resistors 35, 36, 37 and 38 are of equal value, the algebraic sum of currents flowing through resistors 38 and 37 into circuit nodal point 44 represents the algebraic difference between left- and right-channel signals applied to power amplifier input points 29 and 30.
  • Difference signal at the output 43 of operational amplifier 34 which acts as a summing amplifier having a voltage gain of R39/R37, is applied to adjustable attenuator 23 whose output serves to drive power amplifier 20 at an output level selected by the user to provide sound reproduction enhancement in accordance with the overall invention.
  • loudspeaker 12 primarily furnishes supplementary acoustical ambience, this loudspeaker need not be of design similar to that of front loudspeakers 11 and 10. For example, it has been determined that reproduction of frequencies higher than 3000 to 4000 Hz. is not required for fulfillment of this function.
  • a high-frequency rolloff is produced by capacitor 45 for frequencies above, say, 3000 Hz. in the signal channel which drives loudspeaker 12.
  • bass boost of user- adjusted amount is provided by capacitor 46 and adjustable resistor 47 for this signal channel. The purpose of this bass boost is to compensate for possible response deficiency of loudspeaker 12 at low frequencies where a low-cost loudspeaker might require disproportionately higher driving power in order to fulfill its role of supplying adequate low frequency acoustic output to be compatible with the output of front loudspeakers 10 and 11.
  • Resistor '47 need be set only once for a given installation to establish bass response compatible with that of the front loudspeakers, and, as such, serves as a system "voicing" adjustment.
  • Power amplifiers 8, 9, and 20 may be of identical circuit design and may have power output capability, frequency response, distortion and noise characteristics suited for a given overall system application.
  • the operational amplifiers 24, 25, 33 and 34 in conjunction with resistors 35, 36, 37 and 38 can be consolidated within a single specialized integrated circuit 60 which incorporates the eight above-named elements with appropriate internal connections and external terminals.
  • Such integrated-circuit devices can be mass produced at low unit cost as small self-contained functional elements of high reliability. Such devices can be used in the embodiments of Figs. 4 and 5 at a low total system cost. It should be noted that this specialized integrated circuit does not place restraints on overall system performance parameters such as power output capabilities of power amplifiers 8, 9 and 20, for example.
  • power amplifiers 8, 9 and 20, operational amplifiers 24, 25, 33 and 34 together with resistors 35, 36, 37 and 38 may be integrated within a single large-scale integrated-circuit package as a substantially complete functional embodiment of the invention. Provision must be made for removal of relatively greater amounts of heat dissipated within such a package, since the operating power levels can be many thousands of times greater than those of signal processing amplifiers 24, 25, 33 and 34 alone.
  • the large-scale integration approach outlined above may place restraints on power output ratings and thus may not be applicable universally to every system installation.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

An improved method and means of reproducing sound includes processing the pair of signals (2, 4) representing left and right stereophonic channels to produce a signal which is the linear algebraic difference of the pair of left and right signals (2, 4) and includes acoustically radiating the left and right stereophonic signals (2, 4) toward a reception region (13) in substantially the same one direction from a pair of spaced locations (10, 11), and also acoustically radiating the difference signal toward the reception region (13) in substantially the opposite direction from a location (12) which is spaced in the one direction away from the pair of spaced locations (10, 11).

Description

    Background of the Invention
  • Early stereophonic techniques featured directionality or "stereo imagery" by means of exaggerated signal manipulation. The "ping pong" transfers of virtual sources from side to side bear little resemblance to musical performances ranging from a solo performer to a full symphony orchestra, but instead serve to misdirect attention away from reality and toward "separation" as the hallmark of stereophonic sound. See, for example, U.S. Patents 3,247,321, 3,184,550, 3,478,167, 3,171,891, and 3,280,258. This attention to separation has served to set unrealistic and unattainable goals in the quest for acceptable imitation of the original sound. Primary sounds are strongly affected by the acoustical characteristics of the immediate surroundings, whether they be a concert hall, a small studio, or even out-of-doors. The sense of hearing apparently involves a continuing space-time analysis unconsciously performed by the ear/brain combination, and it is this analysis that provides the unmistakable credibility of real sound in a real location. In the case of reproduced sound, the additional effect of acoustical characteristics of the region where the sound is reproduced combines irreversibly with the sound which might otherwise be heard at the original site, with the result that the final effect can be interpreted by the highly organized hearing mechanism as synthetic rather than natural.
  • The hearing sense relies strongly upon an "ambiance" created by a multitude of acoustic reflections and absorptions always present in any site where a sound occurs, and it is this feature which provides authenticity to what is heard. The nature of the ambiance, moreover, is transient due to reflections and absorptions which combine differently with direct sounds in a complex manner depending on the sonic radiation pattern of the source, its frequency, timbre, and location in any physically realizable surrounding. A.spatially-distributed source such as an orchestra compounds this intrinsic complexity to an enormous degree. Restoration of an initial ambiance at the site of acoustic reproduction is the foundation of acoustic reality as interpreted by the hearing mechanism.
  • Summary of the Invention
  • In accordance with this invention conventional two-channel stereophonic signals are utilized to create a third related signal channel used to provide an additional source of sound which supplements the traditional pair of stereophonic acoustic sources by the process of sonic combination at the site of sound reproduction so that an acceptable level of acoustic reality may be perceived over a relatively large portion of the region where sound is reproduced. This relieves restrictions on where listeners may be positioned for essentially optimum acoustic effect.
  • The present invention permits creation of acoustic ambiance in the general region of sound reproduction in order to diminish the effect of artifical sound sources which compete with each other for the listener's attention and serve to destroy the illusion of credibility or naturalness. Also, the present invention provides an apparent extension of frequency range of reproduced sound, particularly in the low frequency region of human hearing where convincing bass response essential to the illusion of reality in reproduced sound is especially difficult to achieve.
  • Description of the Drawings
    • Fig. 1 is a block diagram of one embodiment of the invention;
    • Fig. 2 is a block diagram of another embodiment of the invention;
    • Fig. 3 is a block diagram of another embodiment of the invention;
    • Fig. 4 is a block diagram of an alternative embodiment of the invention; and
    • Fig. 5 is a block diagram of another embodiment of the invention.
    Description of the Preferred Embodiment
  • The block diagram of Fig. 1 illustrates a system according to the invention in which a source 1 of left- and right-channel stereophonic signals such as a stereo receiver, tape player, phonograph, or the like, supplies left-channel signal 4 and right-channel signal 2 through level controls 5 and 3 to power amplifiers 9 and 8, respectively. These level controls may be ganged together for convenience of operation, or may be operated independently. A common or ground reference conductor 7 serves to delineate the respective left- and right-channel signals for both input and output paths. Output signals from the power amplifiers 9 and 8 are supplied to respective left and right loudspeakers 11 and 10 by conductors 7 and 15 for the left loudspeaker and by conductors 7 and 16 for the right loudspeaker. As described thus far, the named elements comprise a conventional stereophonic reproducing system wherein the quality of signals provided by source 1 and the quality and power-handling capabilities of amplifiers 9 and 8 as well as loudspeakers 11 and 10 determine overall stereophonic performance. It is normal practice to separate loudspeakers 11 and 10 by several feet and to direct their principal axes of sonic radiation forward toward a preferred-listening region 13, as indicated by arrow clusters 17L and 17R. It is customary for listeners to face the loudspeakers 11 and 10 in simulation of the general practice of facing performers during a live performance. It is also general practice to utilize matching front loudspeakers, which may be of multiple-transducer design, to avoid preferential treatment of either channel.
  • Acoustic combination of the sounds radiated independently by loudspeakers 11 and 10 produces at almost all reasonable locations within the listening region 13 a resultant acoustic field which closely resembles that which would otherwise be produced by two identical signals which represent the algebraic sum of left- and right-channel signals supplied at equivalent levels to loudspeakers 11 and 10. In accordance with the present invention, an acoustic signal related to the linear algebraic difference between instantaneous values of left- and right-channel signals is radiated from a third loudspeaker 12 located substantially behind the listening region 13. The pair of conductors 14 serves to provide signal excitation for loudspeaker 12. The resulting sonic combination greatly enhances the credible illustion of reality in the sound perceived by listeners located generally within the listening region 13. Fig. 1 thus illustrates a system in which the third loudspeaker 12 located behind the listening region 13 is driven by a signal derived from the left- and right-channel signals and which signal represents the algebraic difference between the signals that drive loudspeakers 11 and 10.
  • The supplementing effect of the sound radiated from rear loudspeaker 12 takes the form of a type of derived ambiance or "phantom" acoustic energy which propagates in a general direction opposite to acoustic energy provided by the front pair of loudspeakers. This supplementary sound is instantaneously different (but not necessarily statistically different) from that produced by either or both front loudspeakers 10 and 11 and encounters totally different sets of multiple reflections and absorptions within the listening region 13. The cumulative effect as interpreted by the human hearing mechanism therefore approaches that experienced while listening at the site of the original sound as modified by the acoustical characteristics at that site.
  • It has been determined that the symmetry implied in Fig. 1 is not required for realization of the effect described above. Interpretation of total system performance is not significantly altered either by orientation of rear loudspeaker 12 or by the symmetry of the triangle determined by loudspeakers 10, 11 and 12 as well as orientation of a listener. Certain geometric restrictions on the preferred listening region 13 are due to the inverse square law of sound propagation, modified.by the local acoustic characteristics of that site. Stated differently, a listener has a broad choice of both position and orientation in order to achieve nearly optimum acoustic effect in much the same sense as choice of seating in a concert hall.
  • Fig. 2 illustrates a system as in Fig. 1 (similar elements bear the same designations) in which adjustments may be made of output of loudspeaker 12 relative to that of front loudspeakers 10 and 11. In this system, primary winding 21 of a high impedance bridging transformer 18 is excited by a signal which is the algebraic difference between the signals used to drive loudspeakers 10 and 11. A secondary winding 22 of the transformer 18 provides the difference signal through adjustable attenuator 19 to a third power amplifier 20. The output of amplifier 20 drives the third or rear loudspeaker 12. The difference signal which appears across secondary winding 22 is referenced to common conductor 7 as indicated in Fig. 2. Because the impedance level of primary winding 21 can be significantly higher than that of loudspeakers 10 and 11, the added loading effect of transformer 18 on amplifiers 8 and 9 is inconsequential. A voltage step-down ratio of about 5:1 provided by bridging transformer 18 assures sufficient signal excitation for amplifier 20 to produce the desired effect.
  • The design of power amplifier 20 can be identical to that of power amplifiers 8 and 9, and other circuit details such as power supply, and the like, which may be of conventional design and connection to the active elements of the illustrated circuits have been omitted for clarity.
  • It should be noted that since signal power required to drive loudspeaker 12 at a chosen level is supplied by the third power amplifier 20 instead of by joint action of power amplifiers 8 and 9, as in the system of Fig. 1, total power requirements for the three power amplifiers in the system of Fig. 2 are lower than for operation of the system of Fig. 1 under conditions which provide the same relative power levels to the respective loudspeakers.
  • In Fig. 3 (elements that are similar to those in Figs. 1 and 2 bear the same designations), a signal representing the algebraic difference between left- and right-channel signals from the stereophonic signal source 1 is obtained by means of a high impedance bridging transformer 26 which has a primary winding 27 connected to receive left-and right-channel signals appearing on terminals 29 and 30. The secondary winding 28 of bridging transformer 26 supplies a ground-referenced difference signal to power amplifier 20 through a level-control potentiometer 23. The bridging transformer 26 should provide a voltage step-up ratio of approximately 3:1 if the voltage gains of power amplifiers 9, 8 and 20 are equal and loudspeaker input impedances and their conversion efficiencies are approximately equal.
  • Unity-gain, low-level, impedance-transforming amplifiers 25 and 24 are connected to the outputs of signal source 1 via the attenuators 3 and 5 to drive the power- amplifier input terminals 29 and 30 and the primary winding 27 of bridging transformer 26. Amplifiers 25 and 24, which may be integrated circuits, provide very low source impedance for driving primary winding 27 of transformer 26 and the power amplifiers 9 and 8. One advantage of the system illustrated in Fig. 3 over that of Fig. 2 is that distortion, noise, and other imperfections attendant to operation of power amplifiers 9 and 8 are not applied to amplifier 20 and thus not reproduced by loudspeaker 12..
  • In the embodiment of the invention illustrated in Fig. 4 (elements which are similar to those in Fig. 3 bear the same designations), the function of transformer 26 in Fig. 3 is performed by operational amplifiers 33 and 34 and associated resistor network 35, 36, 37, 38 and 39. In this embodiment, amplifiers 33 and 34 each serve as phase inverters, wherein a signal voltage gain of (-1) is achieved through feedback connection of equal value resistors 35 and 36 in association with operational amplifier 33. If resistors 35, 36, 37 and 38 are of equal value, the algebraic sum of currents flowing through resistors 38 and 37 into circuit nodal point 44 represents the algebraic difference between left- and right-channel signals applied to power amplifier input points 29 and 30. Difference signal at the output 43 of operational amplifier 34, which acts as a summing amplifier having a voltage gain of R39/R37, is applied to adjustable attenuator 23 whose output serves to drive power amplifier 20 at an output level selected by the user to provide sound reproduction enhancement in accordance with the overall invention.
  • Because loudspeaker 12 primarily furnishes supplementary acoustical ambiance, this loudspeaker need not be of design similar to that of front loudspeakers 11 and 10. For example, it has been determined that reproduction of frequencies higher than 3000 to 4000 Hz. is not required for fulfillment of this function.
  • In the embodiment illustrated in Fig. 5 (elements similar to those of Fig. 4 bear the same designations), a high-frequency rolloff is produced by capacitor 45 for frequencies above, say, 3000 Hz. in the signal channel which drives loudspeaker 12. In addition, bass boost of user- adjusted amount is provided by capacitor 46 and adjustable resistor 47 for this signal channel. The purpose of this bass boost is to compensate for possible response deficiency of loudspeaker 12 at low frequencies where a low-cost loudspeaker might require disproportionately higher driving power in order to fulfill its role of supplying adequate low frequency acoustic output to be compatible with the output of front loudspeakers 10 and 11. Resistor '47 need be set only once for a given installation to establish bass response compatible with that of the front loudspeakers, and, as such, serves as a system "voicing" adjustment. Power amplifiers 8, 9, and 20 may be of identical circuit design and may have power output capability, frequency response, distortion and noise characteristics suited for a given overall system application.
  • Representative circuit design values applicable to Figs. 4 and 5 are:
    Figure imgb0001
  • The operational amplifiers 24, 25, 33 and 34 in conjunction with resistors 35, 36, 37 and 38 (common to Figs. 4 and 5) can be consolidated within a single specialized integrated circuit 60 which incorporates the eight above-named elements with appropriate internal connections and external terminals. Such integrated-circuit devices can be mass produced at low unit cost as small self-contained functional elements of high reliability. Such devices can be used in the embodiments of Figs. 4 and 5 at a low total system cost. It should be noted that this specialized integrated circuit does not place restraints on overall system performance parameters such as power output capabilities of power amplifiers 8, 9 and 20, for example.
  • Where desired, power amplifiers 8, 9 and 20, operational amplifiers 24, 25, 33 and 34 together with resistors 35, 36, 37 and 38 may be integrated within a single large-scale integrated-circuit package as a substantially complete functional embodiment of the invention. Provision must be made for removal of relatively greater amounts of heat dissipated within such a package, since the operating power levels can be many thousands of times greater than those of signal processing amplifiers 24, 25, 33 and 34 alone. The large-scale integration approach outlined above may place restraints on power output ratings and thus may not be applicable universally to every system installation.

Claims (8)

1. The method of acoustic reproduction of electrical signals representing left and righf stereophonic signal channels, comprising:
radiating in substantially the same one direction toward a reception region from spaced left and right locations acoustic signals representing respective left and right stereophonic signal channels;
processing the left and right stereophonic signal channels to produce a third signal channel representing the instantaneous algebraic difference between the left and right stereophonic signal channels; and
radiating acoustic signals representing said third signal channel from a third location toward said reception region in a direction substantially opposite to said one direction.
2. The method of processing electrical signal voltages representing left and right stereophonic channels to produce a third electrical signal voltage linearly related to the instantaneous algebraic difference between respective left and right signal channel voltages, comprising in sequence:
reversing the polarity of one of the respective left and right stereophonic signal voltages;
summing current proportional to the resulting reverse-polarity signal channel voltage with current proportional to the other stereophonic signal channel voltage; and
providing a circuit path for resulting current sum through a common impedance to produce said third electrical signal voltage proportional to the product of said current sum and said common impedance.
3. Signal processing apparatus for operation with stereophonic signals representing respective left- and right-channel voltages to produce a third signal channel voltage proportional to the instantaneous algebraic difference between said left- and right-channel voltages, comprising:
transformer means connected to apply respective left and right signal voltages to a primary winding thereof; and
means for applying the resulting signal voltage appearing across a secondary winding of said transformer means to signal utilization apparatus.
4. Signal processing apparatus for operation with stereophonic signals representing respective left- and right-channel voltages to produce a ground-referenced third signal channel voltage linearly related to the instantaneous algebraic difference between said left- and right-channel voltages, comprising:
amplifier means connected to provide a current proportional to the algebraic difference between respective left-and right-channel voltages, said current occurring at a voltage node; and
circuit means connected to pass said current through a common impedance to produce a ground-referenced third signal voltage proportional to the product of said current and said common impedance.
5. Apparatus for supplying acoustic signals to a reception region, comprising:
source means of stereophonic signals representing right and left acoustic channels;
signal means connected to receive the signals representing right and left acoustic channels for producing a signal representative of the linear algebraic difference thereof;
first and second acoustic radiating transducer means positioned in front of a reception region to radiate respective left and right acoustic signals in substantially the same direction into the region;
third acoustic radiating transducer means positioned substantially in the rear of the reception region to radiate acoustic signals into the region in a direction substantially opposite that of the first and second acoustic radiating transducer means; and
circuit means coupled to apply the signals representing left and right acoustic channels to the first and second acoustic radiating transducer means, and to apply said signal representing algebraic difference to the third acoustic radiating transducer means.
6. Signal translating apparatus for operation with stereophonic signals representing left and right acoustic channels, comprising:
circuit means coupled to receive signals which are representative of left and right acoustic channels for producing a third signal as the linear algebraic difference thereof;
a pair of acoustic radiating transducer means positioned to radiate substantially in the same direction, toward a reception region, and a third acoustic radiating transducer means positioned relative to the pair of transducer means to radiate toward the reception region in a direction substantially opposite to that of the first and second transducer means; and
means coupling the first and second transducer means to receive the signals representing left and right acoustic channels, and coupling the third transducer means to receive said third signal.
7. Signalling apparatus for operation with stereophonic signals represented by respective left and right signal voltages, the apparatus comprising:
first amplifier means for reversing polarity of one of said signal voltages;
a plurality of resistor means connected to a circuit node for linearly summing current proportional to the reverse-polarity signal voltage and current proportional to the other of said signal voltages; and
second amplifier means connected to the circuit node for supplying a current proportional to the resulting current sum to a common impedance to produce a signal voltage thereacross proportional to the product of said current sum and said common impedance.
8. Stereophonic reproduction apparatus having left and right channels characterised by a third channel in which a signal dependent upon the algebraic difference between the left and right channel signals is produced.
EP82300721A 1982-02-12 1982-02-12 Improved acoustic apparatus and method Withdrawn EP0086287A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP82300721A EP0086287A1 (en) 1982-02-12 1982-02-12 Improved acoustic apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP82300721A EP0086287A1 (en) 1982-02-12 1982-02-12 Improved acoustic apparatus and method

Publications (1)

Publication Number Publication Date
EP0086287A1 true EP0086287A1 (en) 1983-08-24

Family

ID=8189575

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82300721A Withdrawn EP0086287A1 (en) 1982-02-12 1982-02-12 Improved acoustic apparatus and method

Country Status (1)

Country Link
EP (1) EP0086287A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2145307A (en) * 1983-08-08 1985-03-20 Microbourne Limited Sound reproduction system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3164676A (en) * 1961-03-13 1965-01-05 Philco Corp Stereophonic system employing audio matrixing
FR2113781A7 (en) * 1970-11-16 1972-06-30 Pascolini Jean

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3164676A (en) * 1961-03-13 1965-01-05 Philco Corp Stereophonic system employing audio matrixing
FR2113781A7 (en) * 1970-11-16 1972-06-30 Pascolini Jean

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUNKSCHAU, vol. 44, no. 18, September 1972, page 672, M}nchen, DE. *
WIRELESS WORLD, vol. 79, no. 1452, June 1973, page 284, London, G.B. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2145307A (en) * 1983-08-08 1985-03-20 Microbourne Limited Sound reproduction system

Similar Documents

Publication Publication Date Title
US5930370A (en) In-home theater surround sound speaker system
US5555306A (en) Audio signal processor providing simulated source distance control
US6118876A (en) Surround sound speaker system for improved spatial effects
US7492907B2 (en) Multi-channel audio enhancement system for use in recording and playback and methods for providing same
US7545946B2 (en) Method and system for surround sound beam-forming using the overlapping portion of driver frequency ranges
US5784468A (en) Spatial enhancement speaker systems and methods for spatially enhanced sound reproduction
US5708719A (en) In-home theater surround sound speaker system
KR20000065108A (en) Audio Enhancement System for Use in Surround Sound Environments
JP2000125399A (en) Method for combining three-dimensional sound field
JPH0332300A (en) Environmental acoustic equipment
US20020057806A1 (en) Sound field effect control apparatus and method
JPS6024799A (en) Movie theater speaker system
JP3830997B2 (en) Depth direction sound reproducing apparatus and three-dimensional sound reproducing apparatus
IL104665A (en) Stereophonic manipulation apparatus and method for sound image enhancement
GB2202111A (en) Reverb generator
US4443889A (en) Acoustic apparatus and method
Gierlich et al. Processing artificial-head recordings
US5175768A (en) Method and apparatus for enhancing the stereo effect in headsets having cross coupling voice coils
EP0086287A1 (en) Improved acoustic apparatus and method
US6064329A (en) System for creating and amplifying three dimensional sound employing phase distribution and duty cycle modulation of a high frequency digital signal
CA2098319C (en) Signal processor for recreating original audio signals
Glasgal Surround ambiophonic recording and reproduction
WO1997031505A1 (en) An analog vector processor and method for producing a binaural signal
JPS58159100A (en) Method of reproducing acoustic signal of electric signal representing left and right stereophonic signal channels and signal processor
CA1132460A (en) Monitor ampliphones

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19840221

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19850603

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NORGAARD, DONALD EUGENE