EP0084420A2 - An antenna, particularly for the reception of satellite communications - Google Patents

An antenna, particularly for the reception of satellite communications Download PDF

Info

Publication number
EP0084420A2
EP0084420A2 EP83300106A EP83300106A EP0084420A2 EP 0084420 A2 EP0084420 A2 EP 0084420A2 EP 83300106 A EP83300106 A EP 83300106A EP 83300106 A EP83300106 A EP 83300106A EP 0084420 A2 EP0084420 A2 EP 0084420A2
Authority
EP
European Patent Office
Prior art keywords
reflector
antenna
sub
antenna according
main reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP83300106A
Other languages
German (de)
French (fr)
Other versions
EP0084420A3 (en
Inventor
Graham Leslie Maile
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PA Consulting Services Ltd
Original Assignee
PA Consulting Services Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PA Consulting Services Ltd filed Critical PA Consulting Services Ltd
Publication of EP0084420A2 publication Critical patent/EP0084420A2/en
Publication of EP0084420A3 publication Critical patent/EP0084420A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/141Apparatus or processes specially adapted for manufacturing reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface

Definitions

  • This invention relates to an antenna, particularly a groundstation antenna for the reception of satellite broadcast television, business satellite communications or marine satellite communications.
  • New television (TV) services based upon the direct broadcast of signals from geostationary satellites are planned. These will become available in several countries in the next few years. Such services will be received, in a domestic context, either by a satellite groundstation devoted to a single home or, alternatively, by a community groundstation and then relayed to a number of homes.
  • the patent application describes the design of a microwave antenna which is suitable for incorporation in a domestic groundstation system.
  • Antennae suitable for satellite broadcast reception fall into two categories, namely reflector antennae and planar array antennae.
  • Reflector antennae are designed either with or without subreflectors, ie Cassegrain or front-fed respectively.
  • the feed and/or sub-reflector(s) may be either along the principal axis of the main reflector (symmetrical) or offset.
  • the simplest reflector antenna configuration a focal front-fed arrangement, generally requires a waveguide or coaxial cable to be routed from the microwave feed to a receiver. This implies a high radio frequency signal loss which is highly undesirable for satellite broadcast reception. Designs have been proposed where the receiver is suspended at the reflector focus; however the additional volume at the focus causes increased antenna aperture blockage (leading to lower efficiency, high sidelobes and depolarisation) and mechanical problems.
  • the Cassegrain configuration overcomes the signal loss problem but requires an extra reflecting surface(s) (sub-reflector(s)) and possesses a greater number of degrees of mechanical freedom, which makes alignment problematical.
  • an antenna comprises a main reflector having a parabolic reflecting surface, a sub-reflector having a hyperbolic reflecting surface and a microwave feed system aligned along the axis of the main reflector, wherein the two reflecting surfaces are accurately, permanently and non-adjustably located one with respect to the other and the two reflecting surfaces are protected from the environment surrounding the antenna.
  • the main reflector and the sub-reflector are formed by an integral body which is conveniently of a foamed synthetic plastics material.
  • the body may be moulded or cast in the desired shape, and have metal coatings over the parabolic and hyperbolic surfaces.
  • the metal coatings may be deposited on the foamed body by spraying.
  • a mounting flange is preferably attached to the parabolic surface by a suitable adhesive.
  • the sub-reflector is integral with its radome support.
  • the latter consists of a conical tube of a microwave transparent material, such as a plastics material, that extends from its base at the perimeter of the main reflector to the sub-reflector.
  • the cone is truncated in the vicinity of the main reflector's primary focus and the truncating section formed by a hyperbolic surface.
  • the inner surface of the hyperbola is coated with conducting material to form the sub-reflector.
  • a simple bayonet or snap fastener arrangement may join the main reflector to the sub- reflector/radome allowing simple assembly and servicing.
  • the main reflector has a diameter of typically 0.5 to 1.0 metres for 12 GHz TV direct broadcast, while suitable dimensions for the sub-reflector diameter and the distance from the feed to the sub-reflector are given in texts on antenna practice and theory, respectively.
  • the fastening between the main reflector and combined radome/sub-reflector should be as waterproof as practically possible to reduce deterioration of the metallic surfaces by exposure to moisture.
  • the surface of either the main reflector or the sub-reflector, or both can be modified to correct for any error caused by the presence of the radome material.
  • the antenna of Figures 1 and 2 comprises a body 1 of foamed plastics material having a metallised hyperbolic surface 2 (forming a main reflector) and a metallised parabolic surface 3.
  • the body 1 has a circular outer periphery marking the transition between the rear parabolic surface 3 and the front frusto-conical surface, in the centre of which is the hyperbolic surface 2.
  • the metallised surfaces 2 and 3 are formed by deposition of metal on appropriate regions of the external surface of the body 1.
  • the body 1 is moulded with a recess 4 to receive a feed horn carried by a mounting flange 5 which is attached to the body 1 by a suitable adhesive.
  • the foamed body 1 is simple and cheap to mould or cast in the desired shape and is light yet robust. It will be appreciated that the body 1 may be made of any shape which presents the required parabolic and hyperbolic surfaces. In particular the external surface of the body surrounding the hyperbolic surface 2 may be shaped differently from the frusto-conical configuration shown.
  • the metallised surfaces 2 and 3 are, where they reflect an incoming signal (e.g. along the single ray path A), covered by the foam meterial and therefore protected from the environment. Also, the surfaces 2 and 3 are maintained in their relative positions by virtue of being deposited on the common body 1 of foamed material.
  • the antenna of the second embodiment has a main reflector 10 which is of metal and plastics with a parabolic reflecting surface 12 having at its centre an orifice 13 surrounded by an antenna mounting flange 14.
  • the sub-reflector 15 ( Figures 5 and 6) has a central hyperbolic reflecting surface 17 integral with and surrounded by a radome 16.
  • the reflecting surfaces 12 and 17 are suitably formed by coating the concave side of the main reflector 10 and the convex side of the sub-reflector 15.
  • Figure 7 shows the main reflector 10 and the sub-reflector 15 assembled together by means of a bayonet attachment around their peripheries, projections on the periphery of the sub-reflector engaging within slots in the periphery of the main reflector.
  • the main reflector 10 and the sub-reflector 15 are in the nature of dished casing members so that the assembled antenna is a hollow shell-like structure which encloses the reflecting surfaces 12 and 17.
  • the orifice 13 accommodates a feed horn 19 which has a feed output flange 20 and which is clamped in position by a detachable split feed clamp 21.
  • the sub-reflector is in effect rigidly positioned and located with respect to the main reflector which is shaped to provide a convenient means of aligning a feed horn.
  • the antenna of each embodiment is designed so that the reflecting surfaces are well protected, and so that the antenna is adaptable to accept future commercially available microwave feeds.

Abstract

A groundstation antenna comprises a body 1 of a foamed plastics material having on a rear parabolic surface a metallised coating (3) providing a main reflecting surface. A front surface of the body (1) has on a hyperbolic surface a metallised coating (2) providing a sub-reflector. A feed horn is received within a rear recess (4) in the body 1. The main reflector and the sub reflector are thus accurately located with respect to one another and protected from the weather. In an alternative embodiment (Figure 7), two casing members are joined at their outer peripheries to form an antenna of enclosed, hollow shell-like form.

Description

    Field of invention
  • This invention relates to an antenna, particularly a groundstation antenna for the reception of satellite broadcast television, business satellite communications or marine satellite communications.
  • New television (TV) services based upon the direct broadcast of signals from geostationary satellites are planned. These will become available in several countries in the next few years. Such services will be received, in a domestic context, either by a satellite groundstation devoted to a single home or, alternatively, by a community groundstation and then relayed to a number of homes. The patent application describes the design of a microwave antenna which is suitable for incorporation in a domestic groundstation system.
  • Background to the invention
  • Hitherto, the size of ground-based antennae for the reception of satellite transmissions has not been a primary constraint. The specialised nature of their use has also meant that performance has often taken a higher priority than.cost. However, direct TV broadcast implies the proliferation of microwave antennae for the first time and, for this to be feasible on the anticipated scale, antenna size and cost considerations become paramount.
  • Antennae suitable for satellite broadcast reception fall into two categories, namely reflector antennae and planar array antennae. The constructional simplicity of the former has made them attractive for low cost applications. Reflector antennae are designed either with or without subreflectors, ie Cassegrain or front-fed respectively. The feed and/or sub-reflector(s) may be either along the principal axis of the main reflector (symmetrical) or offset.
  • The simplest reflector antenna configuration, a focal front-fed arrangement, generally requires a waveguide or coaxial cable to be routed from the microwave feed to a receiver. This implies a high radio frequency signal loss which is highly undesirable for satellite broadcast reception. Designs have been proposed where the receiver is suspended at the reflector focus; however the additional volume at the focus causes increased antenna aperture blockage (leading to lower efficiency, high sidelobes and depolarisation) and mechanical problems.
  • The Cassegrain configuration overcomes the signal loss problem but requires an extra reflecting surface(s) (sub-reflector(s)) and possesses a greater number of degrees of mechanical freedom, which makes alignment problematical.
  • Low cost offset systems are generally not possible on the grounds of manufacturing and alignment difficulties. Investigations into other antenna types, such as pseudo- reflector antennae and planar arrays, for satellite direct broadcast indicate that they will probably not match the efficiency of front-fed and Cassegrain reflector systems.
  • It is clear that the symmetrical Cassegrain configuration has advantages in satellite direct broadcast application. An aim in this invention is to eliminate or reduce the features of this type of antennae which prevent it from being a low cost option. Hitherto, the sub-reflectors in Cassegrain systems have been supported by struts, requiring adjustment and final positioning of the sub- reflectors and exposing the reflecting surfaces to the weather.
  • Summary of the invention
  • According to the invention an antenna comprises a main reflector having a parabolic reflecting surface, a sub-reflector having a hyperbolic reflecting surface and a microwave feed system aligned along the axis of the main reflector, wherein the two reflecting surfaces are accurately, permanently and non-adjustably located one with respect to the other and the two reflecting surfaces are protected from the environment surrounding the antenna.
  • In one preferred embodiment to be described, the main reflector and the sub-reflector are formed by an integral body which is conveniently of a foamed synthetic plastics material. The body may be moulded or cast in the desired shape, and have metal coatings over the parabolic and hyperbolic surfaces. The metal coatings may be deposited on the foamed body by spraying. A mounting flange is preferably attached to the parabolic surface by a suitable adhesive.
  • In another preferred embodiment to be described, the sub-reflector is integral with its radome support. The latter consists of a conical tube of a microwave transparent material, such as a plastics material, that extends from its base at the perimeter of the main reflector to the sub-reflector. The cone is truncated in the vicinity of the main reflector's primary focus and the truncating section formed by a hyperbolic surface. The inner surface of the hyperbola is coated with conducting material to form the sub-reflector. A simple bayonet or snap fastener arrangement may join the main reflector to the sub- reflector/radome allowing simple assembly and servicing. The main reflector has a diameter of typically 0.5 to 1.0 metres for 12 GHz TV direct broadcast, while suitable dimensions for the sub-reflector diameter and the distance from the feed to the sub-reflector are given in texts on antenna practice and theory, respectively.
  • The fastening between the main reflector and combined radome/sub-reflector should be as waterproof as practically possible to reduce deterioration of the metallic surfaces by exposure to moisture.
  • Conveniently, the surface of either the main reflector or the sub-reflector, or both, can be modified to correct for any error caused by the presence of the radome material.
  • Two embodiments of the invention will now to be described, by way of example, with reference to the accompanying drawings in which
    • Figure 1 is a side view of the first embodiment of antenna,
    • Figure 2 is a front view of the antenna of Figure 1
    • Figure 3 is a rear view of the main reflector structure of the second embodiment of antenna,
    • Figure 4 is a side view of the main reflector structure of Figure 3,
    • Figure 5 is a front view of the sub-reflector structure of the second embodiment of antenna,
    • Figure 6 is a side view of the sub-reflector structure of Figure 5, and
    • Figure 7 is a sectional side view of the assembled antenna of the second embodiment, showing a feed horn in position.
  • The antenna of Figures 1 and 2 comprises a body 1 of foamed plastics material having a metallised hyperbolic surface 2 (forming a main reflector) and a metallised parabolic surface 3. The body 1 has a circular outer periphery marking the transition between the rear parabolic surface 3 and the front frusto-conical surface, in the centre of which is the hyperbolic surface 2. The metallised surfaces 2 and 3 are formed by deposition of metal on appropriate regions of the external surface of the body 1. The body 1 is moulded with a recess 4 to receive a feed horn carried by a mounting flange 5 which is attached to the body 1 by a suitable adhesive.
  • The foamed body 1 is simple and cheap to mould or cast in the desired shape and is light yet robust. It will be appreciated that the body 1 may be made of any shape which presents the required parabolic and hyperbolic surfaces. In particular the external surface of the body surrounding the hyperbolic surface 2 may be shaped differently from the frusto-conical configuration shown.
  • The metallised surfaces 2 and 3 are, where they reflect an incoming signal (e.g. along the single ray path A), covered by the foam meterial and therefore protected from the environment. Also, the surfaces 2 and 3 are maintained in their relative positions by virtue of being deposited on the common body 1 of foamed material.
  • Referring to Figures 3 and 4, the antenna of the second embodiment has a main reflector 10 which is of metal and plastics with a parabolic reflecting surface 12 having at its centre an orifice 13 surrounded by an antenna mounting flange 14. The sub-reflector 15 (Figures 5 and 6) has a central hyperbolic reflecting surface 17 integral with and surrounded by a radome 16. The reflecting surfaces 12 and 17 are suitably formed by coating the concave side of the main reflector 10 and the convex side of the sub-reflector 15.
  • Figure 7 shows the main reflector 10 and the sub-reflector 15 assembled together by means of a bayonet attachment around their peripheries, projections on the periphery of the sub-reflector engaging within slots in the periphery of the main reflector. The main reflector 10 and the sub-reflector 15 are in the nature of dished casing members so that the assembled antenna is a hollow shell-like structure which encloses the reflecting surfaces 12 and 17. The orifice 13 accommodates a feed horn 19 which has a feed output flange 20 and which is clamped in position by a detachable split feed clamp 21.
  • In both embodiments the sub-reflector is in effect rigidly positioned and located with respect to the main reflector which is shaped to provide a convenient means of aligning a feed horn. The antenna of each embodiment is designed so that the reflecting surfaces are well protected, and so that the antenna is adaptable to accept future commercially available microwave feeds.

Claims (9)

1. An antenna comprising a main reflector having a parabolic reflecting surface, a sub-reflector having a hyperbolic reflecting surface.and a microwave feed system aligned along the axis of the main reflector, wherein the two reflecting surfaces are accurately, permanently and non-adjustably located one with respect to the other and the two reflecting surfaces are protected from the environment surrounding the antenna.
2. An antenna according to claim 1, wherein the main reflector and the sub-reflector are constituted by a single body of material coated to provide the reflecting surfaces.
3. An antenna according to claim 2, wherein the single body of material is a foamed synthetics plastics material.
4. An antenna according to claim 2 or 3, wherein the reflecting surfaces are applied to the body of material by spraying.
5. An antenna according to any of claims 2 to 4, wherein the body of material has a recess which receives a feed horn of the microwave feed system.
6. An antenna according to claim 5, wherein a mounting flange is secured to the body of material around the recess, the mounting flange serving to mount the antenna.
7. An antenna according to claim 1, wherein the main reflector and the sub-reflector are provided by respective casing members which are permanently joined together around their external edges to form a shell-like structure enclosing the reflecting surfaces.
8. An antenna according to claim 7, wherein the casing member providing the main reflector has an orifice in the centre thereof, the microwave feed system being located in the orifice.
9. An antenna according to claim 8, wherein a mounting flange for the antenna surrounds the orifice and supports the feed horn in alignment along the axis of the main reflector.
EP83300106A 1982-01-19 1983-01-10 An antenna, particularly for the reception of satellite communications Withdrawn EP0084420A3 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB8201417 1982-01-19
GB8201417 1982-01-19
GB8203068 1982-02-03
GB8203068 1982-02-03

Publications (2)

Publication Number Publication Date
EP0084420A2 true EP0084420A2 (en) 1983-07-27
EP0084420A3 EP0084420A3 (en) 1983-08-03

Family

ID=26281750

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83300106A Withdrawn EP0084420A3 (en) 1982-01-19 1983-01-10 An antenna, particularly for the reception of satellite communications

Country Status (1)

Country Link
EP (1) EP0084420A3 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108515A1 (en) * 1982-10-11 1984-05-16 Cambridge Electronic Industries plc Dish aerial
EP0170726A1 (en) * 1984-07-13 1986-02-12 Siemens Aktiengesellschaft Dual reflector directional antenna
US4581615A (en) * 1983-02-08 1986-04-08 Levy Stanley P Double reflector antenna with integral radome reflector support
GB2168854A (en) * 1984-12-17 1986-06-25 Shamah M Antenna systems
US4977407A (en) * 1981-07-23 1990-12-11 Crane Patrick E Optical collimator
GB2221351B (en) * 1988-07-27 1991-12-04 British Telecomm Antenna
US5351060A (en) * 1991-02-25 1994-09-27 Bayne Gerald A Antenna
EP2510576A2 (en) * 2009-12-11 2012-10-17 Andrew LLC Reflector antenna radome attachment band clamp
WO2017152988A1 (en) * 2016-03-10 2017-09-14 Telefonaktiebolaget Lm Ericsson (Publ) A reflector antenna arrangement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3296685A (en) * 1962-05-31 1967-01-10 Sylvania Electric Prod Method of making dielectric foam antenna
GB1100391A (en) * 1965-01-12 1968-01-24 Malifaud Pierre Receivers for directional waves
US3374482A (en) * 1958-09-30 1968-03-19 Navy Usa Radar dish in plastic casement
US3430244A (en) * 1964-11-25 1969-02-25 Radiation Inc Reflector antennas
GB1531242A (en) * 1975-01-21 1978-11-08 Post Office Splash plate feed assemblies for aerials
DE2842298A1 (en) * 1978-09-28 1980-05-22 Siemens Ag Directional antenna for very short waves - has secondary reflector formed by central metal part on dielectric cover of main reflector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3374482A (en) * 1958-09-30 1968-03-19 Navy Usa Radar dish in plastic casement
US3296685A (en) * 1962-05-31 1967-01-10 Sylvania Electric Prod Method of making dielectric foam antenna
US3430244A (en) * 1964-11-25 1969-02-25 Radiation Inc Reflector antennas
GB1100391A (en) * 1965-01-12 1968-01-24 Malifaud Pierre Receivers for directional waves
GB1531242A (en) * 1975-01-21 1978-11-08 Post Office Splash plate feed assemblies for aerials
DE2842298A1 (en) * 1978-09-28 1980-05-22 Siemens Ag Directional antenna for very short waves - has secondary reflector formed by central metal part on dielectric cover of main reflector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELECTRICAL DESIGN NEWS, no. 12, October 1965, pages 6-7, Cahners, Denver, USA "Between feed and reflector: plastic" *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4977407A (en) * 1981-07-23 1990-12-11 Crane Patrick E Optical collimator
EP0108515A1 (en) * 1982-10-11 1984-05-16 Cambridge Electronic Industries plc Dish aerial
US4581615A (en) * 1983-02-08 1986-04-08 Levy Stanley P Double reflector antenna with integral radome reflector support
EP0170726A1 (en) * 1984-07-13 1986-02-12 Siemens Aktiengesellschaft Dual reflector directional antenna
GB2168854A (en) * 1984-12-17 1986-06-25 Shamah M Antenna systems
GB2168854B (en) * 1984-12-17 1989-06-14 Shamah M Antenna systems
GB2221351B (en) * 1988-07-27 1991-12-04 British Telecomm Antenna
US5351060A (en) * 1991-02-25 1994-09-27 Bayne Gerald A Antenna
EP2510576A2 (en) * 2009-12-11 2012-10-17 Andrew LLC Reflector antenna radome attachment band clamp
EP2510576A4 (en) * 2009-12-11 2014-05-14 Andrew Llc Reflector antenna radome attachment band clamp
WO2017152988A1 (en) * 2016-03-10 2017-09-14 Telefonaktiebolaget Lm Ericsson (Publ) A reflector antenna arrangement
US10263343B2 (en) 2016-03-10 2019-04-16 Telefonaktiebolaget Lm Ericsson (Publ) Reflector antenna arrangement

Also Published As

Publication number Publication date
EP0084420A3 (en) 1983-08-03

Similar Documents

Publication Publication Date Title
US5117240A (en) Multimode dielectric-loaded double-flare antenna
US6512485B2 (en) Multi-band antenna for bundled broadband satellite internet access and DBS television service
US8497810B2 (en) Multi-band antenna system for satellite communications
US5309167A (en) Multifocal receiving antenna with a single aiming direction for several satellites
US5606334A (en) Integrated antenna for satellite and terrestrial broadcast reception
US7466282B2 (en) Tri-head KaKuKa feed for single-offset dish antenna
EP0084420A2 (en) An antenna, particularly for the reception of satellite communications
US7982687B1 (en) Ka/Ku outdoor unit configuration using a frequency selective surface
US6535176B2 (en) Multi-feed reflector antenna
JPH02228103A (en) Conical horn antenna
US6166704A (en) Dual elliptical corrugated feed horn for a receiving antenna
US7038632B2 (en) Co-located multi-band antenna
US6356235B2 (en) Ground based antenna assembly
US7860453B2 (en) Method and apparatus for receiving dual band signals from an orbital location using an outdoor unit with a subreflector and additional antenna feed
EP0452077A1 (en) Antenna arrangements
US20020008669A1 (en) Reflective antenna system with increased focal length
US6980170B2 (en) Co-located antenna design
WO1990006004A1 (en) Offset parabolic reflector antenna
KR200212460Y1 (en) Low Noise Blockdown converter fixing bracket for satellite broadcasting
AU627720B2 (en) Multimode dielectric-loaded multi-flare antenna
CN112635965A (en) Double-circular polarization Cassegrain antenna applied to LEO low-orbit satellite communication
CN115315848A (en) Prism for redirecting the main beam of a reflector antenna
KR19990014621U (en) Antenna with a compass
AU2002306710A1 (en) Multi-band antenna for bundled broadband satellite internet access and DBS television service

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI SE

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: P.A. CONSULTING SERVICES LIMITED

17P Request for examination filed

Effective date: 19831217

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19860405

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MAILE, GRAHAM LESLIE