EP0079648A1 - Steam power plant - Google Patents

Steam power plant Download PDF

Info

Publication number
EP0079648A1
EP0079648A1 EP82201400A EP82201400A EP0079648A1 EP 0079648 A1 EP0079648 A1 EP 0079648A1 EP 82201400 A EP82201400 A EP 82201400A EP 82201400 A EP82201400 A EP 82201400A EP 0079648 A1 EP0079648 A1 EP 0079648A1
Authority
EP
European Patent Office
Prior art keywords
coolant
heat exchanger
power plant
steam power
intercooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82201400A
Other languages
German (de)
French (fr)
Other versions
EP0079648B1 (en
Inventor
Andreas Brand
Hans Kogler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Priority to AT82201400T priority Critical patent/ATE22153T1/en
Publication of EP0079648A1 publication Critical patent/EP0079648A1/en
Application granted granted Critical
Publication of EP0079648B1 publication Critical patent/EP0079648B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat

Definitions

  • the present invention relates to a steam power plant according to the preamble of claim 1.
  • the heat absorbed by the cooled parts of the system and released to a secondary cooling water is transferred to the atmosphere, which means thermodynamically a loss and represents an environmental impact.
  • the advantage of the invention can be seen in the fact that the additional heat output to the main circuit improves its process efficiency or increases the output power.
  • the temperature of the intermediate coolant in front of the system components can be optimally set.
  • 1 denotes an intermediate cooling circuit with a circulating pump 4, which works independently of the working medium of a main circuit 12 and of the condenser coolant 17.
  • the system components 2, 3 to be cooled, for example slide bearings, pumps or the like, are in the intermediate cooling circuit 1, 1 '. and the intercooler 7 flows through water as an intercooler in a closed circuit. In the intercooler 7, the waste heat is given off to the secondary coolant, for example river water.
  • a regenerative heat exchanger 8 is arranged in the main circuit 12 according to the invention. Because of the prevailing temperatures, this is switched into the main condensate line 18 between the main condensate pump 14 following the condenser 13 and the preheating line 16, which is only indicated. On the coolant side, this regenerative heat exchanger 8 branches off from the intercooling circuit 1 via the line l t , between the circulating pump 4 and the intercooler 7 cooling components 2, 3 is admixed with the medium that may have cooled in the intercooler 7. Regenerative heat exchanger 8 and intercooler 7 are thus connected in parallel.
  • the distribution of the coolant flows flowing through the two devices 7, 8 takes place as a function of the coolant temperature upstream of the system components to be cooled.
  • the temperature is measured using known means at a measuring point 11, which is arranged downstream of the reunification point in such a way that the two partial flows are well mixed.
  • the measurement signal is fed via the control line 10 to a controller 6, which controls the flow cross sections of a three-way valve 5.
  • the three-way valve 5 is located at the point in the intermediate cooling circuit 1 at which the line 1 'branches off to the regenerative heat exchanger 8.
  • the coolant heated in the system components can now only give off its heat in the regenerative heat exchanger 8, which means complete recovery.
  • the portion of the capacity which exceeds the capacity is fed to the intercooler 7 and, as is known, is cooled therein to the lowest possible temperature with secondary coolant 19.
  • the decisive factor for the distribution of the volume flows in the three-way valve 5 is in any case the inlet temperature of the coolant upstream of the system components 2, 3, which must be kept as constant as possible according to their needs for uniform and sufficient cooling. This cooling is thus guaranteed regardless of the respective system state, with a maximum of waste heat being recuperated and a minimum of waste heat being released to the environment, depending on the load delivered, the condenser coolant temperature and the secondary coolant temperature.
  • the arrangement according to the invention will be used particularly advantageously where relatively cold coolant 17 is available for the turbine condenser 13.
  • relatively cold coolant 17 is available for the turbine condenser 13.
  • FIG. 2 A further circuit possibility for the regenerative heat exchanger 8 according to the invention is shown in FIG. 2, in which the same elements are provided with the same reference symbols as in FIG. 1.
  • the regenerative heat exchanger 8 is connected in series with the intercooler 7 and is constantly flowed through by the intercooler. If the heat dissipation therein is insufficient, the intercooler 7 is switched on by opening the shut-off element 20. The secondary coolant mass flow is regulated on this shut-off device 20 in such a way that the desired temperature upstream of the system components 2, 3 is achieved.
  • the signal from the temperature measuring point 11 serves as the actuating variable for the controller 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

1. Steam power plant comprising an intermediate cooling circuit (1) which operates independently of the working medium and of the condenser coolant (17) of the main circuit (12) and in which an intermediate coolant flows in a closed circuit through the plant components (2, 3) to be cooled and an intercooler (7) charged with a secondary coolant (19) and an additional regenerative neat exchanger (8) is connected into the intermediate cooling circuit (1), in which heat exchanger the intermediate coolant transfers its heat to the working medium of the main circuit (12), characterized in that the regenerative heat exchanger (8) is connected in parallel with the intercooler (7), a controllable three-way mixing valve (5) being provided for the quantitative distribution of the intermediate coolant heated in the plant components (2, 3) to intercooler (7) and regenerative heat exchanger (8), and, in addition, the temperature (11) of the intermediate coolant being used as control parameter after completed heat transfer, recombination and mixing of the two part flows upstream of the components (2, 3) to be cooled.

Description

Die vorliegende Erfindung betrifft ein Dampfkraftwerk gemäss dem Oberbegriff des Patentanspruches 1.The present invention relates to a steam power plant according to the preamble of claim 1.

Ein Dampfkraftwerk mit einem derartigen geschlossenen Zwischenkühlkreis ist bekannt (Brown Boveri-Mitteilungen 8-79, Seite 533).A steam power plant with such a closed intermediate cooling circuit is known (Brown Boveri Mitteilungen 8- 79, page 533).

Die von den gekühlten Anlageteilen aufgenommene und an ein Nebenkühlwasser abgegebene Wärme wird hierbei an die Atmosphäre weitergeleitet, was thermodynamisch einen Verlust bedeutet und eine Umweltbelastung darstellt.The heat absorbed by the cooled parts of the system and released to a secondary cooling water is transferred to the atmosphere, which means thermodynamically a loss and represents an environmental impact.

Es ist Aufgabe der vorliegenden Erfindung, in einem Dampfkraftwerk die Kühlung der Anlagenkomponenten so auszulegen, dass deren Abwärme zumindest teilweise rekuperiert werden kann.It is an object of the present invention to design the cooling of the system components in a steam power plant so that their waste heat can be at least partially recuperated.

Die vorgenannte Aufgabe wird erfindungsgemäss durch die kennzeichnenden Merkmale des Anspruches 1 gelöst.The aforementioned object is achieved according to the invention by the characterizing features of claim 1.

Der Vorteil der Erfindung ist darin zu sehen, dass durch die zusätzliche Wärmeabgabe an den Hauptkreislauf dessen Prozesswirkungsgrad verbessert oder die abgegebene Nutzleistung erhöht werden kann.The advantage of the invention can be seen in the fact that the additional heat output to the main circuit improves its process efficiency or increases the output power.

Zweckmässig ist bei Parallelschaltung von Zwischenkühler und Regenerativ-Wärmetauscher die Anordnung eines regelbaren Dreiwege-Mischventiles stromaufwärts der Kühler. Dadurch kann dieWhen connecting the intercooler and the regenerative heat exchanger in parallel, it is expedient to arrange a controllable three-way mixing valve upstream of the cooler. This allows the

Temperatur des Zwischenkühlmittels vor den Anlagekomponenten optimal eingestellt werden.The temperature of the intermediate coolant in front of the system components can be optimally set.

In der Zeichnung sind Schaltschemen der erfindungsgemässen Anordnung in einem Dampfkraftwerk gezeigt, wobei alle zum Verständnis der Erfindung nicht erforderlichen Teile weggelassen wurden. So wird vom Turbinenkreis nur das sogenannte "kalte Ende" vereinfacht dargestellt.In the drawing, circuit diagrams of the arrangement according to the invention in a steam power plant are shown, all parts which are not necessary for understanding the invention being omitted. Only the so-called "cold end" of the turbine circuit is shown in simplified form.

Es zeigt:

  • Fig. 1 eine erfindungsgemässe Anordnung in Parallelschaltung,
  • Fig. 2 eine ebensolche Anordnung in Serienschaltung.
It shows:
  • 1 shows an arrangement according to the invention in parallel connection,
  • Fig. 2 shows such an arrangement in series connection.

Im Schaltschema gemäss der Fig. 1 ist mit 1 ein Zwischenkühlkreislauf mit einer Umwälzpumpe 4 bezeichnet, welcher unabhängig vom Arbeitsmittel eines Hauptkreislaufes 12 und vom Kondensator-Kühlmittel 17 arbeitet. In den Zwischenkühlkreislauf 1, 1' sind die zu kühlenden Anlagenkomponenten 2,3, beispielsweise Gleitlager, Pumpen o.ä. und der Zwischenkühler 7 in geschlossenem Kreislauf von Wasser als Zwischenkühlmittel durchströmt. Im Zwischenkühler 7 wird die Abwärme an das Nebenkühlmittel, beispielsweise Flusswasser abgegeben.In the circuit diagram according to FIG. 1, 1 denotes an intermediate cooling circuit with a circulating pump 4, which works independently of the working medium of a main circuit 12 and of the condenser coolant 17. The system components 2, 3 to be cooled, for example slide bearings, pumps or the like, are in the intermediate cooling circuit 1, 1 '. and the intercooler 7 flows through water as an intercooler in a closed circuit. In the intercooler 7, the waste heat is given off to the secondary coolant, for example river water.

Soweit sind Anordnungen von Zwischenkühlkreisläufen in Dampfkraftwerken bekannt. Um einen Teil dieser Abwärme rückgewinnen zu können, wird im Hauptkreislauf 12 erfindungsgemäss ein Regenerativ-Wärmetauscher 8 angeordnet. Dieser wird aufgrund der vorherrschenden Temperaturen in die Hauptkondensatleitung 18 zwischen der auf den Kondensator 13 folgenden Hauptkondensatpumpe 14 und der nur angedeuteten Vorwärmstrasse 16 geschaltet. Kühlmittelseitig zweigt dieser Regenerativ-Wärmetauscher 8 über die Leitung lt vom Zwischenkühlkreislauf 1 ab, zwischen der Umwälzpumpe 4 und dem Zwischenkühler 7. Abströmseitig wird das seine Wärme abgegebene Kühlmittel über die Leitung 1" in den Zwischenkühlkreis 1 zurückgeführt, wo es vor den zu kühlenden Komponenten 2, 3 dem gegebenenfalls im Zwischenkühler 7 abgekühlten Medium beigemischt wird. Regenerativ-Wärmetauscher 8 und Zwischenkühler 7 sind somit parallel geschaltet. Die Aufteilung der die beiden Apparate 7,8 durchströmenden Kühlmittelströme erfolgt in Funktion der Kühlmitteltemperatur vor den zu kühlenden Anlagekomponenten. Hierzu wird die Temperatur mit bekannten Mitteln an einer Mess-Stelle 11 abgenommen, welche stromabwärts der Wiedervereinigungsstelle so angeordnet ist, dass die beiden Teilströme gut durchmischt sind. Das Messsignal wird nach entsprechender Verstärkung über die Steuerleitung 10 einem Regler 6 zugeführt, welcher die Durchflussquerschnitte eines Dreiwegeventiles 5 steuert. Das Dreiwegeventil 5 befindet sich an der Stelle im Zwischenkühlkreis 1, an der die Leitung 1' zum Regenerativ-Wärmetauscher 8 abzweigt. Das in den Anlagekomponenten erwärmte Kühlmittel kann nun ausschliesslich im Regenerativ-Wärmetauscher 8 seine Wärme abgeben, was eine vollständige Rückgewinnung bedeutet.So far, arrangements of intercooling circuits in steam power plants are known. In order to be able to recover part of this waste heat, a regenerative heat exchanger 8 is arranged in the main circuit 12 according to the invention. Because of the prevailing temperatures, this is switched into the main condensate line 18 between the main condensate pump 14 following the condenser 13 and the preheating line 16, which is only indicated. On the coolant side, this regenerative heat exchanger 8 branches off from the intercooling circuit 1 via the line l t , between the circulating pump 4 and the intercooler 7 cooling components 2, 3 is admixed with the medium that may have cooled in the intercooler 7. Regenerative heat exchanger 8 and intercooler 7 are thus connected in parallel. The distribution of the coolant flows flowing through the two devices 7, 8 takes place as a function of the coolant temperature upstream of the system components to be cooled. For this purpose, the temperature is measured using known means at a measuring point 11, which is arranged downstream of the reunification point in such a way that the two partial flows are well mixed. After appropriate amplification, the measurement signal is fed via the control line 10 to a controller 6, which controls the flow cross sections of a three-way valve 5. The three-way valve 5 is located at the point in the intermediate cooling circuit 1 at which the line 1 'branches off to the regenerative heat exchanger 8. The coolant heated in the system components can now only give off its heat in the regenerative heat exchanger 8, which means complete recovery.

Wenn jedoch dessen Kapazität nicht ausreicht, wird der die Kapazität überschreitende Mengenanteil dem Zwischenkühler 7 zugeleitet und darin wie bekannt mit Nebenkühlmittel 19 auf tiefstmögliche Temperatur abgekühlt. Massgebend für die Aufteilung der Mengenströme im DreiwegeVentil 5 ist jedenfalls die Zulauftemperatur des Kühlmittels vor den Anlagekomponenten 2,3, die entsprechend deren Bedürfnissen nach gleichmässiger und ausreichender Kühlung möglichst konstant zu halten ist. Diese Kühlung ist somit unabhängig vom jeweiligen Anlagenzustand gewährleistet, wobei je nach abgegebener Last, nach Kondensator-Kühlmitteltemperatur und nach Nebenkühlmitteltemperatur ein Maximum an Abwärme rekuperiert und ein Minimum an Abwärme an die Umwelt abgegeben wird.If, however, its capacity is insufficient, the portion of the capacity which exceeds the capacity is fed to the intercooler 7 and, as is known, is cooled therein to the lowest possible temperature with secondary coolant 19. The decisive factor for the distribution of the volume flows in the three-way valve 5 is in any case the inlet temperature of the coolant upstream of the system components 2, 3, which must be kept as constant as possible according to their needs for uniform and sufficient cooling. This cooling is thus guaranteed regardless of the respective system state, with a maximum of waste heat being recuperated and a minimum of waste heat being released to the environment, depending on the load delivered, the condenser coolant temperature and the secondary coolant temperature.

Die erfindungsgemässe Anordnung wird besonders vorteilhaft dort zur Anwendung kommen, wo für den Turbinenkondensator 13 relativ kaltes Kühlmittel 17 zur Verfügung steht. Durch den Regenerativ-Wärmetauscher 8 kann umsomehr Wärme von den Anlagekomponenten 2, 3 übertragen werden, je kälter das Hauptkondensat ist.The arrangement according to the invention will be used particularly advantageously where relatively cold coolant 17 is available for the turbine condenser 13. Through the regenerative heat exchanger 8, the more heat can be transferred from the system components 2, 3, the colder the main condensate.

So können beispielsweise bei einer 220 MW-Anlage unter Vollast und einer Kondensator-Kühlmitteltemperatur von 80C etwa 40% der vom Zwischenkühlmittel aufgenommenen Wärme an das Hauptkondensat abgegeben werden. Bei entsprechender Auslegung der beiden Apparate beaufschlagen hierbei etwa 85% des Zwischenkühlmittels den Regenerativ-Wärmetauscher 8, während der Rest den Zwischenkühler 7 durchströmt. Durch diese Massnahme ist eine Erhöhung der Generatorleistung um ca. 250 KW möglich.For example, in a 220 MW system under full load and a condenser coolant temperature of 8 0 C, about 40% of the heat absorbed by the intermediate coolant can be given off to the main condensate. With an appropriate design of the two apparatuses, approximately 85% of the intermediate coolant act on the regenerative heat exchanger 8, while the rest flows through the intermediate cooler 7. This measure increases the generator output by approx. 250 KW.

Eine weitere Schaltungsmöglichkeit für den erfindungsgemässen Regenerativ-Wärmetauscher 8 ist in Fig. 2 dargestellt., bei welcher die gleichen Elemente mit denselben Bezugszeichen versehen sind, wie in Fig. 1.A further circuit possibility for the regenerative heat exchanger 8 according to the invention is shown in FIG. 2, in which the same elements are provided with the same reference symbols as in FIG. 1.

Der Regenerativ-Wärmetauscher 8 ist hierbei in Serie mit dem Zwischenkühler 7 geschaltet und wird ständig vom Zwischenkühlmittel durchströmt. Ist die Wärmeabfuhr darin ungenügend, so wird der Zwischenkühler 7 zugeschaltet, indem das Absperrorgan 20 geöffnet wird. An diesem Absperrorgan 20 wird der Nebenkühlmittel-Massenstrom derart geregelt, dass die stromaufwärts der Anlagekomponenten 2,3 gewünschte Temperatur erzielt wird. Als Betätigungsgrösse für den Regler 6 dient das Signal von der Temperaturmess-Stelle 11.The regenerative heat exchanger 8 is connected in series with the intercooler 7 and is constantly flowed through by the intercooler. If the heat dissipation therein is insufficient, the intercooler 7 is switched on by opening the shut-off element 20. The secondary coolant mass flow is regulated on this shut-off device 20 in such a way that the desired temperature upstream of the system components 2, 3 is achieved. The signal from the temperature measuring point 11 serves as the actuating variable for the controller 6.

Claims (6)

1. Dampfkraftwerk mit einem unabhängig vom Arbeitsmittel und vom Kondensatorkühlmittel (17) des Hauptkreislaufes (12) arbeitenden Zwischenkühlkreislauf (1), in welchem die zu kühlenden Anlagekomponenten (2, 3) und ein von einem Nebenkühlmittel (19) beaufschlagter Zwischenkühler (7) in geschlossenem Kreis von einem Zwischenkühlmittel durchströmt werden, dadurch gekennzeichnet, dass im Zwischenkühlkreis .(l) ein zusätzlicher Regenerativ-Wärmetauscher (8) geschaltet ist, in welchem das Zwischenkühlmittel seine Wärme an das Arbeitsmittel des Hauptkreislaufes (12) abgibt.1. steam power plant with an intercooling circuit (1) which operates independently of the working fluid and the condenser coolant (17) of the main circuit (12), in which the system components (2, 3) to be cooled and an intercooler (7) acted upon by an auxiliary coolant (19) closed circuit are flowed through by an intermediate coolant, characterized in that in the intermediate cooling circuit. (l) an additional regenerative heat exchanger (8) is connected, in which the intermediate coolant releases its heat to the working medium of the main circuit (12). 2. Dampfkraftwerk nach Anspruch 1, dadurch gekennzeichnet, dass der Regenerativ-Wärmetauscher (8) parallel zum Zwischenkühler (7) geschaltet ist.2. Steam power plant according to claim 1, characterized in that the regenerative heat exchanger (8) is connected in parallel to the intercooler (7). 3. Dampfkraftwerk nach Anspruch 1, dadurch gekennzeichnet, dass der Regenerativ-Wärmetauscher (8) in Serie zum Zwischenkühler (7) geschaltet ist.3. Steam power plant according to claim 1, characterized in that the regenerative heat exchanger (8) is connected in series to the intercooler (7). 4. Dampfkraftwerk nach Anspruch 1, dadurch gekennzeichnet, dass der Regenerativ-Wärmetauscher (8) im Hauptkreislauf (12) zwischen Kondensator (13) und Vorwärmerstrasse (16) angeordnet ist.4. Steam power plant according to claim 1, characterized in that the regenerative heat exchanger (8) in the main circuit (12) between the condenser (13) and preheater line (16) is arranged. 5. Dampfkraftwerk nach Anspruch 2, dadurch gekennzeichnet, dass für die mengenmässige Aufteilung des in den Anlagekomponenten (2, 3) erwärmten Zwischenkühlmittels auf Zwischenkühler (7) und Regenerativ-Wärmetauscher (8) ein regelbares Dreiwege-Mischventil (5) vorgesehen ist.5. Steam power plant according to claim 2, characterized in that a controllable three-way mixing valve (5) is provided for the quantitative distribution of the intermediate coolant heated in the system components (2, 3) to the intermediate cooler (7) and regenerative heat exchanger (8). 6. Dampfkraftwerk nach Anspruch 5, dadurch gekennzeichnet, dass als Regelparameter die Temperatur (11) des Zwischenkühlmittels nach erfolgter Wärmeabgabe, Wiedervereinigung und Durchmischung der beiden Teilströme vor den zu kühlenden Komponenten (2, 3) dient.6. Steam power plant according to claim 5, characterized in that the temperature (11) of the intermediate coolant serves as control parameters after the heat has been given off, reunited and mixed in before the components (2, 3) to be cooled.
EP82201400A 1981-11-16 1982-11-08 Steam power plant Expired EP0079648B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82201400T ATE22153T1 (en) 1981-11-16 1982-11-08 STEAM POWER PLANT.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH7343/81 1981-11-16
CH734381 1981-11-16

Publications (2)

Publication Number Publication Date
EP0079648A1 true EP0079648A1 (en) 1983-05-25
EP0079648B1 EP0079648B1 (en) 1986-09-10

Family

ID=4323635

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82201400A Expired EP0079648B1 (en) 1981-11-16 1982-11-08 Steam power plant

Country Status (4)

Country Link
EP (1) EP0079648B1 (en)
AT (1) ATE22153T1 (en)
DE (1) DE3273229D1 (en)
DK (1) DK481182A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0597305A1 (en) * 1992-11-07 1994-05-18 Asea Brown Boveri Ag Method of operating a combined cycle installation
GB2292791A (en) * 1994-08-22 1996-03-06 Nash Engineering Co Using waste heat from pump seal liquid to preheat boiler feedwater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110195619A (en) * 2019-05-30 2019-09-03 中国水利水电科学研究院 Fired power generating unit regulating system, method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1741605A (en) * 1925-05-04 1929-12-31 Bbc Brown Boveri & Cie Power-plant installation
DE523899C (en) * 1924-04-24 1931-04-29 Otto Happel Device for the recovery of lost heat in electrical machines, in particular with steam turbine drive
US2491314A (en) * 1946-10-14 1949-12-13 Gen Electric Turbogenerator cooling system
DE1053527B (en) * 1957-01-18 1959-03-26 Siemens Ag Steam power plant with recovery of lost heat from the turbo set

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1938077A (en) * 1929-05-03 1933-12-05 Ljungstroms Angturbin Ab Cooling device for closed electrical motors, generators, or the like machines

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE523899C (en) * 1924-04-24 1931-04-29 Otto Happel Device for the recovery of lost heat in electrical machines, in particular with steam turbine drive
US1741605A (en) * 1925-05-04 1929-12-31 Bbc Brown Boveri & Cie Power-plant installation
US2491314A (en) * 1946-10-14 1949-12-13 Gen Electric Turbogenerator cooling system
DE1053527B (en) * 1957-01-18 1959-03-26 Siemens Ag Steam power plant with recovery of lost heat from the turbo set

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0597305A1 (en) * 1992-11-07 1994-05-18 Asea Brown Boveri Ag Method of operating a combined cycle installation
GB2292791A (en) * 1994-08-22 1996-03-06 Nash Engineering Co Using waste heat from pump seal liquid to preheat boiler feedwater
GB2292791B (en) * 1994-08-22 1998-03-11 Nash Engineering Co Heat recovery in a liquid ring pump seal liquid chiller system

Also Published As

Publication number Publication date
ATE22153T1 (en) 1986-09-15
DK481182A (en) 1983-05-17
DE3273229D1 (en) 1986-10-16
EP0079648B1 (en) 1986-09-10

Similar Documents

Publication Publication Date Title
DE2810191C3 (en) Method and device for extracting heat from at least one flowing heat transfer medium
EP0526816B1 (en) Power plant with gas and steam turbines with solar steam generator
DE2945404C2 (en) Process for operating a combined gas-steam turbine system and gas-steam turbine system for carrying out this process
AT508086B1 (en) DEVICE FOR ENERGY CONVERSION ACCORDING TO THE ORC PRINCIPLE, ORC PLANT WITH SUCH A DEVICE AND METHOD FOR STARTING AND / OR OPERATING SUCH A DEVICE
DE2311066A1 (en) STEAM GENERATOR FOR UNFIRED POWER PLANT
EP0099501B1 (en) Method of changing the electric energy release of a heating power plant without influencing the heat release to the heat consumers
EP1390606B1 (en) Device for cooling coolant in a gas turbine and gas and steam turbine with said device
DE3002615A1 (en) Combined gas and steam turbine power plant - uses gas turbine waste heat to generate steam, preheats air-to-gas turbine compressor
DE1301654B (en) Power plant with a gas turbine system and a steam turbine system
DE4126036A1 (en) Gas and steam turbine plant with solar heated system generator - with generator connected to heat exchanger in h.p. steam line from waste heat steam generator
EP0079648A1 (en) Steam power plant
DE3248623C1 (en) Method and device for preheating the combustion media, in particular for heating wind heaters for blast furnaces
CH626426A5 (en) Internal combustion engine system with a pressure-charged, water-cooled engine
DE941511C (en) Arrangement for operating a recuperative compressed air heater, which is connected in the exhaust gas flow behind a recuperative air heater
DE2518161C2 (en) Thermal power station with district heating system
DE102004020223B4 (en) Method and device for improving the efficiency of boiler plants
DE973903C (en) Process for operating an industrial plant in which an air supply is required and hot exhaust gases are produced
DE441453C (en) Device for the supply of heat in the saturated steam area of steam turbines
DE2124193C3 (en) Gas turbine plant with main circuit and downstream thermodynamic working cycleB
DE2755092A1 (en) Gas turbine driven heat pump - has expansion turbine and compressor for heat pump driven by gas turbine
CH632560A5 (en) Gas turbine plant
CH508806A (en) Process for dissipating waste heat from the working fluid of a thermal power plant and thermal power plant for carrying out the method
AT220434B (en) Method for covering heat consumption peaks in a thermal power station operating with a hot gas turbine and device for carrying out the method
DE2155187C3 (en) Gas-heated air heating system
AT108278B (en) Device for utilizing waste heat from industrial furnaces in compressed air turbines.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE LI NL SE

17P Request for examination filed

Effective date: 19831014

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860909

Year of fee payment: 5

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860910

REF Corresponds to:

Ref document number: 22153

Country of ref document: AT

Date of ref document: 19860915

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19860930

REF Corresponds to:

Ref document number: 3273229

Country of ref document: DE

Date of ref document: 19861016

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890221

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19891108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19891130

Ref country code: CH

Effective date: 19891130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930118

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940802